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ABSTRACT

The scope of the VIP3D viscous/potential flow analysis

method has been extended to include part-span, high-lift devices

on general planforms. The description )f the modified code in-

cludes details of a doublet subpanel technique in which panels

that are close to a velocity calculation point are replaced by

a subpanel set. This treatment gives the effect of a higher

panel density without increasing the number of unknowns. In

particular, the technique removes the close-approach problem of

A

	

	 the earlier singularity model in which distortions occur in the

detailed pressure calculation near panel corners. Removal of

this problem allowed a complete wake relaxation and roll-up

iterative procedure to be installed in the code. The geometry

package developed for the new technique and also for the more

general configurations is based on a multiple patch scheme.

Each patch 'ias a regular array of panels, but arbitrary relation-

ships are allowed between neighboring panels at the edges of

adjacent patches--this provides great versatility for treating

general configurations. Preliminary tests of the modified code

are encouraging, but further tests are needed, particularly for

(	 configurations with part-span, high-lift devices.
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SUMMARY

The scope of the VIP3D program for the viscous/potential

flow analysis of multi-element wings has been extended to cover

more representative high-lift configurations. Particular ob-

jectives included part-span, high-lift devices and an improved

representation of the interference between wakes and surfaces.

To fulfill these objectives, each wake has to be fully relaxed

(i.e., made force free) and allowed to roll up; however, this

gives rise to close-approach problems associated with the poten-

tial flow panel methods. The close-approach problem arises be-

cause detailed pressure calculations near a surface represented

by singularity panels have distortions near the panel edges.

Since these distortions have a serious impact on free-wake analy-

sis, ways of removing the close approach problem were investi-

gated in the two-dimensional flow case. The investigation lead

to the development of a doublet subpanel technique in which

panels close to the velocity calculation point are represented

by a set of subpanels. Subpanels are generated on the inter-

polated surface and have singularity values interpolated from

local panel values. Subpanels, therefore, have the effect of

higher panel density without increasing the number of unknowns.

The three-dimensional form of the doublet subpanel tech-

nique and also the objectives for part-span, high-lift devices

on general planforms required the development of several new

geometry routines. A versatile and user-oriented geometry

package was developed based on multiple patches of panels. Each

patch has a regular array of panels bi;.t arbitrary relationships

are allowed between neighboring panels at the edges of adjacent

patches. The patch, panel and subpanel arrangement is continued

downstream on wakes which are allowed to relax and roll up in an

iterative procedure in the potential flow code.

ii

AL



Preliminary test cases of the modified code are encouraging

and compare closely with earlier solutions: however, fury--

tests need to be carried out, particularly for the case of part-

span, high-lift devices.
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1.0 INTRODUCTION

At present it is possible to compute the flow over simple

wings and wings with full-span high-lift devices up to incipient

flow separation using a viscous/potential flow itexation method

(Ref. 1). The computer code, VTP3D, which performs this analy-

sis, was dev(,loped by Analytical Methods, Inc. while under con-

tract's to the large-scale Aerodynamics Branch at the NASA Ames

Researcit Center. The program is designed as a special purpose

tool for the analysis of nigh-lift wing configurations.

Under a follow-on to the contract, the potential flow part:

of the computer code has been modified to allow the method to

be applied to problems that are more representative of the high-

lift configurations encountered on today's aircraft. The pri-

mary objectives were to allow --r-span higli-,L.Lft devices and

to improve the modeling of close interference, such as exists

betw:en a surface and a vortex wake.

The modified potential flow code and preceding explora::ory

work are described in this report. The new objectives required

the removal of the close-approach problem associated with prac-

tical potential flow codes; this problem and ways of treating

it are examined it Section 2.0. A doublet subpanel technique
which resulted from the investigation in two-dimensional flow

is described in Section 3.0, together with some test. cases. The

extension of this technique for the VIP3D cods: and the modified

geometry routines are discussed in general terms in Section 4.0,

while Section 5.0 includes details of the geometry ?ackage. The

latter has undergone extensive modification to conform with '„he

new singularity model and also to deal with the more general con-

figurations. Section 6.0 describes the treatment of the surface

doublet distribution. Some prf:liminary tests of the modified

parts of the code are described in Section 7.0 The general lay-

out of the VIP3D program, and in particular the viscous routines,

remain as described in Reference. 1.

i'Contract NAS2-8788.
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2.0 THE CLOSE-APPROACH PROBLEM AND ITS TREATMENT

2.1 Occurrence of the Clc,6e-A22roach I-roblum

Viscous effects and the roquirement of a force-free wake

introduce strong non-linear effects into the calculation of the

flow about high-lift configurations. The method of Reference I

is a practical approach to calculating such flows using a viscous/

potential flow iteration, but the fc.,rce-frea wake requirements are

only partially satisfied since the wake relaxation is limited to

vertical displacements.

The new objectives for more (jeneral configurations and

part-span high-lift devices make it imperative that the full

wake relaxation and roll-up be included (Refs. 2 and -.). It is

important not only to obtain the correct wa,'-n Location relative

to downstream components in a multi-eloment configuration, but.

also to get correct force-free orientation as each wake:

a wake-shedding element carrying moderate to high lift levels.

If the wake is not force-free as it leaves the surface,, then

surface pressures can be affected; for example, a cross-over

between upper and lower surfaoc pressures can be calculated

near the wing tip trailing edge when using a flat, chordwise

wake. Figure 1 (from Ref. 4) shows an extreme example of this

crossover effect with a fixeC wake in a high-lift calculation

and emphasizes the need for' a fully relaxed wake.

