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DESCRIPTION OF STATISTICAL METHODS AND A
ROUTINE FOR DETERMINING THE PARAMETERS OF
A MODEL IN PROCESSING EXPERIMENTAL RESULTS

D. A. Usikov

USSR Academy of Sciences, Institute of Space Research, Moscow

The selection of the optimum pa&ameters of a theoretical model and /2*
determination of the ‘errors in them due to errors in physical measurements
is an important séage in pr&cessing an experiment. " Besides, in processing
experimental data it becomes necessary to evaluate the conformity of
theory with the experiment. The routine described in this work solves
these problems. The user wishing to process a specific experiment with
its help has only'tﬁfwrite a subroutine for calculating the function of

the specific model.

In compiling this routine attention was concentrated on assuring
reliability, algorithmic speed and convenience. The routine extensively
utilizes formatted printing and diagnosingvpossible errors in the input
data. This paper describes in detail the specification sequence for
the input data and the format of the calculation results. Necessagy
information on statistics is presented in a special chapter. /7

The programming language is FORTRAN, and the routine has been

« entered as a module in the routine library of the SOFI video display

processing complex.

INTRODUCTION /3

i
/

/i

1

: The described routine is intended for processing experiments by
the method of least squares or the maximum likelihood mg%hod. The
class of selected functions is arbitrary, the requireqﬁéarameters may
enter nonlinearly. To use the routine it is necessary to program the
function calculation block in each specific case.

The result of the routine is a printout of a set of tables:

%
;
7

\
kY

*Numbers in the margin indicate pagination in the foreign text.
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“*i. The optimum values of the parameters of the model;
2. A covariance matrix of parameter errors;
3. The theoretical curve optimally describing the experiment;
4. The minimum statistical sum, i.e., the sum of the squares of
the differences betﬂ%en the experimental and theoretical values of the
functions calculcaﬁed for the best choice of parameters.

it
I

1
Accérding to the chi~-square criterion, the value of the minimum
statistiéal sum makes it possible to select competing models as well
as to determine the degree of correspondence of the model and the
experiment. |

Chapter I. ACCESS TO THE ROUTINE

Sec. 1. Data Input

0

The expériment is processed by the method of least squares. The
sum of the errors (statlstlcal sum) is minimized:

S(x)= 3 Z (7( (i/fzf 2 X})

where M is the number of experiments; Zi is the coordinate of the

i-th measurement, for' examp}e, the instant, length, etc. ; f (Z. ) is

the. experlmentally ootalned values at points Z £ (Zl,x) 1s the
theoretically predicted value at point Zl, X 1s the vector of the /4
selected parameters of theory. We denote the dimension of vector X

as N(N = dimx).cﬁ is the error of the i-th experiment (one standard

(1)

error).

“The routine looks for the values of X at which the statistical sum
(1) is minimal. The accuracy with which the minimum is sought is given
by a special parameter related to the statistical nature of the problem.
Determination of the parameter 1s described in Chapter II. It is
%sumed that the statlstlcal sum (1) has one minimum. If there are
several minima, a lec ‘al ‘minimum is determined, depending on the initial
approximation of the parameters.

2 | ORIGINAL PAGE ¥
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In the descriptioh of the quantities that follows, the notation
C are entered in the same sequence as they are described below.

Quantities Entered Into the Main Routine:

N - dimension of the space of the X parameters. Format 16. Restric-
’ tion, N & 20.

IPE - printout label. IPE = 0 - normal printout mode. IPE = 1 - test

printout mode. Format 16.

OS
g

Quantities Entered by ENEXPE Subroutine:

M - number of test points. Format 16. Restriction, M <400.

' Z(M) - array of M numbers - measurement’éoordinates. Format 5F16.7.
EXPE (M) - in notation of (1) - fE(Zi) - array of experimental values.

Format 5El6-7.

VEXPE (M) - in notation of (1) =~ g{ - array of experimental errors.

Format 5 El6.7.

Quantities Entered by SPOINT Subroutine:

‘employed corresponds to the identifiers in the routine. The quantities

X(N) - array of parameter input values, The closer the input parameters

approach the optimum values the faster, in general, is the minimum
-found. Format 5El6.7.
AVD(N). - array of input values of parameter errors. These quantities
are required by the routine for the initial selection of the gate
’ circuit on which the first and second,deriVativé§ are calculatqu
The quantities are subsequently modified by the‘ﬁbutine as the work
proceeds. It is recommended to také AVD(i)Jegb.lx(i), i.e., take
the errors at approkimately 10% of the input values of the respective
P parameters. l | : S
Attention: AVD(1l) should not be taken equal to zero! TFormat 5El6.7.
MARK (N) - qualifying array. If MARK(i) = 0 the given parameter varies.
‘ If MARK (i) = 1 the given parameterkis reinforced and taken equal to
E the input value of X{i). Format 7211. '

A
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Quantities Entered In;o the Main Routine:

EPS - accuracy of determination of the minimum, EPS is usually taken
equal to 0.1. The precise definition of EPS is given in Chapter II.

Format E16.7. ]

Sec. 2. Printout of Results

Below is presented the printout saquence of results for the case
IPE = 0, i.e., when a tesé\ﬁrintout is not envisaged (seé Sec. 1).
We-shall illustrate the routine printait with a concrete example.

The heading is printed iﬁﬂiﬁéting the model employed. This is
foltowed by the input data: the EXPE (M) experlmept array, the array
of test errors VEXPE (M), the ‘coordinates of the test points Z(M):

EXPERIMENT APPROXIMATED BY | ORDER POLYNOMIAL

ACIIOXC2IYZ4X(gInzwhpaX L) w2 bnyy, ,,

iPExy = TEST PRINTOUT YES
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This i} followed by the input values of the parameters X (i) and
the approximate errors of the parameters AVD(i): ‘

INPUT ‘PARAMETER VALUE . APPROXIMAT
0.0 100¢

o

»

N

4
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Some parameters may not vary (which is indicated by units in ]
the MARK (i) array), and the routine therefore transfers to the internai i
list, which gives only the varied parameters. Correspondence between
external and internil numgxgtion is indicated in the following table:

DATA PRINTOUT EVERYWHERE ACCORDING TO INTERNAL NUMERATION i
CORRESPONDENCE OF PARAMETERS
INTERNAL PARAMETERS EXTERNAL PARAMETERS

| 1
.- .2 . ?

