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Introduction

Bloonuluist. [ 1 1. ; j, developed the concept of availability,* which is a measure of the

overall usefulness of a spacecraft or spacecraft •layload. Kruger and Norris [ 3) extended this

idea and used it in determining a thermal-vacuum test optimization procedure. Their opti-

mization procedure makes use of a "lost value" function which is based on average availabil-

ity* and other test costs. The optimization pr-icedure is an interactive computer program in

which the user supplies certain parameters as inputs. These parameters include payload in. ,rma-

tion such as the rfu,mber of compone• is in the payload fromi which payload weight and payload

cost can be determined, length of the mission in days, the type of item (protoflight; first flight

item, or follow-on), whether an expendable launch vehicle or Shuttle (STS) is involved, if the

latter, whether it is a Free-Flier or a Spacelab mission, the minimum and maximum test temper-

atures, and various other data.

One of the ideas central to the above optimization procedure is that of average utility which

is calculated from instantaneous utility. Kruger and Norris [3) extended the concept of availabil-

ity defined in Bloomquist [ 1) to make it dependent on the number of components in payload,

mission duration, etc.

Utility is thought of as the successfulness of a mission as compared to a perfect mission. A

perfect mission is one in which no failures or anomalies occur. (The words "failure" and "anom-

aly" are synonomous in the context of this report.) As a sequence of failures occur, the mission

begins to degrade according to the seriousness or criticality of each failure. Utility is calculated

from the observed occurrence of a random sequence of anomalies or types of failures by assigning

a certain criticality to each of the failures in the sequence and then considering utility of the

*While Bloomquist (11. (21 and Kruger and Norris 131 have used the term "availability", that word in this report will be changed
to "utility" bemuse of the general usage of the terra, "availability" to mean other things in the field of reliability.
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payload or spacecraft after any failure as the product of one minus the criticality term at the

particular failure multiplied by the previous remai:iing utility. The instantaneous utility, u is de-

fined as follows:

U n q
e (I .- Di) 9i	 (1)

'Where; Di denotes the criticality of a type i failure,

n is tin index set for the various criticalities of failures that occur during space flight, and

ni is the total number of failures for any particular type of criticality during any space

flight or any combined number of space flights.

In the above discussion, criticality is a predefined measurement of the percent of degradatiun

caused by certain types of failures.

Estimating Utility

In order to estimate U, it is first necessary to define the criticality various types of failures

that can occur during any particular space flight. It is important to note that measures of criti-

cality are subjective measurements and may vary from mission to mission and may vary due to

various types of payloads such as those for scientific versus applications missions. Bloomquist

[ I I uses five classes of criticalities and has studied the effects of failures on the degradation of

space missions for 304 spacecrafts. Timmins (41, studied 57 (GSFC) spacecraft and classified the

criticalities according to four classes. The data in reference [4) consists of 449 malfunctions and

failures and coasidered mission and component criticality with and without redundancy. Since

Timmins' data involved GSFC spacecraft and GSFC thermal—vacuum test procedures bawd on

these types of spacecraft, we use this data to define the various types of criticalities. This defini-

tion considers a malfunction and a failure as both being anomalies and we use the data based on

redundancy. We summarize the data in Table 1.

In order to calculate U, we observe a sequence of failures or malfunctions, apply equation

(1), and then calculate the utility at each stage of operation. This concept of utility is instantan-

eous in the sense that one has the overall utility at the instant the failure occurs.
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Table i

Criticality Type C61inality Range of the
Percent Lou Percentage of

CItzification Due to Criticality Malfunction

Castastrophic Dt 100-90 0.02 - Pr A)
Major Lou D2 90-50 0.02 - Pr (D2)

Substantial Loss D3 50-10 0.11 - Pr (D3)

Minoa , Loss D4 10-0 0.85 - Pr (D4)

As an example, consider the following sequence of failures A, D4 , D2 , D3 ) which is a sub-

set of various criticality types (D l , D2 , D3 , D4).

