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HIGH POWER DENSITIES FROM WIGH-TEMPERATURE MATERIAL INTERACTIONS®

James F, Morris
Nationa)l Aeronauiivs and Space Administration
Lewis Research Center
Cleveland, Ohio

Abstract

Themionic energy conversion (TEC) and
metallic-fluid heat pipes (MFHPs) offer important
and unique advantages in terrestrial and space
energy processing. And lho{ are wel. suited to
cerve together synergistically. TEC .nd MFHPs
operate through working-fluid vaporization, con-
densation cycles that accept grea’ thermal power
aensities at high temperatures. TEC and MFHPs
have apnarently simple, isolated performance
mechanisis that are somewhat sinilar., And they
also have obviously difficult, complected mate-
rial preblems that again are somewhat similar,
Intensive investigation reveals that asgzcts of
their operating cycles and material problems tend
to merge: “In short, high-temperature material
effects determini: the level and lifetime of ...
performance.” Simplified equations verify the
preceding statement for TEC and MFHPs. Material
properties and interactions exert primary ir-
fluences on operational effectiveness. And
themophysicrchemical stabilities dictate operat-
ing temperatures which requlate the thermo-
emissive currents ot TEC and the vaporization flow
rates of MFHPs, Major high-temperature material
problems of TEC and MFMPs have been solved. These
solutions lead to yroductive, cost-effective
applications of current TEC anda MFHPs -- and point
to significant improvements with anticipated tech-
nological gains,

tnergy Efficacy and High-Temperature Materials

“If there 1s a single generdl trena that
apf . 1es to the various combinations of heat
sources a .d conversion methods, it is the one
tevard higher source temperature and higher sink
temperature -- and consequently lighter weight
systems. For tnis reason, the workshop felt that
high-temperature-materials data was of prime
importance ...." This 1s a quotation from
W. A. Ranken of the Los Alamos Scientific Labora-
tory, one of 15 experts who attended a recent
symposium at NASA Lewis Research Center on 'Fxlurc
Orbital Power System Technology Requirements"d,
The inexorable evolution toward high space-system
power levels is a movement to not only high tem-
peratures but also high efficiencies and high
power densities.

Similarly high-temperature, high-power-density
topping promises higher efficiency, lower cost and
less p?llgl.\.m per watt of electricity 01
earth ¢=20 * Apg very important in these trends
are two direct energy devices that process great
power densities effectively through high-
temperature materi.| interactions alone: The
thermionti: energy converier and the heat pipe
operate on thermmal inputs only and have no moving
parts. Their workinyg fluids cycle continuously
through evaporation, condensation and return fiow
by a self-induced voltage or a capillary-pressure
difference (Fig. '). Specially, selected materials

¥Work funded by the U.S. Lepartment of Energy
under Interacency Agreement EC-77-A-31-1062.

serve as Muncuu, evaporators and condensers as
w21) as containers for these working fluids. In
such combinations thermionic onversion
(TEC) and heat-pipe processes functici at low tem-

peratures. But their himwuy capadbili-

ties prevail at high temperatures (Figs. 2 ano

3). “In short, M'»-t?rnun material effects
and 14

determine }m leve fetime of ... per-
formance*2l,

Temperatures for optimum TEC and for some im-
nortant terrestrial topping applications ippear in
Fig. 2. Correspending heat-pipe utilization could
o cur at temporalures near those for sppropriate
emitters and collectors. Possible heat-pipe ser-
vice in proje.ted P”. ?pliccuom comprises the
entries in Tible 11:24°25." Metallic fluid heat
pipes (MFHPs) and TEC are also a synergistic com-
bination for efficient high-temperature, high-
power-density production of nigm-o"osz!” space
power near and above the megawatt levelc®: ¢/,
Aiming at thit goal the USSR reported in 1976 on
“the tests of three 'Topaz' reectors” (“therwonic
nuclear power plants") that" demoustrated ...
long-term stable and reliable ”orcuon with good
reproducibility of parameters“<®,

TEC and MFHP Power Densities and Problems

TEC hgat inputs can reach the order of
100 Wy/cmé, as implied by Fig. 2. _There TEC
outputs range up to tens of u./cnz (PoL)
and tens of percent efficiency (ngL):

PoL = (9g - 0c - Yp-Va-V)ldgg - &) (D)
"m. (JES‘JBE){‘E “c‘vo'vk°2

[2'“1‘0-8 acl? - rg)/(z : ..Ec)]llz}/

{Jisu[ ¢ KkTp) - Jge (8 ¢ &T() + 0, 710714

[o.os . r.s»nlo‘snE - 1000)](‘: - ‘3)} (2)

In these equations @ and @ are emitter and
collector work functions, Vp 's the intereilectrode
voltage drop, Vo s the equivaient auxiliary inpit
voltage for enhancement, V| is the voltage loss
required for optimum leads (equal to the expression
within the square brackets in the numerator or (2)).
u.sc ts the TEC electrode efficiency (equal to (2)
with 2V deleted from the numerator), Tg and

Tc are emitter and collector temperatures, the
last term in the denominator of (Z) approximates non-
electronic thermal transport, Jg s reverse elec-
tronic flow (including retlections, backscattering,
back emission Jgg, and other effects that diminish
output current), and Jgg 1is the current density



for emitter saturation:

o A(L = R )T enp(-6c /k';) (3)
%s e'e LT

where A and k are Richardson and Boltamann
constants and Rg 1is the emitter reflection
coefficient,

