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Introduction

Bloomquist, [1], {2,, developed the concept of availability,* which is a measure of the
overall usefulness of a spacecraft or spacecraft ~ayload. Kruger and Norris [3] extended this
idea and used it in determining a thermal-vacuum test optimization procedure. Their opti-
mization procedure makes use of a “lost value” function which is based on average availabil-
ity*® and other test costs. The optimization pricedure is an interactive computer program in
wnich the user supplies certain parameters as inputs. These parameters include payload in. yrma-
tion such as the sumber of compone- ts in the payload from which payload weight and payload
cost can be determined, length of the mission in days, the type of item (protoflight. first flight
item, or follow-on}, whether an expendable launch vehicle or Shuttle (STS) is irvolved, if the
latter, whether it is a Free~Flier or a Spacelab mission, the minimum and maximum test temper-

atures, and various other daia.

One of the ideas central to the above optimization procedure is that of average utility which
is celculated from instantaneous utility. Kruger and Norris {3) extended the concept of availabil-
ity defined in Bloomquist [1] to make it dependent on the number or components in payload,

mission duration, etc.

Utility is thought of as the successfulness of a mission as compared to a perfect mission. A
perfect mission is one in which no failures or anomalies occur. (The words “failure” and *“‘anom-
aly™ are synonomous in the context of this report.) As a sequence of failures occur, the mission
begins to degrade according to the seriousness or criticality of each failure. Utility is calculated
from the observed occurrence of a random sequence of anomalies or types of failures by assigning

a certain criticality to each of the failures in the sequence and then considering utility of the

*While Bloomquist (1], {2} and Kruger and Norris [3] have used the term “‘availability™, that word in this report will be changed
to “utility” because of the general usage of the terr, “availability' to mean other things in the field of reliability.
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payload or spacecraft after any failure as the product of one minus the criticality term at the
particular failure multiplied by the previous remaiaing utility. The instantaneous utility, u is de-
fined as follows:
Us ‘[L (1 -Dp™ (N
"~isere; Dy denotes the criticality of a type i failure,
§2 is na index set for the various criticalities of failures that occur during space flight, and
n; is the total number of failures for any particular type of criticality during any space

flight or any combined number of space flights.

In the above discussion, criticality is a predefined measurement of the percent of degradation

caused by certain types of failures.

Estimating Utility

In order to estimate U, it is first necessary to define the criticality various types of failures
that can occur during any particular space flight. It is important to note that measures of criti-
cality are subjective measurements and may vary from mission to mission and may vary due to
various types of payldads such as those for scientific versus applications missions. Bloomquist
[1] uses five classes of criticalities and hus studied the effects of failures on the degradation of
space missions for 304 spacecrafts. Timmins (4], studied 57 (GSFC) spacecraft and classified the
criticalities according to four classes. The data in reference [4] consists of 449 malfunctions and
failures and cousidered mission and component criticality with and without redundancy. Since
Timmins’ data involved GSFC spacecraft and GSFC thermal-vacuum test procedures bas>d on
these types of spacecraft, we use this data to define the various types of criticalities. This defini-
tion considers a malfunction and a failure as both being anomalies and we use the data based on

redundancy. We summarize the data in Table 1.

In order to calculate U, we observe a sequence of failures or malfunctions, apply equation
(1), and then calculate the utility at each stage of operation. This concept of utility is instantan-

eous in the sense that one has the overall utility at the instant the failure occurs.



Tabte |

cricity Tye | cpmly | rcton | feene
Castastrophic D, 100 - 90 0.02=Pr (D,)
Major Loss D, 90 - 50 0.02 = Pr (D,)
Substaniial Loss D, 50-10 0.11 = Pr(D;)
Mino: Loss D, 10-0 0.85=Pr(D,)

As an example, consider the following sequence of failures (I2,, Dy, Dy, D3) which is a sub-

set of various criticality types (D, Dy, D3, D).

The utility after three consecutive failures of the failure sequence isU = (1 = Dy) (1 - D,)
(1 = D,). In order to assign a numerical value to U, we must assign a percent loss due to each
criticality. One possible choice is to assign the mid-points of the ranges of the percent losses due
to the'types of criticalities. Therefore, D, = 0.05, D; = 0.30, D, = 0.70, and D, = 0.95. With
these D’s, U = (1 - 0.05) (1 - 0.05) (1 - 0.70) = (0.95)2 (0.3) = 0.27075 at the end of three

failures.

