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The theory of the solar gravitational figure is derived including the

44 	
effects of differential rotation. It is shown that J 4 ;'.es smaller than J 2 by a

H v

	

	 factor of about 10 rather thin being of order (Ja) 2 as would be expected for

rigid rotation. The dependence of both J 2 and J4 on envelope mass is given.
bb 4J i7

aHigh order p-mode oscillation frequencies provide a constraint on solar structure,

ai M	 which limits the range in envelope mass to the range 0.01 < M /Me < 0.04. For
r4	 .-

•• 	

Jf

y a 
	 an nssUilled rotation law i.n which the surface pattern of differential rotation
,H P,
	 =

M	 exten<!s uniformly throughout the cony^pctive envelope, this structural constraint

h 4limits the range, of J and J in unitg of 10 
8 

to 10 < J 2 < 15, and 0.6 < - J4

00 x < 1.5. Deviations from these ranges would imply that the rotation law is not
00 04
M a 

P3 , C4	 constant with depth and would provide a measure of this rotation law.
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THE SOLAR GRAVITA'T'IONAL FIGURE 	 J2 AND J4

R.K. Ulrich and G.W. Hawkins

1. INTRODUCTION

The gravitational figure or the sun can be measured directly by sending

a probe carrying a drag-free guidance system to within a few solar radii of the

solar center. The interpretation of such a measurement will require knowledge

of how the solar structure and rotational law influence the multi-pole exprnn-•

sion of the external gravitational field. The study of solar oscillations limits

the variations in J 2 due to structural uncertainties to less than a factor of 2.

Refinements in the observed frequencies of the non-radial modes of higli order can

we show how the existence of dif=

one will produce J G » J2 An

can substantially increase our

gravitational figure for rotating

stars ,divide into two types.' The theory of rapidly rotation configurations is

further reduce this uncertainty. Tit addition,

ferential rotation throughout the convective z

.icq.,,,rate measurement -of J 2 and detection of J4

knowledge of the solar rotation law.

Tile papers dealing with the theory of the

generally limited to the study of polytropic models. Tile classical Clairant-

v Legendre*expansion resulting from this approach is well-de,9crihe by Tassoul

(1978). Applications based on this method are disc:'ussed by James (1964),

Ostriker and Mark (1968) and Hubbard, Slattery and DeVito (1975) . While this

method is very powerful in its ability to treat. models of object s, in whJch cen-

tripetal acceleration and'-gravitational acceleration approach equality, it is

not easily applied to non-polytropic model;:- because of the Fundamental way in

which the polytropic assumption is used.
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The second type of approach is that described by Col.dretch and Schubert

(1172). In' this approach, the stellar structure equations are analyzed in a

perturbation expansion. Consequently, this method fails for objects rotating

fast enough that the centripetal and gravitational accelerations are comparable.

It has the advantage For application to the solar case that it is not restricted

to polytropic models. Since the sun is rotating slowly, we use the Coldreleh

and Schubert (1972) approach. We present in the following section the theoreti-

cal analysis of a dlffereil:k •3.ally t(itati.ng mode], and derive the equation which

describes the ot:t:t.+polt^ moment of the sun, J 4 . In .5 III we describe the nor-

rotating zero order models and present the results for J 2 and JG in 5 IV.,.

II. TH ORY OF J4

We adopt as a simple rotation law:

0 + S2 2 u 2`	 (1)

where S2 tj is the equatorial angular rotation rate and p is the cosine or the

colatitude. The term S12 u2 represents the differential rotation. Pitting the

rotation law of lioward, Boyden and Laboite (1980) to Equation (1), we find that

R 2 /R 0	- 0.7. We assume that S2 2 anti 52 0 are constant in the
f

onvective envelope
^

and that S2 9 = 0 below the convective envelope. Although th (s latter assumption
I

-may not be valid, S1	 must go to zero at r. = 0 because otherwise there Mould be

a divergence in the shear velocity field.	 The centripetal acceleration r S12

appears In the equations of momentum ` balance.	 We expand 52 2 as S2^ (1 + a p z )
P

j

!	
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a ^ 4 _ 1.4	 (2)

0

rollowing Goldreich and Scliubert (1972) ► we write , the momentum balance equa-

tion in spherical coordinates (r, u) in terms of the gravitational potential ^h ►

the pressure p and the density p. The r and u components of this equation are:

p 
fir! 