Cquation (2) is a simplitied, yet reasonable
estimate applicable for low cesium concentrations,
riduced enhanced-mode pressures, close electrode
spacings, and small irterelectrode losses. ' wder
such conditigns ihe back emission ( )
approx imates -“”"ﬁ ot

Jgg = ACL - RgITE expl-(8. * V) ATLD  (4)

where R” comprises R( (collector reflec-

tion coefficient) ana similar coefficients for all
intere lectrode mechanisms that return collector-
emitted electrons to their source -- except those
for noncollisional repulsion by the emitter
sheathi, With negligible interelectrode losses and
reflections, back emission equals tat for collec-
tor saturation:

Jeg = AL = ROTE exp(-0 /T ) (5)

Vhe preceding equations verify a previous
:sur.!on: High-temprrature material effects

s Res TEs v 00y R(y Ty Jisees) determine
lh‘to ufm g? m pe%ov&anc: --‘3wletely. This
generalization includes enhanced-mode operation
also because Vj represents a small traction of
TEC output recycled to increase efficiency. With
this rather (imited background a tabulation ot TEC
characteristics may now be apropos:

Thermionic-Energy Conversion (TE() Advantages

Electricity directly from heat

NO moving parts or inherent mechanical stresses

High temperatures: nigh (arnot efficiencies

Great power densities - with

Broad near-maximum-efticiency plateaus

Rapid responses to load or heat variations
(cons®ant temperature)

Low weights

Small volumes

Modularity

Modularity In TEC Applied Research
and Technology (ART)

TEC ART 15 essentially independent of other system
component s

Development and testing on the lab bench are
effective

Lonverters are scalable

Module building blocks adapt to system size and
shape

Repetitious rotational fabrication modes apply

Nearest-neighbor load sharing minimizes unit-
failure effects

Modular cesigns allow TEC-unit replacemerts

Economy: resrar:h, development, fabrication,
applicatior

Adaptability

Reliability

Mz2intainab'lity

Altnough TEC accepts ?nn thermal power den-
sities, MFHPs excel in this capability: They can
raceive and deliver thousands of W/ radi-
ally and tens of thousands axially. Such perfor-
mance falls within an envelope of mechanistic
limitations t), ifted by the following skeich,
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A simplified, yet informative expression for
max imum heat-pipe thermal power x results
from reduction ov a complicated quadratic equation
by neglsﬁtlw inertial and interphase

effects
(2AK\ /o 002 o, 9Lr siny
| |
W .(_r:[_‘!> (\_H__) (1 : __25‘__> (6)

In this equatiun the first factor is the "wick
number” (N,); the .econd, the “liquid-transport
factor® or “zero-g figure of merit® (Nj); and
201/go) 1s the "one-g wicking height" (Np). The
subscripts w, I, and p designate “wick,"
"l1iquid" and “"pore." And A 1s area; g, gravity
vector; K, pemmeability; L, length; r, radius; ¥,
inclination angle Yrom horizontal; A, heat of
vaporization; u, viscosity; p, density; and o,
surtace tension,

tquation (6) verifies that, aside from inter-
nal geomrtry, high-temperature-material properties
(My u)e #) and o)) and their effects determine
the level of MEHP perfommance. Perhaps this con-
text makes the general characteristics of heat
pipes nore meaningful:

The Heat Pipe

Is a themal-energy transporter, transfommer, ang
1sothermalizer,

I's a compact, lightweight, self-contained, self-
pumped system,;

Uperates with no mechanical or electrical inputs -
and no moving parts;

Allows diverse temperature ranges, high thermai-
power den ities, and low temperature gradients:

15,000 W/cmé at 150° ¢ “Clem w/iem/“C
Lithium (L) heat pripe 0.1 150,000
Molten copper (Lu) 4000 3.75

The preceding simplified algebraic expressions
Indeed indicate that properties and interactions
of naterials at nigh temperatures dictate TEC and
MEHP pertormances at their maxima. But an intro-
ductory quotation states tnat “"high-temperature
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material effects determine the leve) and lifetime
nential tendencies of degradition-rate ccastants
can be crucial, “he fact tha. "high-tempe:ature
material effects determine the ... lifetime" is
often more impo tant, In practice, themo-

phys icochemi:al statility 1imits operating tem-
peratures, heuce TEC thermal emission and MFHP
vaporization rates. Therefore, can hi
performance TEC ana MFHPs withstand themmally
accelerated deterioration and 1ive productively to
economically old ages?

Answering this question requires irst a dlag-
nosis of some of the more destructive ravages pos-
sible during high-temperature TEC and MFHP opera-
tion: Both devices are subject to internal alkali-
meta) corrosion and solution accelersted by low
concentraticns of impurities like o n. Inter-
restrial service both must survive external at-
tacks by hot corrosive gases. For space mpplice-
tions both must oppose sublimation of their exter-
for surface’ into the hard-vacuum ambiance, And
the near-vacuum within TEC admits of vaporization,
condensation complications that could cause work-
function alterations and coat insulators. Also
wherever interfaces of differing materials encoun-
ter high temperatures, reaction and diffusion lcom
as major concerns, Accentuatec effects of the
latter phanomenon occur when composition discon-
tinuities promote void formations (Kirkendall)
that diminish transport cross sections. Finally
thermal creep, expansion coefficient mismatches,
and solid-phase transitions demand attention in
temperature cycling and gradients,

But as subsequent discussion reveals, solu-
tions for these problems are available to muke
high-temperature TEC and MFHPs viable.

