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ABSTRACT

s
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This is the Final Report on Tasks 3 and 4 of the program

n 2 "Photogeological Constraints on Lunar and q@anet;ry Volcanism"

i which was performed betweed}Dec. 7, 1978 and Dec. 7, 1979.

- This objectives of the program were to develoﬁﬁan understanding

” of the physical mechani%%ipf thermal erosion by geophysical C

' fluids. o 7

In Task 3A we attenpted to develop a c0nceptua1 under-

standing of thermal erosion. We developed a simple one dimen-

sional model of the process for a substrate with temperature

1

L : ' dependent viscosity in which erosion was specified to occur

~

when the substrateé reached a ¢ritical value. This model pre-

% dicted a square root law dependence of erosion on time whereas 1.

LFF N

T g g
g

common sense considerations indicate a roughly linear relation-

ship.h The model was modified to include a convection term

t ime . /.//;;.//

|
In Task 3B we explored some simple two dimensional models

F : yielding the expected linear relationship between erosion and

in which the downstream dimension was explicitly included in
the model. All the models examined had simple analytical
solutions and were primarily developed to imprové¢ our under-

s@éh@ing of. different aspects of the physics of the thermal

erosion process. In the first 2D model we calculated the
thermal and velocity fields for a steady state flow of a fluid

)

¢ of temperaturem-x&hdependent viscosity with a constant heat
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% influx at the base of the flow. The calculated vélccity has

'& a parabolic dependence on depth. However, the temperature

O

depends linearly on downstream distance with both quartic

| ! and quadratic components in depth dependence. We also ex-

j ? amined théjéonditions £or turbulent and fully developed flow
| 1 in the context of this model. It appears that lava erosion p
flows may be turbulent o laminar but will almost certainly \

be fully developed.

b S o A e

|

|

% a Our second simple two dimensional model included an

| examination of the effect of a finite yield 'stress on flow.
i

Flowing lava behaves as if it has a finite yield stress forming k
§ ! "slabs of finite thickngss. We showe&;schematically that thermal
h . ? erosion by a Bingham fluid results in initial accretion (de- _ 9
h positioﬁ) of material; net erosion will only occur with a
' : sustained flow. We regard tﬁis concept as important to b

understanding the reasons for lava accretion and erosion in
? ’ | ‘ geologic settings.

In a final 2D model we attempted to account in a purejy
phenomenological way for the effects of turbulence and mech-
anical erosion in a flow. We adopted criteria for mechanical

_erosion related to the basal stress and we parameterized the

effect of entrained eroded material on fluid properties. A

! predicted downstream slope profile was generated for steady

b state erosion. |
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In Task 4 we extended the earlier worklﬁo include labora~-
(

i
i
\

i tory simulatioﬁ;and two dimensional finite element models.

j g In the laboratory simulations with hot wax (Task 4A) we con-

Hfirmed that when a hot fluid crosses an erodible substrate,
/accretiwn occurs initially and erosion will only occur i£ the
F SQ flow is\Eustainédu We also showed that the amount of erosion
‘ is greatest nearest the source and’the crossover poiqt betweenh Q_n

net erosion and accretion propagates downstream with time,

{
b ; . . o
l i The evolution of the cross section of a thermal erosion channel
i / /
) ! was also examined. This work was performed by Jose Helu. -
] In Task 4B/We developed two dimensional finite element models
to simulate lava erision. This work was initially carried out

. . V4
p . by Wm. James Roberts with the assistance of Jcse’ Helu.

However, when Roberts left the Institute in §gptember of 1979,
the work was continueq under the direction of the Principal §

Investigator with the assistance and support of Stephen J.

; Keihm. g
F Model results were generated for lava flows with three z
different velocities (l0cm/sec, 1l00cm/sec, and lOﬂOcm/sec) %
] i each lasting for 96.7 hours. Plots were generated at inter- %
; ‘ vals of approximately 20 hours for each model and showed the é

propagation of isotherms relative to the original interface
between a lava flow and substrate. Plots of single models
showed how the position of the 500°C isotherm varied with time

in a given model and contrasted the loci of the 600°C isotherm

at the end of each of the three experiments. o
{ V
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In general as the velocity of the flow was increased
the isotherms propagated more rapidly into the substrate which
equates with more rapid erosion. Prépagation is most rapid

near the source of fluid. A logical next phase in these

modellinq efforts is to generate an explicit description for

removal of material which could be fbmpared with the experimental

results but the best method for do%ﬁg this is by no means
Glear. ;

Data and concepts presented in this report are being in-
cluded in an article on thermal erosion of martiag channels

which is in preparation and will be subinitted to Icarus.
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TASK 3: THEORETICAL MODELLING STUDY OF LAVA EROSION
The us2 of several simple theoretical modelling approaché%
in simulating lava erosion were evaluated ugder this task.
At the outset, when we planned this program, we perceived
that a one dimensional model, with properties invariant in
the downstream direction, was not suited to modelling a pro-

cess with inherent variationes in ﬁhe direction of flow.

However, such an'approach had been taken by previous workers

and we decided to try it in order to establish a link with
previous work. The one dimensional studies turned out to be
limited in scope; we have alsoc examined some highly simpli-
fied two dimensional models as a part of this task. The re-
sul;s of these investigations are summarized below.

A. Simple One Dimensional Model

In the treatment of lava erosion given by Carr 1974, the
complex intertwined relationships.of the thermal and velocity
fields in the dawnstream dimensions are ignored. The lava:
erosion problem reduces to a simple problem of thermal dif-
fusion. The problem was examined for a channel with an
initially rectangﬁiar cross-section.

Carr originally treated the lava erosion process in terms
of a yield stress. When the substrate is heated to the yield
temperature the material of the channel walls immediately
participates in the flow. The thermal bﬁxden placed on the
flow by eroded material was not asseséed; neither was the

rate at which material could be assimilated and mixed.
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Both of these effects are very difficult to mcdel using the

yield stress formulation. For this reason, we first looked

at a one dimensional erosion model in which substraté changes £
= from solid to liquid over a range of temperatures and not

} i at a single yield point.

1) Simple one dimensional numerical modelling - temperature

dependent viscosity = conduction only

|

. ' Lo This model was originally developed as part of a pre-

! posal pilot study. The model is described in detail in

] Appendix 3.1 and the results illustrated in Fig. 3.1l.

% ’ The depth of erosion, was (somewhat arbitrarily) defined

as the depth at which the substrate velocity falls below

some critical value. This curious definition is needed be-

cause the semi-infinite character of the boundary conditions

ot amn e e

permits no net removal or addition of substrate material.

The model probably overestimates the time needed to
3 ; remove one meter of substrate as it incorporates no mechanism
for bringing fresh hot lava into contact with the substrate.

The amount of erosion is proportional to the square root :

of time over a broad range of times and lava temperatures. E

This behavior is to be expected from the constraints of the

model as described above but is not expected for real world
%l ' lava erosion which is likely to moré’closely approach a linear
; law. Downstream variation in erosion and accretion is not R
: part of the model. Finally, we did not include the temparature

dependence of rock gonductivity (Appendix 3,2),

e i, s 10 LA, B
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DEPTH OF EROSION (CM)

TIME (SECONDS)

Fig. 3.1 Results of simpl2 temperature dependent viscosity
model of lava erosion.
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2) Simple one-~dimensional numerical modelling = temperatﬁre—

dependent viscosigz,- conduction and convection

Some of the deficiencies of the "nne-dimensional-conduction-
only” model can be rectified by including a céﬁ?ectiag term to
permit faster transfer of heat than allowed by sonduction alone.
We have assumed that material at all levels above the level with
temp. Tthr’ and therefore, viscosiuy vgr are mixed in a time
interval L ‘'our specific implementation of this model also allows
the addition of hot lava from upstrizam.

A grid of 14 nodes (depths) at which temperature is defined
is sé% up. Another similar grid is set up "upstream” of it and
filled with hot fluid. At each time step, first the convection
and conduction terms are evaluated and new temperatures are de=-
fined, all using only the ma#in grid. Next, hot fluid is intro-
duced from the upstre¢am "reséévoix" grid, as a function of the
temperature in each main grid element. This simulates in a crude
fashion the viscosity~-dependent addition of hot lava from upstream.
If a néde is below TaTy s 1O add;tion of hot lava takes place.

If a node is above T=Ty i’ then tﬁe node is completely replaced

by hot lava. For T

r<T<'I' the amount of replacement of

th hiv’
partially melted material with hot lava depends linearly on T
(Fig. 3-2). New main grid temperatures are then defined taking
this into account, and the cycle repeats.

In Fig. 3.3 and 3.4 we show some results calculated with this

‘model. Because the parameters of hot wax were used in this calculation

the results cannot be directly compared with results shown in

Fig. 3.1. However, the total erosion depends linearly on time
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as expected in contrast with the simple conduction mecdel
(section 3Al). The typical temperature profile using the
hot wax parameters (Fig. 3.4) shéws a sharp break in the

temperature gradient at the £luid base.

The methods used above to simulate non-conductive heat - -
transport are obviously crgqe. The mixing model could be
improved upon using numerieel or parameterized theories of con-
vection but the simulation of advection of heat from upstream

is obviously not capable of rigorous treatment in purely one

dimensional terms. The two dimensional treatment is needed

to accomplish this.

B. Simple Two Dimensional Models

1) Simple twqmdimensionalumedels_- laminar flow

Simple mode%s with analytic solutions for the thermal
and velocity fieids are sometimes eseful for understanding
the physics of a flow process. Such a model has these at-
tributes: the flow is assumed to be in a steady state and
basal heat flow is uniform at all places along the flow. ' i
We also ignore the heat generated by fluid friction and
assume that fluid viscosity is independent of temperature. . -
The geometry of this model is shown in Fig. 3.5(a).

Velocity’Field

The Navier Stokes equations describing the flow of mass
and momentum in an incompressible f£1luid with constant viscosity

are given in Baykey Owen and Turner (Eg. 5.15).

1 . Ca .
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Fig. 3.5a Geometry of simple 2 two dimensional laminar
flow model of fluid viscosity indep of
temperature.
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(u =28 4 o 29 . _p ., cazu + 2%u ) 3.8.1 =
P ax | oy "% x M ;;f ;—7 +Be

, Y
:\jj ) W 2 2 .

- IV b v p v TV
pluz—=/+ V) =F = + u( - + ) 3.B.2

X Ay Y IxX R M! ayz ,

\ 4 i
where p = density Y

X,y = positional coordinates

u,v = velncities \ “

F, = component of body force along

p = pressure

pu = dynamic viscosity

» Under conditions of steady flow along a plane: )

v = 0 everywhere ) 3.B.3
u = u(y) and is therefore independent of x 3.B.4

%% éﬁo‘eVerywhere ; 3.8.5

’ %% = is independent of x 3.B.6 §

é 14

9 u
2 = 0 303.7

3IxX /

azu

— = is independent of x 3.B.8

3y -
F, = pg sing; FY = pg coad 3.B.9

Substituting these conditions in (3.B.1) and (3.B,2) we obtain

F, = —-—2-32“ = pg sind 3.B.10
X = 4 - Pg M o &0
Ix b ‘\
3 i B
F_ = R = cos 3.B.11
g = 35 = pg cos¢
- e B R S R TR pre . A . Yy
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Integrating equgﬁion (3.B.10) once

-a—\lags——s—i-rﬁ-y-{-cl 3.8B.12
Y U

At y =0, %% = 0, therefore C; =0

Integrating again

u = ES__‘-"_-"LE.Q . (yoz - yz) . 3.8.14

=
The mégn velocity N\
- :“ d[yo u dy
s ey
b o
<« 09 sing J[YO 1 - 137
Zuyo o ) Y,
= P9 sig¢ Yoz - % U max . 3.B.15
Thermal Field

For an incompressible £luid the energy equation for the
flow can be expressed using equation 5.42 (b) of Bayley Owen

and Turner as

2 2
9T a7 3T 37T
pc. (U = + v =) = k{( + ) + u 3.B.16
P 3x oy axi ayi ¢ ;

The energy equation shows that convective hea£ transfer due
to fluid motion is balanced by work due to volumetric changes,
the heat conducted through the f£luid and viscous dissipation.