It can be sezn that the value of U depends upon a random sequence of failures. Thus, there
is no absolute model with which tc compare U (such as assuming the linear model in regression
analysis) and then determining the degree of fit oy comparing the sum of squares due to regressior.

to the total sum of squares.

Establishing a Criterion for Goodness of Fit

We next establish a criterion for making a comparison for goodness of fit for estimates of U.
Assume that S is the underlying set for all measurement techniques for U determined by equation
(1). For Sj € 8, §j € S, we decide that measurement technique S; is better than §; if §; outper-
forms Sj. We use as a performance criteria (I) performance at each point or mode of failure and

(ID) measurement of the spread. We specify (I) by saying S; outperforms Sj at the nth failure, if



the absolute value of the residual for the estimate Uj of U, is less than :he absolute value of the
residual for the estimate of Uj of U. In terms of events, we have a success, a failure, or a tie where
a success means S; outperforms Sj. a failure means Sj outperforms S;, and a tie indicates equality
of performance. If we exclude ties or use a randomizaxion procedure to reclassify ties, we have a
binomial structure which can be used to measure the performance at each point or mode of fail-

urc. To specifly a measurement of spread, we use the mean squared error (M.S.E.).

To decide between selection procedure S; over Sj based on performance criteria I and I we

establish the following decision table.

Table 2
Condition Decision
ain I: §i=§
(and) II: (a) M.S.E. (S) = MS.E. (§) (then) estimation procedures are the same
(b) M.S.E. (§) <MS.E. () Sy is a better estimation procedure than §;
(c) M.S.E. (§)) <M.S.E. (§) Sj is a better estimation procedure than §;
G(n I: § > §
(and) II: (a) M.S.E. (§)) = MS.E. (§)) (then) §; is a better estimation procedure
' than §;
(b) M.S.E. (§)>>MS.E. (§p) no conclusion
(c) M.S.E. (5) <MS.E. (§) S; is a better estimation procedure than §;

In the above discnussion we replace i by j in step II when Sj > §; for step I.

As in Kruger and Norris [3], one obtains a estimate 0 of U by considering a measurement of
overall criticality D= such that
(1-D"n =0 )

where n = total number of failures.

By equating 0w U, we have



(1 -D*)N = ‘{L (1 - Dp"i. 3)

Solving for D*, one ¢ btains

D* = | - exp {Z [-r-‘-!- en(l - D{)]} 4)
e LN

where Dy denotes the percentage loss for the ith type of criticality, and S is the index set of de-

fined criticalities.

If one calculaies D* for the set of all spacecraft, then the probability of the event Dy is
n
Pr(D)+~ it where n = the total number of fuilures and n; = number of failures of the ith type
n

of anomaly. (fn (1 - Dy)) is a weight of Pr (D).

Since one is interested in a measuremcat of overall criticality, it is feasible to look at an
average measurement or a class of estimates that measure D overall. Thus, one may calculate an
estimate of overall criticality by using the classical definition of expected value. We thus havs:

E(D) = 3, (Dy)* (Pr(Dy) (5)
ie2 .

Since the definition of the percentage loss due to a particular type of criticality is subjective,
we may obtain various estimates of E(D). As an example of various values that E(D) assumes, we
consider the maximum, upper quartile, middle, lower quartile, and minirium points for the inter-
vals that describe the percentage loss that is due to the various types of criticalities based on

Table 1. We summarize this information in Table 3.

As a sample calculation, we have:
E;) (D) = (1.0)(0.02) + (0.9) (0.02) + (0.50)(0.11) + (0.10) (0.85) = 0.178,
and the other E;) (D)’s are calculated in a similar manner using equation (5), Table 2, and the

percentage of malfunction, P(D;) given in Table 1.

L i



Intervals Describing Percentage Loss Due to Criticality

Tabje 2

Max ok Middle e Minimum
) ) 3) @) (5)
T 1o 0.975 0.95 0.925 0.90
0.9 0.80 0.70 0.60 0.50
0.50 0.40 0.30 0.20 0.10
0.10 0.075 0.08 0.025 0
E(1) (D) E.) (Ds E(s) (D) E-4) (D) l E(s) (D)
AL 0.142 0.109 0078 |  003¢
using P, = 0.02, P, =0.02, P, = 0.1, P, = 0.85
where P; = Pr (D;).