FRR

bt

Next the EPS value is stated:

0,99Y9798En0En ACCURACY OF DETERMINATION OF MINIMUM
-SCALE ONE CHI-SQUARE DISPERSION

A

R b e o W L R

With this the 1nput data printout ends and the routine transfers

to calculation:

/7 !
1 - TﬁEORETI%#kLCSEVE DEMONSTRATION . » £l i
2 = EXPERIMED - -
5 = _ COMPARISON WITH EXPERIMENT ERROR E
(THEORY MINUS EXPERIMENT DIVIDED BY- TEST R 'é
&runM--o-———---........-..-.....,.,.-..,,....F-»-&-uﬂquq-u—w-‘-ubnnmn» #
;""“EQ‘!"I“‘P~"1-—-*""'3'-"'n--n54—-nn-g“wu\-tw!um»wun§u~—ku: '
L T o0 ! 45108 O "0.1050E ¢33 I
b 21 g.0 ? g.:%goa c% § -g 39905 33 :
i 33 9.0 T o.3¥1os 01 1 =0.3010E G35 3
i &8 0.0 ! 0.3¢090F 01 § =0.3990E 0¥ {
i 5t g.0 1 6.5¢10E 01 I ~0.50710E 03 &
i 5%’ 6.0 ! 6.5990E ¢y I "p-5990E g3 }
: ? g.0 T 0:7016E 04 ¥ ~0.7010E 03 I
S 0 1 A O 111 B 0 H 444 5 S
i 16 8 0.0 I 0.9990F 01 1 =9.9990E ¢% i ORIGINAL PAGE |-
‘ " gy - oun[-nuq-ofnn-u—ﬁ-v-u---p-,pg_.—h-n---'w»nwn-»-nuu-nu--.g OF POOR QUAL‘T‘[:}%
FIRST INPU % :
'Riaozasg;% .7 = STATISTICAL SUM ,
t PARAMETER™ " PARAMETER VALUE LAST BASE ...
i A0 0,3012007E" 00
2 J0.8 0.68854292k=04
i As the statistical sum decreases the pro&ram prints out
ﬁ ﬁintermediate results: B
oL ENPUT FOLLOWING 'NEWTON METHOD STEP , - ORIGINAL v AGy.
- 0.48694s7E 01 ~ STATISTICAL SUM ~ | OF POOR QUAL..
. . PARAMETER PARAMBIER, VARYE - oLo97s! é?E-as v
L L e 2 0.9993422E€ 00 0.7T64726E~04

} 1?7 = NUMBER OF ACCESSES TO.STATSUM BLOCK




When the optimum value of the parameters has been determined
the table of theoretical and experimental values is printed out, after
which the routine gives the minimum statistical sum, the Fisher
matrices, and the covariance and correlation matrices:

1. THEORETICAL CURVE DEMONSTRATION
¢ = EXPERIMENTAL VALUE

| * = COMPARISON WITH EXPERIMENT
i (THEORY MINUS EXPERIMENT DIVIDED BY TSI, gggoa
ﬁh&ﬂwnw“-”uuupuqnnad - s oy O g W -
[ x POINT x ’ - , " E- -n.nsunmnnmug;nunni
ﬂanﬂupuﬂ»“.’u-»un»—p- LY .Y A 8 F J J [ ] o X
’ € 4010E 01 1 =0.7273E 00 I
| B s R Ry
4 AR IR A 9 0.3990E 01 1 0:1091E 01 I
| i 4 E 0-6n04E G1 ¥ o.§91 £ 511 .0‘969;E 80 3 N
i 3 5 0:5000E 01 1 0.5010 SeICE S8 T /
- i 8 0.6700E 91 I 0.3990F 01 1 _0.vesef 00 I
3 i 7§ 0.6999E 09 1 0 7010k 01 I "0r10812 !
5 ,7990E 04 Y (0.8485E 00
- i 3 § 3'33335 ¢l ! 056108 04 1 -0.12;55 01 §
’ i 10 1 0.9997E 91 1 0.9990E 0y 1 0.7273F 00 4
! yunnnu'wwunpmm.-(\---—.-.--n---q-"----n - “
| MINIMUM SEARCH END
( { PARAMETER ~ PARAMETER VAngz L@ST;;ygy;e Y
e v /) 0 8993022E 00 D 7764726E-04

q
)

24 NUMBER OF ACCESSES TO STATSUM BLOCK
'FISHER MATRIX

‘ 2% 0:.54n E
' o oi: 0-35536955 c?
. COVARIANCE MATRIX -
E 4 1F 9, ;o?97§9§ru:
o 8025%Ew¢
g 3 ;= 8.1%: Y9REw 8

CORRELATION MATRIX
K 1 15 0.10n0nG0E ¢4 |
; »% np.B8875962€ G0 - /
; % s o «1000000E 9 ; J”_
b7‘: The routine cycle is complete. When the calculziion ends control

; is transferred to the start, and the routine requires input of a new
| " set of data. "

| »‘ Sec. 3. Function Calculation Subroutine &

‘ o The function calcﬁfatiﬂh subroutings FUN(i, 2i, N, X, FT) is the
! " ' ’ T \j\\% e

N
0
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only subroutine which has to be changed as applied to the solution

of a specific problem. The subroutine provides for calculating the
function value for the given parameter values of model X(N) at point
Z;. For example, for a linear model the function is calculated apcor-
ding to the formula FT = X(l) + X(2)x2i + X(3)x2i%2 + .... The FUN
subroutine operates in two modes. The respective mode specifies the
value of the identifier i. At i = 0, the subroutine does not perform
calculations and only prints out the heading

EXPERIMENT APQROXIMATED BY 1 ORDER POLYNOMIAE
§$*;*X(d)'z*2¢;)-z'az*X¢b)az.os¢...

At i = 1, calculation of the function takes place.

The formal parameter N in the subroutine access specifies the
number of parameters of the model (varying or nonvarying in sum).

The parameters i, 2i, N, 2 enter the FUN subroutine from the main
routine, and the value of the function FT is transmitted back.

At points lying far from the minimum the search mode may generate
values of the X parameters that are unusable in FUN sub¥outine calcu-
lations. To avoid such a situation a special message contingency is

. provided for. Before starting FUN subroitine calculations it is

necessary to check whether the incoming values of the X parameter

are permissible. If they have gone beyond the limit of permissible

values the calculation is cancelled and FT is assigned the value 1018.