Filly relaxed wake calculations on high-lift configurations

can lead to situations where free vortex shouts pass very close

to the lifting surfaces, and this can result in a breakdown of

the surface singularity method. This CLOSE-APPROACH problem

was the reason behind the restriction to vertical relaxation in

the method of Reference 1.

The 1:ailure of surface s i.n(jularity rz ,.ethods J,n a close-

approach situation arises because of practical reasons: the

airfoil geometry and flow distribution have to be approximated

and the boundary conditions can be applied only at a finite
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number of points. Between the boundary condit-.on points, the
flow is unconstrained, and so the detailed flow distribution in

the model generally has local distortions. These flow distor-

tions can influence the relaxed-wake calculations in two ways:

(i) Flow distortions associated with the free vortex sheets

can influence the boundary conditions on the surface, and

hence affect the singularity solution.

(ii) Flow distortions associated with the fixed surfaces can

influence the calculated location of the relaxed wake--

sometimes even causing penetration at the fixed surfaces.

The severity of the problem increases with circulation
I	

level, and is particularly bad in regions of high curvature and

high pressure gradient. The close-approacl? problem--which is

present to a varying degree in all existing surface singularity

methods--can be alleviated (usually at the expense of rr ►ore com-
putiny effort) by increasing the number of control points (i.e.,

panels) and/or going to higher-order models.

The extent of the close-approach region (i.e., the - ion

in which flow distortions are significant) was investigated in

Reference 5 for discrete singularities. It was established that

the close-approach problem persists to a distance: of about one

panel size away from the discretized sheet. An extension of

that investigation was conducted in the present work for the

case of a distributed singularity model; namely, the symmetrical

singularity method (Ref. 6), employing piecewise linear vorti-

city and a constant source on flat panels. The symmetrical

singularity concept minimizes singularity strengths (Ref. 6),

and hence minimizes the flow distortions; even so, large pres-

sure deviations were calculated in a detailed analytic survey

of surface pressures near the leading edge of a GA(W)-1 airfoil

at 200 incidence, Figure 2(a). The location of panel edges is

identified and a smooth line passing through control point

4
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values emphasizes the extent of the region in which the close-

approach problem is significant for this model.

Figure 2(b) shows two additional pressure surveys taken

above and parallel to the surface at heights corresponding to

approximately a quarter- and a half-panel size. As the pressure

survey moves away from the surface, the extreme distortions at

the panel edges quickly reduce to small "bumps" in the detailed

distribution. (With increasing distance from the inclined sur-

face, these bumps appear to	 a sideways in the x-wise plot

because the corner disturba	 propagates normal to the surface.)

Bearing in mind that the situation shown is particularly ex-

treme (the real flow would have separated), it would seem feasible

for the close-approach problem area to be held within a half

panel size for this particular model. Even so, some local treat-

ment would be necessary to restore a smooth pressure distribu-

tion close to the surface.

An investigation of ways of removing the close-approach

problem is outlined in the following subsections. This investi-

gation considered alternative singularity models in addition to

various close-approach techniques applicable to existing models,

because the symmetrical singularity panel model considered above

is aot directly extendable to the three-dimensional case without

some deterioration in its close-approach characteristics. Al-

though most of the evaluations were performed in the two-dimen-

sional case, the form of each model for three-dimensional flow

was the major consideration throughout the investigation.

2.2 Singularity Model

Good close-approach properties in a surface singularity

model require continuous and smooth representations of the sur-

face geometry and flow distribution. These requirements con-

flict with the properties of practical singularity models, most

of which are based on panels over which a piecewise analytic

integration is performed to evaluate influen,-s coefficients.

6
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Panels are usually flat, but higher-order effects due to surface

curvature and smooth singularity distributions may be approxi-

mated using a series expansion in the integrand. Ganerally the

close-approach problem is present to a varying degree in all

these methods making it necessary to couple them with some

close-approach technique to accomplish the present objectives.

An alternative to piecewise analytic integration uses a

numerical integration scheme based on a continuous singularity

distribution over the curved surface. Such a method has no

close-approach problem concerning the representation of the

surface geometry and singularity distributions, but it does have

a problem in evaluating the ?ocal singularity contribution when

calculating velocities close to the surface.

To examine a numerical iiiii.^ ^^ tration approach a pilot code
was assembled based on a surface doublet distribution. A

smooth doublet distribution is the most convenient singularity

model for the three-dimensional lifting case because it auto-

matically satisfies the requiremnt of continuity in the vorti-

city distribution (vorticity being the gradient of the doublet

distribution). The doublet distribution and the surface geo-

metry were represented using the biquadrat.c expression (Appen-

dix A). The numerical integration s.-heme used the Romberg

method coupled with Richardson's extrapolation technique (Appen-

dix B) . it will be recalled that this method is based on the

trapezoidal rule integration, but, by continuously doubling the

number of strips, the error value can be controlled and the com-

putinc; t.), fort mi.nimized.
The main problem associated with numerical integration over

a doublet sheet is the evaluati o n of the local contribution

near the velocity calculatinr point. It arises from a unique

behavior of the doublet integrand which first goes to a large

positive value and them to a large negative value as the velo-

cicy calculation point is approached, see Appendix B. To make

the numerical scheme more effective in the pilot code, various

8



transformations were applied in a number of regions based on

the behavior of the integrand (Appendix B). The Romberg inte-

gration scheme became very effective with this treatment and

gave accurate solutions of the two-dimensional airfoil problem

with execution times comparable with piecewise analytic methods.