As seen from Table 3, the use of subjective probability enables one to consider various
bounds and ranges of values for D; and hence for measurements of E(D). Possible applications
of the table extend to determining the overall criticality E(")) as a function of the number of
components in a spacecraft. If it is believed or it can be shown that when the number of com-
ponents that comprise a : yacecraft or payload increases, the overall criticality decreases, then one
may make a subjective juigment on the choice of £(D), choosing the lower quartile measurement
for a greater number of components and the upper quartile for fewer number of components.

If one uses this concept for future space flight missions such as Space Shuttle, then it would be
feasible to study and redefine the types of criticalities and the range of the percent loss due to
criticalities. In fact, Tables | and 2 should continually be studied and upgraded as one changes

missions or enlarges the data banks from new missions.

A comparison was conducted on data from 31 spacecraft from PRC data base that were

common to the GSFC data base to see how D* performed as compared to E(D). Of 284 failures,



there were 24 ties and of the remaining data, E(D) outperformed D® 169 times. Excluding ties,
and considering the experiment as a binomial, we have the following hypothesis scheme:

Hy: The performance of D* and E(D) are the same.

H, : The performance of 2* and E(D) differ.
The test data yielded » standard deviation of 8.06 and a mean of 130. Comparing {69 to ths
mean of 130, we have a Z (the standard normal random variable) of 4.83 which indicates we re-
ject the null hypothesis at an alpha level of leas than 0.005. Furthermoce, calculating the m- an
square error (M.S.E.) of both estimates, we find M.S.E.(D*) = 0.01826 and M.S.E.(E(D)) =
0.01171. Since M.S.E.(E(D)) < M.S.E.(D*), we conclude that E(D) outperforms D®, based on

the available spacecraft data. We aiso conclude that it is feasible to use E(D) in estiimation for
U for GSFC data.

The following thecsem gives 3 mathematical justification of the previous ohserved results.
Theorem: If X i3 a random variable, then tlie best way io measure X by a single constant,

a, is to choose a = E(X). Here, best is defired as minimum mean square error.
n

Proof:  Let f(a) =9 (X; - a)2.
i=1

Taking derivatives, we have

n
fa) = 2 ) (X - a).
=1
n

Setting f'(X) = 0 and applying the summation implies Z X - a=0
i=}

".'3

-

pus

Since
n
2 a = na,
j=1
we have
l n
a= =2 X = EX.
n ey
Since
f(a) > 0,a = E(X) minimizes {(a) Q.E.D.
7
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The Kruger-Norris report (3] established @ functional relationship between D® and the
numher of compunents given by equation (1-14) of 3] as D* = 0.237 exp (~0.0086N)
where N is defined as the number of compcnents and D* is tie measure of criticality. A
simila: binomial comparison wuas conducted on data from the same 3! spacecraft from PRC as

mentioned above using the hypothesis that D® is a function of the number of components.

Making a similar binomial comparison as was don. prrviously, e(D)) outperformed D* as
given by equation (I-14) of [3] 21§ times out of a possible 284 times. Performing the appre
priate hypothesis test, as before, we reject the null hypothe.is that E(D) and D* have the same
performance at an oa-level at or less than 0.005. The M.S.E. of D*® is much larger than the
M.S.E. of E(D);

M.S.E.(E(D)) '= 0.01171 < M.S.E(D*) = 1.044.

As shown by the theorem, «he best way to predict a random variable X by a single value is
to choose the predictor “a* as the expected value of the random variable. This means that a =
E(X) or that “a” is an appropriate measure of central tendency of the random variable X. The
theore‘r‘n and numerical results implies that for any values of the random variable X; (X,, X;, . . .
Xa) Z Xi/n, is the best single predictor for the overall collection of values considered, both
as a tio.t;l collection or as a subcollection such as the 31 spacccraft in PRC data. Hence, if we
consider the totality or any subcollection of spacecraft failures and classify them according to
their criticalities, we would choose E(D) as the overall single appropriate measure of a criticality
value. This means that the instantaneous utility, U, is estimated as U= n a- E(D))"i«. Two
questions remain about the estimation procedure, (1) by a dependence relationship such as given
in equation (I-14), can one yain predictabilitv and (2) what is the value of E(D) used in the es-

timation procedure?