When the pilot routine receives PT equal to 1018

enter the domain of permissible values of the X parameters.

it takes steps to

There are different ways of determining the permissibility of
the X parameters. 1) X is verified prior to the calculation by means
of a test consisting of a set of inéqualities. 2) The permissibility
of X is verified duringv@he calculations. 3) A special FORTRAN device
is employed: the possibiiity of transferring control to a specified

place in the subroutine.

w8
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Sec. 4., Procedure Ffor Recalling Subroutine from SOFI Library

The subroutines are cataloged in the object module library of

" the SOFI complex (1). The routine ig generated in the following way:

/# JOB  NAME
// PAUSE ASSGN SYSRLB,X'19¢' disk 102
// OPTION LINK
// EXEC FFORTRAN
CALL MODNEU
STOP
END
SUBROUTINE FUN(I,ZI,N,X,FT)
DIMENSION X (20)
CALL FUN...(I,%I,N,X,FT)
RETURN
END

A

SUBROUTINE FGN. .. (I,2I,N,X,FT)

subroutine body

// EXEC LNKEDT
// EXEC

input data

The MODNEU subroutine contains the body of the main routine (texts .-
of the routine in FORTRAN are given in the Appendix). In FUN are

cataloged subroutines for calculating different functions. At present,
the subroutines FUNPOL and FUNEXP, which calculate polynomials of

thé Nth order and the sum of exponents, respectively, have been cataloged,
A special FUN subroutine is written for each of the calculated sub-

routines.

The FUN subroutine'transfers control from general access

of the main MODNEU routine to the FUN function to the concrete FUN...
subroutine.
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If a calculation of the same type is performed for many variants
according to some FUN... subroutine, an absolute model can be generated
and put into the SOFI complex according to the procedures cited in
work [1}. Thus, for example, at number 21000 in the SOFI complex there
is located a routine with a FUNPOL subroutine, and at number 21001 in
the absoclute library of the SOFI complex is a routine with a FUNEXP
subroutine.

(
Chapter II. ACCURACY OF DETERMINATION OF MODEL PARAMETERS

Sec. 5. Normal Limit of Likelihood Functions

In this chapter are described statistical methods of processing
experiments involving normal approximations of likelihood functions.
The domain of applicability of normal descriptions of an experiment
is considered at the end of the chapter.

The likelihood function 1(T/E) of a model T with respect to a
given experiment E is determined according to Bayes equation:

PEEIT) P(T)‘
SPEIT)P(T) AT @

ATiE) =

Here, P(E/T) is the probability density of the realization of the
experiment E, provided the parameters of the model are T; P(T) is
the a priori probability density of the parameters of the model.

The likelihood function is sometimes called the "a posteriori" proba-
bility dénsity of the model parameters, and P(T) is the "a priori"
density.

It is assumed that for sufficiently representative experiments
variations of the a priori density P(T) are insignificant in comparison
with the peak of the likelihood function at the maximum point 1(T/E).

In these assumptions it is proved that, as the number of experiments
increases, the function 1(T/E) tends towards a normal distribution -

bt A B ik o 8 AL B




[ﬁ, p. 217). A multidimensional normal distribution has the form:
A'l/z

PIX)= ;/ // expl-f(x-x.) Alx-xe))

(A7 , ‘ (3)

where ‘A\ is the determinant of A; X'AX = fzx i¥57 n = dimX is the
dimension of the parameter space.

The matrix A is called the "information” matrix (or the Fisher
matrix) of the experiment; its inverse B = covX = A“l is the covariance

matrix. Matrices A and B are symmetrical and positively determinate,
i.e., xTAXr»O for all X.

The normal distribution is given by two parameters: the mean value

5 -—-fxp(x)dx (4)

and the covariance matrix

B=covk = f(x - X)) (x - X)) "P(x)ax. (5)

It is thus assumed that the experiment is fully defined if X
and B are known. Calculation of Xo and B according to equations (4)
and (5) is inconvenient algorithmically, and differential methods are
usually employed. The mean values of XO are usually found from the
maximum condition of the likelihocd function:

' o En Plx)
ﬂX =&, (6)

The Fisher matrix is obtained as the second derivative of the logarithm
of the likelihood function:

0% b P/ Y
Al", = , ' (7)
/. ox: 2x

)
LA ’

I

It is not hard to see that defipitions (4), (5) and (6), (7) are
. equivalent. Determination of the parémeters‘io and B (or A) from
equations (6) and (7) naturally_ involves numerical methods of looking

10

e b e
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for the maximum of the likelihood function. This relationship will be
investigated in greater detail in Chapter III in describing the
alyorithm. ‘

Description of an experiment by stating the parameters X, and B
is called "normal" description of the experiment. Normal description
forms a sufficient statistic for any linear combination of input
parameters. Let us determine

Y = KX, (8)

where X and Y are vectors, dimY = r, dimX = n, and K is the matrix /13
of the dimension coefficient r»n. If vector X is distributed

TR TR

normally with the parameters Xor By then Y is also distributed normal-
ly with the parameters:

Y, = KX,, cOVY = KBK .. (9)
The relationships (9) are also frequently employed in the case

of a nonlinear relationship Y = f£(X), the matrix K being determined

as the factors of the linear term in a Taylor expansion of the function

f£(X) at podnt Xy

N ;‘%1
Ky = Ty b, a0

Sec. 6. Distribution of the Statistical Sum. The Chi-Square Criterion

The most commun case is when the errors of an experiment are
distributed according to a normal law. The function P(E/T) (see
equation (2)) has the form:

e

- -l ‘
P(E/T) = c exp (-%f, - £,(X)) 2:(fE - fT(X))- : (11)

Here, ¢ is the normalization constant;‘iz is the covariance matrix

- —~—— -

of the errors of the experiment;
. ‘ f;1 'is a vector compounded of experimentally measured

} fg - ; values;

M
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: “ik}j? is a vector compounded of the theoretical values
of the function in the i-th experiment, when the
(%) "/ values of the theoretical parameters are X;
M is the number of experimental points.