A three-dimensional version, however, was not as effective. Al-

though exact agreement was obtained in comparison with a method

using linear vorticity panels for several velocity scan lines

approaching the surface, the overall computing time for the

numerical scheme was an order of magnitude higher than for the

analytic scheme. Even though it seemed feasible to reduce com-

puting effort further by "fine tuning" the transformation

schemes, it was clear that considerable development time would

be needed to make the numerical ^-heme a prinrtical and fail-

safe method for the general three-dimensional configurations

envisaged. Effort was thereafter concentrated on investigating

close-approach techniques that are applicable to existing singu-

larity models. The various techniques considered arC described

in the next subsection.

2.3 Close-Approach Techniques

There are several close-approach techniques which can bc.

applied to existing singularity models to obtain smooth pres-

sure calculations between control points. Techniques considered

in the present work are described below. Details of some of

the evaluations are included for the calculated surface pres-

sures near the leading edge of a Joukowski airfoil at lo o in-

cidence; the overall pressure distribution calculated by the

symmetrical singularities method (Ref. 6) is given in Figure 3.

9
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2.3.1 Interpolation

A technique that has been used in the pest interpo-

lates between tlx: control point values to obtain intermediate

surface pressures. Likewise, off-body pressures may be obtained

by interpolating between "good" values calculated outside the

close-approach region--such a technique has been used success-

fully even with discrete singularity models.

Clearly, interpolation is a reasonable technique to apply

to attached flow single-airfoil problems (e.g., Figure 3), es-

pecially if the interpolation is performed in terms of surface

distance rather than x or z; however, in the care of multiple-

element high-lift calculations, situations exist where inter-

polation is not applicable. For example, there are no "good"

values where the close-approach re ,jions of a free wake and a

fixed surface overlap. Higher panel density may alleviate'the

problem, but would increase the number of unknowns and--if com-

puter storage: would allow such an increase--would be more ex-

pensive to run.

2.3.2 Treatment of the Panel-Edge Singularity

The main culprit behind the local flow distortions

is a logarithmic term which can become singular at each panel

edge. Under certain conditions the logarithmic singularity

terms from two adjacent panel edges cancel; e.g., when the sur-

face slope and singularity value are continuous from panel to

panel. For the more general case, an interpolation formula

was examined in which the induced velocity influence coeffi-

cients from two neighboring panels were combined linearly ac-

cording to the location of the calculation point within the

close-approach region. Results from calculations based on a

limiting close-approach distance of a quarter panel size from

the corner point are presented in Figure 4. Although consider-

able improvement is indicated over the basic solution, the

results are not acceptable for the present objectives. Further

-.
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development of this technique is possible, but any further com-

plication from the .nodel evaluated could get very cumbersome

in the general three-dimensional case.

2.3.3 Internal Singularities

Earlier investigations (Ref. 5) of discrete singu-

larities in two-dimensional flow lead to a "submerged singularity"
technique (Ref. 7) in which the close-approach problem region

was enclosed within the airfoil contoux by placing the singu-

larity sheet the appropriate distance below the surface. This

submerged distance was minimized by applying the subvortex tech-

nique (Ref. 5) as well. (In fact, the internal singularities

technique is best applied in combination with another close-

approach technique .. -in this way tho interior singularity surface

can be more closely related to the airfoil surface and this aids

accuracy.) This internal singularity technique gives a very

smooth pressure distribution (Ref. 7) and is applicable to simple

wings in the three-dimensional case, but it may be difficult to

apply to general three-dimensional configurations.

2.3.4 Corner Panels

In this technique the two panels adjacent to a close-

approach velocity calculation are temporarily replaced by three

panels. The middle panel of the temporary set straddles the

corner between the two control points (Figure 5(a)), and the

other two are the remaining halves of the replaced panels. The

singularity values for the temporary panels are obtained by

interpolation through the basic panel values.

Again, this technique removed the "spikes" in the detailed

pressure distribution, Figure 6, but the resulting distribution

is not sufficiently smooth; kinks occur at the points where the

corner panel scheme takes over from the basic panels. (The

limiting close-approach distance was a quarter panel size in

this case.)

13
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it will be observed in Figure 6 (and in Figure 4j that

the control station values ar:: not in close agreement with the

exact solution. Accuracy was later restored by placing the

control points on the airfoil surface rather than on the panel

centers, Figure 7. The corresponding corner panel irodel, Figure

5(b) was then re-c%raluaQ*%ed, but, the detailed pre-sure distribu-

tion still had kinks at the changeover stations. k:learly, to

remove these kinks would require the changeover point from one

panel scheme to the other to be moved further away from the ve-

locity calculation point, i.e., the limiting close-approach

distance must be increased. This consideration lead to the more

general technique described below and based on a number of sub-

panels.

2.3.5 Subpanel Technique

In this technique, each panel which contains the

velocity calculation point within a certain NEAR-FIELD RADIUS

from its control point is divided into a number of subpanels,

Figure 8. Subpanel corner points are obtained by interpolation

on the airfoil surface and singularity values by interpolation

through the panel values. When accumulating panel velocity con-

tributions at a given point, immediately a panel detects the

point is within its near-field radius a perpendicular is dropped

from the L.)oint to the surface. The projected point becomes the

center of a subpanel, the size of which is related to the height

of the velocity point above the surface, Figure 8. Other sub-

panels are constructed with size increasing with distance from

the point until all the near-field panels are modified. (Note:

this way of distributing the subpanels was later changed for

the three-dimensional case, see 4.2.)