For any sub'collection of spacecraft we have just shown that E(D) gives better predictability

then D*, on the basis of closeness of the prediction and M.S.E. of the estimates.



For a complete answer to question (1), one must examine if on the basis of some casual de-
pendence such as found in equation =14) one gains predictability.  To accomplish thas, we con-
sider the collection of 4! spacecraft as a single group and compute E(D). After computing E(Dy,
we compare the performance of E(D) to the performance of D*®, equation (1-14) for each

spacecraft.

The above study yielded the following results. D*® outyerformed E(D) 162 times out of a
total of 284. Using a similar test as before, we reject the null hypothesis that E(D) and D* have
the same performance at the a = 0.05 level. It should be remarked that th: M.S.E.(E(D)) >
M.S.E.(D*), since M.S.E.(E(D)) = 0.055 > M.5.E.(D*) = 0.044.

This result points to a complexity factor in determining overall criticality. Since critical-
ity is dependent on the number of components that make up a spacecraft, this dependence
can be used to gain predictability. This result also points to a need to ascertain a more refined
measure of the complexity of a spacecraft, since the measurement of complexity enters into the
formulation of utility which is a measurement essential to mecasuring the performance of

spacecraft and the amount of information a spacecraft gains on any particular ission.

In order to answer question (2), we turn to the development of confidence intervals for E(D).
When it is necessary to give a confidence statement about the amount of information one obtains
on any particular mission, it is necessary to bound E(D) or D* in the measurement for utility.
Since E(D) lends itself to this type of bound more readily than D*, but D* outperforms E(D), it

is necessary to adjust E(D) to make it perform as well as D*.

Another form of variability in the system defined by equation (5) comes from the distribu-

Y
tion of the statistic Z D; (P(D)). We observe that P(D;) = . P; where Y| is defined to be
e n
the number of occurrences of the ith type of anomaly. The statisiic Z Dj P(Dy) can be written
ieQ
as



. - Yl
Y, ® 9D, = (0)

where 0 designates the totality of tulures for all spacecraft,

Thus Y, is a statistic that measures E(D) for a collection of spacecraft. We also observe
that the expected value of Y, is, since E(Y|) = n P,

E(Y }'f: ). 5 7
n) (D‘)-ET" D; P, (7)

i=} LR

To distinguish between the role that n plays for the totality of failures for all spacecraft and the
rew nj plays for any single spacecralt j, we define Y, j for a single spacecraft as
k Y
i
v. =3 p, (i) (8
" ;n ‘ ( n / !

we further observe that

i=1

k Y
= -—& = : 9
E(Y) = 3 DjE ( n PILN 9)
where ng is the information based only on the jth spacecraft.

Equations (7) and (9) imply that the expected value of the statistic Y, is ditferent for dif-

nj
ferent subclasses of spacecraft. It is noted that this is an a priori measurement based on the
totality of the information that one has about all previous space flights: at present P, = C.02,
P, = 0.02, P; = 0.11, P, = 0.85 on 449 anomalies for 57 GSFC spuzecraft and D;’s are subjec-

tively chosen. As information is gained and the nature of the mission better known, the P;'s

and the subjective definitions of the D;'s should be re-evaluated.

Bounding the Statistic: Confidence Intervals

In order to place bounds on the statistic 2 D; P;, we outline two approaches. One ap-

i
proach is given in Briemann [S] and involves constructing simultaneous confidence intervals for

10



P;'s from the individual confidence intervals for the P;'s. This apnroach allows for dependence
which we have in our system. The following dcfinitions and theor:ms follow Briemann.
Definition: In a K-parameter problem, the intervals J‘(é), v d k(@) are said to form
simultaneous 100 Y % confidence intervals if
Pgl0,eJ,B),...,0.el B)] 2 ¥forall 6e(®).
To obtain simultaneous 100 ¥ % intervals, we have the following proposition:
Proposition: If J, (@). v Jg (é) individually are 100 Y % confidence intervals, then they

form simultaneous 100 [! - K (1 - 7)) % confidence intervals.

For the data given by Table I, thers are K = 4 criticalities and four P;’s on which to con-
struct confidence intervals. To obtain 90% simultaneous confidence inteivals for P, P,, P;, Py,
we choose Zq, = 2.24, 7 = 0.975, (5= 0.0125). If we construct 95% confidence intervals for
any single estimate P;, Y  0.95 and we obtain (1 - K (1 = 7)) % or 80% simultaneous confidence

intervals for (P, Py, P;, Py).