It doesn't contain potential energy terms as these are implicit

within the other energy terms.
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"flow (q.) is constant and $ is negligible.
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Under the conditions of steady flow doﬁn a plain then
v = 0 everywhere. Other conditions are that the basal heat
We adopt a
further contraint on a solution that %—g,a 0 throughout
the flow which is the condition for a :teady state fully-

developed flow. Equation (3.B:.16) reduces to:

32 |
aT T |
Bax T ‘;5 |
where a= 3%~ = thermal diffusivity with boudary conditions:
p
-k(—-)Y 0 = qS
( )y =0

From the velocity solution equation (3,B.1l4)
sin 2 2, _ 2 2
u = E'g-fu“"i (yo -Y ) = cl (YO -Y )

We will look for a solution satisfying (3.B.14, 3.B.17,

3.B.18), and 3.B.1l9

T = TlG(y) + Tox
where G(y = yo) = 0, such that the surface temperature of
the lava equals the temperature of the plane on which it
flows.

Evaluating derivatives of (3.B.20)

32
3T _ 3T _ T 11
=T 5y =T G (y); ;;7 = TP

Substituting in equation (3.B.1l7)
ll(

Y)

ul.,, = aTlG

2 y)

Y = aT

T T A A T e e “ * R T L T S T L T R s R

3.B.17

3.B.18

3.B.19

3.B.14A

3.B.20

3.B.21

3.8.22

MR MR
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Integrating equation (3.B.22) once:

- T
cty) = Ei% L ¢y (yyoy = ¥/4) + Dy Q 3.8.23

At y = 0 (%%) = 0 and, substituting in (16) D; = 0

At ¥ = ¥, (%%) = -qs/R and substituting in (3.B.23)

g
Tz = 63 S ’ 3-8.24
2R Cl Yo

Now integrating (3.B,23) with D, set to zero.

Tz 2 Xi 4
and substituting for Tz i
3ag 4
Gly) = ——5— (v;% v/, - 5 + D, 3.B.26
2k vy aT
R 1
at y = 0, G(y) Q’O and D, = :§¥éi and substituting in
equation (1l3) for Ty Ty and G(y)
9s ' 22 4 12xxu
T = " [5 -6 “y°+ gyt - X ]
8k yoj Yo Yo Py sind 3.B.27

The computer program in Appendix 3.3 calculates the velocity-
temperature field using the relationships developed above.

The essential features of the model as illustratéd by the
model results in Fig. 3.5(b) and (c) are that basal temperature

decreases linearly with distance in the direction of flow (this

assumes that heat is being conducted downwards from the fluid). The

variation of temperature with depth involves quadratic and

quartic terms. The depth profile of temperature has the same

) ) . R . . I 1} : . o . . . “ -
R R N T S T R IR W RN (.. Wi 1 5 ¥ 5 SO R S

henrosgt G BT e
~ :

it e o Sy

roroser o

R [



Y
3
i
]
Yo
)
Temperature

T

15

Velocity(u) —

quadzratic
function

Fig. 3.5(b) Dependence of velocity on depth

Fig. 3.5(c) Dependence of temperature
on downstream distance
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shape at all points along the channel because T in equation

is separable in x and y. The model has no direct agglication
to the lava eifosion problem although it does indicagg what the
temperature Qistribution in a fluid coming into contact with

a conducting surface must be in order to bring convectiv%{and
conductive heat transport into balance.

2) Simple two dimensional models ~ condiit:ions for

turbulent and fully developed flow

In the analysis of the simple laminar flow model given
in the last section we did not address whether the laminar flow
model is appropriate to flow conditions experienced during
thermal erosion and we did not consider the boundary layer
relatiénships that can b2 expected when a flow first comes
into contact with a substrate. :

Laminar vs. Turbulent Flow

According to Carr (1973) the mean flow velocityfin a
channel for léminar flo& can be related to the hydraulic slope,
channel dimensions, and physical parameters of the £luid as
follows: i
pgrh2 sin¢

vo= ———?a-—'—— i 3.B.28

where g = acceleration of gravity
sin$ = hydraulic slope
Iy, = hyraulic radius = CSA + wetted perimeter

n = viscosity
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This equation is appl%éable when R (Reynolds number) <
1000: for common basalticylayer viscosities of 103 to 104
poise the flow doesn't get turbulent in channels of hydraulic
radii 10m or so until the velocity reaches about 3m/sec
(Appendix 3.3). Solving for s&é@ in equation 3.B.28.

sin¢ - 3?"
g <p

=3x3x 102 x 10°

3 x 371 x 10°

1 o]
= “""‘-_"'1.000 - 0906

So the steepness of slope required for the lava to flow is

gﬁly about .06°. (carr gets 100 times this. We have not checked
his arithmetic to see if there is an error.) 1In

his chart for n = 103 and r, = 103, Carr shows the transition
occurring at a slope of about 0.5° and at a velocity of about

3 x 102(~3m/sec). However, just at n = 104 the turbulent
transition has moved up to a higher veloéity and the turbulent
transition doesn't occur until one gets to a slope of 3.44°,

Thus in the range of from 103 to 104

and for hydraulic radii .
of 10 meters or so the onset of turbulence is very sensitive
to the viscosity.

Entry Length - Velocity and Thermal Boundary Layers

Where a fluid first encounters a surface with a no slip
condition a boundary layer will begin to form. The entry

length (le) is the distance from this point to that point

T S B ) S TR R T T e T e g e Y e e

" = e g e F N TR TR Ptantee 0
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downstream where the boundary layer thickness has grown to
encompass the entire depth of the fluid. .

Entry lengths have heen determined by £luid dgnamicists
for a number of problems with simple geometry. For examplel,

for a flow into a tube the hydrodynamic entry length (le) is

given by:

g/, = 0-0575 Rd | 3.B29
d is pipe diameter and Rd is Reynolds number based on that
diameter.

Rd = 2¥4 3.8.30

For laminarxflow, Rd is <<1000 and flow becomes fully developed
fairly close to the mouth of the tube. Analysis have also
been conducted of flows over isothermal plates (Bayley, et al, 1972 )
which are more relevant to the geometry of the lava erosion
problem.

The entry lengths for thermal and velocity boundary layers
are not identical. The Prandtl number (P) governs the re=-

lative thickness of the velocity and thermal boundary layers.

§v= P;’GT " 3.B.31
The Prandtl number is solely a function of fluid properties
and can be regarded as the ratio of kinematic viscosity ve
to the thermal diffusivity a=yhere ve = k/(p _ Cp)
Voo

P = -a—a) 3.3'32

i
i
)
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For lava (see Appendix 3.3) the kinematic viscosity is just

‘a factor of 3 smaller than the viscosity ve » 300 Stokes.

The thermal diffusivity of an Apollo basalt lies between 3 and
7 x 1073 cmz/sec* in the range 100°K to 400°K and as shown

in Appendix 3.4 really does not increase much due to radiatioﬁ
even at high temperatures. Consequently a good value for the

Prandtl number is:
103
5 x 10°

5

P = = 2 x 10

and the ratio of the thickness of the boundary layer is sv/sm =
(2 x 105" = 450.

In a situation where the hydrodynamic entry length is of
the order of 10 times the fluid depth, then the flow dees not
become fully developed thermally until ii. reaches a distance of some
5000 times the £luid depth from the source., For a fluid depth
of 1l0m, this distance is 50km; for 100m depth it is 500km.
Consequently the flows carving long channels will be fully
developed for most of their length unless they were formed
by very deep flows.

3) Simple two dimensional models - effects of a finite

yield stress (Bingham properties)

Recent research into the behavior of accreting lava flows
conducted by Hulme (1974, 1976) suggests that the flow of lava

cannot simply be modelled by a viscosity. Here we review

*Carr quotes a value 5 to 10 times higher based on the work
of Murase and McBirney.




20

Hulme's work and its significance to the investigation of
lava erosion,

In an attempt to better account for lava flow dimensions,
Hulme (1974, 1976) modelled lavas as Bingham fluids -~ fluids
which do not flow until the stress exceeds a yield stress
and then flow at a rate determined by the excess of the actual
stress over the yield stress. According to this model a flow
will rapidly spread until it thins to a critical thickness
(TB) at which the stress at the base of the flow equals the
yield stress. Hulme showed that lava effusion rates are normally
too high to permit significant cooling of the interior of the
lava body before the flow comes to rest. Tensional forces in
the more rapidly cooling skin, even without considering its
highly fractured character are not sufficient to restrain the
flow. Consequently, a finite yield stress in the lava seems
to be necessary in order to explain the finite thickness of
flows. Even in a very thick Bingham type flow, however there
will be heating and possibly yielding of the substrate rock
at the base of the flow.

If flowing lava has Bingham properties, then many of the

relationships discussed in the last thre# sections require
modification. 1In addition, it is necessary to take into
account an effect which is not present in the purely viscous
theory. With a Bingham fluid the thickness of material eroded

from the substrate must exceed the critical thickness for

R i L S TS
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- Bingham flow'(TB) before any net erosion can occuxr. This

effect is illustrated schematicslly in Fig. 3.6. Depending on
the flow regime, the amount of,éxosion taking place at tﬁg}
base of the flow will be best represented by either the purely
conductive relationships presented in Section Al or the ad-

vaective relationships presented in Section A2.

4) Simple two dimensiona; models - phenomenological

model of thermc-mechanical eroéion

A plastic material is a Bingham material with a finite
yield stress but zero viscosity. Consider a flow on a sur-
face of varying slopes. A plastic material comes to equili~
brium on the slope at a rate only determined by inertial forces.
A Bingham fluid with the same critical shear stress as the
plastic fluid, but with a finite viscosity, will take longer
to reach equilibrium than the purely plastic f£luid. However,
it will ultimately reach an identical esquilibrium distribution
of flow thickness as the plastic fluid. To evaluate the amount
of thermal erosion by a Bingham fluid we must be concerned
with the finite thickness of the flow after flow has ceased
(Fig. 3.6) as well as the amount of material transported from
the substrate. The plastic model can help us to understand
the effects of yield stress on the slope profile created by
an erosive fluid.

In addition to the contributions to lava erosion by con-

vective and conductive heat transport, we consider the additional

S R O iiesd s BRI € - 05 o4, ¥ 1 V.0 SN

ot o daeiteatisicimstadenemut Y




TR, —— - —

ER?SION
AN

DEPOSITION

i . T e e =
{ [ S

22

AN,
N
cd

Critical thickness for
Bingham flow (steep slope)

: — Critical thickness for
Bingham flow (shallow slope)

Fig. 3.6 Thermal erosion by a Bingham fluid. Schematic
relationships between amount of erosion and
time for two values of the critical thickness
for Bingham flow. Thermal diffusivity increases
resulted in a progressive increase in slope of
these cruves and net erosion occurring earlier

in time.

ORIGINAL PAGE 15
OF FCOR GURLITY

AR I8 Bhe

e A ol s s B ] Bt T e 2k

ik




2

23

mechanical effects that,océmr when turbulence is present.
In such situations blocks of material can be torn away and )
incorporcZed in the flow.

A simple phenomenological approach which is applicable
when turbulence becomes impqrﬁan{7and which includes the effects
of both mechanical and thermal erosion is examined below. It
depends on two assumptions: 1) that there exist simple functional
relationships between erosion rate and flow parameters. 2)
that solution and mixing of eroded mate&iéi takes place on a
time scale that is small compared to thertime taken for material
to travel the entire length of the flow. Due to rapid homo-
geniggtion the  temperature of the flow can be taken to be uniform
with éapth and dependent only on downstream location; 3) that
viscous‘forces (forces proportional to velocity shear) and
inertial forces are negligible within the flow. L?low is assumed
to be perfectly plastic and controlled by a critical shear
stress 1t ,. Perfect plasticity is a special case of Bingham

Yy
plasticity where the plastic viscosity (up) is zero.

First of all we will establish a relationship between
the rate at which a flowing lava erodes material and the dynamical
parameters of ‘the flow. A very simple model was adopted because
our interest is not so much to aemonstrate what will actually
occur in a given flow, but rather what is energetically possible
for a wide range of properties of the lava-substrate interaction.

Let us assume a plastic fluid is doing the eroding and that

it is a plana flow (Fig. 3.7) which has a thickness h at any

point defined as follows:
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Conrds of point can he described as
<_,(s,e), (H,8) or (H,K)

Fig. 3.7 Geometry for a simple model for mechanical
lava erosion
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T_ = pg sSin® h 3.B.33

where t. = critical basal shear stress for the plastic
fluid
p = density of fluid
= accelerétion of gravity

= slope angle 3

7 ® W

= fluid thickness

7/ Let us also assume that the rate of erosion can be expressed

4 just in terms of the basal shear stress (TB = rp) and the

velocity of the f£fluid K :
dg _ n_.m n /m .
where 'g% = the rate of downcutting of the slope (see Fig. 1)

C_ = constant
v = velocity

m,n constants

Downcutting m&y be caused either by thermal or mechanical
erosion.