The region covered by the near-field radius is necessarily

larger than the close-approach region, Figure 9, because the

velocity distribution induced by the temporary subpanel set

does not match that of the basic panel until some distance away

16
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(e.g., see Figure 5 in Ref. 5). Thus, when one panel is rep-

resented by subpanels, several neighboring panels must be

similarly treated, otherwise significt.at "jumps" occur in the

calculated velocity distribution as we pass over the near-field

boundary of each panel (e.g., as observed in Figures 4 and 6).

These jumps can be ,Wade as small as we please by increasing the

near-field radius.

Using the near-field radius as the criterion for generating

i

	

	 a subpanel set rather than the close-approach distance can re-

sult in unnecessary use of subpanels. For example, the calcula-

tion point in Figure 9 is inside the near-field radius of
!

	

	 several panels yet is outside the close-approach regions.

Clearly, the subpanel model is superfluous in such a situation,

but individual panels would no g- t,o "certain" of that :Fact unless

the geometric relationship between the point and all the panels

was tested at the beginning. Since such a test would duplica,

the evaluation of some of the geometric quantities in the panel

influence coefficients calculation, it was decided to adopt the

panel-by-panel, near-field radius test and accept the occasional

"overkill" situation illustrated in Figure 9.

k

	

	 For convenience, the near-field radius is _xj: ressed as a

factor applied to each panel length. In this way the factor

has one input value for the entire calculation, yet the local

near-field radius varies according to the size of each panel..

While the subpanel technique is an extension of the corner

panel technique, it is also a higher-order form of the subvor-

tex technique described in Reference 5. With this technique,

velocity calculation at any arbitrary point on the surface or

in the flow field never experiences a panel corner problem since

the generated subpanels are always in the ideal relationship with

the calculation point. The number of subpanels required for the

near-field calculations appears to be very small. For example,

in the case of a point on the surface, the total number of

20



influence coefficients evaluated (panels plus subpanels) is

usually of the order of five more than the number of basic panels

representing the airfoil. The subpanel pilot code was initially

based on the symmetrical singularities model (Ref. 6); i.e.,

panels of linear vorticity and constant source. This was later

converted to a doublet model which is described in the next

section.

21



3.0 DOUBLET SUBPANEL TECHNIQUE

3.1 Singularity Model
Before evaluating the subpanel technique in mor. detail in

the two-dimensional flow case, the singularity model was changed

to a surface doublet distribution to facilitate extension to the

three-dimensional case. For the purpose of evaluating doublet

values at subpanel centers, the doublet distribution is described

by a biquadratic interpolation curve (Appendix A) passing through

known values at panel control points, Figure 10(a). Thus, for

each subpanel, the central doublet value is obtained in terms of

four local panel doublet values, jii:

4

u =	 G.	 (1)

i=1

The biquadratic multipliers, Gi , are evaluated at the subpanel

center and are functions only of surface distances (Appendix A).

The linear vorticity influence coefficient routine for

panels or subpanel.s is retained from the earlier code (see Ap-

pendix C), but the vorticity is now evaluated as the gradient

of the doublet distribution with respect to surface distance.

Clearly, the vorticity value could be obtained by differentiat-

ing the biquadratic expression directly (Appendix A), but such

treatment of high-order curves is not always reliable. An al-

ternative approach adopted here and based on a local quadratic

curve passing through three subpanel  doublet values, Figure 10

(b), makes use of the fact that the panel doublet values have

been augmented by the biquadratic interpolation for subpanel

values; that is, the vorticity value at the middle subpanel is

y M =-311/3s = (} 1A S 2/S1 - 11C S
1/S 2 )/(S l + S2)

+ 11M (S 1	 S 2 )/S 1/S 2	(2)

22



N	 N	 J
C	 C	 J

W Z

V

Z
4=

h W

l lw z
^u4

p
	 G

N
W
Z
OG
0

ui
Z

W.	 CL.
w

z
d
HN

W
U
d

D
kn

r

.-	 C

^ C

W
D
..9

H
W
J
an

00

w P

w f-

W0 Z

0 C6.NCd
LU

W
Z

W ^
-Zg^

..l

Q
W
Z
a Z

r

42 w 
J

a
AA

Z;N z

r	 ^

O

S
J
Q

` W O
W
H^Z

W

CL
1 176

4
O

Z

m A
O	 ^4

En
H
Q

N
a-►

J Or-i

F-	 O
w A

D	
rVd
ua

W	 U)
Z
a
CL.	 4-3
_	 4-,

O

a-►
ce

Z ro
O N
F-	 H

0 O

W
N
Z	 ^4
.r	 CT
p	 •rl
...	 w

23



u
	

PA

LOCAL. QUADRATIC CURVE PASSES
THROUGH SUBPANEL DOUBLET VALUES

PM
SUBPANEL
DOUBLET VALUES

zuc

— S 1 —^""	 S 2 --	 SUBPANEL CORNERS
s

LOCAL SURFACE LENGTH
INTERVALS BETWEEN SUBPANEL CENTERS

(b) LOCAL QUADRATIC REPRESENTATION FOR EVALUATING VORTICITY

Figure 10. Concluded.