The utility after three consecutive failures of the failure sequence is U - (1 - Da) 0 - D4)

0 - D2). In order to assign a numerical •alue to U, we must assign a percent loss due to each

criticality. One possible choice is to assign the mid- points of the ranges of the percent losses due

to the types of criticalities. Therefore, D4 - 0.05, D3 - 0.30, D2 = 0.70, and D4 - 0.95. With

these D's, U - (1 - 0.05) (1 - 0.05) 0 - 0.70) - (0.95) 2 (0.3) = 0.27075 at the end of three

failures.

It can be se-.n that the value of U depends upon a random sequence of failures. Thus, there

is no absolute model with which to compare U (such as assuming the linear model in regression

analysis) and then determining the degree of fit oy comparing the sum of squares due to regression

to the total sum of squares.

Establishing a Criterion for Goodness of Fit

F
	 We next establish a criterion for masking a comparison for goodness of fit for estimates of U.

e	 Assume that S is the underlying set for all measurement techniques for U determined by equation

k

	 (1). For Si a S, Sj a S, we decide that measurement technique S i is better than Sj if Si outper-

r

	

forms Sj . We use as a performance criteria (1) performance at each point or mode of failure and

(II) weasurement of the spread. We specify (I)'by saying S i outperforms Sj at the nth failure, if

3
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the absolute value of the residual for the estimate U i of U, is less than the absolute value of the

residual for the estimate of Uj of U. In terms of events, we have a success, a failure, or a tie where

a success means Si outperforms Sj , a failure means Sj outperforms St , and a tie indicates equality

of , erformance. If we exclude ties or use a randomization procedure to reclassify ties, we have a

binomial structure which can be used to measure the performance at each point or mode of fail-

ure. To specify a measurement of spread, we use the mean squared error (W.S.E.).

To decide between selection procedure S i over Sj based on performance criteria I and II we

establish the following decision table.

Table 2

Condition Decision

(if) I- 	
Si

(and) II:	 (a) M.S.E. (Si) a M.S.E. (Si ) (then) estimation procedures are the same

(b) M.S.E. (Si ) < M.S.E. (Sj) Si is a better estimation procedure than Sj

(c) M.S.E. (Sj) < M.S.E. (Si) Si is a better estimation procedure than Si

(if) I:	 Si > Sj

(and) II:	 (a) M.S.E. (Si) ' M.S.E. (Sj ) (then) Si is a better estimation procedure
than Si

(b) M.S.E. (Si)» M.S.E. (Sj ) no conclusion

(c) M.S.E. (Si) < M.S.E. (Sj ) Si is a better estimation procedure than Sj

In the above discussion we replace i by j in step II when S j > Si for step I.

As in Kruger and Norris [31, one obtains a estimate Q of U by considering a measurement of

overall criticality D* such that

0-D*)n =0 	(2)

where n a total number of failures.

By equating 0 to U, we have

4



(I - D')n = ief2 (I - DON.	 (3)

Solving for D", one c btains

D+ = 1 - exp
l,
 

nl 
2n ( i - Dl)	 (4)

	

ItS2	 n

where Bi denotes the percentage loss for the ith type of criticality, and n is the index set of de-

fined critiealities.

If one calculates D• for the set of all spacecraft, then the probability of the event D I is
n	 ^

Pr (Di ) i where n = the total number of failures and ni = number of fadires of the ith type
n

of anomaly. On (1 - Di)) is a weight of Pr (Dl).

Since one is interested in a measurement of overall criticality, it is feasible to look at an

average measurement or a class of estimates that measure D overall. Thus, one may calculate an

estimate of overall criticality by using the classical definition of expected value. We thus hay.-:

E(D) _ F (Di) - (Pr (Di))
	

(5)

la EI

Since the definition of the percentage loss due to a patlicular type of criticality is subjective,

we may obtain various estimates of E(D). As an example of various values that E(D) assumes, we

consider the maximum, upper quartile, middle, lower quartile, and minimum points for the inter-

vals that describe the percentage loss that is due to the various types of criticalities based on

Table 1. We summarize this information in Table 3.