Starting with relationships (3.B.33) and (3.B.34), one
approach to the lava erosional problem is to take an initial
slope profile and examine how it evolves with time. Another
approach is to solve for the slope profile which recedes but
otherwise remains invariant with time. We will determine that

such a profile does exist and perform the numerical integration
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needed to define itgs form. However, we do not demonstrate
kthat this slope profile is a stable profile and the asymptotic
consequence of the erosion of any arbitrary profile.

Fér uniform slope recession, the rate of downcutting
%% can be expressed in terms of this uniform rate of slope

recession (ic) ) e

d — 4 . B
a% =r, sine ) 3.B.35

The fractional mass gain 6f by an element of fluid thickness
h and width 8s in the downstream dimension can be expressed as

e - (4 _ (d . 1 ’ v

§f = (a%)s st = <a%)s FSTR(sT 5s 3.B.36
For a steady flow the mass f£lux will increase with s and provided
f << 1 the mass flux (M(s)) can be expressed as: /

M{s) = ph(s)v(s) s
on(@)v(o) + [ (g%)s ds 3.8.37
Qo

For a steady flow the plastic shear stigss (rp) will also

increase downstream due to addition of eroded debris to the
flow. Let us assume that a functional relationship between
Tp and f exists of the form

= .B.3
T, = G(f) | 3.8.38

By integrating eguation (3.B.36) Tp can be-expressed in
terms of s.

We shall now look at a set of flow conditions of particulafﬁ
interest when a small fractional increase in flow mass f pro-
duces a much larger fractional increase in the plastic shear

Stress Tor In this circumstance we can neglect the increase
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in masg flux with s and therefore from equations 3.B.37

M(s) = ph(s)v(s) = constant = M, = 3,B.39
Substituting quantities from equations 3.B.35 and 3.B.39 in
Equation 3.B 36 and integration:

S
f’o_f (dt stﬂ [rcsin9~ p/McdS

s
=r, p/Mc' f sin® ds

. o
Referring to Fig. 1 we can make a change of variables from

@ to H where sine = gﬂ so that

£=x p/Mc‘j.a— ds = r, p/M, H(s) 3.B.49

This simple result can be summarized as follows. Under the

constant profile constraint for the steady flow condition the

mass fraction of eroded material picked up by the flow can
be simply expressed as a lirear function of the elevation

change.

We are now in a position to solve for the shape of the

invariant slope profile.

Tp = pgh sine 3.B.33
: n.m :
dt = Cerp v 3.B.34
dg _ . _
H% = rcszne 3.8B.358
P = G(f) 3.B.38
Mc = phv | 3.B.39
and £ = EC. o/M + H 3.B.40

. . . u - A :
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We are looking for a reiationsh%p between H and sin@ and so

we should attempt to eliminate the variables %%, Tar h, £, 0

and v using these eguations.

A. Eliminate %% between equations 3.B.34 and 3.B.35

: . n ._m

r, sin® = ce rp v 3.B.41
B. Substitute for v in Eq. 3.B.4l

r sine = C n (Es)m 3.B.42

c e Tp ph . .
C. Substitute for T, in Eg. 3.B.42

P - A n M\m ,

r, sine = ce(pgh sine) (EH> 3.B.43

D. Eliminate t_ from 3.B.33 and 3.B.38
&7

pgh sin® = G(f) 3.B.44

E. Substitute h from 3.B.44 in 3.B.33
. - . n /Mym G(£f) \n-m

rc sine Ce(pg $ine) (p) (m 3.B.45

Rearranging:
m
r, sin® = C_ (QE_E%EEJﬂ) - (g(g)) M
r_ sine = C_(g™ + (G(£)™™ . sin™ 'e
r
sin™le = —C _ . (™D \
Co.(gM)
Finally: 1
r =T
sine = |—=— - [(6(r,  o/M * o R
CqlgM)” '
= F(H) 3.B.46
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In the H, K coordinate system we can now express dH/dK

in terms of H and 6.

dH 31ine F (H)
= tanoe = =t
dx (1-3in0)%  (1-F2(H)) "
8 .
Thus K =fd1< = j(—l-ﬁ—(ﬁ;—)—)— an 3.8.47

The integral in Eq. 3.B. can be evaluated once we specify
G(f) explicitly. One form that approximates the properties
of lava is:

G(f) = 1, of/f0 3.8.48

Substituting in (3.B.46)

rc m=-n m=n

, 1
F(H) = mm——— ¢ £ O B (r D/M'H) \ 3.8.49
Cq (ghte)™ for e T Lt

- (P eH/Ho) 1/m=1

r

o m po
ce(gM)

l _ m-n

and o = Fo

(fg * o/M) 3.B.51

K can then be calculated using Eg. 3.B.47.

A program for integrating equation 3.B.47 (Appendix 3.5)
allows the functional relationship between H and K to be
determined for selected values of B, Q, and m. Some results
appear in Figs. 3.8 and 3.9. A more advanced program is in
préparation which allows the calculation to be made in terms
of the more basic parameters and also calculates the other '
parameters of interest Tp"f' v, and h as these vary along

the flow.
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i The analytical solutionyﬁescribed above is only practical
y ’\ ]
F with the condition that slope remains invariant. We have
q
N h applied numerical techniques tc modelling of the evolution
¢ i
S of slope profiles of arbitrary initial slope. These calcu-
} ? lations were performed as part of Task 4 and are described
L in our report on that task which appears in this document.
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TASK 4 LAVA EROSION: LABORATORY

SIMULATION AND TWO DIMENSIONAL

FINITE ELEMENT MODELS g

The two aspects of this task were conducted in parallel
beginning in June 1979, The laboratory wax model experiments
were very limited in scope and were concluded by the middle

of August 1979, Development of the two dimensional finite

: element codes for modelling thermal lava erosion continued

{ ’ up to the end of the contract period.

f A. Wax Model Experiments

| Beginning in June 1979 we performed a series of experi-

ments simulating lava .erosion by physical modelling methods.

Prof. Jay Melosh, at that time of Caltech, permitted us to

use laboratory facilities set up for conducting physical
simulations of ocean floor spreading using hot wax, We al-

located some discretionary funding for -equipment to investigate the
feasibility of simdlating lava erosion using hot wax. Mr. José'Heldi
Prof, Melosh's former research assistant in the Caltech physical
modelling experiments, assisted us with these wax model ex-
periments. The results of these experiments exceeded our ex-
pectations and proved to be a valuable guide to our theoretical

modelling efforts.

1. Experimental Approach

To simulate erosion of rock by a flow of molten lava we
pumped hot wax into a channel of rectangular cross sections
which had been formed in a wax substrate. The experimental

set up is shown in Fig. 4.1 (a) (b). It includes a thermomix
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(X
@ . .
heater to heat the wax to a uniform temperature, a pump to
supply the fluid at a uniform rate, a wax casting with a channel
of rectangular cross section, and a pump for collecting wax
reaching the end of the channel. .Two experiments have been
condug;ed so far using polyfhylene glycol {Carbowax 4000) for
the fluid and substrate.
2. Results

Pijotographs of the wax casting aftér one experiment are
shown in Fig. 4.l(c). In this experiment, material
was eroded along the entire length of the channel. At the
inlet the hot wax dropped onto the channel floor and this
resulted in the formatiin of a depression; at the outlet hot
wax cascaded over the edge of the channel and eroded headward.

An interesting feature of the erosion process is evident
in the channel cross sections (Fig. 4.1(d)). There has been
significant removal of material by lateral erosion excepr*
near the surface of the flow where hot wax has solidiﬁied:and
accreted creating a significant overhang. This behavior was
not suggested directly by the theoretical modelling efforts
of Carr (1974). However, the forms of the isotherms developed
when a hot fluid occupies a cavity of rectangular cross section
(Carr, 1974) suggest that thermal erosion will develop more
rapialy‘below the surface of a flow than right at the surface,

so in retrospect, the results of the hot wax erosion experi-

ment are not surprising.

it
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v The depth of the channel before and after Ehe experiment
| was measured with a digitizer and the total erosion at the
by channel center was calculated and plotﬁed for one of the ex-
i ‘f' | perimental runs (Fig. 4.2). The large amount ¢6f erosion

r

near the channel source was a consequence of a 'waterfall'

effect created when the hot wax first spurted on to the sur-
face of the channel. Between 1l0cm and 35cm the amount of
erosion declines steadily as the hot wax ¢ooling through

transfer of heat to its environment and assimulation of ori-

TN W QR e e »

ignal coqg wax from the channel wall and floor. Channel

sections}%ere also digitized illustrating the variation of

-2

erosion;ﬁnd accretion as a function of depth and are displayed
in Fig. 4.3)..

In Table 4.1 we have summarized the effects of thermal
erosion by the hot fluid wax on the wax substrate. A signi-
ficant parameter is the transport and erosion efficiency,

i.e., the proportion of material that flows out of the channel

that is derived by erosion of the substrate. It is most cong';m
veniently expressed as the ratio of the volume of material

eroded to the volume of material which flowed in the channel.

i ol

Material removed due to headward retreat at the channel out-
let was excluded from this estimate.

The relevance of hot wax simulations to the behavior

T e TR e N e B .
L S

of lava flows has been considered by Hodgson (1969) (Appendix

4.1) and at a workshop held at the Los Alamos Scientific Lab-

oratory (Widdicombe3§nd McGetchin, 1976). The emphasis was ;
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on the emplacement and mecﬁanics of a flow of lava and not

on the erosion of a substrate (substrates which did not melt
were used), however, the similitude arguments developed (see
Appendix 4.1) aré\stil; pertinent here. Thus, the approach of
using scaling relationships to describe the results in lab-
oratory experiments should also work with the erosion problem.
The wax we used (Carbowax 4000) was the same that was used in
experiments for the lava experiment at Los Alamos. It melts
to a clear liquid at 55°¢, forming a non-Newtonian fluid.’
Many of the similitude numbers match those for lava {(see Ap-
pendix 4,1); moreover it does form analogs of lava flow features
such as natural levees, lava tubes, and pahoehoe surface

textures.

3. Further Investigations

Laboratory experiments with hot wax provide a powerful
tool for developing qualitative and quantitative understanding
of the mechanism of thermal erosion at a geological scale.

Such experiments can be used to validate numerical methods

for calculating lava erosion; study thermomechanical erosion

in circumstances which are not practical with numerical methods,
e.g., pulsed flows, channels of varying cross sections,

sinuous channels, and study the formation of morphological

and structural features of the lava erosion regime.
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Specific goals of future investigations with hot wax x
models might be:
é 1) To validate the numerical codes for thermal erosion
é developed for slab flow and channel flow as de- '
} % scribed in Task 4B using laboratory experiments

with flows of hot wax.

2) To examine the transition from erosiocnal to de-
positional conditions using the physical modelling
approach.

3) To investigate how the efficiency of erosion de-

pends on such parameters as temperature, viscosity

and flow rate.

4) To examine the effect of pulsed or intermittent
flow on erosion rates in a channel.

5) To examine channel cross section and profile de- .
velopment under a variety of flow conditions.

6) To examine flow in sinuous channels.

7) To apply the validated theoretical codes to the

modelling of large scale thermomechanical erosion
on planetary surfaces and to investigations of the
origin of certain classes of erosional features on

planetary surfaces.

An improved experimental set up would be needed to achieve

g e

the accuracy and reproducibility needed for meeting these

objéctives. Equipment additions would be required for:
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1)

' 2)

C 3

4)

6)
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o

impgoving control of the flow rate and temperature
of the fluid wax entering the wax channel,
improving monitorigg of the temperature of the wax
substrate, and of Lhe fluid wax along the length
of the channel, ;

refining measuremént of channel profile and cross
section,

making additional molds to permit more experiments
to be run. At present, each mold takes several
hours to coool and this limits the number of ex-
periments,

use of channels with varying amounts of sinuosity
in plan,

using channels with obstructions and constrictions.
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B. Two-Dimensional Finite Element Models ,\”

U

Our approach to the problem of modelling thermal

erosiodihSing finite element technigues involved two

stages. First, we spent some time developing a basic under-
standing of finite element techniques and the stability
relationships that restrict their applicability. Then, we
embarked upon a serious formulation of the lava erosional
problem and developed a series 6f computer programs of
progressively increasing complexity.