Note that the X parameters in the model f,(X) may enter nonlinearly.
The function

| S{&t -éz( “f(X/) Z-’f /[X// (12)

; is called the "statistical sum" of the experlment. Function (12)
does not differ essentially from the function (1) introduced before,
Function (12) generalizes (1) for the case of dependent experiments,

Expanding S(X) in a Taylor series of X in the neighborhood of X5
; and neglecting terms higher than the second order of smallness, we

arrive at the normal description of the experiment:

S(X) = S(Xp) + (X - X)TwS(Xy) + %(X - X)) TA(X) (X - X)), (13)

Here, JVS(XO) is the gradient vector: oX
VS z.’" .
y . /
28
20X,
. 2
A is the matrix of second derivatives: Aij = 5§;§§;

It is assumed that S(X) has one extremum. Point XO is found
from the condition

7

¥s(x,) = 0. (14)
! &

[, i

i i In particular, if the parameters enter the model linearly, then

} £,(X) = FX, | (15)
. " where F is the dlmen51on matrix dimf x dimX (M x N). In a linear model
’t 7 : the expansion (13) is exact, and '

/14

| .
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1
A=FrY F. (16)

The linearization procedure makes it possible to formulate
a very convenient accuracy criterion for numerical methods of solving
sets of equations. Suppose we have to solve a set of equations

Fi(xlpxzyzci’xN) = 0; i = 1’2,-00'N’ (17)
or in vector notation, F(X)X = 0.

Specific requirements are imposed on the accuracy of determination
of the parameters, namely,
& 2
S {Xf'&kj
Wopwien.
4 * J’
§ 54 6:"

n
i.e., the approximate solutions of X should differ frém the exact X

£ £ “ (18)

o

by no more than a speéified quantity characterized by the giyen error,
More precisely, condition (18) is equivalent to the requirement that
the deviations of the approximate values must lie within the ellipsoid
given by equation (18). The parameter t states the degree of approxi-
mation to the exact solution. If it is necessary to take into account
the paired relationships of the accuracies, tagn condition (18) is

replace by the condition

x - x)TE T x - %), (19)

where is ) is a positively given definite matrix,
' Y Lpapr
! %10
x = 4 X0 7 | :
*No/

i

Xy

The solution of equationd(l7) is apparently equivalent to the
solution of the problem of finding the minimum,

T

= min F°F. (21)

X

~ - This procedure, which is extensively employed in numerical methods,
makes it possible to solve the initial problem by developed methods of

s,
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looking for the extremum of a function of many variables. However,
if p

| FIpge ) (22)
is adopted as a condition for attaining the required accuracy, the

values of X which satisfy (22) will not, generally speaking, satisfy /16

the inequality (19). Let us now show that, proceeding from the
inequality (19), we can formulate an equivalent inequality in terms
of F. To the accuracy of the linear term, we have

F(X) = F(Xo) + K(X ~ X1, (23)
where
aFi
Kiy = 3%,
T 0%y x=x,
By definition, F(XO) = 0, hence (23) involvyes only the linear
term !

’F(X) = K(X - XO)' (24)

If solution (17) is unique, then K can be inverted, andlfhere

exists a matrix K 1. Substituting X - Xy = x1F into (19), we obtain

(K~ F)TZ"K lp s
or
FL(KZ KT) P& (25)

Matrix K23K¢ is positively definite, because i:is positively
definite. Matrix'(K'a“!K"r)"1 is also positively definite. Finally,
- the solution of equation (17) is equivalent to the solution of the
problem in finding the minimum:

min FT(kE KT) " 1F, i (26)

X u

and the condition of attalnlng the minimum (X - X ) 2 %X - X ) is
equivalent to the condition FL(RE KT) lpse

§
H
&
i
§




‘of deviation of the true value of the parameters X

Let us return to an examination of the properties of the
statistical sum (1l2). Since it is impossible to find such an X
that (14) would vanish by numerical methods, it is necessary to
formulate a criterion that would characterize the degree of approx-
imation to the exact solution of the extremum problem. It is natural
to require that the numerical method should be the more precise the
higher the accuracy of the experiment. In other words, the accuracy

0

of the search for the extremum should be related to the covariance
error matrix. We recall that XO is the evfiuation of the parameters
of the model. The covariance matrix B = A = exprexses the probability
_ true from the value
of X0 obtained from the condition of the likelihood function maximum,
The main statistical criteria are linked with the distribution
instants of the statistical sum (12). It is not hard to show that
the statistical sum possesses a chi-square distribution, provided
f(X) is linearly dependent on X. The mean value S =§%§—, the second

central instant:

OO
2 ~ b Al -
6% = J5-5) pesydls < 222
o

At M - N of the order of 10 or more, the chi-square distributica
close to its maximum point can be considered close to normal. Therefore,
if \s(xo) - N g1 —N
to a 68% probability. With the help of this criterion we can judge

, then the chi-square criterion is satisfied

of the correspondence of theory and experiment, for example, corres-

pondence of the experiment errorss’lindicated by the experimenter

to the true experiment errors. For ekamp}e, if it seems certain that

the experiment is correctly described theoretically, while as a result
o it has been found that S(XO)'<'§G-0 , this can be
interpreted as indicating that the experiment errors hayve been assumed

of the search for X
too high.

According to the chi-square criterion, the solution of equation
(14) is considered satisfactory if

»

i

3

5(xy - X)TaTh(x) - x)& ez, (27)

CriotIl AGE 18 5
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Here,‘? is the approximate valug/bf X., € is a certain constant
expressing the degree of confidehce. At & = 1, as noted before, /18
the confidence is 68%. At ¢> 1, the confidence is accordingly
higher. Usually ¢ is accepted equal to 0.1,

) Since X, is not known, criterion (27) is not constructive but,
taking into account that ' S = A(X - XO), we can obtain from (27)
an easily computable criterion:

5VsTa™l ps e ) (28)

The gradient ¥V S is computed at point X in the search for Xo analy-
tically, if the explicit form fT(x) is known, but more often approxi-
mately. The matrix of second derivatives is also calculiated in the
course of the computations. Criterion (28) is especially convenient
because calculation of v S and A are essential in the Newton method

8]

described further on.