Successful Limitation of Alkali-Metal Corrosion

Since the 1900's TEC technologists have con-
sidered cestum (Cs) corros.on under control to the
extent that it no longer poses problems. As
reference 35 states "... the materials used are
not attacked by Cs ..." In addition, utilization
of ultra-pure Cs, strict cl~anliness, effective
getters and high-temperature vacuum bake-outs
insure long lifetimes for TEC interiors.

The umeJeneral approach produces acceptable
results for MFHPs, where Li usually provides the
ultimate corrosion test, But in 1973, reference
36 asserted, "It has been concluded that W-26Re/L 1
£81C) heat pipes promise a lifetime of many yeirs
at 1600 C."

This achievement is particularly noteworthy
Fecause the heat-pipe cycle concentrates
corrosion-accelerating impurities at the evapora-
tor surface. Therefore localized themmochemical
attack intensifies continuously in the
perfomance-affecting t,’ne structure of the wick
as indicated in Fig, 4+,

Such alkali-metal-corrosion effects catalyzed
by oxygen (V) dramatize the importance of oxide
getters as metallic-fluid preloading processors,
as in situ purifiers and as alloy constituents.
Of course good getters release much enthalpy ana
undergo nearly as great negative free-energy
changes upon co?g}ﬂ‘ng with 0 -~ like the metals
in lower Fig. 5 . A qualitative version of

some of these data !lnltﬂn their presentat, r
somewhat in Fig, 64¢, A free difference be-
tween free energies of oxice formation for two
metals indicates a strong O-gettering preclivity
for the one with the more-nege. ‘ve free-energy
ch . But this is a alization besed on
equilibrium concepts. degrees or rates of
approach to equilibria are not estimable from
free-ene values. In fact solid-state trans-
port usually controls gettering rates after ini-
tial superficial reactions,

However F |=s. 5 and ¢ provide some interest-
fm TEC and MFHP insights: One is the observation
that TEC Cs cen scavenge fwpurity oxygen, then
surrender it to the Ta or ND envelopes. This
c'ean-up process might have caused early relative-
!_{ uncontrolled TEC tests, which often began with
high performances typical of O-aoditive eihance-
ment, to taper off to lower efficiencies with Co-
tinued operation,

Consensus places 0 solubility in Ta and ND
near one percent at several hundred degrees centi-
grm.co’ gamr than five percent above
~1500° (4345, gyt dissolved onygen embrittles
these refractory metals. So popular Ta and Nb
8" 'ys incorporate small amounts of hafnium (Nf)
and zirconium (Zr), respectively, to getter solid-
solution 0, fix it ,; distributed oxides, and
reduce brittleness4/, But welding and other hot
processing tand to segregate slag and other im-
purities at interfaces. Thus, because Li can
attack Ta, Nb, Zr, and Hf oxides successfully, L1
heat pipes of sucn alloys often succumb to inter-
granular and weld perforations. However, as pre-
viously stated, properly processed W c‘lon
serve admirably as high-temperature L1 heat
pipes. This statement is also true for Mo and
some Mo alloys.

Although L1i can ?ctm 0 from most oxides, it
is subject to getter by a few metals like those
at the bottom of Fig. 5. One of these, lanthanum
(La), is present in the order of a tenth percent
in Haynes Alloy 188 (cobalt (Co) ~40 percent,
nickel (N1) ~22 percent, chromium (Cr) ~22 per-
cent, tungsten (W) ~14 percent and iron (hy

~2 percent). It is noteworthy that a Haynes 188,
1ithium heat pipe has L2en and is running with an
evaporator temperature of ~1250 K for over 19,000
hours (mid-November 1980) at the NASA Lewis
Research Center. This heat pipe was part of a
project to determine advintages of very high-
temperature, hard-vacuum preloading bake-outs on
L1 and sodium (Na) compatib.lities with several
superalloys during heat-pipe operation. In prac-
tically all such preceding compatibility studies,
access to corrosion-accelerating impurities had
been assured. Unfortunately the project objec-
tive was thwarted at the ovtset because the sup-
plier was forced to use metal-felt wicks, which
are difficult to clean up, rather than the stipu-
lated screen. As a result, bake-out achievea only
in the order of 10-4 torr rather than the specified
lower than 10~/ torr. Subsequently the other
(non-HA188) superalloy, L1 heat pipes failed early
with destroyed wicks and severe internal wall at-
tacks. Two Haynes 188, Li heat pipes developed
leaks in stress cracks caused by welding after
~200 hours., But sectioning and microscopic exami-
nation revealed no L1 effects on wicks or walls
(unpublishea results from W. B. Kaufman, W. E. Frey
and J. F. Morris of NASA _Lewis Research Center).
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In this vein Ti-alloy, Li heat pipes shou'o
also be available soon for long-lived, weigh'-
e'fectﬁ;e space applications ranging to over
1300 K37, Sucn avatlability was unexpucted for
years because some authoritat ive heat-pipe pub-
lications state that the only alkali metal com-
patible with Tt i1s Cs. But a preponderance of
non-heat-pipe literature indicates that TV should
serve wo!l with any alkall metals as working
flutds, including Li37. Contract verification
of this assertion is underway,

Such additional success in limiting alkali-
metal corrosion will enhance TEC as well as MFHP
technologies.