1. Modelling Methods

Our initial investigations were designed to gain
familiarity with some commonly used finite difference
algorithms. We exercised these algorithms on some simple
thermal problems and compared the observed convergance
properties with those anticipated theoretically.

The vorticity-stream function method was anticipated
being used for our numerical investigations of thermal
erosion. In this method the momentum equations of Navier

Stokes for incompressible flow are cast into the form of

a parabolic vorticity transport equation. This equation must

be solved for the specified boundary conditions and the
solution used as the inhomogeneous term in a Poisson

equation for the stream function.
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After solving this elliptic problem for the stream
fnnctioh by iterative methods, velocities are obtained as
the partial derivatives of the étream funrstion with respect
to the spatéﬁl coordinates, The vorticity transport
equations ‘are identical in form with the heat transport
equations and so this approach appears to be attractive
for studying thermal erosion where hesat and vorticity
transport are coupled. 1In a problem where there is no flow,
or where the flow is specified, the solution of the thermal
analog of the advective diffusion equation for vorticity
transport represents a complete solution to the problem of
interest.

Several finite difference schemes were examined for
solution of these equations. The Dufort-Frankel leapfrog
is a single step, three level finite difference method for
solving the advective diffusion equation. This method is
unconditionally stable as there is no limitation on the
value of the diffusion number (d = 34%,

A>C
that the mesh size can be reduced without requiring a much

This means

larger reduction in the size of the time step. The only
stabllity restriction is the inviscid requirement on the
courant number (C = ,%AE) . of C < 1. We developed a

computer program to ap;ly the Dufort-Frankel method to a

two-dimensional thermal diffusion problem as described in

Appendix 4.2.




T W W W o a0

46

e
e

P

With the experience gained in th;se exercises we were in
a position to address the specifics of therm;l erosion. In this
we benefited from the guidance of Stephen Keihm. Our approadh
here was to investigate models of progressively increasinék
complexity. The models are described here below; the computer
programs to implement the models are included in Appendix 4.3,

2. Thermal erosion for a plane laminar constant vis-

cosity flow with a yield temperature.

This model resembles the approach originally formulated
in a one dimensional form by Carr (1974) in that when the
substrate temperature reaches or exceeds the yield temperature
the material participates in the flow.

Approach

We first assume the velocity field for a plane, laminar,

constant viscosity flow:

Viy) = %; sing (u? - yz) 4,B.1
where H = flow layer thickness

v = kinemetric viscosity

g = gravity accel.

Then, as a first approximation, with the velocity field

given, the problem can be treated from a purely thermal approach.
We have used a Forward Time Centered Space (FTCS) algorithm

to model the conductive heat flow; heat is advected at the

fluid velocity using a Forward Time Forward Space (FTFS)

algorithm.
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Geometry for Finite Element Simulation of Thermal
Erosion.
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For the rectangular mesh as shown above

?+l - b
- j il—i m L] . » o - - 3
+k - Ay(’ri-llj - "'gj) + kAy (Tul,j - Ti,j)
A% '

AX

+k * Ax (Tilj+l -

TiJi) + kdy (Ti,j-l
By

A; "’i,j“) 4.B.2

But vV, -1,3 =V, 3 since V is indepent of longitudinal direction
,
n+1 n v
T - T \'4
i' = T - T 4,: u3
bd e td = oy = Ty ®
S -2, L+ T, L)
sz i-1,3 i,3 i+l,3 .

k ;
* 37 (Ty,4-1 = 2%3,5 * T3 541

where vj = V(y) is given above.
Since the velocity field is assumed fixed, the removal
of material from the supporting wax layer must be evaluated

by a thermal criterion. Two approaches might be used on

limiting cases:
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Evaluate the depth of erosion as a function of the
downslope coordinate, x, by fitting the temperature
profile of the wax base to a guadratic function.
The depth of arosion would then be estimated by the
depth to which a 'yielding' temperature, Ty, was
attained. This is a similar approach to the one
dimensional model with conduction and convection
described in Section 3.B.2, This would correspond
to a lower limit estimate of the erosion since it
does not take into account the gradual removal of
material and resultant new 'contact' of underlying
base material to the high, flowing £fluid tempera-
ture.

Add a stipulation in the numerical model that as

soon as any base reaches the yield temperature,

Ty, it is replaced by the adjacent fluid temperature.

This is a similar approach to the 'modified' one
dimensional model with conduction and convection
described in Section 3.B.2. It is also similar to
the scheme used by Carr (1974) and should represent
an upper limit on the erosion with heat of melting
effects neglected. The amount of erosion is again
calculated by the depth of the yield temperature

in the wax base.
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Boundary Condltions

Boundary nodes of the wax base radiate to ambient
space as ao the surface modes of the wax f£low.
At the source of the wax flow (x = 0; 0 < y < H)
an input ('left to vright') flux corrééponding to
the hot wax temperature is used.

At the 'spill end' (x =L; 0 <y ilH), zero con-

ductive flux is assumed.

i Since the flow velocity is assumed constant, we start

with all nodes for which y < H set to the hot wax temperature,

with the wax base ambient throughout.

There is an input at the left of Tl, and the output
boundary is held at conditions of no heat flow into or out
of the boundary, as is the bottom of the solid wax. The top
surface radiates at ¢T4, but again, no convective or advective
heat flow into the boundary is permitted. These conditions
are realized by creating a dummy set of values outside the
boundary which are set equal to the values on the inside,
causing no heat flow across the boundary. The ¢T4 condition
is dealt with in a separate step. This leaves only the solid-
liquid interface to be dealt with.

In earliér test versions, the interface position was held
fixed--i.e. irrespective of the temperature, liquid never
solidified, and so0lid never melted. This is somewhat egqui-
valent to having a thin insulating sheet at the interface,

and though unrealistic, served to test the algorithm.
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The present version allows for melting and solidification

in the following manner:

a) A threshold temperature (Tth) is defined at which
fluid flow will occur.

’ : b) Solidification is assumed to begin at the far end,

and erosion is assumed to begin at the near end.

c) If a cell which was in the original fluid regime

drops below the threshold, temperature advection is

NEPRR L W T NRESY We C aew *

turned off. Further, the heat that would have been i

advected into the cell (assuming, of course that the

cell in front of it is still fluid) is advected

B

straight up into the cell directly above it. ’
) ) a) If a cell which was in the original solid regime
rises above the threshold temperature, the fluid

is 'mixed' with %he fluid directly above it. This
is accomplished by advecting a quantity of heat less
than or equal to the amount of heat needed to bring

both cells to the same average temperature. It is

presently set up to mix completely in one second

(100 iterations).

e) The extra heats needed to accomplish this are held

in a separate array and added to the cells (or sub-
tracted from them) at the next iteration.
The FORTRAN program for implementing this simulation is

reproduced in Appendix .
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Results

Three runs of the program were performed with identical
parameters excepted for velocity. These runs simulated the
effects of a relatively slow moving lava flow (V = 10cm/sec)
iﬂfmoderately fact flow (V = 100cm/sec). The parameters used
in these runs and the number of iterations performed and plots
generated are shown in Table 4.2.

The immediate output of the program was a listing of
temperature values on a 12x17 grid of points (eg. Fig. 4.5(a)).

More than 200 printouts of this format were generated. 1In

T WeeEER R TR T

order to better visualize the results of the experiment a
graphical representation of the same data as isotherms was
p generated (eg. Fig. 4.5(b)). by interpolating individual
| temperature values from the printouts. Only & small number
of these plots were generated.
In Fig. 4.6 we show the isotherms for each run at a series

of times into the experiment. The horizontal dashed line in

r 1 each plot represents the original interface between the sub- |
: strate at 20°C and the fluid at 1300°C . The 600°C isotherm ’
F ' which is the lowest one plotted provides a useful reference

§ ‘ to indicate both the flow of heat into the substrate and the

progress of erosion of the substrate.
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In Run 1, the 600°C isotherm progresses by about one cell
into the substrate during the 96.7hr experiment except close
to the source where progress is much more rapid. 1In Run 2,
the 600°C isotherm advanced by all sizes into the substrate
during the 96.1 hr experiment at the downstream ené and by
larger amounts nearer the source. In’'contrast with Run 1, the
isotherm maintains a significant slope for the entire length
and is not as sharply curved near the source. In Run 3 the
600°C isotherm advanced by 3% cell sizes into the substrate

during the 96.lhr experiment at the downstream end.
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TABLE 4.2 PARAMETERS FOR TWO DIMENSIONAL
LAVA EROSION SIMULATION
KAPPA = (.04
ROC = 0.25
LENGTH = 1.0 x 10
G = 980
ANG 30
MM-
RUN VMAX NO. OF NO. OF NO. OF TIME
(em/sec)|{ ITERATIONS PRINTOUTS PLOTS (HRS)
1 10 87 30 5 96.7
2 100 173 173 5 96.1
3 1000 870 30 4 96.7
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Fig. 4.

5(b)

Isotherms for data shown in Fig. 4.5(a).

ORIGINAL PAGE Ig
OF PCOR QUALITY

LI e S S LA S

A OAYIE X 54 1a

1TEPATIONS arg 96,7 HOUNRS
1 3 4 5 6 7 8 9 10 3 12
1 1300000 1297433 {294,719 1292,15 1290,02 367,77 1285,41 128,53 128(,%0 1279,%4 127783 1368400
2 1500400 1297433 [296,79 (294,39 (290,02 1287,77 128%,8) 203,53 1201,%0 1279,54 277,43 1277,5%
3 1300,00 1399¢AK 1299,44 1299429 1294,4F 129,27 {297,560 1296,A3 1298,97 1298,00 §293,90 129Y¢%4
4 1300,00 1299,A9 1299,58 1299,08 1295,28 {297,200 {295,908 120047 129274 1290,80 {20807 (28407
2 1300,00 1297497 1294449 289,08 [280, 74 1279,07 1273407 1206427 {200,A2 1298,30 (248,04 {208,08
6 1300400 1272092 1247478 229,71 (212416 119h,A2 1182,70 (170,12 (158,84 (188,07 (138,20 {13R,26
7 1435088 1135455 110AAT [0AT(43 (09,08 (053,02 103#,82 1026410 101a0] 100412 994edN 9944HE
8 1003,10 003,00 977,52 95A,00 937,k 921,88 907,72 A9S,35 A84,22 ATU,}7 B4d,97 Akd,97
I ABT.AD AATLEN 02,85 MUbebt 923,77 608,48 798,11 TH3,NT 772,90 TAN.U8 734,90 784,94
10 739,70 790,70 Tihe2n n9he2U  BAO,EL  bbA,S)  ASUSU  hUUGUB  BYU4,AS  62h,50 1914 A9, 14
11 029,09 527,49  SUA.33 A9240 UT9B0  A6A 98 AS9 TS US1ehL  GUUGAT U3B,TH 433427 433427
12 270020 270426 254,00 295,80 208,59 262.58 237,57 233432 229,46 226.5{ 233472 223.72
13 83,30 3,30 g9,69 86442 AG,58 82,72  N1.28 40,01 78,97 78,00 17,32 711,32
14 51,00 31482 50,79 30031 29,06 29,A8 29,42 29,26 29,08 2,95 2A.A4  2AGRY
15 29400 21418 21403 0498 30,95 20,92 20,90 Z0.,A8 20,87 20,06 20,48 20,88
16 20,07 ,0) Nl M,0) 20,06 0,04 W00 20400 M 20478 MqM 2000
17 20400 20407 20457 Q04n7 20,06 20,06  iNDE  21.Lh NG 20,00 20406 20400
Fig. 4.5(a) Matrix of temperature values
for Run 3 (VMAX = 1000cm/sec)
at 96.7 Hrs.
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CONCLUDING REMARKS

Material from this report is part of a paper which
is currently in preparation on the geology of martian
rille systems. We envisage that future work on this problem
'would logically involve a joint experimental/theoretical
attack on lava ercsion. A proposed follow-on activity
submitted in July 1979 (Appendix 4.4) which would have under-
taken such a project was not recormended for funding and at

this time we have no plans for continuing investigations

of this problem.
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APPENDIX 3.1

MODELS OF LAVA EROSION RELEVANT TO

CHANNEL FORMATION ON MARS

by

Jamas A. Cutts

Planetary Science Institute
283 S. Lake Ave,, Suita 218
Pasadena, California 91101

ABSTRACT

Evidance for the role of lava erosion in the formation of some of the
martian charinel features between western Chryse Planitia and Lunaze Planum
Earlier numerical modelling studies of thermal erxosion by
lava are revicowed and deficiencies in the model are identified. An alternative
simple one-dimensional model is presented which rectifies some of the

is presented.

weaknesses in the earlier model.
quately characterize the lava erosional process.