As a sample calculation, we have:

E( l) (D) _ (1.0) (0.02) + (0.9) (0.02) + (0.50) (0.11) + (0.10) (0.85) = 0.178,

and the other E(i) (D)'s are calculated in a similar manner using equation (5), Table 2, and the

percentage of malfunction, P(Di) given in Table 1.
c

j
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Table
Intervals Describing Percentage Lou Due to Criticality

Max Upper
QuartJe Middle

Lower
Quartile Minimum

(1) (2) (3) (4) (S)

1.0 0.975 0.95 0.925 0.90

0.9 0.80 0.70 0.60 O.SO

0.50 0.40 0.30 0.20 0.10

0.10 0.075 0.05 0.025 0

E(1) (D) E(3) (Di E(3) (D) E-4) (D) E(s) (D)

0.178 0.14:, 0.109 0.078 0.035

using P1 = 0.02, Pa = 0.02, P3 = 0. 11, P ti • OAS

where Pi = Pr (Di).

As seen from Table 3, the use of subjective probability enables one to consider various

bounds and ranges of values for D i and hence for measurements of E(D). Possible applications

of the table extend to determining the overall criticality E(7) as a function of the number of

components in a spacecraft. If it is belie ved or it can be shown that when the number of com-

ponents that comprise a r , acecraft or payload increases, the overall criticality decreases, then one

may make a subjective judgment on the choice of E(D), choosing the lower quartile measurement

for a greater number of components and the upper quartile for fewer number of components.

If one uses this concept for future space flight missions such as Space Shuttle, then it would be

feasible to study and redefine the types of criticalities and the range of the percent loss due to

criticalities. In fact, Tables I and 2 should continually be studied and upgraded as one changes

missions or enlarges the data banks from new missions.

A comparison was conducted on data from 31 spacecraft from PRC data base that were

common to the ISFC data base to see how D* performed as compared to E(D). Of 284 failures,
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there were 24 ties and of the remaining data, E(D) outperformed D* 169 times. Excluding ties,

and considering the experiment as a binomial, we have the followine hypothesis scheme:

Ho: The performance of D' and E ( D) are the same.

Ha: The performance of 00 and E(D) differ.

The test data yielded a standard deviation of 8.06 and a mean of 130. Comparing 169 to the

mean of 130, we have a Z (the standard normal random variable) of 4.83 which indicates we re-

ject the null hypothesis at an alpha level of leas than 0.005. Furthermore, calculating the m . an

iquare error (M.S.E..) of both estimates, we find M.S.E.( D• ) = 0.01826 and M .S.E.(E(D)) '

0.01171. Since M . S.E.(E(D)) < M.S.E.(D'), we conclude that E(D) outperforms D", based on

the available spacecraft data. We aiso conclude that it is feasible to use E (D) in estimation for

U for GSFC data.

The following thee-em gives a mathematical justification of the previous observed r«sults.

T1.-go_: If X is a random variable, then the best way to measure X by a single constant,

a, is to choose a = E(X). Herr, best is dcfived as minimum mean square error.
n

Proof:	 Let f(a) _	 (Xi - a) ? .
in 1

Taking derivatives, we have
n

i • 1
n	 n

Setting M) = 0 and applying the summation implies 	 Xi	 a = 0
i n 1	 i n 1

Since
n

^a=na,
i n 1

we have

F

n

a = n 1 1: Xi = E(X).
i•1

Since

f"(a) > 0, a = E(X) minimizes f(a)

7
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The Kruger-Norris report [31 established a functional relation%hip between D' and the

nunthcr of components given by equation (1-14) of 131 as D* = 0.237 exp (-0.0086N)

where N is defined as the number of components and D O is ta.r measure of criticality. A

simile: binomial comparison was conducted on data from the same 31 spacecraft from PRC as

mentioned above using the hypothesis that U• is a function of the number of components.