Protection Azainst External Hot Corrosive Gases

Advantagsous terrestrial utilization of 1EC
and MFHPs demands operation with direc’: exposure
to fossil~fuel combustion products at high tem-
peratures. And such service requires efficacious
protect ive coatings on heat-receiving surfaces.
But subjection to hic» velocities and mechanical
stresses is unnecessary because MFHPs can collect
low thermal-power densities and transtorm them to
appropriate, nearly isothermal TEC inputs

Silicon-carbide (S1C) clads for TEC in topping
of power plants (TOPP) arose as a pr?mtiing s9lu~
tion to this hot-corrosion problems1id-18,48-54
auring pre-197C Off fce of Coal Research contract
studtes. Heference 2 reports on the tnermal-shock
stability, themmal-expansion compatibility,
molten-slag resistance and not-corrosion protec-
tion of Stl-clad TEC. Recent EPRl-supported work
on coal-fired recuperators and regenerators fur-
ther supports S1C as a high-temperature heat-
rece ving surface,

Now Thermo Electron Corporation (TECO, i1s test-
ing a series of SiC-clad TEC ¢iodes in fossil-fuel
combustion products. One with a 1730 K W emitter
passed 3500 hours (varly December 1980) and ic
continuing, Tests after over 500U hours for
another SiC-clad converter with a 1030 K W emitter
yielded gratifying results®d:

“Electron microprooe analysis showed no
evidence of any reaction between the
interfaces of the tungsten, graphte, and
silicon carbide. X-ray diffraction pat-
terns of the siylicon carbide were com-
pared to those from unfired silicon car-
bide. The patterns were essentially
identical and showed primarily silicon
carbide. Knoop microhardness tests indi~-
cated there was no change in the hardness
during the life test. The hardness at
the dome was KHN 2600. The following
impurities were found on the dome area of
the hot shell: aluminum, magnestum,
potassium, and iron., The first three
probably originated from the furnace
firebrick and the iron from the melted
flue pipe. Significantly, no chemical
reactions between these elements and the
silicon carbide were indicated. Appar-
ently, no change or degradation to the
composite shell resulted from the 5000
nours of operation."

TECO also revealed that TtC fabrication based
on chemical vapor deposiiion (CVD) with suitable

SIC cladding 1s more economical than conventional
fabrication for lower-temperature supersiloy pro-
tection. Tie laminar W. grapnite (C), SiC dome
(emitter, thermal-expansion adapter, protectfve
coating) can also be manufactured on reusable man-
drels, So directly-fired TEC appears cos’ -
effectise as well as feasible,

TECU has also demonstrated adaptability of
their methods to produce S{C-ciad MFHP envelopes,

Coping with External and Internal Vaporization

Some lower-t /mperature terrestrial applica-
tions of TEC and MFHPs anticipate external not-
cerosion protection by superalloys as previously
mentioned., Such materials cften serve well con-
siderably hotter than 140 K {n combustion pro-
ducts because of adhereni protective-oxide forma-
tions (sae ggmcrous NASA LeRC publications on
superalloys®?), [heretore {1t {s not filogical
to assume that the absence of corrosive attack in
the chemically benign hard vacuum of space should
allow satisfactory service by these superalloys at
even higher temperatures, But of course this
assumption faile to eventuate,

As Fig, 7 testifias the most important super-
alloy constituents (Co, Cr, Fe and Ni) vaporize
separately at about a mil per year between ~1150
and ~125 K. Of course escape rates from allcys
differ from trose of pure materials because of
dilution, assoctation, and diffusion effects, But
Fig. 7 enables estimates of high-temperature
vaporization into vacuum for non-associated sur-
face components, And a mil per year is signiti-
cant for lightweight space structures,

Much slower vaporization raves as well as
higher melting points, great strengths and much
lower densities make Ti g}loys excellent candi-
dates for MFHPs in space’/ (Fig., 8). T{ sub-
limes at only 0.1 m1)/year near 1300 K., But such
service temperatures for unprotected T1 envelopes
on earth would be inconceivable, Here long-temm
use of unclad T1 generally occurs at temperatures
belo: d/0 K,

For satisfactory sublimation rates at tempera-
tures above J3U0 K, alloys of Mo and W or even of
Nb and Ta, with proper precautions, can serve well
for TEC and MFHPs (Fig. 7) -- bare for space and
other vacuum environs and suitably clad for usual
terrestrial applications.

As previously described, MFHPs tunction
through evaporation, condensation, wicking cycles
for fluid metals: Internal pressures tend to
center around one atmosphere, often between (.1
and 10 atmospheres, But although metal vaporiza-
tion prevails in MFHPs, wick and envelope mate-
rrals must be thermally stable to maintain geo-
metries essential to perfomance.