24



and the vorticity gradient is

Y' M = -
32u

/Ds2 - 2 j uM/SlS2 - (UA/Sl + uC/S 2 )/( Sl + S 2 ) ^ (3)

Since each subpanel doublet value (viz., uA, PM, PC ) is

known in terms of a set of four local panel values, Eqn. (1),
then the linear vorticity influence: coefficients (Appendix C)
for subpanels can be immediately expressed in terms of panel

doublet values.

3.2 Boundary Condition

With a smooth doublet distribution on (and with doublet

axes normal to) a closed surface there are two equivalent ways

of applying the exterior tangential flow boundary condition:

(i) the exterior Neumann boundary condition in which the normal

velocity component is set to zero, and (ii) the interior

Dirichlot boundary condition in which the interior velocity po-

tential is set to a constant (e.g., 0).

The Neumann boundary condition when applied to a surface

doublet or vorticity distribution is weak in the region approach-

ing the airfoil trailing edge. This often leads to local devia-

tions in the solution. The problem does not occur for the al-

ternative interior boundary condition, and so from this stand-

point, the latter boundary condition is to be preferred. In

addition, since the Dirichlet form works with a scalar quantity

(velocity potential) rather than a velocity vector, computing

effort and storage requirements are minimized. However, with

this approach, the surface velocities are obtained from the

gradient of the velocity potential and this might introduce in-

accuracies in the general three-dimensional case. At this tame,

therefore, and because the VIP3D program is set up for it, the

Neumann boundary condition is used here. The possibility of chang-

ing to the interior boundary condition will be kept in mind for

23



a future modification subject to the availability of a reliable

way of obtaining the surface velocities in the general case.

Use of the Neumann boundary condition requires that the

ill-conditioning be alleviated in the equations leading to the

solution of the panel doublet values. The cause of the problem

can be narrowed down to a certain part of the doublet distribu-

tion; by considering a typical doublet distribution on the sur-

face of a lifting airfoil we can identify symmetrical and anti-

symmetrical parts with respect to surface distance from the

trailing edge, Figure 11. The symmetrical part can be associated

with the airfoil thickness or displacement effect, while the

antisymmetrical part is closely related to the circulation. Be-

cause the normal velocity component is continuous, passing

through the doublet sheet, it can be shown (see Apendix D) that

the Neumann boundary condition equations for control points near

the trailing edge are ill-conditioned only for the solution of

the symmetrical part. It will be recalled that when the surface

pressures from the doublet solution become inaccurate .near the

trailing edge, it is usually observed that the pressure difference

between upper and lower surfaces (i.e., the circulation or anti-

symmetric effect) is correct.

In the symmetrical singularities method (Ref. 6), the anti-

symmetrical doublet distribution is represented by a symmetrical

vorticity distribution (being therg adient of the doublet distri-

bution) while the symmetrical doublet distribution influence is

represented by a symmetrical source distribution. Both the

source and vorticity components are solved using the same number

of boundary condition equations as there are panels by applying
the symmetry constraints. In an earlier code (Ref. 7), the sym-

metrical source distribution was actually applied at the begin-

ning as a simple function of the rate of change of thickness.

The applied source influence when combined with the onset flow

was found to be adequate in stabilizing the doublet solution.

In the present work, the presence of the source singularity is
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undesirable; it is more convenient to work with the total doublet

distribution for the purpose of shedding circulation from free

edges, such as flap edges, wing tip, etc. To maintain a stable

solution with the Neumann boundary condition, therefore, an ap-

proximate symmetrical doublet distribution is applied (by the

program) at the beginning based on the flow about a symmetrical

Karman-Trefftz airfoil at zero lift. The Karman Trefftz section

is constructed having the same trailing-edge angle and cross-

section area as the actual airfoil. In this way the solution

part of the doublet distribution i3 concerned primarily with
the (antisymmetric) circulation component, but has small adjust-

ments because the applied symmetrical component is not exact

for that particular airfoil. (The solution part could be re-

duced even further by simply notting the Karman-Trefftz section

at the appropriate angle of attack--rather than zero--when eval-

uating the applied doublet distribution.)

3.3 Test Cases
As a searching test of the subpanel technique, a vortex/

surface interaction calculation was chosen in which a prescribed

vortex was positioned close to a Joukowski airfoil. The vortex

location was x = .15c, z - .125c, and its strength was .2fr. The

vortex flow was combined with an a :: 10 0 onset flow. Thirty

panels were used in a cosine spacing, and the near-field radius

factor was set to 3.

The ability of the subpaneling scheme to provide smooth

velocity calculations anywhere is very apparent in Figure 12(a),

which shows calculated streamlines. The streamline calculation

method is one developed during the course of the work (Appendix

E). Three starting points were selected as shown in Figure 12

(b). The forward point gives a streamline that on the upstream

part passes very close to the leading edge, and in the down-

stream part climbs over the vortex before dropping to the air-

foil surface which it follows very closely back to the trailing
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edge. Details of this streamline (and the second streamline)

in the leading-edge region are given in the inset in Figure 12

(a). The first streamline passes very close to the surface, well

within the spacing of the control points. The lane is very

smooth, even though the velocity calculations have been perfor-

med at a number of "arb.4 trary" positions. The second streamline

is clearly very close to the stagnation streamline and essenti-

ally follows the surface with one or two miner oscillations. As

the calculation proceeds from the starting point, this second

streamline hits the airfoil very steeply, and yet quickly takes

*gip 'the surface direction, a very searching test for both the

streamline calculation prooudure and the velocity calculation

routine. On the downstream side, this second streamline follows

the surface back to the trailing edge.