Making a similar binomial comparison as was dom. perviously, c(D) outperformed D • as

given by equation (1-14 1 of 131 215 times out of a possible 284 times. Performing the apprc

priate hypothesis test, as before, we reject the null hypothes is that E(D) and D' have the same

performance at an of-level rt or less than 0.005. The M.S.E. of D' is much larger than the

M.S.E. of E(D);

M.S.E.(E(D)) ' = 0.01171 < M.S.E.(D •) = 1.044.

As shown by the theorem, clte best way to predict a random variable X by s single value is

to choose the predictor "a" as the expected value of the random variable. This means that a =

E(X) or that "a" is an appropriate measure of central tendency of the random variable X. The

theorem and numerical results implies that for any values of the random variable X; (X I , Xa, ... ,
n

Xn),	 Xi /n, is the best single predictor for the overall collection of values considered, both
i-1

as a total collection or as a subcollection such as the 31 spacecraft in PRC data. hence, if we

consider the totality or any subcollection of spacecraft failures and c!assify them according to

their criticalit;es, we would choose E(D) as the overall single appropriate measure of a criticality

value. This means that the instantaneous utility, U, is estimated as Q ss TI (1 - E(D))ni . Two

questions remain about the estimation procedure, (1) by a dependence relationship such as given

in equation (1-14), can one gain predictabilit y and (2) what is the value of E(D) used in the es-

timation procedure?

For any subcollection of spacecraft we have just shown that E(D) gives bettor predictability

then U*, on the basis of closeness of the prediction and M.S.E. of the estimates.

}	 8



For a complete answer to question ( I ). one must examine if oil basis of sonic casual de-

pendence such as found in equation (1-14) one wins predictability. To accomplish this, we con-

sider %he :ollection of 31 spacecraft as a single group and compute EID). After computing E(D ► ,

we compare the performance of E(D) to the performance of D O . equation (1-14) for each

spacecraft.

The above study yielded the following results. D + out Verformed E(D) 162 times out of a

total of 284. Using a similar test as before, we reject the null hypothesis that E(D) and D* have

the same performance A the a - 0.05 level. It s aould be remarked that the M.S.E.(E(D)) >

M.S.E.(D•), since M.S.E.(E(D)) - 0.055 > M.S.E.(D') - 0.044.

This result points to a complexity factor in determining overall criticality. Since critical-

ity is dependent on the number of components that make up a spacecraft, this dependence

can be used to gain predictability. This result also points to a need to ascertain a more refined

measure of the complexity of a spacecraft, since the measurement of complexity enters into the

formulation of utility which is a measurement essential to measuring the performance of

spacecraft and the amount of information a spacecraft gains on any particular mission.

In order to answer question (2), we turn to the development of confidence intervals for E(D)

When it is necessary to give a confidence statement abt ut the amount of information one obtains

on any particular mission, it is necessary to bound E(D) or D' in the measurement for utility.

Since E(D) lends itself to this type of bound more readily than D*, tut D• outperforms E(D), it

is necessary to adjust E(D) to make it perform as well as DO.

Another form of variability in the system defined by equation (5) comes from the distribu-
Y

tion of the statistic E D ► (P(Di)). We observe that P(Di ) n = - Pi where Yi is defined to be
iei2	 n

the number of occurrences of the i th type of anomaly. The statistic 1 Di P(Di ) can be written
ie:2

as

9



	

^`	 Y

where n designates the totality of failures for all spacecraft.

Thus Y. is a statistic that measures E(D) for a collection of spacecraft. We also observe

that the expected value of Y. is, since E(Y i ) n n Pi,

	

k Y	 k

E(Yn)	 (Di) - E	 DI Pi
	i s I	 n	 is I

To distinguish between the role that n plays for the totality of failures for all spacecraft and the

rew nj ,Mays for any single spacecraft j, we define Yn j for a single spacecraft as

k

	

Ynj	 Di  YiJ^
I • I	 nj

we further observe that

	

k	 Yi
E(Ynj) 

i^ 
D i E — 

j ! 