However vaporization, deposition problems
demand special attention in TEC, where high tem-
peratures and surface phenomena dictate perfor-
mance. Line-of-sight or maze shielding can pre-
clude insulator short-outs, But emitter-vapor
deposition can be critical on the collector.
Adsorption of only a fraction of an atomic layer,
less than 10=/cm, of a different material on an
electrode can drastically alter its work function
and electron reflectivity -- hence its TEC per-
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formance (kqs. (1) to (b)), Thus emitter-vapor
Jeposits on the gollector are as tmportant as they
are unavoidabledd;

“The hot, close-up emitter practicall
covers the <everal-hundred-degrees-cooler
collector, And the emitier vapor pres-
sure ts several orders of magnitude high-
or than that of an emitter-vapor deposit
on the collector. S0 ia 19w-pressure con-
verters the arrival rate of emit.or vapor
on the collector 1s several orders of
magn 1tude greater than the departure rate
of 1ts accumulated emitter-vapor depo-
sit, This arrival=-to-departure ratio ap-
prox tmates the actual emitter vapor pres-
sure divided by 1ts vapor pressure at the
collector temperature with that quotient
multiplied by the saquare root of the
collector-to-emitter temperature ratio.”

Accoratngly in TEC, emitter-vapor deposits
tend to build up on collectors, Therefore
utilizing the material deposited on 1t by the
cmitter as the collector s a simple, general
solution for this TLC vaporization, deposition
problem, U&ger answers are possitie vut
except ional vl

In any event coping with 1nternal and exter-
nal vaparizattion in TEC and MEHPs essentially
reduces to selection of the proper materiils,
which are avarlable ang viable,

Lontrolling Interfacial Reactions and Diffusion

Asde trom the previously discussed working-
flutd int Juences, reactron andg diftusion eftects
are really not problematsc in standare MEHPs,
Setection, electron-beam welding and hign-
temperature, hard-vacuum baking of identical wick
and enve lope matertvals, whicn have proven thermmo-
physicochemical stabylity, practecally ehimnate
such problems to over 1600" €. And external hot-
corrosion protection developed tor U applies at
least for small and 1ntermediate hedat pipes, which
of fer the advantage of near-isothemmality,

In high temperature fossyl-fuel Combustion
products, the TLLO Si1C, C, w dome for kU shuwed
*no change or degradation ... trom S000 hours of
operation” with a 1630 K emitter, In vacuum, a
cylindric diode with a 1973 N W emitter 0,23 mm
from a ~1073 K Nb collector yenerated 8 Wicme at
U0./70 vV and 14 percent clectrode efficiency tor
over h years betore a 1973 contract termination
stopped 1t,  So intertacral reactyons and diffu-
sion appear well under control an standard TRC
also.

Introduction of new high-pertormance elec-
trodes sometimes causes difticulties, For exam-
ple NASA LeRU proposed a Us dinde with an emitter
and a collector of La hexaboride (Laby,) «n the
fate 1900's and again during the reactivation ot
fts TEU program n 197437, "1 197/ NASA LeRe
ang USSR technologists bolh demonstrated high-
pertormance TEC with nonorented LaB, elec-
trodes® 307 Controlled deposition, ot poly-
crystalline metal-hexaboride fatms®l witn pre-
ferred cor eteh-relhieved 10U or J10 orientations
for LaBy 907 promise even better
pertomance n practical Tbe contigurations
{similar to CVD'd 110-W electrodes wn cylinaric

diodes). And gratifyingly tiw published consensus
fn 1974 indicated that brazing, aiffusion and
reactions vetwesn Lally and 1ts support were not
problems, But today the inability to maintain a
100 N Lady emitter on a uéfrgctory-mtal base
for over 100 to 200 nours®BibY sei)t frustrates
practical applications, However history teaches
that such diffusion and reaction probiems usually
yield to concentrated applied reseavch.

In general the problem of “contact diffuston
interactior of materrals" causes major difficul-
ties 961?1nal\ng at high-temperature intor-
faces’Us7i, Other pertinent examples are the
previously mentioned solution effects of alkali
metals and oxygen (particulariy fn ninbium and
tantalum) as well as the intemingly g of fuel
with ‘ts imnmedtate container in nuclear power gen-
erators like the in-core themtornic-converter or
heat-pipe cont fgurations.

Li the Yatter area reference 70 presents re-
sults obtained by 3 group of USSR scientists who
contributed theoretically and eaperimentally to
the understanding of fuel, clad interactions. In
turn reference 71 corrects thetr simple diffusion
equation, then dervives more rigorous versions
through Laplace transfommation of the ditferential
rate expression, "small-system" approximation, and
finally complete inversion with subsequent simpli-
fication:

2 2
Cix,t) = C(0.0)[l + cos (ﬁ—“) - COs (Ll-)l)]exp(« éﬁé)

(7)

where C 1s concentration of A in U wvarying
over a short time t and very small distance «x
1h accordance with a dominating diffusion coefft-
clent 0 for A n B and a layer-growtnh
constant k.