However, this model also fails to ade-
The features of more

sophisticated numerical models which are needed to fully depict thermal

erosion by lava are described.

The relevance of these studies to the

turbuleni regime which may apply in real-world lava erosion are assessed.

For presentation at the

PLAMETARY GEOLOGY FIELD CONFERENCE ON BASALTIC VOLCANISM

Snake River Plain, Idaho
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* i INTRODUCTION

Iniages obtained by the Viking Orbiter have revealed that many of the
' so-called martian chainels occur in an intimate association with plains
? ? vulcanism. These discoveries contrast with thé impression provided by the
- earlier Mariner 9 orbital imagery that the channels were oldéx than the
F plains units. We have studied a gfoup of such channels‘in some detail

(Fig. 1). The results of this investigation are reported in an article

recently submitted to Icarus: (Cutts and Blasius, 1277a). The conclusions

1
:
i : of that paper are that these channels have beén formed by erosion by the
J
]

intervening mountainous divide, In this short note, I wish to merely
summzrize the key points of the evidence bearing on this interpretation

y : and to then report on some recent theoretical examination of the process of

[y

overflow of lava from Lunae Planum into Chryse Planitia across the r
]

lava erosion. Field studies associated with this conference will add some

further insights into the mechanism. |

EVIDENCE FOR LAVA EROSION BETWEEN LUNAE PLANUM AND WESTERN CHRYSE PLANITIA B

Predicting precisely what a iarge lava erosional channel would loock
like involvas some detailed morphological arguments which are too complex
to repeat here. There are two key pieces of information however, which

support lava erosion origin for the channels. |

1. The channels connect two surfaces which are identified as volcanie

plains by conventional photageologic criteria.

! 2. The ages of these channels determined by two largely independent
} ‘ ' méthods - small crater density and large crater superposition/ ‘ -
§  intersection rxelationships - are indistinguishable Irom the ages of

the adjaéent’plains. The first method yislds an age differential

- : s e : iironsa S R
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of lesé than 0.22 at the 95% confidence 1eve}3 the second
method an age differential of less th§n30.24’at the 95% confidence
level.

Penecsiitemporaneity in age supports a volcanic origin for the rilles
through two different lines of argument. Firstly, it is a necessary condition
for both plains and rilles to have been formed by lava. Secondly, it requires
a femarkahle coincidence for an erosional episode involving some other high
densi.ty flowing medium to have occurred just once in'Mars history and almost

contemporaneously with the effusion of plains basalts.

LAVA EROSION MECHANISMS

The importance of lava erosion as a possible agent of valley formation
¢a lunar and planetary surfaces has been stressed by Carr (1974). Greeley
and Hyde (1972) have described field evidence for lava ercsion on the earth.

Carr (1974) has attempted to model the process of lava ercosion in a laminar

.

flow of lava.

Stimulated by Carr's investigations we have attempted to understand the
mechanism of lava erosion in more detail. " We have re-examined his model and
found certain deficiencies. We have performed some preliminary calculations
of our own in an attempt to improve the model. However, we have concluded
that the problem is such that only 2 full three dimensional treatment can
accurately protray erosional phenomena in a lava channel although
significant insights can be gained into the lava erosion process by two-
dimensional models of a planar flow in which one dimension is along the axis
of flow. Neither CArr'’s model nor our first-order model incorporate this

dimension.

Carr's model of the mechanism of lava erosion

The only detailed investigation of a mechanism of lava erosion that
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has been reported is the work of Caxx (1974). Mechanical and thermal ,
effects both occur in lava erosion, but only thermald erosion is amenable
to mathematical modelling. At the base of a lava f'jk.sn;a:n;\“w‘here the downcutting

process takes place, thermal effects will dominate mechah.i.cal effects,

since the floors of lava tubes are smooth and glazed providing little

n— WA i o ¥

opportunity for mechanical plucking.

Carr (1974) has considered thermal erosion as‘a three step process:
first, the wall is heated, then it flows, finally it becomes incorporated
in the lava stream. Carr asserts that the first stage gperates independently
of whether the flow is turbulent or laminar. fThe second stage, flowage
of the walls, depends on viscosity and tangential stress. The viscosity
depends only on the temperature in the walls; the tangential stress only on
the stream depth for both;}aminar and turbulent flow. If turbuience is a
factor, then it controls i\ﬁcorporation of the flowing wall materials into
the stream.

The lava erosive mechanism has been modelled by Carr in oxder to 5
estimate erosion rates. He assumes that a lava channel grows by heating
of its wall materials until they reach a yield terperature (Ty) at which time
they become sufficiently fluid to f£low and become part of thé lava stream. He
determines the temperudture in the vicinity of a lava channel by using the
two dimensional heat equation which he solves by applying a standard relaxation
technique to a variably sized array of points representing temperatures in
a cross section through the channel and its surroundings. As a starting
point, the dimensions of the channel are defined, all points within the
channel are set at the lava temperature and the rest of the points are set
at 0°c. Two further conditions are that the surface except for the channel
is kept at 0°c and that when any temperature ;eaches a yield temperﬁture it

is replaced by the lava temperature. This second condition implies that
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wall matérial reaching the temperature Ty becomes incorporated into the lava
stream.

Calculations made with this model suggest that thermal erosion rates
are very sensitive to the .difference between the lava temperature and the
yield temperature. For temperature d:i.fferences between 0°C and 100°C the
erosion rates vary from zero to approximately one meter per month. However,
increasing the temperature difference by a further 200°C does no more than
éua&ruple the erosion rate to approximately cne meter per week (Fig.2 )

These results, although certainly within the reange of erosion rates
that can be observed in nature, may contain serious errors because of
deficiencies in the model. These deficiencies occur in three areas: in
the representation of the temperature-velocity field at the base of the
flow; in the characterization of the temperatuﬁe and gtress dependent
viscous pro?erties; and in the algorithm which models ghe thermal erosion
process. The deficiencies are a consequence of achieving mathematical and
computational tractability with a 2~D model of channel flow.

The first two problems with the model are coupled. Rather than solve
the nodified Navier-Stokes equations for velocity and temperaturé, this
complex precblem of interacting velocity and temperature fields was simplified
by separating the transport of mass from the transport of heat. To effect
this simplification it was necessary to assume that the material in the
substrate of the flow abruptly undergoes a transition from a rigid solid to
a mobile fluid at'a yield temperature Ty. However, laboratory and fieid
measurements on molten lava as Carr discusses, reveal a gradual, rather than
an abrupt change from a rigid solid to a mobile fluid over a temperature
range of up to several hgndred degrees. There may be materials or circum-
stances for which this yield temperature is a valid appxoximation.but this

has rot been demonstrated so we believe some skepticism is justified.

e T S T T e O I T T

= A L von ke

e e e Tl e g ey

CRTTIA £ AR T e o




BFEAPTAS e empmms  re  _
L g v o .

An even more serious difficulty arises with the algoritim that is used

' V to calculate erosion rates from the propagation time of a temperature wave

ezt

St

B into the channel wall. While this algorithm is only applicable to the

yield-temperature formulation of lava properties it appears to givé misleading

} results even with substances for which this yield temperature model ias a ‘ 3

' valid approximation. As we shall now show, the rates of erosion predicted

are critically dependent upon the characteristic dimensions of the array .f

R S A

of points used in the numerical solution for the propagation of

temperature into the channel wall.

e )

Lét the array of points upon which temperatures are represented have

a characteristic separaticn Sxi at the channel wall when theé ith cycle i

of iterations, which results in an erosional event, takes place. The time Sei.

for tge temperature at the first array point inside th; channel wall to

reach the yield temperature, thereby bringing about this ith erosional event,

will scale as the square of the array separatio;.
Sti=Ki Sy’ (1)

where Ki is some function of the thermophysical properties of the medium and

-

the thermal conditions at the onset of this ith cycle.

The total time t, for the yield temperature to propagate successively past n

array points is an arithmetic sum of the ti.
n
t, = E Sti ' (2)
i=1

and it will propagate a total distance X, representing the total amount of

wall material eroded given by

n .
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7o find the behavior of tn as the array separations become infinitesimally
small, we can assume that all of the §xi and all of the Ki are of the same

order as one another. Then substituting in equations (25 and (3) we find that

»

.
+
.

. ~ ST LeIT.
t Xi ~S xi ¢ xn (4)

- e

Thus, the time to erode a given thickness of channel floor depends on the

characteristic array separation which is a mathématical artifact designed

to aid in the solution. Moreover, as the array separation tends to zeros,

.

B

which should lead to improved precision in the solﬁtion,the time to erode the
same thickness of channel floor tends to zero also. It appears that erosion
times calculated by .the model may therefore be largely an artifact of the
particular grid separations chosen. ,

We consider that to achieve realistic estimates of the rates of lava
erosion it is necessary to explicitly consider variations in temperature

and velocity in the flow direction as well as perpendicular to it. As a

full 3-dimensional treatment becomes extremely elaborate and costly, an
alternative is the study of planar ratﬁer than channel flows. This will
illuminate the basic physics at the base of the flow and will also provide
useful, better than order of magnitude, estimates of erosion rates given
éhat effects of channel walls must be igﬂored. It is probably that estimates
of parameter interrelationships will be accurate to a factor of 2,

" Not only would a 2-D planar flow treatment yield valid erosion rates
but it also may yield numerical results that can be éompared with éiménsional
iﬂformation on lunar features formed §y lava erosion such as topographic
The

profiles aloné lunar rilles and, excavated volumes of lunar rilles.

important transitional region between lava erosion and accretion could also
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be studied. However, some problems such as channel profile and sinuosity
would abvipusly be beyond the range of applicability of the planar flow

treatment.

An alternative model of lavgngosion (Model 2)

We have made some exploratory calculations of temperature and velocity
fields within planar flows. In one set of calculations, detailed below,
we studied the flow in the substrate beneath a planar lava flow ;ssuming
the relationship between viscosity and temperature for lunar rocks gilven
by Cukierman (1973). It represents another approach to the erosional
problem by Carr (1974) but we emphasize that it suffers the same fundamental
problem of ignoring the downstream dimension. We adopted an essentially .
arbitrary criterion for the depth of erosion, namely that depth at which
the flow velocity exceeds 10 cm/sec. Our initial objective was to determine
the rate of erwsion, i.e., the variation of this depth of arosion with time.
It proves fruitful to consider separately the dynamic¢ behavior of the lava
flow and that of the rock substrate. In the only numerical simulation
completed to data: we have considered a steady state flow of an isothermal
lava with infinite heat capacity and conductivity over an inclined rock
substrate, focusing on the behavior of the rock substrate. Temperature and
viscosity versus time profiles for the rock substrate were developed.
From these profiles, the rate at which melting rock joins the flow, and

hence how the depth of melting increases with time have been determined.

The motion of the substrate beneath a planar lava flow was modelled adopting

a simple functional relationship between the viscosity of the substrate and

its temperature. We assume that the lava channel grows by heating of the

substrate such that the substrate mobilizes and begins to flow in the direction

of the lava stream. This flow is assumed to be laminar and the substrate

is assumed not to mix turbulently with the free lava stream. However, in

.

i v —

w

e L o

Al

i e i b L et £ o ik R et sl o : i é,%;hg:..&:ﬂs“}:i’ffﬂw. et

s

e Y S

oy




A-9

A R T,

order to simplify thée problem we must also take the lava flow to be an iso-
thermal reservoir of heat at temperature Tj. As we are concerned only with
- | the behavior at the base of the flow, a one dimngs,ional solution for a
planar rather than a channel flow is adequate to expose the basic physics

of what happens in a channel flow (Fig. 2).

} As a starting point we assume that the temperature of the substrate
is To and the thermal diffusivity is X. At time t=0 an insulating layer :

separating the lava from the substrate is removed bringing the tweo into

(

) ‘ . .

i ' thermal contact. The temperature within the substrate has a stfaightforward
) ' . -

! analytic :~7 “on if K is independent of temperature. Thermal diffusivities of

silicate matzrials in fact, show considerable variation (a factor of 10)

over the temperature ranges in question but we will ignore this complexity .

in this treatment. Thus: .