Z /sec. 7. Condition for Ending the Mjnimization Process

The experimenter often does not know the absolute values of
o the experimental errors £ 1. All he knows is their relative course
from experiment to experiment. Consequently, the quantity ¢ in (28)
is indeterminate. 1In that case we can make use of the fact that
*=qs and, dividing both parts of (28) byq's', make use of the
criterion

5x¥$sTal vss & JE (29)

The unknown quantity 8§ in (29) is substituted by the current
statistical sum S(ﬁ):

% ¢S A-1¢SE ¥ Js. S (30)

Criterion (30) is, obviously, weaker than (29) ét.S(&)'z>§. However,

in practice calculations show that in the overwhelming number of cases
: the quantity %VSTA"I‘&S when it is far away from X, increases faster
| | than *JS, and criterion (30) does not lead to false stopping far

§ from the extremum point., The criterion of stopping the minimization

16
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process (30) is employed in the program described further on.
J
Sec. 8. Statistical Description of Parameters of “"Poorly Con-
ditioned” Models and Experiments

t\.
=
fi =

There are at least two cases when normal description of an
experiment is unsatisféétory. The first, which is frequently en-
countered in practice, is when it is impossible to reconstxruct the
parameters of the model from the experiment owing to low accuracy
or inadequate statistic of the experiment. Such a situation arises,
for example, in attempting to determine a great number of parameters
of the model from a small number of experiments. The problem of

describing the experiment that arises in this case will be discussed

in more detail further on. i

The second case, which is in a sense diametrically opposite to
the first, is encountered in processing a great number of highly
accurate experiments. In this case it is usually found that either
the model does notigdequately"describe the experiment ox that the
experiment errors are stated impregéfely. For example, the correlation
between individual measurements (ééuixe major significance, or small

: /
« systematic experimental errors Pecome decisive, i.e., the "trifles"
ol )

usually ignored, but which ‘in rich statistics restrict the attainable
accuracy of reconstruction of parameters. This case can be detected
from the chi-square criterion. When the models of theory and expe~
riment differ from the real-life experiment the minimum of the
statistical sum differs substantially from the theoretical value,
whick can be a "trouble" indicator. The situation is described in

¥

detail in work [3]). ., , ‘

We shall assume that the model is accurate and the errors of
the experiment are given correctly. Let us consider.the effect of
the nonlinearity of function £(X), According to Bayes' approach [2],
confidence that the gheoretical parameters lie within the X domain
is found from the formula

D(X) = ﬁ(m/mdfr, | (31) /20 .
X "
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where 1(T/E) is the likelihood function of the experiment (see
equation (2)).

L e P e SRS R i

If the likelihood function is normal, then .to calculatée the
integral (31) over any domain X, it is sufficient to know the ‘
normal distribution parameters: the vector jof means and the conxiance ¢
matrix. These parameters form a sufficient statistic. But if the
likelihood functjon is not expressed by a normal distribution a )
situation arises which is conveniently illustrated with the help ﬁf

il

¥

of curves of the levels of the likelihood function:

X2 4 7 L) ‘ ‘

X4
10

X, and X, are parameters of the model. Suppose that the likelihood i
function has only one maximum, and X10 and Xzo are the parameters at
which it attains that maximum. The curves show the solutions
1(X,X,) = const for various constants. The level lines always form
ellipses in the neighborhood of the maximum, but farther away from

V{AP .

the maximum point, when the model f(X) is nonlinear, they are no longer N
ellipses. It is not hard to_show that, for each confidence D there
is such a d that in integrating over the X domain defined by the

condition
1(X) €4, (32)

we obtain

O

o _{1 (X) dX.

Usually some meaningful confidence is assigned, for example, 0.68 /21
or 0.99 V
Let us denote a normal likelihood function with parameters X N

- Ja
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and B as 1(X), The fundamental thesis of normal description of
ég)experiment is formulated as follows. If

'f;{n.(x)dx - _4.’1‘(x)dx|«ep, (33)

where D is a significant confidence, and the integration domain X
is found according to (32), normal description of the experiment is
assumed satisfactory.:

In practice condition (33) can be obtained by the MontéﬁCarlo
method. The integral J1(X)dX in (33) can be determined according to
the formula ~

ll (X)dx = [,’f%‘-g— 1 (x) ax. (34)

X; is played according to the density of i(X) (an algorithm for
modelling a_normal distribution is described in work [11]).. The
quantities ‘T)‘(i , which are an evaluation of the integral (34),
are are introluced into the summator.

Chapter III. DESCRIPTION OF THE ALGORITHM

Sec. 9. HThe Modified Newton Method

The main task of the experiment processing algorithm is to find
the minimum of the statistical sum S(X) (12). The modified Newton
method [4, 5, 6] used for this is based on local gquadratic interpola-
tion. Suppose the statistical sum depends upon the parameters in
the following way:

i
- W

e

FRR"

P

S(R) =8 + (¥9)7(x - x5) + %% - X)) TAK - %) (35)

Here, X0 is the only minimum point, and ! he gradieht ¢S is taken at

point Xg, i.e., it is zero: \

4 .
‘ Tyt _
S(X) - Sy + %(X - X ) H(X - Xg). (36) /22
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We take the gradient of both sides of (36):

VS(X) = A(X - Xp). | (37)

We multiply both sides of (37) Wy A"~ and obtain the formula of

the Newton algorithm:

1

X. =X -2 ¢S, (38)

0

If the representation S(x) (35) is exact, then the minimum point Xy

is found, starting from point X, in one step according to equation
(38). Besides the New%on Method, the minimum can be found in a finite
number of steps by means of theralgorithm of the conjugated gradient
method [7, 8] . The simple method of gradients, or quickest descent,
does not generally speaking, converge at X in a finite number of
steps [4].

If the expansion (35)is not precise, we may find that the function
at the new point after a step by the Newton method is greatex than

in the preceding point:

| s(x - At vs) > s(x). i (39)
To avoid such a situation and assure that the minimization process
yields a monotonous decrease of function §S(X), equation (38) is
modified: ‘
L -1 :
If the simple Newton method fails to work on some stép, ais selected

in such a way that
s(x - 4 ATlve) Ts(x). (41)

This device is known as the "modified" Newton method.

Sec. 10. Internal Scaling o 7

3

It is well known that a programmer, besidaEUéeleéting a good

iR g tend e
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algorithm, should take account of the specific features of computers.
Algorithms are reliable and sufficiently universal only when account
is takel:r of cases going beyond the machine's digital grid. One of the
methods of avoiding overflow during calculation is described in Sec, 3.
Here we shall exanne scaiifig as related to the fact-that the theory
parameters X can be expressed in arbitrary physical units.