Diffusion is ot course a critical influence as
an entity at high-temperature interfaces. But
more cructally 1t generally dictates rates of
corrosion and other chemical reactions in prac-
tical systems -~ after the initial superficial
interactions deplete local compositions., To fur-
ther elucidate the last observation, consider the
simplistic but heuristic example of pure-metal
oxidation controlled 9; migration in_an ideal
solution (after Evans/<, from Nurlen73;. For
this situation the absolute reacton-rate theory
{Eyring, Laidler and Glasstone) yields an expres-
ston for one-dimensional net transport of a
species (corrected from Ret, 7¢):

Vo= (xkt/h)exp(:aﬁé/ﬁt)[c exp{-arzf dé/RTdx)

- (¢ * xdo/de)expi(l - a)rzFdé/RTdx) ) (8)

The pre-bracket tactor, specific rate for a unit
concentration without fields, involves no net
transport, The first tem n the bracketed factor
represents acceleration by the field, The second
temm n the brackets covers retardation, Also in
(8) v s the net transport rate; A, the equilib-
rium distance between migrating charged particles;
k, Boltzmann constapt; 1, degrees Kelvin; n,
Planck constant; aG}, standard chemical activation
energy. R, gas constant; ¢, concentration of mi-



grating species; s, Symmetry factor; 7, wigrating-
particle charge; F, Faraday equivalent; 4, inner
potantial; and x, distance in the transport di-
vection,

Simplify'ng assumptions and transformations
lead to an spproximate expression for film thick-
ness y related to an equivalent oxide volume V
and to a4 values across the film:

dy/dt = Vv(y), ad/y = dé/ox,

AC/y = dc/dx, 8G = F/aé and ¢ = }/2 (9)

dy/at = 2 ’ K'chy[eup(-x‘z‘tﬁlzmy)
{

-(1*+) ja¢ lyc )"lp\i‘l aG/2RTy) ] (10)

Jhere t is time and K = (VAKT/h)exp(-aG§/RT),
fron this simplifiea yet unwieldy equation Evans
extracts some of the more common reduced forms
used L0 correlate corrosion data.

For high temperatures and ' g~ ¢i'm thick-
nesses the exponential of £q. (10) submits to
series expansion with smalli-term elimination:

dyldt » [Z’ Kydyey yi2g aG/RT * ac /e, ]/y
> (E ¥ K‘x‘ac‘)/y or ¢ ™ Kot * const,
{

(11)

And the classic parabolic corrosion expression
results,

In contrast for low temperatures and small
film thicknesses a bracketed exponential temm in
Eq. (10) approaches negligibility:

dy/dt ~ 2: Kic"y exp(+xizia6/2RTy)
i

or y'l ~ const. - Ky, log t (12)
This is the inverse-logarithmic relationship for
corrosion,

A cubic version derives from corrosion models
inveking assumptions of semiconductor properties
for the oxide film. The result is equivalent to
assuming corrosion conditions validating ap¢
as ar apprevimation of exp(p) -exp(-p) in
£q. (10):

dy/dt w2 [E K‘Ci‘y(‘iI‘AGIZRT)Z]/yz
i

or _y3

= K_t + const. (13)
Rather than semiconduction, catalysis assumed in
corroston modeling can lead to linear time de-
pendency. And all these variations evolve from an
admittedly simplistic, even unattainable system of
a pure metal lYimited in corrosion by transport
through an ideal solution. Complications of

alloys, nonideal multicomponant soiutions, steep
temperature gradients, in meties and myriad
oter realities are normal effects in sctusl
interfacia) diffusion and reactions. 8ut this
somewhat superficial description begins to indi-
cate the problems and undersccres the imporvance
of life testing.

The preceding amplification began with a com-
ment on new m?n-plrfomm TEC electrodes \ike
LaBg. Gratifyingly, unoriented and C¥D'd 110-
electrodes with negligible interelectrode losses
can provide optimal TEC for ﬁplicuiom requiring
~1000- to ~1100 K collectors Furthermore
high performance W and Mo clcctmdu with stable
or ste”y—suu supplies of enhancing O are in the
offing And for such TEC materials “inter-
factal rucuons and diffusion appear well under
control.”

One of the first considerations in anticipa-
tion of a laminar composite, particularly of un-
forgiving refractory materiais like tungsten and
silicon carbide, {5 the match of thermal-expansion
coefficiems. An excellent example of such an
evalyation from the late 1960's appears in
Ref, g Fig. 9(a) comprises prepublished
data’>; Fig. 2(b). data obtained during the pub-
1ished s!udy7 . Separately the sets of results
reveal near-matches for W and SiC thermal expan-
s:gns. Together they predict practical coin-
cidence,

The significance of this comparison was im-
pressi;s in the late 1960's, even as it is
today

"Six molybdenum tuoe samples, coated with
virjous vntcknesses of thick grain CVD
silicon carbice have been received from
Chemeta) and subjected to a series of
thermal shock tests, both in a vacuum
furnace and in a natural gas flame. The
objective was the evaluation of tne coat-
ing adhesion. Temperature cycling in the
vacuum furnace covered the range from
approximately 40C ¢o 1500 K, The samples
were {nspected after one, three, and six
temperature cycles. Following these
tests, the surviving samples were sub-
Jected to natural gas flame i.eating and
ambient air cooling for a total of ap-
proximately 40 cycles. The conclusion
reached in these preliminary tests fis
that when a thin intemediate layer of
tungsten is used, the molybdenum
substrate-CVD silicon carbide coating
will withstand the thermal stresses over
the temperature range of interest. No
evidence of layer senaration was dis~
closed in metallographic examination of
tube samples.”