_	 Di Pij

where Pi
 
 is the information based only on the j th spacecraft.

Equations ( 7) and ( 9) imply that the expected value of the statistic Ynj is different for dif-

Nrent subclasses of spacecraft. It is noted that this is an a priori measurement based on the

totality of the information that one has about all previous space flights; at present P I n 0.02,

PZ = 0.02, P3 = 0.1 I, P4 n 0 . 85 on 449 anomalies for 57 GSFC spacecraft and D i 's are subjec-

tively chosen. As information is gained and the nature of the mission better known, the Pi's

and the subjective definitions of the D i 's should be re-evaluated.

Bounding the Statistic; Confidence Intervals

In order to place bounds on the statistic 	 Di Pi , we outline two approaches. One ap-

proach i s given in Briemann [ 51 and involves constructing simultaneous confidence intervals for

i	 10

i (I

(7)

(8)

(9)



Pi 's from the individual confidence intervals for the P i 's. This apnroach allows for dependence

which we have in our system. The following definitions and theor.!ms follow Briemann.

Definition:n_: In a K-parameter problem, the intervals J i (9), ... , Jk(A) are said to form

simultaneous 100 y 9b confidence intervals if

PO 10 1 a J 1 (6), ... , 0keh (6) 1 Z y for aU 9e(6).

To obtain simultaneous 100 y % intervals, we have the following proposition:

Proposition: If J 1 (6), ... , Jk (6) individually are 100 y % confidence intervals, then they

form simultaneous 100 11 - K (1 - 7)) % confidence intervals.

For the data given by Table 1, them. are K - 4 criticalities and four P i 's on which to con-

struct confidence intervals. To obtain 90% simultaneous confidence intervals for P1 , P21 P31 P41

we choose Z,/2 - 2.24, If - 0.975, (2 - 0.0125). If we construct 95 7!0 confidence intervals for

any single estimate Pi , 7 a, 0.95 and we obtain (I - K 0 - y)) % or 80% simultaneous confidence

intervals for (P1 , P21 P31 P4).

After simultaneous confidence intervals are obtained for (P1, P21 P3 , P4), we may obtain

simultaneous confidence intervals for E(D) and E(D j); where E(D) denotes the expected criticality

for cumulative spacecraft failure data and E(Dj) denotes the expected criticality for any single

space flight mission. The following are simultaneous a oriori confidence intervals for P 1 , P21 P3,

P4 , where n denotes the totality of failures for ail spacecraft I - P i - Qi.

Pi - Za/2

i 	
Pi S Pi + Zal2	

ii :
	 (10)

n	 n

where Pl - 0.02, P2 - 0.02, P3 - 0.11, P4 = 0.85, and a is determined as previously discussed.

Using the above confidence intervals for P i we have the following confidence intervals for

E(D) and E(Dj).

D
(Pi

Z 	 i
E(D) S	 D °+ Z	 01)t 	 a/2	 i	 i	 a/2

i	 n	 i	 n

I1

1

K
3
Y



x

r

These relationships hold for any set or subset of spacecraft.

As an example, we calculate the 90% confidence intervals for P I , P2 , P3 , P4 using n = 400,

100, 10.