The third streamline forms a closed loop round she vortex

and does several turns (total streamline  length specified is

2.5 chords) before accumulating errors eventually allow it to

escape downstream along the airfoil surface.

The surface pressure dstributior corresponding to this

calculation is shown in Figure 12(b). Intermediate velocity

calculations are indicated by triangles to distinguish them

from the basic control-point values. These additional calcula-

tions, made po-;sible by the subpaneling te.,'-: ique, clearly de-

fine the details of the three suction peaks and three stagnation

points. The control point values in some of these areas would

have been inadequate--particularly in defining the suction peak

located beneath the vortex. Clearly, the interpolation tech-
nique (2.3.1) would have been incapable of constructing these

details given only the panel control point values. An axact

solution for this type of problem has been provided by ur. V.J.

RosLow at NASA Ames Research Center (Ref. 8). The solution is

obtained by a transformation technique and gave the results for

a CLARK-Y section.
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Figure 13(a) compares the exact and calculated streamlines

for a vortex and sink. The sink, which is coincident with the

vortex, provides the necessary stabilizing force to keep the

vortex in equilibrium in the exact analysis. The sink influence

was included in the pilot code for this calculation. The stream-

line calculations (using the procedure described in Appendix E)

show very close agreement with the exact lines. Figure 13(b)

shows the close agreement between the calculated and exact pres-

sure distributions for this case. The calculated pressures are

at arbitrary stations (i.e., not necessarily at control points)

and closely represent the multiple stagnation point and peak

suction features.

These calculations clearly demonstrate the effectiveness of

the subpanel technique in a problem situation that is pertinent

to the multi-element high-lift configuration analysis; viz.,

vortex/surface interaction. The main features of the technique

are suiz-mmar:ized below.

(i) Subpanels offer a closer representation of curved sur-

faces and smooth singularity distributions than is

possible with practical panel densities.

(ii) Subpanels give the effect of higher panel density

without increasing the number of unknowns.

(iii)Subpanels give a "higher-order effect", yet maintain

simple influence coefficient expressions.

(iv)A panel's subpanel set is used only when a velocity

calculation is performed within a small near-field

radius from the panel's center (e.g., within three

panel sizes away). This minimizes computing effort.

(v) Smooth velocity calculations are obtained with reason-

able panel density, even in the case of the vortex/

surface interference problem. Features of the inter-

ference pressure field are closely represented even
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though the control points have not been specially

located relative to the vortex position.
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4.0 OVERVIEW OF THE VIP3D CODE MODIFICATIONS

4.1 General

The new work concerns only the WBOLAY part of the overlay

structure in the VIP3D program (Ref. 1); boundary layer routines

are unaffected. The potential Mow routines--including the geo-

metry package--have been modified and new routines added in ac-

cordance with the new objectives and the new singularity model.

The flow chart for the initial calculations covering the geometry

specification and potential flow solution is shown in Figure 14.

The program modifications and new capability are described

in general terms in the following subsections. Details of the

new work are given separately in later sections.

4.2 Geometxic Model

The geometry routines in VIP3D have been extended to satisfy

the new objectives concerning more general configurations and

also to be compatible with the new close-approach singularity

model. For these purposes--and also as a convenience to the

user--a configuration is now broken down into more parts than

before. In descending order of size, these parts include as-

semblies, components, patches and wakes, panels and, finally,

subpanels. The nature and purpose of each of these parts is

discussed in the following paragraphs, but not necessarily in

the same order as in the list above.

The program may be applied to a configuration having a num-

ber of COMPONENTS; e.g., wing, slat, flap. A component is the

smallest part of a configuration for which integrated load and

moment information is given in the program output. Neglecting

at this time the effects of structural attachments such as be-

tween a slat and wing, components are normally regarded as sepa-

rate parts of the configuration, but this need not be so. As a

user convenience, the surface of a configuration may be continu-

ous from component to component, thus allowing integrated forces
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and moments to be evaluated for just part of a wing or for a

winglet, for example. Contiguous components are collected to-

gether into ASSEMBLIES within the program to allow the doublet

distribution to be described continuously over the connected

surfaces.

As in the earlier code, the basic unit representing the

surface of each component is the PANEL. Panels have four

straight sides, but one of the sides may be of zero length. In

the new code each panel may be subdivided into SUBPANELS for the

purpose of near-field calculations. The subpanel scheme differs

from that described earlier in 2.3.5 by having a fixed subpanel

set formed and stored for each panel at the beginning of the

analysis. This change was made because a complete regeneration

of subpanels for each near-f.io7 l velocity c:aLnulation, while

practical in the two-dimensional case--the computing effort

being relatively small--could become unacceptable in the three-

dimensional case where the calculations are more involved.

Figure 15 shows a section through the new subpanel scheme

for comparison with the earlier model in Figure 8. The subpanels,

which are generated automatically within the code, form a "square"

array within each panel with an odd number per side. This ar-

rangement ensures the central subpanel of a set falls in the mid-

dle of the panel; the center point and unit normal vector of this

subpanel are then adopted by the panel for its control point geo-

metry. This treatment places the panel's control point very close

to the surface rather than on the panel; the advantage of this

was observed earlier in Figure 7. The subpanel sides are straight

but the corners lie on the interpolated surface represented by a

two-way biquadratic scheme. Compared with the panel model, there-

fore, the subpanel set represents surface curvature more closely.