The contribution of this thermal-expansion-match
observation is critically important to MFHPs for
terrestrial use as well as to TEi.

Incidentally, a reference-2 silicon carbide
sample “"temperature cycled over 7300 times" in,
hydrocarbon~combust10n products “to about 2800°
in about one minute," followed by "a two-minute



cool-0ff to about 700° F, Coa) ash was deposited
on the surface of the test sample ouring the cool-
down portion of the test cycle ... The only visi-
ble effect on the silicon carbide was an erosion
of about 0.02 inch where the* pressurized flame
impinged on the sampla. "It was appirent that the
temperature of this point was considerably higher
than the measureo tempe. ature of the test sample
eesr As before, soliaified coal ash was evident
on f1e tube surface, but sectioning and metallo-
graphic examination ... showed no Coal ash pene-
tration of the siltcon carbide. The soliaified
coal ash observed un the test sample was a result
of the final cool-down, During the temperature
cycling, good vrun-off of the coal ash was observed
at the high temperatures, leading to the conclu-
sion that the final atr heater would indeed be
self-cleaning.”

Subsequent references on SiC service in
fossii-frel combustion prxgggas jupport and aug-
ment reterence-Z tindingsdS-s4.77 " gy example,
TECO recently heated 1ts SiC, C, W dome at 1875 K
for over 70 hours, sprayed water on it at 1875 K
10 times (1000 K between the water-cooiey spot and
the rest of the dome), poured liqui¢ nitrogen on
it at 1875 K 10 times, then cycled it from 1875 K
to <90 K over 150 ttines, then from 2025 K to
<%0 K over 100 times taking about one minute for
each cycle -- all with no 111 effects to the SiC,
C, W aome,

Interestaingly, TELU uses L to more carefully
adapt stl!Lun—caygﬁde thermal-expansion to that of
W, And Chemetal’/ utilizes W for thermal-
expansion adaptation of $1C to Mo, The latter
lamination has yet to underyo long-term high-
temperature exposure i0 tossii-fuel combustion
products, successfully experienced by the former,
But results of both approaches are gratifying.

In addition to the thermal-expansion effects,
refractory-material strength and creep at high
temperatures are of course tmportant in TeL and
MFNP applications, In this vetn, just subsequent
to mentioning S1C and C, two reterential observa-
tions are pertinent: First "1t 1s ‘ateresting to
note that sintered 51 exhib s an Increase in
strength with an increase 1. test temperature up
to about 2800° F",,./8, And <econd “"graphite
pussesses high thermal conductivity, a low modulus
of elasticity, a low coefficient of thermal-
expansion, and relatively sattisfactory strength
incrgasin with increase n temperature to
2n0° e/ Conceivably such protective clads
and themal-expansion adapters might also serve as
structural members at high operating temperatures.

High temperature strugburgl members are sub-
Ject to the thermal creep -8 This phenoenon
is the time-depenuent piastic deformation of a
material under sustained loading at temperatures
above about half its melting point value. Like
many other thermophysical eftects, creep {s com-
plex, even wn pure polycrystalline metais., Here
tn general high-temperature creep resistance
relates to high levels for the melting point,
elastic modulus, stability of fine grain size,
crystal-structure constunt for self-diffusion, and
valence state. Depacting from pure metals intro-
duces consideraticns ot strengthening by solution,
precipitation, dispersion and composite effects,
Ir practical applicatiors, permutations of com-
plicating influences are myriad, For example,

referance 47 states that “the maximum O leve) in
Na necessary to avoid embrittiement of Nb at
7007 ¢ has been estimatud to be less than 10 ppm,”

The preceding scare tactics are rvally
intended only to indicate that published creep
values for a given material can vary considerably
with little or no apparent reason. But tuch
information s particularly important for MFHPs
and TEC in systems with ~1800 K emitters. And for
these applications, satisfactory materials are few
as the cregg-strengtn curves of Fig. 10
V1lustrate®s,

In any event high-tempurature TEC and MFHPs
based on the c-eep resistance of W and W alloys
have demonstrated in vacuum capabilities for many
years of service, Ta, Nb and Mo alloys afford
effective creep resistance for selected applica-
tions aiso, Figure 10 shuws such alloys: T-l1}
(Ta, b, ZHf); ASTAR-8LIC (Ta, 8W, IRe, 0,7Hf,
0.35C); Wb, 1Zr; FS-85 (Nb, 2BTa, 0¥, 1lr); YIC
(Mo, 1.:T4, 0.25%r, 0.15C); -nd TIM (Mo, 0.5T%,
0.082r, 0,03C).