(sg) -
y 1 5! .
ax - T - r — . U
Ts (g, so [1 exf (3 Xt )]
The viscosities of 1unar basalts vary from perfect rigidity on

o
time scales relevant to the duration of a lava flowrnear O below 900 C to

approaching the consisténcy of motor oil,at 1200°C. We have performed a

I parameterization of data by Cukierman et al., (1973) for the viscosity(}) of a
4 ¢ basalt which is considered here to form the bed or substrate of a channel
L K flow.

{ : , . . (6)
log = A+ B/T + C/'.T.‘2

3

where A = 3.145
B =-1.84 x 10°

C= 37:(2!.07

R A A R T S, £, 2 5
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The terperature within the substrate will vary sufficiently slowly for inertial

effects to be neglected. Consequently the equation of motion for the

£luid is:
My = _a (a0, o ’ , (7)
dy dy 7 dy - '

Integrating, LT (8)

. : . du *°
T= (hpy, + ¥ps) 9 5inO = 733

where y = depth below lava/substrate interface \,
u{y)= velocity of substrate parallel to interface
5 (y)= viscosity

h = depth of lava

PL = density of lava

Ps = density of substrate
g = acceleration of gravity

©® = slope magnitude

A solution consistent with the boundary equation can be obtained by integrating

—

(8)

-0 L]
The rate of flow along the channel is estimated by integrating (9)
o Y
R % f f %B— dy dy (10)
oS o 4

Y

¥
Numerical solutions for the flow rate as a function of time have been o’qmwd

il o rassulze de g (Table 1)
obtaimed and are shown for a variety of lava temperatures in Fig.4. The
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figure clearly illustrates how the substrate f£low builds with time., The
semi-infinite character of the boundary c;ndltions results in no net removal
of substrate material. For an estimate of the dsepening of the channel
produced when all the lava flow is drained we have somewhat artificially
taken the 10 em/sec valoéity level as the base of the flow. Figure5
illustrates how this level changes with time.

Our results, identified as Model 2, are compared with the thermal erosion
data obtained by Carr in Figure é. Also shown is the viscosity-temperature
relaionship used in our calculations. Model 2 must overestimate the time
required to remove one meter of substrate as it incorporates no means of
bringing fresh hot lava into contact with the substrate. However, we

emphasize that we consider neither erosion rate vs. temperature relationship

in Fig. 2 is valid because of the inadequacies of both models.

DISCUSSION

Although the calculations made above illustrate how the viscous properties
of the substrate rocks can be brought into the assessment of f£low processes
occurring during lava erosion, they deo not permit a meaningful calculation
of erosion rates and they provide no insights into the changing character
of the flow regime along the channel. In order to do this it is necessary
to set up a 2-dimensional model treating the temperature and velocity fields
in both the lava flow and the substrate and taking convective as well as
conductive heat transfer into account.

The goals of such an investigation would be fourfold:

1. To determine rates of lava erosion with realistic numerical models
of heat and mass transfer processes in the bed of a planar lava flow.

2. To estimate the efficiency of lava erosion (the ratioc of eroded
material to flow material) as a function of slope, viscosity and substrate

material properties. QmAMm
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3. To examine the temporal evolution of the profile of the bed of a

planzs lava flow due to lava erosion as a function of the initial profile,.
the rroperties of the eroding flow and the properties of the substrate.

1. To study the txansiti_:g_rl between lava erosion and lava accretion
as a function of slope profile, the properties of the lava flsw, and the
properties of the substrate.

The geometry of the model for simulating lava erosion of an inclined
substrate by a planar flow is depicted in Fig. 5. Heat and mass transfer
betwezn and within the flow and the substrate would be modelled using
the caneral equation of heat transfer (Landau and Lifshitz, 1959, p. 185)
modified to handle temperature-dependen}:.vi.scosity (Bayley, et al., 1975).
Thermedynamic and kinetic variables ;'lould be computed on an array of points
within the flow materials and within the substrate. ,

Initially, the substrate is assumed to have a uniform temperature
Tso aad the lava flow a uniform temperature TLo‘ they are assumed not to
have been previously in thermal contact. Initial velocities are zero in
the substrate, uniform and non-zero in the lava at a rate appropriate to
the constant viscosity and the slope.

At t=0, heat excahnged is iritiated across the half-plane downstream
of a central reference point. This artifice permits investigation of the

profile of lava erosion peculiar to the origin of the flow as well as the

more zradually changing gradients for downstream. Initially only conduction
is significant but as the thermodynamic structure of the floW field evolves,

convective transfer will become core significant in heating they substrate.

Zxperimentally determined data onu lunar rocks would be used for the
thermoohysical properties of the lava flows and substrate. Some of these
parareters such as viscosity and thermal diffusivity are temperature

depernient. To more precisely exgress the phenomena of flow in geologic
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matexials, a form of plastic flow model is needed such as the Bingham f£luid,
in which the deviatoric strain rate ls proportioned to the deviatoric stress
difference in excess of a chosen yield stress.

How relevant are investigations such as these when real lava erosion
pProblems involve channel) flow not planar flow and turbulence is likely to
play an important part in the exosion process? The same response suffices
to answer both questions. The‘action'in therxrmal lava erasioq)as far as
the basic issues of incising channels into a cold rocky substrate is concerned,
takes place at the base of the flow. For modelling this interaction in a
channel the planar flow model is quite adequate for providing initial insights
even though it requires modification for accurate estimation. At the
base of the flow also, turbulent effects are at 7 minimum. Certainly it is
necessary to understand the role of turbulence in channel formation as it
certainly has an impact. But we first of all need to understand the processes

that occur in less complex flow regimes,

SUMMARY

Possible lava erosional channels on Mars have been described. Existing

work on the modelling of lava erosion has been reviewed and future

directions for numerical modelling studies of lava erosion have been identified.

Field studies of prehistoric lava arocsional features such as those present in
the Snake River plain will provide important insights into the process of

lava erosion on lunar and planetary surfaces.
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FIGURE CAPTIONS

1. Martian channels Vedra Valles/Maumee Valles (top) and Maja Vallis (bottom)
‘ \ ‘ Vedra, Maumee and Maja Valles are interpreted to be lava erosional |
>‘ﬂ _ features. Maja Vallis also exhibits later modification by large scale
flow of some substance whose nature is presently uprknown.

{
E 2. One dimensional model for planar flow of a viscous substrate beneath an
) isothermal lava reservoir.

}

3. Estimate of time to erode one meter of substrate with lava as a function

s of lava temperature. Model 1 is due to Carr (1974). Model 2 is described

) in text. The third curve is the viscosity temperature relationship

for a lunar basalt.

4. Volume rate of flow of substrate per unit width of a planar flow as a

function of time (t) and lava temperature (Tr) The increase with time

I
: represents both a deepening of the depth of substrate that fiows and
an increase in velocity.

5. Estimated depth of ercsion as a function of time ‘for Model 2.
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APPENDIX 3.2
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TEMPERATURE DEPENDENCE OF
| ROCK CONDUCTIVITY

The thermal diffusion calculations presented in Appendix i
3.1 do not incorporate the temperature dependence of rock : g;

(

) i i
‘ | conductivity. Here we describe this dependence. i
' i
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THERMAL CONDUCTIVITY OF ROCKS

1. Ambient temperature values

Paper by Harai and Winkler (1974) lists the thermal diffusivity of an
Apollo basalt (porosity 1l0%) as
7 x 20”2 em?/sec at 100°K
3 x ].0"3 cmz/sec at 400°k
For purpose of checking units we will assume an average of these values

K 5x107°

cmz/sec
Thermal diffusivity may be converted to thermal conductivity using density and
spacific heat so that thermal cond of lunar basalt (kyg) is given by:
‘b -3 io.
kyg = Kpc ; =3 g cm

c=0.2 cal /g9/°%k
= 3 x 10”3 cal cm‘l sec‘l °K~l (1)

This can be compared with the value for granite on PE-16 of Handbook of Physics
and Chemistry which

et geg”t (2)
3

kKqp = 1 to 3 k cal m

g

Conversion factor to units of (1) is 2.77 x 10
Therefore thermal conductivity of granite is

Kgr = 3 to 9 x 10-3 cal cm-l sec—l ox-l

2. Dependence of conductivity on temperature

The conductivity of silicates shows a significant temperature dependence
including cube law and inverse terms. The calculations on the next page use

the relationship due to

£
jo d
-
N
(¢
>
il

0:5235 x 10_3 cmz/sec

0.1%61 cm2 °K/sec
12

w
i

0.1367 x 10~ cmz/sec 63
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"
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i
3 Over the temperature' range 1oo°x to 2000°K howaever, the actual variation in
conductivity with temeprature is not large as the B and C terms are not large.
i
'* REFERENCES
: : Horal and Winkler, Elastic Wave Velocities and Thermal Niffusivities of
} Apollo 17 Rocks, Lunar Science Confarence V, p. 2895, 1974.
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£ 77017, 24 :
] . .
=304 (T=400°K) -
.‘§ . val o
: A . 2- ’
)
i = e
, (o) IRL
o 20 - - ;. l‘
.~ £ b1
. ¢ aF
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A
P
1.0 i I I i L ] | ?s‘:’ \
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X Pressure, torr R e e
RN
h Fig. 2. Thermal diffusivity of sample 77017,24 as a function of ambient gas (air) pressure, e .

Elasticowave velocities and thermnl diffuslvities of Apolio 17 rocks

10.0 T ! T ) ) [} 1

Lunar Anorthosite

The data are taken at temperatures around 400°K,

pressure is shown in Fig. 2, As experimentally :hown by Fujii and Osako (1973)
for lunar rocks and also shown by Wechsler and Glaser (1965) for particulate
terrestrial rocks, the thermal diffusivity of sample 7701724 decreases with
pressure ranging 1 atm to 10”* torr and stays constant at pressures below 107 torr.,
Similar behavior of the thermal diffusivity has been also found for sample
70215,30 by us and for Apollo 12 rock 12002,85 by Horai and Winkler (1974),
These observaticus indicate that a vacuum of 107 to 107 torr is low enough to
simulate the lunar énvironment, as far as the thermal diffusivity is concerned. In
Fig. 3 is shown the temperature dependence of the thermal diffusivities of samples
77017,24 and 70215,30 in vacuums lower than 10 torr, The thermal diffusivities of
both the samples decrease with temperature up to 400°K and stay constant or
increase slightly at temperatures from 400°K to 600°K. The temperature depen-
dence of the thermal diffusivities can be well expressed by an equation of the
following type,

=a+B
k—A+T

+cr m
The constants A, B, and C are obtained by least-square fit:

A =05235% 10" cm’/sec

B =0.1561 m® - °K/sec

C=01367%10"" cm?¥/sec+°K’

for
77017,24
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CALCULATIONS OF THERMAL DIFFUSIVITY AS A

FUNCTION OF TEMPERATURE IN LUNAR

BASALT IN RANGE 100°k + 2000%k +

HP 97 Progran
. H
.-: :.' .
° s
- -'..;'
3
k=A + l/ + CT
v 4
A= 0.5235 x 10°° cm?/sec Register 0
B = 0.1561 cmz °K/uc Register 1
C= 10,1367 x ].O-l'2 cnz/uc °K3 Register 2
Method:

Thermal
Diffusivity
cm?/sec
100 "
i 81sds ses
“iieie ave
'.‘ak :A::-.' L
| T

200"

(1)

Enter “emperature and key A and program prints the diffusivity using

equation (1)
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APPENDIX 3.3

HAND CALCULATOR PROGRAM
TO DETERMINE TEMPERATURE FIELD
IN A LAMINAR FLOW OF
CONSTANT VISCOSITY WITH
UNIFORM HEAT INPUT AT THE
BASE OF THE FLOW
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Program Déseription
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APPENDIX 3.4

Comparison of conditions for laminar and turbulent flow in several

fluids of geological interests

Basic Physical Parameters

Viscosity coefficient

air = 0.14 cgs units

140 g/ (cm) (sec)
poise = cgs unit of absolute viscosity = g /sec x

Poise = ¢cgs unit of abs. visc. = gm/sec x cm a
cgs unit of kin. visc. = g /sec x cm x dens ( F)

Stok.a

Viscosity of water at 20°¢ = 0.01 roise

R}
= ||
. I;g%#- Flow of liquid through a tube

If the tangential force exerted by a layer of fluid upon one adjacent layer
is one dyne for a space rate of variation of tangential velocity then viscosity
is one poise