For n • 400:
(0.02) (0.98)0.02 - 2.24 :, Pl <' 0.02 +

(0.02) (0.98)
2.24a0p 400

0.02-0.016 P1 50.02+0.016

0.004 S Pi 5 0.036

0.004 S P2 ; 0.036

0.11 -0.035 SP3 50.11 +0.035

0.075 S P3 5 0.1435

0.85-0:04 55 P4 50.85+0.04

0.81 S P4 S 0.89

For n = 100:

max (0, 0.02 - 0.031) S P, S 0.02 + 0.031

0 S Pl 5 0.051

0 < P2 5 0.051

0.11 - 0.070 S P3 S 0.11 + 0.070

0.04 S P3 S 0.18

0.85 - 0.08 S P4 S 0.85 + 0.08

0.78 SP4 50.93

For n : 10:

max (0, 0.02 - 0.099) S Pl S 0.02 + 0.099

0 S PI S 0.119

0 P2 5 0.119

max (0, 0.11 - 0.22) S P3 S 0.11 + 0.22

12



OSPi<0.33

0.85 - 0.25 s P4 S min (1, 0.85 + 0.25)

0.60 S P4 S 1

We next proceed to calculate confidence intervals for E( j)(D) for the given wmple size n

400 and for the various values of the range of D such as maximum, upper quartile, middle, lower

juartile, and minimum. In this notation E (l) (D) denotes the maximum range of criticality of E

failure, E(2) (D) denotes the upper quartile, EM (D) denotes the middle, E t41 (D) denotes the lower

quartile, and E ts l(D) denotes the minimum. Thus, when we use the dependence between number

of components and criticality of a failure, we establish a relationship to assign E (j)(D) to measure

criticaAity as a function of the number of components. The relationship we use is the greater the

number of components, the greater value of j we use. This relationship will be explored after

another method to establish bounds for E(D) is discussed.

For n = 400;

0.178 - 0.052 S E(1) (D) S 0.178 + 0 052

0.126 -4; E(j) (D) S 0.230

0.143 - 0.0424 S E(2) (D) S 0.143 + 0.0424

0.101 S E(2) (D) 5 0.187

0.109 - 0.039 S EM(D) S 0.109 y 0.039

0.070 S EM (D) S 0.148

0.078 - 0.032 S EM (D) S 0.078 + 0.032

0.046 5 E(4) (D) S 0.110

0.039 - 0.026 S E(S) (D) S 0.039 + 0.026

0.013 5 E(5) (D) S 0.065
y

One notes that the confidence binds for E (3) (D) actually contain all of the E(D)'s of the data

from PRO's 31 spacecraft.*

*One may not bound Pi by a number lower than zero, or bound P i above by a number greater than 1.

r



Another approach for confidence intervals involves using the multivariate normal distribuCon.

This approach incorporates the variance of the statistic 	 Di Pt  into -the variance - covariance
1

structure for the multivariate normal structure of the Pi 's. In order to develop confidence inter-

vals for r Di , Pi , we give some preliminaries.
i

Definition:

Let
all °12	 a1 n

012 1722 .	 02 n

V	
(12)

aln 92n • • • am

Where oil = a12 which are the variance terms and a ij are the covariance terms. The matrix V is

called the variance - covariance matrix.

From Mood and Graybill (61, Pi = ]a ' i = 1, ... , 5, are the maximum likelihood estimates
n

of Pi which are used to define E(D) and E(Dj ). It is well known that the joint distribution f (P1,

P21 ... , P ) is approximately normal with means Pi . Lehmann [7), Theorem 14, appendix,.

states that a multivariate normal distribution is completely specified by its means and its covari-

ance structure. We thus have

n
and

aij (Pi , Pj ) = cov (Pi , Pj ) _ - Pi-J	 (13)
n

These are the exact variances and covariances for any sample size n. This means that we can cal-

culate bounds for the statistic r Di Pi for the number of failures for all spacecraft and study
i

the behavior of any particular spacecraft as a member of its family.

14



The following result from Hogg and Graig 181,  will be used to establish confidence intervals

for 	 Di Pi . Let X 1 , X2 , ... , Xn have a multivariate normal distribution with matrix µ of
i

means and positive definite variance - covariance matrix V. Consider a linear function Y of X1,

... , X. which is defined by Y = CT • X = P. Ci • Xi , where CT = [ C l , ... , Cn J .

Theorem: The random variable Y is N(CTµ, CTVC). That is, it is normally distributed with

a mean of CTµ and a variance CTVC.