Weight-effectiveness in space and cost-
effect tveness in yeneral drive towara minimal wall
thicknesses alludea to in Fig, 8. For such condi-
tions the previouslv mcntioned “stabtlity of fine
grain stze" is very important, This state not
only maintains creep resistance, but also avoids
recrystallizaotion grain dimensions and inter-
granular paths approaching containment-wall thick-
nesses. Ihe latter occurrence promotes fluid
leaks as well as strength discontinuities,

Specially selected aaditves can increase
creep resistance, retere recrystallization and
contrnl solid-phase transitions often accompanied
by abrupt changes 1n properties like themal
expansion. Referring again to titanium may
exenpl1fy tiw last observationd/:

“Thermopnysically, 11 undergoes a solid-
phase alteration at about 1160 K. Here
rising temperatures change the closely
packeu-hexagonal "alpha" structure to the
body-centered-cubic "beta" contigura-
tion. However this transformation, like
the a-to-y transition for yron at 1180 K,
causes no great difficulties84, Tne Ty
a-to-8 phase-change temper.ture rises
with Al additions and falls {even below
room temperatures) with inclusions of Mo,
Fe, Lr or V. Commerctally available pure
(99.6 percent) Ti ang Ti, 5SAl, 2,95n are
alpha alloys. Ti, 8Mo, 8v, 2Fe, 3Al 1s a
beta alloy, and the most widely used Ti,
6Al, 4V 1s an "alpha-beta” alloy,

Like T1, refractory metals Zr and Hf, also in
periodic grgup IVA, undergo solia-phase transi-
tions43-46,84 1 coptrast group VA Nb and Ta
as well as group VIA Mo and W exmibit ne solid-
phase changes.

The considerations raised in this soctun re-
present some obvicus difficulties that have been
overcome on the path to successful applications of
high-temperature TEC and MFHPs. Many other less-
impressive thermopnysicail challenges have arisen,
then fallen under the pressure ot applied research.



High-Temperature TEL ang MYHE's 1n Brief

In addition to the detatled simylarities of
TEC and MFHPs emphasized 1n the introductory sec-
tions, a generalized parallel can be drawn: The
two operating cycles appear as invitingly sinnle
and isolated as their material problems seem fore-
bodingly difficult and complected, The first ob-
servation s deceptive; tne second, candid. 8oth
areas required intense study and experimentation,
wnich resulted 1n recognition of their singular
relationship, “In short, nigh-temperature mater-
1a) effects detemine the level ang lifetime of
+v. performance.”

Stmplified equations verify matertal proper-
Lies and interactions as primary nfluences on the
aperational effectiveness of both TEC anu MFHPs,
And being essentially evaporation, cundersation
cycles, TEC and MFHPs experience flow limitations
tn thermal emission and vaporization because of
temperature restrictions redounding from thermo-
physicochemical-stability consideratiors. Thus
attaining practical lifetimes generally wmplies
limiting performances in exchange.

But as previous discussions reveal, major
high-temperature waterial problems ot TEL and MFHP
have been solved. The soluttons are workable amd
economical and lead directly to applications tiat
are productive and cost-effective, In fact cur
rent performance and cost levels imply 1mproved
outputs, efficirncies, and economies for TLL topp-
tng of combusturs, central-station puwer plasts
and cther aagvanced conversion systems heated by
high-temperature (nergy sources.

Ang ant1cipated technological gains point tu
even greater improvements for future Tto and MFHP
applications by more tully atrlrzing high power
densities from high-temperature material
interactions.
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Figure 6. - Stability relationships of refractory oxides.
Solid lines represent constant standard free energy
of formation from the elements, The darkest area Is
the region of greatest stability (ret, 42).
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RELATIVE WEIGHT PARAMETER

RELATIVE WEIGHT PARAMETER
(BASED ON ASME PRESSURE VESSEL CODE)

FOR HIGH-PRE SSURE MEAT-PIPE ENVELOPES

[ .nmtv AT 1 ]mu
[—m'v—J—

=2
[ 1o
-
[ ] o
4
-
H
|
8- - Ti, BAL, 1Mo, 1V
ot Ti, AL, &V Z
A 1, 8o, 8V, 2Fe, JAI

" s S T Ry LSS 1SS
fo w0 w0 s w0 70 s o
TEMPERAT URE, K

RELATIVE WEIGAT PARAMETER

FOR LOW-PRES SURE - EAT-PIPE ENVELOPES AND
ALL WICK STRUCTURES

RWP = (METAL DENSITY AT T)IA304SS DENSITY AT T)

APPLIES WHERE ASME PRESSURE-VESSEL CODE
YIELDS WALL THICKNESSES TOO THIN FOR
FABRICATION, JOINING, PROCESSING, HAND-
LING, AND/OR OPERATION.
EXAMPLE: 1'' - DIAM, SPACE HP AT 10ATM, WITH
A 40, 000 psi (ULT' STR. ) ENVELOPE,
HOOP-STRESS WALL THICKNESS (ASME P-V
CODE): 7 MILLS (THINNER WALLS RESULT FOR
LOWER OPERATING PRESSURES AND HIGHER
ENVELOPE STRENGTHS),

USUALLY PREFERRED WALL THICKNESS: TENS OF

MILLS
2KAPH 700K BOPF) 103K (40P F)
ALUMINUM (|} ) a0 -
COPPER L1 Ln snee
TITANIUM Q5 as? 0.58
3045 S 1.0 1.0 1.0

Figure 8 - Relative weight parameters,
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Figure 9. - Linear thermal expansions for Mo, W, and
SIC from ref, 2.

1000

-W-25Re

FS85 -

CDN

W-25Re-3UMo -

1 | 1
800 1000 1200 1400 1600 1800
TEMPERATURE, °C

-ASTARBIIC
JUNGSTEN

Figure 10. - Creep strength of some refractory metals and alloys for
1 percent creep in 10 000 hours,
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