The scale adopted for each variable Xy is the evaluation of the
error, or more precisely, the quantity:

B 1
| ‘ Vi = 3% (42)
This device makes it possible to make all the variables Xy dimension-

| less. The more precisely the quantity Xy is known the larger its

’ value in the dimensionless form (42). The scales of 'Ji are verified
in each step of the Newton method. The transfer to the true measure-
ment units is carried Sut at the end of the calculation, that is, after
the minimum has been found. e

Sec. 11. Block Diagram of the Routine

Print heading. Subroutine FUN(0,...)

¥

Load arrays of initial data aboutkexpérimentp
Subroutine ENEXPE.

- ¥
‘ Load input theory values X. g t@:
Subroutine POINT

&
Compute input scales.
Subroutine EAVD. 62
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Count ¢ S, secnng dwrivativa

matrices A‘j éiiéxj
Subroutine FISHER.

Count statistical sum.
Subroutine STAT.

g""l‘iatzx::mx A access.
Lsubroutine INVERS.

Count function of
model .,
Subroutine FUN

| Obtain new point: X5 = Xy g- A" lys
Main routine.

{ End count check

End
Main yroutine.

capnt

Process results.
Subroutine INFORM,

Continue count.

S st

S(X.)<s(x. ,)
R EZALT 1 i=-1"
o S(X)>S5(X,_)
W + . '-;
Transfér from « to x , + 1 . s .
le »4 : Onedimensional minimization iw

"e°t°r A | subroutine ODM
Subroutlne STATAL. ‘ Futn -

The routine and subroutine texts are presented in the Appendix.
The symmetric matrix inversion subroutine was taken from the col-

lection of algorithms [9], algorithm N. 66b, and translated into

FORTRAN.

Sec. 12. Algorithm of Approximate Calculation of Gradients and matrig

of Second Deriviatives

To reduce the user's preparatory work to the minimum, the routine
is so devised that it does not require special programming of the
first and second derivatives of the function with respect to the
parameters of the model. These quantities are found in the FISHER
subroutine by forming finite differences. . &Og 25

([k

The following formula is used to compute the gradient:

22 | ORIGINAL PAGE I
: OF POOR QUALITY

© o e -

WAL e

o Aot s A




25 x .S[ X;tax; ) - i.r( X ~ax:)
Qx“ 2 4X“

The second derivatives are calculated this way:

. D35 _ S(X; ra K, X # 8 %) ~S[x; wak:)~I(% +aX )+ S(K).
(¢ ?S/ ) 9&*96' ) AX aX, !

(ie ) .g?,i{, L S(KiraX)-25(X:) * S(X: = ax;)
/ 9)(;‘2 (A‘A,o‘)‘,

| ; The problem of selecting the base A Xy is resalved by taking
: as A Xy the evaluations of the parameter errors (42).

Sec. 13. The Algorithm of One-Dimensional Minimization

In passing from calculations by the Newton method to the modified
method it is necessary to determine the minimum of function S(X - -A"lvs)
’ as a function of the parameter e« . The algorithm of the corresponding
one-dimensional minimization is constructed as follows. By the time
of reference to subroutine ODM the values of the function S(e) are known
at two points a.:

1) 82(12,,: 0) = 8S(Xx );

les).

——— e

2) S3(ay=1) = S(X - A

vasl('l = =1)< S(:;,?. ), a new point
« =&, -8, - ® )2
| 172 1 (43)
i is chosen. If S(a) < Sl(ﬂl ), the points are fedesignated, which

cahn be written using ALGOL notation:

¢2==11 ;.l = .'

l and theroutine transfers to executing the operator (43).
l | | 23
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This occurs until S(a ) > S(%). The redesignation occurs: /26

oAy i= ad
j’ :.: Ji

Az 1= s
S3 i= 82

opt= 0(’
S = Sy

£ 2 4
-

-
-e

The aggregate of points ap, ¢,,%; such tat S(e) > 8(02\, S(a3)> S(az),
is called "canonical”.

After obtaining the canonical triplet nf numbers the algorithm
transfers to looking for the extremum by the quadratic interpolation
method according to three points. The minimum point a is determined
from the formula

,ﬂrgt N a«t{;‘ "'a.?(.l,:\

ay - a; ‘f'aj

o =
where
G, = S (#s =z ) :
= 85 (o, -os) ]
a, = 8 (=)
b =(ots #eta )/2 -
& » (d, *‘6)/2 -
4:/,(, fa(z)/z.

It is not hard to show that point « always lies within the
interval(y < « < a3) From the aggegate of four points «, a;,« 203 !
S, 8q0 SZ’ S5, three such points « ,-2,p3,sl, SZ' Sé are selected »
so that the requirement -l<-'<¢', S)<8], 85 <8j. The canonical triplet
thus obtained is used to compute the next approximation of a according to
the procedure described above. The condition for halting the one~-dimensional
minimization process is a one-dimensional case of the general criterion described
in Sec. 7.

24
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The described algorithm is highly effective. As numerous /27
calculations show, the average unumber of selections of canonical
triplets of points is about five.

Sec. 14. Drawbackd.of the Algorithm of the Modified Newton Method.
The Gradient Line Method. \

Formula Xg = X - A'lv S,_on which the Newton method is based,

~is obtained from the condition V’S(X0)= ¢. However, the condition is
satisfied not only by the minimum points, but by the saddle points as
well. If in the iférationfgrocess point X upproaches such a saddle
point the direction A_lVS will point to the saddle point. I some
configurations of point X, going away from the saddle point with the
help of the one-dimensional minimization process may require a lot

of calculations. Let us explain this with the example of two variables,
Xy and?xz. Suppose X = 0 is a saddle point:

7

‘The lines of level S(X) = const are marked with arrows indicating
the direction of increase of function S(X). If point X is located in
the octants (X, > 0; Xi < 0) or (X, < 0; X1> 0), the direction of
one~dimensional minimization is towards point X = 0, and the X itera-
tion will remain close to the saddle point as long as the next point
-does not move to octants (Xl > 0; )(2 < 0) or (xl< 0; X2*< 0) as a
result of errors in the computation. The greater the number of /28
variables the higher the probability of X approaching the domain
of the saddle point. ‘To get out of the saddle point the routine

must carry out many iterations, which is precisely the principal

25
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drawback of the modified Netwon method. Work th] suggests ways of
preventing X from occurring in the saddle point domain. The idea

of the method is for matrix A, which is not positively determinate

in the saddle point, to be replaced by a positively determinate
matrix, for example, A* = (ATA)%. Matrix A can also be reduced to
diagonal form by similarity transformation, and all negative elements
be substituted by positive ones. Work [6] presents the results of
test computations which show that substantial acceleration of the
operation of the algorithm can be achieved in this way. It is worth
noting in passing that an algorithm in which the statistical sum is
in the linear approximation (16) always has a positively definite
matrix. This, apparently, explains the relatively high effectiveness
of this method. , &