a - p S1 2 (1'+ au 2 ) r (L - u 2 )	 (3)

P " tt- p n 2 r2 (l	 au 2) ^^,	
(4)

	

ar	 a!i	 Q,

Assuming that the acceleration of the rotation is small compared to the accelera-

tion of gravity, we may expand all quantities into"unperturbed quantities fip, pal

and p 0 and their perturbations ^1 , p,I and p l . The unperturbed equations are scan-
;;

lard and will not, be repeated here. The first-order perturbation eg11 t-ions are:

	

a^	 aIPQ

	

ap

P O Wt l t p l a r a 
art - pp,no	 2

	

(1 + ap	 r (l - u>	 (5)

D

P O	
1	

8 p1 + A 

i2 r2 (1 +' ap 	 u .	 (G)

	

„ o a l .	 a^,,	 n	 o

We now expand 1 ► p1 and p l in spherical harmonics, e.g.

s

,cohere PQ (u) is the Legandre polynomial of order R. Using standard recursion
11

relations for the P , the momentum equations have R = 2 and R 	 4 components

3
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2s AO ^2 * 
n l2 ar'Q ^

a.2 + AA go r(1)	 ^)

r2 P o
g20

PO 1,2 	 p ]. 2 *	 3
	 (1 + 7Fi)
	 ^)

and

R.	 4:	 "'14 +A 	
"0	 ap].4+8a

A $1
2 r	

(10)
0 a 	 lei or	 Dr	 35 0 0

p+ `^ 14 
a I

' l 4 * 33 r 2 P O 0	 (11)

The above equations must be supplemented'by the Poisson equation:

a2 fit,, 2 it R t+ 1
ar	 rt	 + r ar	 2	 `^19,	

l 

► n 
CP1R	

(12)

Equations (H) and (9) and the R 	 2 component of Equation (12) combine to

give the analogue of the standar A Coldreich and Schubert (1972) equation for

X 12 . This equation is:

a2 
x'12	 2 ' ` 12	 0 12	 4n r 2	 dp0	 4	 2 _ r2 d	 2
2	 r Dr r 2	 pig,	 12 dr 	 21 a rp0 r0 	 3 dr	 p 0 0

+ 7 p 0 aS2n
J 	

(13)

This differs from the standard equation in having the extra term involving 4/21

and in replacing n2 with g0 . (1 + 3a/7)	 The equation for the R	 4 component of

Equation (12) is similarly derived and is:

i
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 k 	 l^6-

2

x'14	 34 1.4	 20	 4n r2	
clp0	

^i	 2

^r2 _ 
+ ar r2 4 14 ' H, `^14 dr * 35 ar n^ ^0

35 x SL Cap 
0 

$t01 	 (14)

Equations (13) and (14) must he solved subject to the boundary conditions

t	 tbat fi i ^ « r. at r	 0 and 
4J^	

r^^'_
1
 as r +	 Numerically, thetic conditions

were satisfied by expanding Q 1^ as CZ r^ fit the innermost mass shell. Equations

(13) and (14) were then in egrated from lie center to the outermost mass paint.
;l

The outer boundary condition was imposed as an equation of condition and .CZ wa s

adjusted through a Newton-Raphson iteration procedure. The distribution of a(r)

was chosen so that a(r) T 0 for r < re and a(r)	 1.4 for r > re where re is

the radius at the inner edge of the convection zone. In crossing this radius,

the following jump condition is applied to 
the414 

solutJon,;

34 14 	 3414	 sn r4 a 0 S1 a
(15)0r ^ r e+e	 ar	 r

e
-e ^	 35 Pir

where a is a small distance encompassing the gradient In a. The exterior gravi-

tational field is described by the normalized values of 41Q'

L+1
JR _ 

rCM tip '	
(16)

xil. THE SOLAR MODELS

she static solar model has be^h calculated using the input physics

described in the paper by Bahcal,l et al. (1980). The method differs from
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previous solar modal Calculations that have been clone using the UCLA code in

two respects'.

1) The atmosphere code discussed by Ulrich and Rhodes (1977), Ulrich,

Rhodes and Deubner (1979) and Lubow, Rhodes and Ulrich (1980), has been

extended to include all of the interior physics. 4y adjo a ting Lhe mix-

ing  length and hydrogen abundance, the atmosphere integration has been

extended inward to a radius of 1,5 x 10 9
 cm. The final Interior ,,One

in treated analytically with 4 theory accurate to better than 1/,,percenL.
it

The Interi	 distribution of hydrogen abundance has been talten from tho

current ' 'standard solar model. This method yields neutrino fluxes which

exceed those in the standard model by 10 percent.