After simultaneous confidence intervals are obtained for (P;, I, P3, P,), we may obtain
simultaneous confidence intervals for E(D) and E(Dj); where E(D) denotes the expected criticality
for cumulative spacecraft failure data and E(Dj) denotes the expected criticality for any single
space flight mission. The following arc simultaneous a oriori confidence intervals for P, P,, P;,

P,, where n denotes the totality of failures for all spacecraft | - P; =

/§ /56
~Zyp <P S+ 2y, "'“i (10)

where ﬁ, = 0.02, ﬁz = 0.02, ﬁ, =0.11, 34 = (.85, and « is determined as previously discussed.

Using the above confidence intervals for P; we have the following confidence intervals for

E(D) and E(D)).

-~ '6 A ﬁ'é
3 Di{m -2y, /= [<EDS Y DB +2y, /—— (an
i L i v

11



These relationships hold for any set or subset of Spacecraft.

As an example, we calculate the 90% confidence intervais for P;, P, P;, P, using n = 400,

100, 10.
For n = 400: -

002 - 224 / -(949-2%0%)-'-9-2 <P
0.02 - 0016 £ P,
0.004 < P,
0.004 < P,
0.11 - 0.035 £ Py
0075 S P
085 -004 <P,
081 <P,

For n = 100:
max (0, 0.02 - G.031) < P,
0P
0P
0.11 - 0.070 < P,
0.04 <P,
0.85 - 008 <P,
078 <P,

For n = 10:
max (0, 0.02 - 0.099) < P,
| 0<P
o<gp

max (0, 0.11 - 0.22) < P,

12

/ (0.02) (0.98)
< 002 + 224 200

< 002 + 0.016
< 0.036

< 0.036

< 0.11 + 0.035
< 0.1435

< 0.85 + 0.04

< 0.89

< 0.02 + 0.031
< 0.051

< 0.051

< 0.11 + 0.070
< 0.18

< 0.85 + 0.08

< 093

< 0.02 + 0.099
< 0.119
< 0.119
< 0.11 + 0.22



0<P; €033
0.85 - 0.25 € P, < min (1, 0.85 +0.25)
060 <P, <1

We next proceed to calculate confidence intervals for EQ)(D) for the given sample size n =
400 and for the various values of the range of D such as maximum, upper quartile, middle, lower
Auartile, and minimum. In this notation E(;,(D) denotes the maximum range of criticality of «
failure, E(5,(D) denotes tise upper quartile, E(3,(D) denotes the middie, E(4)(D) denotes the lower
quartile, and E s,(D) denotes the minimum. Thus, when we use the dependence between number
of components and criticality of a failure, we establish a relationship to assign E(J)(D) to measure
criticaiity as a function of the number of components. The relationship we use is the greater the
number of components, the greater value of j we use. This relationship will be explored after

another method to establish bounds for E(D) is discussed.

For n = 400,

0.178 - 0.052 < E;)(D) £ 0.178 + (052
0.126 £ E,,(D) £ 0.230

0.143 - 0.0424 < E(,)(D) < 0.143 + 0.0424
0.101 £ E(,)(D) < 0.187

0.109 - 0.039 < E3(D) < 0.109 + 0.039
0.070 < E(3,(D) < 0.148

0.078 - 0.032 < E4)¢D) < 0.078 + 0.032
0.046 < E4)(D) < 0.110

0.039 - 0.026 < E,(D) < 0.039 + 0.026

0.013 < E(5(D) < 0.065

One notes that the confidence bands for E3,(D) actually contain all of the E(D)’s of the data

from PRC’s 31 spacecraft.*

*One may not bound P; by a nuniber lower than zero, or bound P; above by a number greater than 1.

13



Another approach for confidence intervals involves using the multivariate normal distribut;on.
This approach incorporates the variance of the statistic Z D; P, into ‘the variance - covariance
1
structure for the multivariate normal structure of the P;’s. In order to develop confidence inter-

vals forz: Dy, P, we give some preliminaries.
i

Definition:
Let _ -
oy % O1n
012 02 . . « O3
ve | (12)
[ %1n %2 - - - Opn |

Where oy; = o2 which are the variar.ce terms and 0yj are the covariance terms. The matrix V is

called the variance - covariance matrix.