-1
- QX%!.' ( cm . —l—o = dyne-seconds = gm cm . _Sec = _gm

sec cm
cm 2 2 2
cm sec cm cm sec

1
AMr = 182 x 10~ poise at 18°C

Water = 1.002 x 10 > poise at 207C

tava = 6.5 to 7.5 x 10° poise at 1130 to 1135"¢

7Y
l P F.56 Handbood of Chemist:y nd Physics -
: P F.49 Handbook of Chemistry and Physics
3

Moore, H.J. and Schaber, G.C. (1973), An Estimate of the Yield Strength of
the Imbrium Flows. Proc. Lun. Sci. Conf. 6th, p. 101-118. (P. 105 quoting
work by Shreve et al., 1968).
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APPENDIX 3.4

COEgarisonvot conditions for laminar and turbulent flow in sevaeral

fluids of geological interests

Basic Physical Parameters

Viscosity coefficient

air = 0,14 cgs units
= 140 g/(cm;(sec) {
poise = cgs unit of absolute viscosity = g /sec x ¢
Poise = cgs unit of abs. visc. = gm/’sec x cm
Stok-a = cgs unit of kin. visc. = g /sec x cm x dens (°F)

Viscosity of water at 20°C = 0.01 roise

v = ]%}%E;_ Flow of liquid through.a tube

If the tangential forge exerted by a layer of fluid upon one adjacent layer
is one dyne for a space rate of variation of tangential velocity then viscosity

is one poise

-1 .
= QY‘;‘ o= . 1 ) =4dyne-seconds = gm cm , sec = gm
cm sec cm : ) 2 2
, cm sec cm cm sec

Air = 182 x 10°° poise at 18°C
Water = 1,002 x 10-2 poise at 20

Lava = 6.5 to 7.5 x 10° poise at 1130 to 1135°C

K Y
1 P F.56 Handbood of Chemistiy‘nnd Physics -
; 2 P F.49 Handbook of Chemistry and Physics
Tty 3 Moore, H.J. and Schaber, G.C. (1975), aAn Estimate of the Yield Strength of

the Imbrium Flows. Proc. Lun. Sci. Conf. 6th, p. 101-118. (P. 105 quoting

work by Shreve et al., 1968).
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P
R (Raynolds number ) = ")
Flow is laminar generally for RS 1000
Flow. is turbulent generally for R ) 1000
3 L V.
Substance g/cm Poise ___(stoke™h) cm cm/sec R
" 1.208 1031 1.82x10°%| .59 | 102 10 6590
Air (farth) . x . . s X pd
2 % OOO/’ 2
e 1.0 1.002x1y 100 10 1 1
nater 100 10 10 i
- 3 2
Lava 3.0 1 x10° | 3x1073 100 |3 x10 900
- - -2 3 2 4
Air (Mars) |1 x 10>  |160 x 107 6.2 x 10 107 l3x10° | 1.8x10
[}
1 Handbook of Chem. Phys. P F-11
2 Carr, M.H., The Role of Lava Ercsion in the Formation of Lunar
Rilles and Martian Channels, Icarus, 22, 1-23, 1973. o ’
1
3 4
3 Visgosity is indep of pressure but does depend on tem{fﬁ (o.'r") . Assume ]
230K in atmosphere on Mars. Yovorsky and Detlaf (see Handbook of
Physics, Mir Publishers, Moscow).
i o T T el ke ekl L L T PR . PR ;.@
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The conclusion from this comparison is that water and air flow will be
turbulent in all conditions of the ascale of those likely to be f- nd in nature
whereas there is a regime of relatively small scale or low velocity flow
or both where lzva will flow in a laminar fashion. Because of the lower
density of the atmosphere on Mars, it is much closar to being in a laminar
reqgime than on the earth - the atmsopheric viscosity is about the same.
However, it still isn't in the same ball park. Interestingly, the kinematic

viscosity is approaching that of lava.
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APPENDIX 3.5 \

COMPUTER PROGRA!M FOR COMPUTING
EQUILIBRIUM SLOPE PROFILE FOR SIMPLE
PHENOMENOLOGICAL MODELS OF
LAVA EROSION

This is a program for a Hewlett Packard 97 programmable
calculator that determines the slope profile for a slope that
has reached an equilibrium shape under the action of thermo-

mechanical erosion.
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EVALUATION OF K = f (1 - Fzsuz ) -
0

FOR F(H) = (P, efi/Ho)l/m-1*
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* This program segment can be used in conjunction with the HP-97 Numerical
Integration (Simpson's Rule) program to evaluate the given integral in
terms in Po; He, m and H, A future program should be structured to
first calculate Po and Ho from equation (18) and (19) and store them as
constants for use in the integration procedure rather than repetitively
recalculating them,
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i APPENDICES TO TASK 4

4,1 Abstract of Hodgson (1969) work on lava flow similitude
using carbowaxes with data on physical properties of

i carbowax and lava flows and model parameters for lava

4.2 Computer simulation test programs
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APPENDIX 4.1

ABSTRACT OF HODGAON (1969) WORK ON LAVA FLOW SIMILITUDE USING
CARBOWAXES WITH UATA ON PHYSICAL PROPERTIES OF CARBOWAX AND
LAVA FLOWS AND MODEL PARAMETER VALUES FOR WAX AND LAVA

ABSTRACT

‘The mechanism of emplacement of viscous flows was investi-
gated experimentally with Carbowax materials. The design
requirements for modeling the emplacement of natural lava flows
of high and low 5i0; content were considered. These requirements
were found to be very complex and the laboratory wax models
contained distortions. However, Carbowax flows are affected by
similar heat and mass transfer processes as natural flows and
behave in similar ways. Hence, they provide a qualitative and
possibly semi-quantitative insight into the development of
natural lava flows.

The models of emplacement and many structural features
observed in the experimental flows are similar to those in
nature. The influeence of volume, slope, initial velocity, and,
extrusion rate on the Carbowax flows was investigated. The
following scaling relationship was developed for maximum f£low
length relative to any reference flow as a function of the physicul
parameters investigated.

. * a ' y b » [ *
-, ‘ LL = i:v SS l! c . " d (I ',- .
' ] ' i (0] 0 o uo U"o . °

*

a=0.382% .136 : c=-1.81 .72
b:= 0.419 ¥ .o085 . d = 0.469 * 014,

. | -0.174 * 039

The positive value of @ would apply to extrusion rates in nature
of less than 430 million m3/day. The negative value applies to
higher extrusion rates.
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P1
Ierms

Width
satie
Caepth
Ratio .
Rougnhness

Froude
Number

Reynolds
Number

YWeber
Numbar

Nusselt
liurber
Prandt)
Nymbar
Eckart
fumber
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APPENDIX # (cont'd.)

(From widdicombe and kccotchin. 1976)

Hode) Parameter Values for Lava
and Carbowax Flows

Basic Acidic Carbowax
Lava Flows Lava Flows 4000 Flows
b
% .20 20 .20
d
3 .02 . .10 .06
r variable variable smooth
Vz 5 .
@ 1073 10” 1073
cvd - - -
u, 10 L wé . w0t
pvd - -
z 10° 10! 1074
hcz . 7 7
£ 00, 1007, 6010%)h,
vC -
107 ST 10°
Vz -8 -10 -9
or 0 10 107

CRIGINAL PAGE o
OF PO QuALY
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Carbowax

20M Flows
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APPANDIX 4.2
FINITE ELEMENT MODELLING EXERCISES

i
During the time period fiom Aug. to Nov. 1979, several pro-
grams were written and experimented with to develop an under-
standing of two dimensional finite element models. They fall. into
two categories: @ﬁﬁse related to the vorticity transport

equatior Bt . ve 2 %7, and those which solve the Poisson

equation vg% = 7. . The overbars represent dimensional quantities.
A completgﬁsolution to the flow problem involves successively
solving e;ch of the two equations for each time step. .

A basic finite difference form of the vorticity traﬁsport

equation is (see Roche, Equation 3.165):

n+l n-1 n n n n n
AR WY 2 V5 W T NN 02 1 s o Sl § 4.2.1
AT ~ 24X (Axyi
ADVECTION TERM DIFFUSION TERM
where u = velocity

« = diffusion constant
superscripts refer to the time step

subscripts refer to the cell number

this is a centered time, centered space (Ctcs) equation, since

the average in the 'time' term (LHS) is centered at the present
step, and the average in the two 'space' terms (RHS) is centered
at the cell whose new value is being computed.

This method is unconditionally unstable (Roche, p.v36).
However, .if only the advection term is considered, the method
yields stable solutions. To get back the diffusion term,v
the method of Du Port and Fankl was used. In this method,

the diffusion term is replaced with the expression
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n n n+l n-1 -
. ;1+1 + ;i-l - (;i + ;i ) 4.2.2
(ax)

The only difference is in the last term in the numerator, which
becomes the sum of past and future values at the cell in question.
This is the Du~Fort Frankl leapfrog method, and the pro-

grams employing it are DFFLF (the one dimensional case) and

.f5DFPLE (the two dimensional case). The programs as written

contain the boundary and initial conditions; and also contain
the condition u = 0. Thus they, at present, deal only with
diffusion. 1In fact, the 2D program does not contain the
advection term at all. The programs were tested (and compared
with analytic solutions graphed LDy the programs ANATST and
BNATST) with two sets of initial conditions: ¢ = 100, anq};f‘
g = 100 sin IE%%EH'

The Du-Fgrt Frankl leapfrog method is not transportive
and introduces phase errors‘ﬁhen u=0, so in the next
exercise, the Du-~Fort Frankl programs were modified to in-
corporate second upwind differenciné in the advection terms.
This is essentially a forward space method, where the direction
is decided by the sign of u. The equation (for advection only)

is:

+

n+l N ,
i R N S U T 4.2.3
At Ax
‘where v, is the average of the velocity at cell i and cell i + 1
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v_ is the average of the velocity at i and cell i + 1

n n

s is the average of ] and Siel
. n n

;. is the average of i, and ¢, _,

Note that this method is a forward time method. This
maggs it incompatible with the Du-Fort Frankel. Nonetheless,
hyﬁfid programs were written by replacing ihe advection term

. of equation 4.2.1 with the RHS of equztion 4.2.3. These programs

are called SUDLF and 2SUDLF. One of the problem$ with these
programs is that the advection term updaﬁes itself only every
other iteration, due to the leapfrogging inherent in Du-Fort
Frankel, and effectively proceeds at half speed, while the

diffusion term proceeds at full speed.

The other programs solve the Poisson equation
and use the method of successive over  relaxation. This is
an iterative method which converges asymmetrically on the

solution. The finite difference equation is:

k

k+1 W '
Yo, 7 = ¥, o+ - 4.2.4
i3 13 7 2(1+8%)
k k+1 .2,k K+l _ .2, L 2,k ]
ﬁi+l,j t¥y,5 T8 (wi,j+1 + wi,j-l) x5 4 2(1+8 )wij
where B'%§ = cell size aspect ratio

w = relaxation parameter 1 < w < 2

R & & - LI =/ W W 1
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7

¢
]

w controls the speed of convergence, and the optimum w to use
depends on the geometry and boundary conditions of the problem,
and can be found analytically only in a limited number of cases.
and error. »

TwO programs were rewritten‘thaﬁ‘solve Poigson's equation
with Dirichlet conditions. They are éOR and SOKNQ3. fThe dif-
ference between them is the boundary conditions. SOR has a
source in the center, and has the outside held at zero potential,

while SORNQ3 has no sources, and has two facing boundaries

. at a potential of 100, and the other two boundaries held at

zero. The output of these two programs was compaired to the
analytic solution as ploﬁted by SORTST and SOR2T respectively.

A third version of the program, NEUSOR, solves Poissons
equaiion with mixed boundary conditions and nc sources. The
boundary conditions are Neuman on two facing edges, and Dirichlet
on the othe:f two facing edges.

A program for finding the optimum w for the NEVSOR program
was also written. It employs a decimal search, and counts the
number of iterations required for convergence of a particular
problem at each w. A binary search was not employed because
if it were, the program would spend‘a large part of it's time
in overrun conditions.

Experience gained in exercising these programé‘was used
in re-formulating the lava erosion problem, and writing the

programs needed to solve it.
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LIST OF PROGRAMS

solves 1-D vorticity transport equation using Du-Fort
Frankel leapfrog method.

solves 1-D vorticity transport equation using Second
Upwind Differencing on the advection term, and the
Du-Fort.

graphs analytic solution of heat flow equation with

IC's T = sin IE%%EH

graphs analytic solution of heat flow equation with
IC's T = 100, except T = 0 at boundarys.