2) Partial ionization of all heavy elements is now included in an approxi-

mate way following.Bodenheimer, Forbes, Gould and llenyey (1965). Fur-

ther, details of the calculational methods will be given by Ulrich and

Rhodes (1981).

Two fully converged models were computed: The standard modal and a mocial

with the interior heavy element abundance reduced from Z r- 0.018 Lo Z A 0.005.

The convective envelope abundances were normal. The mix of both cases was that

given by Ro.-is and Aller (1976). The second model is referred to as the low Z
Ri

model. In addition to these models, a series of incomplete- envelopes was ca, cu-

I a ted with a specified mixing length parameter. Th as e envelopes were sto,#:Ped

when either 99 percent of the mass or radlu.q Was U'80d in the inward integration

leaving--r, large residual of the other variable. An approximate analytic conLinu-

ation to the center was added by assuming that M Q r 3 (P	P)	 r2 , (Pr	 0	 0	 P)



I

A

.	
a	

•

r2 and (T - T) a r2 . Almost none of the perturbation in is produced in

the poorly treated portion of the model.
	 I

Iv. RESULTS AND DISCUSSION

There are two factors which can influence the values of J 2 and J 4 	l ) the

distribution of mass through the sun and 2) the distribution of 12 (r, 0) 'through

the solar interior. This latter function is observed at r m Ito , but there is

as yet only a Preliminary indication of its variation with r. A range in

structure variation is possible in principle so that both factors must; be con-

sidered in interpreting any potential measurement of J2 and J 4 . Fortunately,

the structural variations are not constrained by the measurements of the eiten-

frequencies of high order non-radial oscillations. The recent observations by

Rhodes, Harvey and Duvall (1981) limit the variations in the"env,lope muss to
a

0.01 < M /hto < 0.04. As a measure of the importance of structure in determining

J 2 and J4 , we Have assumed that St (r, 0) = S2 (R, 0) for r > r e and that $1 (r, 0)

H (R) for r < re . We have used the rotation law given by Howard, Boyden and

La Bonte (1980) in calculating J 2 and J4 . Our results are given I-a Figure 1.

The above I'mits on M /M translate into permitted ranges in J and J
e o	 2	 4

1.0x10 7
. <J 2 < 1.S x10-7

6	 x1.0T9<- J4<1.5x10_g
	 (17)

Measured values of J 2 or J4 outside of these ranges would indicate a deviation

from our simple assumptions for 0 (r, 0).

The subsurface rotation rate can be measured with the method described by

Rhodes, Deubner and Ulrich (1979) and by Deubner, Rhodes and Ulrich (1979).

FP P;; t

•
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This second paper gives someb first results which show n (r, 0) increasing as r

decreases. 16this result is borne out by subsequent observations, we would

expect larger values for J 	 Ii2 trod
	 41 . 

The theory or the solar dynamo depe ► do

on such a variation of SI with r (Stix 3.977). Ultimately, it may be poss-ible

to probe the rotation law using , the oscillations; however, there are two critj.--

cal uncertainties which must be resolved before we will know the ef-fectivness

of the oscillation method: 1) the oscillations mus-t,  be adequately long lived

and 2) it: Must be possible to identify correctly individual modes of oscilla-

tion for all spatial scales. Also, the oscillations cannot provide a good

measure of the rotation rate off the solar equator because foreshortening limits

the viewing -Legion. Thus, the, measurement of both J
2
 and 3

4
 would provide very

important constraints on $1 (r, 0), which are different from the constraints

imposed by the oscillations.

We would like to thank Jim Underwood for his helpful comments on the manu-

script.
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j-*jZqra t. The depandanca of J
2 
and 

J4 
on cV"cuL,:td ,*, envelope mus Me/1,100

Corresponclina valties of L/It are indb^.;YNd CAI Ole LOP. Of the rigure,

These vahies arc dependent 
on 

n number of ColopIlLaLlontil deviLls and are lent).

significant than M /1`1	 Tho clinracterisLics of the standard model atid Oic low
0

model are discussed In Clio text.
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