To adapt this to our situation, let

Pl rPi

JA P2 X = P2
P3 P3

14 t.P4j

CT = [ D1, D2 ► D3 , D41(i)*

V=

01 41 -t' 1 02 -01 03 -01 C4

n n n n

-r
p p
l r2

a
r2 a2

Q
-P2 r3

p
-r2 P4

n
Q

n n n
Q

-PI r3 -r
a a2 r3

Q
r3 43 -J 

Q
3 r4

n

p

nn

pp

-PI r4
p pp

-r2 C4 -r
Q

3 C4

gn

`4
n n n n

(Note: * denotes the level such as minimum, maximum, middle, etc..)

Thus, we have

	Y = CT X = [D1 , D2 , D 3 , Dal 
^2	

Di Pi.

	

^3	 i

P4

Using the normality of Y, we have the following confidence intervals for, D i Pr (Di ) or E(D).
i
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CTµ - ZaraV CT • V • C c E(D) S CTµ + Zal2 ^CT V - C

As an example of the overall calculation of a 90% confidence interval, for E(D), we consider

n n 10 and (i) = middle.

we thus have

0.02
X 0 0.02 CT - 10.95, 0.70, 0.30, 0.051,0.11 '

0.85

0.00196 -0.00004 -0.00022 -0.00170
-0.00004 0.00196 -0.00022 -0.00170

V '	 ; Za/2 = 1.65.
4.G0022 -0.00022 0.00979 4.00935

L-0-00170 -0.00170 -0.00935 0.01275

CT X : 0.109

CTV - (0.00168,0.00118,0.00211,-0.00497)

CTVC = 0.00281

,,(CTVC = 0.0530

Therefore

0.109 - 1.65 (0.0530) 5 E(D) S 0.109 + 1.65 (0.0530)

0.021 S E(D)	 0.19-7.

If n - 5, the entries in the matrix V are multiplied by 2 and hence

CV(5) _ [ 21 CTV( ,o) = CTV(5) C = (2) CTV(io) C = 0.00563

= CTV(, ) C = 0.00563 = 0.0750

0.109 - 1.65 (0.0750) S E(D) 5 0.109 + 1.65 (0.0750)

min. (0, 0.109 - 0.124)) S E(D) S 0.109 + 0.124

0 < E(D) S 0.233.
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Using E(D) to Estimate D Based on the Dependence Between Criticality and Number of Components

It has been shown that there is a dependence between the number of components (a meas-

ure of the complexity of the spacecraft) and the criticality of a failure. Using this dependence,

one develops a functional relationship to better estimate D in the equation

U . TI(1 — D)n

where D is now a function of component count.

The same type of relationship may be established using E (j)(D) as used in the section of

this report dealing with establishing a criterion for goodness of fit. The way this is done is to

take the 31 PRC spacecraft and separate them into 5 categories, 1, II, III, IV, V, depending on

their component count. For consistency, we match the lowest component counts with category

I and correspond this with E l (D), since the smaller the number of components the greater the

criticality of any failure and a similar process for greater component count. Using this technique

for the 31 PRC spacecraft, we have the following correspondences in terms of spacecraft r-r:apo-

nent count, categories, and measares of criticality.

Categories	 I	 II	 III	 IV	 V

Component • 28, 39, 46, 46	 52, 52, 52, 52, 64, 70, 70, 70, 86, 86, 86, 86, 120, 129,129,
Count	 52,59	 70,76 ' 118	 86,86	 130, 130,131,

131,137

Criticality	 0.178	 0.143	 0.109	 0.078	 0.039
of Failure

After making these correspondences, we now compare the performances of E(D) and D = 0.204

e-0.005247N . We obtain the following results: E(D) outperformed D = 0.204 a-0•005247N 143 times

to 141 times out of 284 failures. The M.S.E.'s of the estimates were approximately the same,

thus there is no significant difference in the performance of E(D) and D as defined above. We

may use E(D) when we want to calculate confidence bounds for utility, U, or use D for estima-

tion and cost purposes without inss of performance. Due to the changing character of spacecraft

in terms of complexity and failure modes, it is advisable to continually study and refine these

measurements.
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Procedure to Calculate Confidence Intervals for U(t) - ( I - D*)F(t)

To bound U as given by U(t) - (I - D') F ( t ), where D" denotes the criticality of a failure

and F( t) denotes the number of failure s after time t as in equation 1-13 of reference 3, we

bound D• by forming bounds E(D) and estimating D • by E(D) as discussed previously.