The second shortcoming of the modified Newton method is due to
the need to invert the A matrix. ~If two parameters of a theory cor-
relate strongly, or if the number of experiments is smaller than
the number of parameters of the theory, inversion of the A matrix may
prove difficult. In general, the following device can be employed:
instead of the A matrix obtain an allied matrix of A*, i.e,, a matrix
made of algebraic complements Aik’ and compute the determinant A
separately. The structure of the allied matrix is:

hro Ans .
12 %22 .e0 A ppo

PPOVENOVPOIIANIOIETSY

AIn .AZ,, vee Rpp

An allied matrix always exists, It is related to the inyerse matrix
by the formula A* = A-l\A\. The direction of A'lvs\- will, apparently
coincide with the direction of A*VYS,

The two mentioned shortcomings can be overcome by further modifying
the Newton method. In particular, in the following version of the
described routine it is suggested tocuse a new algorithm of minimi-
zation along the gradient line, which is also based on local quadratic

26
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approximation of the function. The idea of the algorithm is to
proceed from the given point X along the gradient line and thus
find the one-dimensional minimum. Moving along the gradient line,
unlike moving in the direction of the gradient, makes it possible
to attain the minimum in a finite number of arithmetical operations.
The path of motion is described by the equation:

3X _
St- VS : (44)

for the initial condition X(0) = xin' t is the parameter. Since
Vs =A(X - X)), from (44) we obtain the equation

aX - ’i‘\\
ot = R - Xo), Lo (45)
which has the solution: !
Y = At _ -1
R(E) = Xy + (&7 = DA VS, (46)

At t = 0, X(0) = Xin® If the A matrix is positively definite,
then X(-o0) = X, - A-lv’s, which coincides with expression (38)
for X0 obtained by the Newton method. Thus, the parameterO( used
in one-dimensional minimization of the modified Newton method,
X(A) = X0 —d\A_LV S(x{ ), is replaced by the matrix AT - I.

The algorithm based on equation (46) does not require inversion
of the matrix A. Indeed, writing eAT in the form of a Taylor series,

we obtain from (46)

_ |  ORWGINAL PAGE ©*
X(E) = Xyp *+ tB(O) VS0 oF poOR QUALFY 47

thé notation )
?
s ."
E/z‘,} *E‘"f 31 s (48)

is introduced. To compute the matrix E(t) we can use an algorithm
based on application of the cayele_y-H'amiltoﬁ theorem [l(ﬂ . The A matrix
is a root of its characteristic equation:

27
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-/
+p, A , 7 =0; (49)
P(fl /;*,0,2’“ /:D,.. |

The coefficients p; are obtained with the help of recurrent
relationships: E

pI: - TI
p2= - I/Z (DITI+T2) H (50)

)‘ Qﬁere T\ = tr(Ak).

" K\N In (48) we limit ourselves to m terms of the expansion. Let
us $all the respective matrix Em(t). Since, according to (49),
P(t) = 0, then

Em t) = Q(t)P(t) + R(t) = R(t). (51)
The polynomial R(t) is found as the residue of the division\qf the
polynomial Em(t) by the polynomial P(t). The algorithm makes
it possible to find the exponential (48) to any degree of accuracy
using exponents of the A matrix not higher than n.

; Conclusion. The routine described in this work has been

E ‘ used to process ei@eriments since 1972. Since that time various

! improveménts have been made resulting in virtually flawless opera-
tion. Counting time under the routine is proportional tc¢ the cube of
the number of varied parameters; it also strongly depend> on the
accuracy of the initial approximation of the parameters. The time

of search for the statistical sum minimum for an essentially non-

| ; linear function f(X) comprising 5 parameters and 50 experimental

') : points (of the sum of exponents type) withban EC 1040 machine is some
15 to 20 minutes if the initial approximation was poorly given

(the statistical sum has to be reduced by a factor of more thén 10,000),

}g : and two or three minutes if the statistical sum of the initial approxi-
L ‘ “mation differs from the minimum statistical sum by a factor of less
| 2s




than 100. If the parameters of the model enter linearly, the minimum
is found in two iterations of the Newton method, and the counting
time decreases considerably in comparison with nonlinear models. .

In the near future it is planned to adjust a new version
of the program, the idea of which is set forth in the last paragraph,

The author expresses his great appreciation to V. M. Dmitriyev
for his support and critical remarks when the program was being

elaboratred.
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APPENDIX. Text of Routine in FORTRAN-1V.

e

- gv €

SUREOUTINE ManNEy "
PROCESS EXPERIMENTS BY MODIFIED NEWTON METHOD
DIMENSION XC20),X2¢20) AVDC20) /MARK(20)

SGRE2D) (XH1820) ¢ ‘
*2(6n0) , EXPRCL00) ,VEXPECOUO0),
SAL20,20%,A1€20020)

COMMON/TM/ M, 2:EXPE,VEXPE
COMMON/TN/ NyMARK; X

COMMON/TNY/ N1:X14:AVD

COMMON/HELP1/ XK1

COMMON/AZ A

COMMON/GR/ GR

COMMON/3C/ 1COUN

READC1:909) N

IFCN.OT.0. AND.N.LTY.20) €0OT0 1
WRITE(3,410)

STOP

FIRST ACCESS PRINT FUNCTION HEADING

DO NOT COUNT -FUNCTION VALUE""

CALL SUNCo 28, NoX,FT)

READC1,109) 1pE

1P (IPE.EC.O0) WRITE(3,101)
1PCIPE.BO 1) WRITE(3,1C¢2)

200 R R AR

LOAD INITIAL PARAMETER APPROXIMATION ARRAYS
CALL SPOINTC(N, X, MARK,N1,X4,AVD,XNY)
READC1,106) EPS

WRITECS,107) &PS

ICOUNmD

COUNT INITIAL SCALES AVD

CALL STAT(1,080)
PREEPSeS/SQART(FLOAT(M=N+1)/2.,)
CALL BAVD(SO, PR, N1.X1,AYD)