New routines installed in the code to interpolate and dif-

ferentiate the surface doublet distribution require information

concerning neighboring panels. Similar information is required

when redistributing the boundary layer displacement source values
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at the panel centers, and may be anticipated for the future in

connection with surface streamline calculations. The most effi-

cient way to locate aeighboring panels is to arrange the panels

in a "rectangular" grid of rows and columns (i.e., equal number

of panels in each column). Stich an arrangement, however, lacks

versatility when considering general configurations. A com-

promise has been reached in the new code by the use of PATCHES

of panels, each patch having a rectangular array of panels.

Awkwardly shaped components may be represented by several patches,

whereas simple shapes, for example, the entire main surface of

a swept tapered wing, may require just one patch. Figure 16

shows a typical breakdown of a high-lift configuration into com-

ponents and patches. Parts A, B, C and L are typical patches on

Component 2. The main surface— ,f component.;: 1 and 3 may be

formed by single patches; additional patches may be used to cover

the open ends (shaded).

The developed (i.e., "opened out") shape of a patch should

be roughly four-sided to keep panel shapes and distributions

reasonably regular. This does not exclude the presence of kinks
in any or all of the patch sides, but kink angles should not be

large (the upper limit has not been established, but for the

time being 60 0 should be regarded as a large kink angle). One

side or two opposite sides of a patch may be reduced to zero

length provided the overall patch shape is reasonably .regular.

Figure 17 gives some basic guidelines for acceptable patch shapes.

The versatility of the patch scheme is ensured by allowing

arbitrary relationships to occur between neighboring edge panels

across patch joints, Figure 18. Automatic procedures (described

later in 5.4.3) have been developed in the code to select "pre-

ferred" neighbors from edge panels on neighboring patches. Only

edge panels on patches within the same assembly of components

are considered as poss-Lble neighbor candidates. (This distinction

is necessary in the automatic procedure to avoid the possibility
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of, say, a slat panel being selected as a preferred neighbor to
a wing panel.)

A number of factors contribute Lo the usability of the
patch scheme; in particular, options are provided for automatic
paneling and also for automatic patch generation in special situ-
ations, e.g., wing tip. These options, which are described later
in Section 5, are activated by setting a few integer flags in
the input dock; they offer a very convenient mode oi operation
for a minimum of data preparation. These options are provided
without sacrificiag the basic simplicity of the input format.

The surface doublet distribution pasF.es continuously onto
WAKES representing the shed vorticity sheets frcm each component.
Initial wake geometries are generated within the program follow-
ing a small amount of user inpilf-	 This info i.m^,(Aon is needed to
form an initial representation of the often complicated wake ar-
rangements seen at part-span flap cutouts and edge separations.

Each wake is in two parts; a near- and far-wake. The near-
wake starts at the wake shedding line on the component and ex-
tends downstream a short distance be frond the end of they

 The near-wake, which is similar to a patch, has panels
and, for close-into--ference calculations, subpanels (Figure 19).

The far-wake model extends from the end of the near-wake
back to downstream infinity and is represented by semi-infinite
vortices (i.o., a piecewise constant doublet model). These vor-
tices are attached to wake paned corners at the end of the near-
wake. The far-wake requires no detailed representation since
it is remote from the regions of interest.

The simple wake shape iteration in the earlier code allowed
vertical movements only. The new singularity model has lifted
that restriction so the new wake Shape iteration, which involves
the potential flow code only, now allows full roll-up in the
near-wake.
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4.3 Singularity Model

The piecewise constant source and vorticity model in the

V1P3D program has been replaced by a continuous surface doublet

distribiition incorporating the three-dimensional forms of the

subpanel close-approach technique. With the fixed subpanel sets

of this latest technique (4.2) it is possible for a calculation

point to approach the edge of a subpanel. The interpolation

technique described in 2.3.1 is therefore coupled with the

scheme using velocities calculated above local subpanel centers.

Interpolation within the subpanel system is acceptable because

the associated close-approach problem area is considerably

smaller than that for the basic panel system.

Each subpanel is associated with a two-part doublet value

located at its center point; thc. applied symmetrical part is

evaluated at the beginning (3.2) according to the local chord-

wise geometry, while the solution part is initially described in

terms of biquadratic interpolation multipliers applied to a local

set of panel doublet values. These multipliers are evaluated

from a two-way biquadratic interpolation scheme passing through

panel doublet values (solution part) located at control points

where the surft:e boundary condition is applied. The panel's

applied doublet part is provided by tr.e middle subpanel in its

set.

The total doublet value (applied plus solution) occurring

at the trailing edge is passed onto the wake panels. The result-

ant doublet value (i.e., between upper and lower surfaces at

the trailing edge) is held constant in the streamwise direction

for each column of wake panels.

4.4 Solution Procedure

The solution procedure in VIP3D remains essentially un-

charged except that we now solve for panel doublet values. The

matrix routine, therefore, calls a new influence coefficient
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procedure (described later in 6.3). When the doublet solution

is obtained, it is immediately combined with the applied doublet

values prior to the pressure distribution calculations.
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5.0 GEOMETRY ROUTINES

This section describes the way the modified geometry rou-

tines treat the various parts of the configuration. Details are

included to emphasize the versatility of the new routines. The

discussion is user-oriented to help in applying the new capabil-

ity to general configurations.