From Mood and Graybill {6], Pi = %, i=1,...,85, are the maximum likelihond estimates
of P; which are used to define E(D) and E(Dy). It is well known that the joint distribution f (ﬁ,,
Fz, N Pis approximately normal with means P;. Lehmann (7], Theorem 14, appendix,
states that a multivariate normal distribution is completely specified by its means and its covari-

ance structure. We thus have

g .
oy (B = '-irq‘;@l =1-8

and

3

P . .

12

oy (P, B) = cov (B, B) = - (13)

These are the exact variances and covariances for any sample size n. This means that we can cal-
culate bounds for the statistic Z: D; P; for the number of failures for all spacecraft and study

i
the behavior of any particular spacecraft as a member of its family.

14



The following result from Hogg and Graig (8], will be used to establish confidence intervals
for Z D; P. Let X;, X;, ..., X, have a multivariate normal distribution with matrix u of
i

means and positive definite variance - covariance matrix V. Consider a linear function Y of X,

..x,,whichudcﬁnedbyY-CT-X-i:q-xl,whereCT-[Cl.....Cn].
=1

Theorem: The random variable Y is N(CTu, CTVC). That is, it is normally distributed with
a mean of CTu and 2 variance CTVC.

To adapt this to our situation, let

P rpl
w o=t x - P,
£ P,
| Py] | Py

CT = [Dl,Dz,Dg,D‘](no

EXYEAEXESN
n n n n
B8 B4, PP B8
n n n n
-pl 63 "ﬁz ﬁ; p3 63 "133 ﬁ4
n n n n
B, 8, B, 8, B, 8, B4,

| n n n

(Note: « denotes the level such as iminimum, maximum, middle, etc..)

Thus, we have

—

Y = CT - X = [D,, D,, D3, D4l

= ZDi ﬁi'

w

'O)'U)JU)'U)]

.&

Using the normality of Y, we have the foliowing confidence intervals forz D; - Py(D;) or E(D).
i

15
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CTy = 2y V CT V- CLED) SClu+ 2/ CT V- C

As an example of the overall calculation of a 90% confidence interval, for E(D), we consider

n = 10 and (i) = middle.

We thus have

2.02

X = 8'?f .CT = (0.95, 0.70, 0.30, 0.05],

0.85

™ 0.00196 -0.00004 -0.00022 -0.00170

-0.00004 0.00196 -0.00022 -0.00170

V= » 4 Zan = ].65.
-0.00022 -0.00022 0.00979 -0.00935

_-0.00170 -0.00170 -0.00935 0.01275

CTX = 0.109
CTv = (0.00168, 0.00118, 0.00211, -0.00497)
CTvC = 0.00281
J/CIVC = 0.0530
Therefore
0.109 - 1.65(0.0530) < E(D) < 0.109 + 1.65 (0.0530)
0.021 < E(D) < 0.197.
If n = 5, the entries in the matrix V are multiplied by 2 and hence
CVis) = [2] CTVy) = CTV(; C = (2] CTV40) € = 0.00563
=/ CTV, C =/0.00563 = 0.0750

0.109 - 1.65(0.0750) < E(D) < 0.109 + 1.65(0.0750)
min. (0,0.109 - 0.124)) < E(D) < 0.109 + 0.124
0 < E(D) £ 0.233.
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Using E(D) to Estimate D Based on the Dependence Between Criticality and Number of Componen:s

It has been shown that there is a dependence between the number of components (a meas-
ure of the complexity of the spacecraft) and the criticality of a failure. Using this dependence,

one develops a functi~nal relationship to better estimate D in the equation
u=[la - oy

where D is now a function of component count.

The same type of relationship may be established using, E“)(D) as used in the section of
this report dealing with establishing a criterion for goodness of fit. The way this is done is to
take the 31 PRC spacecraft and separate them into S categories, I, II, III, IV, V, depending on
their component count. For consistency, we match the lowest component counts with category
I and correspond this with E, (D), since the smaller the number of componen‘s the greater the
criticality of any failure and a similar process for greater component count. Using this technique
for the 31 PRC spacecraft, we have the following correspondences in terms of spa.ecraft c~mipo-

nent count, categories, and measJres of criticality.