MM=Q

CALL INFORM(MM 8o i ZCOUNINY:XH1+AYD)
COUNT GRADIENTS AND SECOND DERIVATIVES MATRIX
CALL FISHERCYPE.PR/80)

DO 31 3wq,Nt

20 30 Jmq, N1

A€, JdeACY, D)

CONTINUE

ACCESS SYMMETRIC MATRIX A DIMENSION
CAL! *NVERSCRpE, Ny A)

COUNT NEXT POINT BY NEWTON METHOD
D1g1mo,

Do 10 Imq, N1

Fso,

DO & K=91,NY

FRFsACI, KIPGRC(K)
DIS1snIS1eFogR(T)

XYCrImXs (1) =p

Ixp

COUNT STATISTICAL SUM AT PREDICTED POINT
CALL STAT(O:88)

IP(SS. LY, 10.098) GOTO 19

DO 22 Kmq, N9 .
X1¢KI=X1¢KI /100,

Inte1
GOYOo 21

KqeN
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owm

(LR AV o
I

N aoGo

L Rk

YOONEV

(FCL.EQ,0) GAYO 42
$£(85.67.80) ¢OTo 15

MMy

GOYTD -3

CHECK END OF MINIMUM SEARCH
RxSr=¢S .
WRITE(3,4n8) DISe, R
IFC¢DIg1.GY ABSERY) RaDISH
RexESC ]

F¢SS.LT.80) RIsgS . ,
2513151.s?.c..AND,Alstni.LT.EPS-SGRT(R1)> GOTO %0
IFC(sS.GE,00) aOTp 15
MMx 4 Sy
soxsS$ ,
PRIEPStSo/SQnr(FﬁoAT(H-N+1)12.)

DO &4 Kmq,N1

XH1 ¢k =XH® (KD oX1 (kI TAVD (K
%Ybti)lAVb‘K)t‘ﬂh!(PR/Als(A1(Kox>)>

4 (Kding,

CONYINUE , 7

TRANSFER TO NEXT COUNT STEP BY NEWTON METHOD

60T0 8 .
ONEDIMENSIONAL MINIMIZATION IN DIRECTION OF COVARIANCE-MATRIX
DO 16 Kmq,N1

GRIKImXeCK)

hlL2es,

ALy=

$288.

SIS

ONED IMENS 1ONAL MINIMIZATIQN”SU

AR YL T 1 R TR AT 41 Y SR T
MM= 2

GOTO 43

PRINT OPTIMUM THEQRETICAL FUNCT 3
EALL STATC1 /063 /ON TABLE

PRIN M '
AT O ERETERB uN . N1 XN /AVD)
PRINT - FISHER MATRICES,

COVARIANCE AND CORRELATION MATRICES,

ACCURACIES NORMALIZED TO STATISTICAL SUM VALUE AT
MINIMUM -

CALL REZULT(ICDUNrH'N1”S'A“1'l"Avo'x"i,”

FORMATC1X///T 1PE=D = No CHECK PRINTOUT '
FORMATCAX///1 L1Peml = YES, CHECK PRINTOUT

FORMATC1X, 100X/ JBR =t 360"

FORMATC19Xr 36,140

FORMAT(B14.7) ) , :

FORMAT(1Y, E14.7Fa BCCURACY OF DETERMINATION OF MINIMUM!,
#7 TO SCALE OF ONE 'CH1-SQUARE DISPERSION') -
FORMAT('elrE1a+?:' = PREDICTED CHANGE OF STATSUM',
®E16.7+' =  REAL CHANGE OF STATSUM') '

FORMAT(6) i N

FORMATC4X, ' |MPERMISSIBLE NUMBER OF “PARAMETERS') {

GOTO o9 -

RETURN

END

ORIGINAL PAGE |c
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F gk

ENERPE

SUBROUTINE ENEXPRIM, 2 EXPE,YERPE)
DIMENSION 2C4a0) ,EXPEL4G. ) VEXPE(A00)
READCA 4000 M
READC2 (401) (Z€23,1%4,K)
READCa,4a1) (BX?E<13 1%x1.M)
READCs 9012 tvEXrgcx>'x' 1.3]
WREITECZ, 106)
DG &6 1mi,M
AmEXPEC(YY
BWVEXPECY)
Is(B.NE,0.? GOTO &8
WRITE(3,4465) 12
STCP

3 CwZely

é WRITE(S, 4067 x'ﬁ.!oc

© 100 FORMAT (14}

101 :onnArtssaz.r) sk -
104 FORMAT(//1X) LPOINT NUMBER!' ¢ 3X+ EXPERIMENTAL VALUE' i
yos "gﬁRef OFxEﬁﬂfflqipT 16X+ *E00RD INATE EN;A ,

FORMATCTX, X ZER0O ¥
106 FORMATC1X,18,11X, 815, 70k Es TNk Uy SXPFRIMENT

RETURN .

NG
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DIMENSIONAL MINIMIZATION'/ -

-

SCOES50'ALY B E13.500AL2 =P E93,5,PALY =1, 845, 5/

INPUT
g4 =/, E11.8)

" ARRAY OF POINTS'/
$q9 3',E13.5,¢

S :
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«S/
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An example of organizing a counting program with MODNEU subroutine /41
call from the object module library. The
subroutine is used, which approximates the experiment with a
polynomial of the N-1 degree (N 2 2).
is N~-1, the number of selected parameters is N.

JUB 072NEVUTZ
FAUSE ASSGN SYSRLB,X'190’
OPTION LINK

EXEC FFORTRAN

FoNPOL {(i,2i,N,X,FT)

The degree of the polynomial

USIKOV TEL.

CAlL MODN!U

sTOV
END

SUBROUTINE FUNCI,Z5,N/X,FT)
DIMENSION 4€20)

CAL

RETURN

END

SUBKOUTINE FUNPOL(Inl!ohaXaFT)
DIMENSION A220)
1F¢h,EQ,9) GoTO 2
N1‘ﬂ-q
WRIIZ¢3,1008) N1
WRIIEB(3,101)

60TV 20

FY=k(e)

teid

Do 3 1182,N

T'?TOC'X(11)

ccle2y

FORMAT (/7 'EXPERIMENT APPROX IMATED BY POLYNOMiAL OF'

¥ ' |DEGREE') ”
FDRHAg (1)(/1'
RETURN
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