Let

EL (D) S E(D) S EU (D)
	

(16)

where EL (D) and EU (D) denote the lower and upper ( I - r) confidence bounds on E(D). To

bound U(t) with a lower bound corresponds to choosing the upper bound for E(D), since (I -

E(D)) will be minimal for EL (D). A similar argument applies for the upper bound for U(t).

Thus, in terms of D* only, we have

UL -^ U(t) 5 UU
	

(17)

where

UL - (1 - EU (D))F(t)

and

UU - (1 - EL (D))F(t)

for appropriate confidence levels.

The final consideration is the bounding of F(t), the number of spacecraft failures after an

orbital time t. Before we bound t, we must determine if the criticality of failures is independent

of ti.*ne. if this is the case, then we may bound D* with the bounds for E(D), and bound F(t)

with appropriate bounds. In order to answer this question, we refer to table I-A-1 on page I-A-2

of reference (3) and perform the appropriate X 2 test for independence. At an a-level of 0.01,

we do not reject the null hypothesis of independence.

In order to bound F ( t), we use the procedure developed by Williams-Kruger, [91, for com-

ponent, system, and orbital failure modes, and obtain

FL (t) S F(t) 5 FU (t)	 (18)
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where FU , FL denote the upper a:id lower confidence bounds for E(t) where F(t) is the failure

mode in orbit. This process involves using regression through the mid-points for the upper and

lower confidence bounds for the Product Limit estimate for F(t). Thus, the upper and lower

bounds for u(t) are given by:

(1 - EU (D))FL(t) S U(t) S (1 - EL (D))FU( t)	 ( 19)

Conclusions and Remarks

Wher one calculates bounds for expected criticality, E(D), the multivariate confidence interval

approach is preferred because it deals with the dependence of the parameters P t , PZ , ... , Pn , coi-

lectively through the variance-covariance structure.

In order to use the multivariate confidence approach for confidence intervals for any set of

data, one calculates Pt , ... , Pn from that set of data, then finds the matrices V, and CT, finds D,

and calculates confidence intervals as indicated in the previous discussion.

The use of con& once intervals is necessary when one uses the concept of utility to determine

how much time is necessary to gain the pertinant amount of information needed from each mission.

As a mission is conducted, then one has time intervals in which to gain information. As an example

we consider the diagram in Figure 1.

PERIODS DURING WHICH DATA IS AVAILABLE

TIME --w-
r	

Figure 1. Change in Utility as a Mission Progresses.
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The vertical bars in Figure I indicate the periods when data may be taken, such as when a

spacecraft is over z ground point. The utility of the spacecraft may be expected to decrease with

time as malfunctions occur. Therefore, if one needed a specific number of hours worth of infor-

mation, the observing times would have to be multiplied by the value of U existing during that

time.

In order to use the confidence intervals for E(D) with the concept of utility in gaining in-

formation, one would be interested in using the confidence bounds for E(D) through the mission

to calculate U. If one wanted 12 hours of information, then one would numerically integrate

the area in each bar of Figure l that is under the curve U using confidence bounds calculated as

in equation (19). This would give a final estimate for the total number of hours of information

gained with a degree of confidence based on the bounds for U(t) in equation (19).

One should continue to study the question of complexity of spacecraft and criticality of

failures duraag the mission since these concepts and measurements have a direct tearing on mission

cost optimization.
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