2DFFLF

2SUDLF

solves 2-D vorticity equation using Du-Fort Frankel
leapfrog method, but with no advection term in
equation. ‘

solves 2-D vorticity transport equation using second
upwind differencing on the advection term, and the
Du-Fort Frankel method on the diffusion term.

SOR
SORNQ3

SORTST
SOR2T

NEUSOR

NWSOR

solves Poisson's equation with boundaries held at
zero potential and a source in the center, using the
Successive Over-relaxation.

graphs analytic solution of the problem solved by SOR.

graphs analytic solution of the problem solved by
SORNQ3.

solves Posson's equation using Successive Over-
relaxation for mixed Dirchlet and Neumann B.C.'s,
and no sources.

Finds optimum w to use for NEUSOR.

o N SR R A S

R R L T TR S AT dﬂ;&i&i&&m i e T

Tt



e T HE e T e

L8N 0002
8N 0003

I8N 0004

18N 000S
I8N -0006
I8N 0007
I8N 0008
18N 0009
TSN 0010
18N 0011
18N 0012
TSN 0013
T8N 0014

18N 0015

18N 0016
I8N 0017
1SN 0018
SN 0019
18N 0020
TSN 0021

18N N022

I8N 0023
188 0024
I8N 0025
T8N 0026
I8N 0027
iTgN 0028
‘I8N 0029
‘18N 0030
ISN 0031
1SN 0032
I8N 0033
I8N 0034
18N 0035
JJSN 0036

1SN 9037

'ISN 0038
<I18M 0039

i8N 0040

18N 0044
1SN 0042

I8N 0043
JISN 0044

ﬁ!S” 00“5
*ISN 0046
H

y
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APPENDIX 4.3. FORTRAN Program for two dimensional model of
thermal erosion for a plane laminar constant viscosity floy with
a yield temperature.

FUNCTIONS INLINE AREd sLL

INTEGER PPoDDPRINTIPT, FLOORNsAAAFLIP HCS
REAL MIXoMELTEMILENGTHyKAPPA

¢

ALL OTHER VARTABLES FOLLOW TJKLMN CONVENTION , ,
DIMENSION T(1208702)9PTCI2017)00PT(3T032)0F(12047)9V(1T7)0DY (1

JevCIM)
10=5
AAAmS
THRu1200,
MIX%0,1E=O4
ANG3}O, '
THECANG/1804)%3,141592654
POs30
THAXE9S,
ROC30,25
YMAXE1000, .
0OT=400,
JM=17
JMMIE Ml
JHM28 JMw2
JMMIR M2 3
AL®1,356Em2
PRINTzm{
XTEnlnl
TIMEB=] ,¥DT
MELTEME ]300,
AMBTEME20,
FLOOR=1 4
IFLP13F| 00R«+1
62980,
FHE150,
LENGTH=0,1E 08
ox|
NE2
DXsLENGTYH/10,
KAPPAROQ, 04
2590 FORMAT(//40X9bHKAPPAS 'F13.5/L0X9bHROCE VF13.5/
1 40Xy6HGa 'F13,5/u0Xr6HANGE  ¢F13.5/40X)
2 6HH 0F13|5/00!OGHVNAI3 'F13-5109Xo
3 6HMIXE  4F13,5//) | ¥
00 § I=y442
00 2 JEisFLONR
TC11JyO)BAMBTEM
e CONTINUE
00 3  JSIFLPliJM
T(I+Jr0)=MELTEN
~ p
] ConTIvuE ORIGINAL PAGE IS
READ(2,101) (DY(J) 9y Ju2,JMMy) OF POOR QUALIT
101  FORMAT (1SFU,.1)

-
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N NOAY

HIgN
(I8N
156
15N
18N
16N
15N
18N
18N
18N
18N
18¥

18N

ISN
} I8N
S ¥ 1Y

18N

I8N
(1SN
, 1SN

I8N
| 18N
. ISN

I8N
| 1SN
T T8N
‘ I8N
i TSN
: ISN

ISN

18N
: 18N
‘ 18N
SN
| I8N

1SN

ISN
y T8N

I8N

usn
T8N
ISN
I8N
TSN
TSN
18N
18N
18N
T8N
ISN
T8N
18N
1SN
1§58
. TSN
| TSN

npug
NNy
0050
nosy
nose
0053
nosd
008§
0056
0087
0058
0059
0060
006}
0062
0063
0064
nN06S
0066
0067
0068
0069
0070
0071
0072
0073
0074
007%
no76
0o0v7
NoTa
0079
00ao
00A1
0082
00A3
noas
00RY
fo3a
0089

0090
0091
0002
no9d
009s
N096
0097
00eg
0099
0100
0101
0103
0104
0106
0107
0108
0309

2,2

10%0

81

58
57
430

[ ']

333

2004
620

650
200%

660

720

(SEFT 76)

- A=R7

PO 1050 B2 UMY
DY{J)={80,8NY(J)
Y(JI¥m1)sDY(JMw]) /2,
ne' S JUS2eJMM2
JagMa g

YCJImYQJetl)eDY(Je1)/2,4DYLI)/2,

PO S6  Jz2yJMMY
IF (Y(J)mwH) 5758458
v(Jy=so
GOTD Sé
VEJ)SYMAXE() qm(Y(J)/HI®®2)
CONTINUE
ITERBITER¢Y
TIME=TIMESDT
DO S Js2¢FLOOR
T(i9Je0)ET(29Je0)
1¢129J90)5T(114J40)
CONTINUE
00 & JEIFLPY g JMMY
TCioJoO)SMELTEM
TC120J90)8T(110Js0)
CONTINUE
0O 1y Isisie
DO §12 JuiyJM
F(IeJ)mo
CONTINUE
CONTINUE
00 7 Im2y11
TCle140)37(1,240)
TCLedMe0)ST(19JHelv0)
oo 8 Ju 2 JMMY
oOYuUshDY{(Jd+!)
OYC3DY (J)
OYNEDY(J=1)
VELEV(J)
GOTO 659
IF (TC1eJ90) LT, THR) VEL=O
IF C(T(1+Je0) GT,THR)
FITEMIX®(T(loJel s0)mTCToJer0))
FCIWJIBFTTSF(10V)
FOloJel)amFTTeF(TaJdey)
ONESVELS(T(IwloeJeD)=T(T0Je0)) /DX
G0 YO 660
IF ((TC19J90) LGE« THRY J0Re (T
FCImioJe)SONESF(IntyJat)
ONEZ0

TWOSKAPPAX(T(Tal e gD (Ie19J90)w2,¥T(I1Je0))/0x%%2
THREEUS(T(TsJ+110)wT(10Je0))/((DYU+DYCI/2,) %22

o AND(J JLE, FLONR)) GOTO 620

IaleJe0) sLTeTHR)) GOTO 660

THREEDE(TC(IoJn190)aT(I9Je0))/((DVDEDYC) /2,882

THREEEBKAPPRA¥ (THREEU¢THREED)

TCIoJoNIZT(TeJe0)+ (ONESTWOSTHREESF(10J))¥DT

IF((J l~€' JMe () «AND, J .Nﬁc 2

3)GO0TO 720

RADETCI¢JeN)mALSC(T(LIodoN)P273,)%%Ue(AUMETEMS2T3,)%%U)/(DYCH*ROC

IF ((J.EQ.Jﬂvt).OR.(J.EQ.E)) T‘!
JJJs{3eJ

CONTINUE

CONTINUE

FLMIZFLNOR=]3

MATN 08/360

s R S R S L A I P S (A

' JIN)BRAD

FORTRAN H EXTENDED PLUS
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I8t e110 TAGRRT (114FLM34N) ) T T e
C I8N 011y DN 9 Tmield A=50 J
ISN 03te DN 10 JxyeJM
ISN 0113 JJIzJre ey
18N 0314 0PT(JUJeI)E  T(Isde0)
I8N 0115 10 CONTINUE
' ISN 0116 9 CONTIMUE
ISV 0117 IF (MOD(ITER¢PP))970920044070
;:: g::: 2004 1§°~T;¥uélltoo i
l MMs ] » K
! : Aby22) ITERy TIMM
é:: :::2 22 :3515:5?:.:1~x1cns110~. e 18¢12% PS4 06H HOURS/)
1eN 0122 T O WRITE (AAA¢920) ((OPTC(IeJd)eJuieli2)e]myoIN)
[ON 0123 920 FORMAT(12(1XsFT7,2))
1AM D126 WRITE (AAA9935)
b ION 0129 93%  FORMATY(//)
' LON 0126 970 IF(TRGR,LEJTHRY GO YO 177
1SN 0328 WRITE(AAAI2025)
1N 0129 202% FORMAT(1X¢3HEND)
. lan 0130 GO 10 bab
18N 0131 2006 DO 200 131412
b 1aw 0132 00 §76  JJIEieJMM3
| 18N 0133 JsJMeJJ
18N 0134 L TCLeJeNISC(DYCI)w0,2)8TCT0JoN)®0,2%T(TodmigN)) /DY L)
' 1SN 0135 176 CONTINUE
| 18N 0136 TCIeR2NIBC(DY(2)m042)%TCT020N)00,29AMBTEM) /DY)
! 18N 0137 200 CONTINUE
| 1SN 0438 ITTPISITERSY
} 18N 0139 TPOT= (TIMESDT) /60,
1SN g1do0 WRITECAAACITB)  I1TTPL,TPDT
A deN 0141y 1781FDR;;;§£;21OZTHGEZONED AY ITERATION NUMBERI2XeI18932XeF13,302X
18N 0142 177  CONTINUE .
'ISN 0143 93 CONTINUE
i I8N 0144 FLIPSO
| {5N 0145 08N
| T8N 0146 NSFLIP
1sh o147 IF (TIMM ,GT, TMAX) GOTO 666
18M 0149 GNTO 43¢
18N 0150 b6o  STOP
T8N 0199 END
YEL 2.2 (SEPT T6) MATN 08/366 FORTRAN H EXTEWDED PLUS

L R T S i T BT S IR T e

int
MWL, (o
e . M i . . )
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APPENDIX 4.4

Abstract of Proposal
Submitted in July 1979
for Further Investigations of

Lava Erosion
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PROPOSAL SUMMARY

PRINCIPAL INVESTIGATOR: James A. Cutts . -
(Name, address, tel.no.) Planetary Science Inst/sScience Applicatios

" 283 S. Lake Ave. Suiie 218 Inc.
I Pasadena, CA 9IINI

CU-INVESTIGATORS : ____Karl R. Blasius
(Name only) ClIark R. Chapman

" Wm. James Roberts
Title: Geophysical COnstraints on Lunar & Planetary Volcanism

ABSTRACT (Single~-spaced, type within box below. 1Include:
: a. Brief statement of the overall objectives and justification
of the work; b. Brief statement of the accomplishments of the
prior year, or "new proposal”; c. Brief listing of what will be
done this year as well as how and why; and d. One or two of your
recent publications relevant to the proposed work.): -

]

a) We propose a one-year follow on to our investigations of
the role of volcanism in forming features of planetary sur- ° '
; faces. Its goals are to refine and extend the qualitative
; and guantitative understanding of the formation of volcanic o
\ features. Task 1 is a continuation of the study of the ‘
f i physical mechanism of thermal lava erosion with application

R e X S e L b 5T
S

to the origins of some lunar sinuous rilles and martian
channuls. Task 2 is a continuation of an investigation of
the origin of small lunar craters and its implications for
mare basalt petrogenesis. . . '
b) Through March 1979 we performed a classification of i
small crater features, catalogued central volcanic constructs, o
& and gathered basic physical data on martian central volcanic
y constructs.

¢) In Task 1, physical modeling studies will be used to test
the validity of thermal erosion codes. A sol;d—lxquld wax
system will be used. Initial phenomenologlcal investigations ;
of flow responses to obstacles, channel 51nuoslty, and i
variations in substrate characteristics will also be conduct- .
ed. In Task 2 data gathered in previcus years will be pre-
pared for publication and a simple numerical model of small
crater production and destruction will be used in data
interpretation.
d) cClark R. Chapman, Jawyne C. Aubele, Wm. James Roberts
and James A. Cutts. Sub-kilometer lunar craters: Origins,
ages, processes of degradation and lmpllcatlons for mare
‘ basalt petrogenesis. Lunar and Planetary Sciences Conference
¢ X Extended abstracts, 1979. )
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