Categories I I I v \"

Component -28,39,46,46 S2,52,52,52, 64,70,70,70, 86,86,86,86, 120,129,129,

Count 52,59 70, 76, 18 86, 86 130,130,131,
131,137

Criticality

of Failure 0.178 0.143 0.109 0.078 0.039

After making these correspondences, we now compare the performances of E(D) and D = 0.204
e-0.005247N_ We obtain the following results: E(D) outperformed D = 0.204 e=0-005247N 143 times
to 141 times out of 284 failures. The M.S.E.’s of the estimates were approximately the same,
thus there is no significant difference in the performance of E(D) and D as defined above. We
may use E(D) when we want to calculate confidence bounds for utility, U, or use D for estima-
tion and cost purposes without ioss of performance. Due to the changing character of spacecraft
in terms of complexity and failure modes, it is advisable to continually study and refine these

measurements.
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Procedure to Calculate Confidence Intervals for U(t) = (1 - D*)F (1)

To bound U as given by U(t) = (1 - D*)f (1), where D* denotes the criticality of a failure
and F(t) denotes the number of fezilures after time t as in equation I-13 of reference 3, we
bound D* by forming bounds E(D) and estimating D® by E(D) as discussed previously.

Let
E (D) £ E(D) £ Ey(D) (16)

where E; (D) and Ey;(D) denote the lower and upper (1 - ¢) confidence bounds on E(D). To
bound U(t) with a lower bound corresponds to choosing the upper bound for E(D), since (1 -
E(D)) will be minimal for E; (D). A similar argument applies for the upper bound for U(t).
Thus, in terms of D* only, we have
U < Yy S Uy S i)

where

U = (1 - Eyg(D)F()
and

Uy = (I - Eg(D)F(®)

for appropriate confidence levels.

The final consideration is the bounding of F(t), the number of spacecraft failures after an
orbital time t. Before we bound t, we must determine if the criticality of failures is independent
of time. If this is the case, thea we may bound D* with the bounds for E(D), and bound F(t)
with appropriate bounds. In order to answer this question, we refer to table I-A~1 on page [-A-2
of reference (3) and perform the appropriate X2 test for independence. At an a-level of 0.01,

we do not reject the null hypothesis of independence.

In order to bound F(t), we use the procedure developed by Williams-Kruger, (9], for com-

ponent, system, and orbital failure modes, and obtain

F () < F(t) < Fy(t) (18)
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where Fy;, F denote the upper and lower confidence bounds for E(t) where F(t) is the failure
mode in orbit. This process involves using regression through the mid-points for the upper and
lower confidence bounds for the Product Limit estimate for F(t). Thus, the upper and lower
bounds for u(t) are given by:

(1 - EyD)fL < U® < (1 - E(D)Fu(®) (19

Conclusions and Remarks

When one calculates bounds for expected criticality, E(D), the multivariate confidence interval
approach is preferred because it deals with the dependence of the parameters P, P,, ..., Py, col-

lectively through the variance~covariance structure.

In order to use the multivariate confidence approach for confidence intervals for any set of
data, one calculates P,, cors 9,, from that set of data, then finds the matrices V, and CT, finds D,

and calculates confidence intervals as indicated in the previous discussion.

The use of confiv'ence intervals is necessary when one uses the concept of utility to determine
how much time is necessary to gain the pertinant amount of information needed from each mission.
As a mission is conducted, then one has time intervals in which to gain information. As an example

we consider the diagram in Figure 1.

PERIODS DURING WHICH DATA IS AVAILABLE

b
r'}

uTIiLITY, v

N NN

TIME —=

Figure 1. Change in Utility as a Mission Progresses.

—
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The vertical bars in Figure | indicate the periods when data may be taken, such as when a
spacecraft is over a ground point. The utility of the spacecraft may be expected to decrease with
time as malfunctions occur. Thercfore, if one needed a specific number of hours worth of infor-
mation, the observing times would have to be multiplied by the value of U existing during that
time.

In order to use the confidence intervals for E(D) with the concept of utility in gaining in-
formation, one would be interested in using the confidence bounds for E(D) through the mission
to calculate U. If one wanted 12 hours of information, then one would numerically integrate
the area in each bar of Figure 1 that is under the curve U using confidence bounds calculated as
in equation (19). This would give a final estimate for the total numbcr of hours of information

gained with a degree of confidence based on the bounds for U(t) in equation (19).

One should continue to study the question of complexity of spacecraft and criticality of
failures during the mission since these concepts and measurements have a direct Uearing on mission

cost optimization.
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