The reference coordinate system used in the original code

is maintained here but ,a now referred to as the general coordi-

nate system, or G.C.S., to distinguish it from two other refer-

ence systems, namely, the component coordinate system, or C.C.S.,

and the section coordinate system, or S.C.S. These other systems

are described in this section and are provided as a user con-

venience for specifying the geometry of a configuration.

5.1 Components

When defining the surface geometry of a configuration, each

component may be described in its own local coordinate system

for convenience. This also allows components to be relocated

at a later date with minor changes to the input deck, for ex-

ample, a slotted flap may be moved to a different setting.

The component specification starts with the appropriate

transformation information which converts from the component

coordinate system (referred to as C.C.S.) to the general coordi-

nate system (referred to as G.C.S.). This information includes

(i) the translation vector, (CTX, CTY, CTZ), which is simply the

origin of the C.C.S. expressed in the G.C.S., (ii) the scaling

factor, and (iii) the rotation angle, A, about a hinge line vec-

tor, h, Figure 20. Provision is made for the user to specify

two points on a general hinge line vector (in the C.C.S.), other-

wise the y-axis in the C.C.S. is used. Both the scaling and the

rotation are applied in the C.C.S. prior to the translation.

This component transformation is performed at the end of the

geometry input routine, i.e., after the basic geometry of the

complete configuration is assembled.
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5.2 Patches

5.2.1 Convention

We have seen (4.2) that a patch is basically a four-

sided shape when developed or "opened out". it must always be

regarded as such, even if one of the sides or two opposite sides

are made zero or if some of the sides have kinks. In the follow-

ing discussions patches will often be regarded as rectangular--

this is purely a convenience for discussing relationships and is

not a shape restriction. Our view of the patch will always be

from the outside, i.e., looking onto the surface from a point in

the flow field.

For convenience, a patch is defined in terms of a "chordwise"

and a "spanwise" direction, Figu?u 21. These Oirections are

analogous to the conventional wing layout, but, in the patch con-

text these directions are not restricted to the x and y direc-

tions, respectively. For example, on a patch representing the

wing tip, the "spanwise" direction will probably be in the wing

chordwise direction and the "chordwise" direction will be ver-

tical.

Patch geometry is defined using chordwise lines called

SECTIONS. (These are described later in 5.2.2.) A set of sec-

tions distributed spanwise across a patch defines the patch

surface. The convention adopted here is that points defining

a section shape proceed from top to bottom, Figure 21. (In

the case where a patch represents the main surface of a wing,

this convention causes the points defining each section to pro-

ceed from the trailing edge lower surface and finish at the

trailing edge upper surface, i.e., as in the original program.)

In our view of the patch, the order of the sections always pro-

ceeds in the positive spanwise direction; however, for user con-

venience, we allow the spanwise direction to proceed either

from left to right or vice versa, Figure 22. As we shall see

later (5.4.3), it is important that the program distinguishes
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between the two possibilities so we set a patch IDENT parameter

to +1 if the spanwise direction is selected from left to right

k	 (i.e., root to tip in the wing convention) or -1 if the direc-

tion is right to left.

MFor the purpose of automatically connecting panels from -one:

patch to another, it is important to identify patch sides. The

convention adopted here is that the first and last sections de-

fining a patch correspond to sides 1 and 3, respectively, while

the patch top and bottom correspond to sides 4 and 2, respect-

ively. With this convention, the order of the sides is anti-

clockwise when IDENT is +1 and clockwise when IDENT is -1, Figure

22. The order of the corner points follows the same sequence as

the sides, start:.nq with 1 at t i, i:op of sic ; .

Panels and subpanels take tL,... same side a icl corner point

convention as their parent pat.^h. For convenience, the panels

are referred to in ROWS--which run spanwise--and COLUMNS----which

run chordwise, Figure 22. Panel arrangements within a patch are

referreded to by ROWS X COLUMNS.

5.2.2 Sections

Each section of a patch may be defined in its own local

coordinate system, .referred to as the section coordinate system,

or S.C.S. The user provides the necessary information to trans-

form from the S.C.S. into the C.C.S. at the beginning of each

section. This transformation is performed immediately a secticn's

geometric description is complete. This transformation is sepa-

rate from that described earlier in 5.1 in which the c:.ompletB

component is converted into the G.C.S. (at which stage the S.C.S.

geometry is discarded). This double transformation--both levels

of which are optional--offers useful flexibility when preparing

the input data. One particular advantage is that the geometric

relationships--especially the rotation,--are kept :reasonably

simple without sacrificing generality.

1
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The information required to transform from the S.C.S. into

-the C.C.S. (see Figure 23) consists of: M the translation

voctor, (STX, STY, STZ), which is the position vector of the

S.C.S. origin expressed in the C.C.S. coordinates; (ii) a scaling

lactor (default 1.0) which is applied in the S.C.S.; (iii) the

rotation angle (0, degrees) about the y-axis of the S.C.S.; and

(iv) the angle ( gyp, degrees) in the C.C.S. x-y planer between

the projection of the S.C.S. x••axis and the C.C.S. x-axis.
The contour line of each section is defined by a set of

BASIC POINTS, (BX 1 BY ? BZ). These points may be used directly

as panel corner points, i.e., MANUAL PANELING, in which case

the user must take care over the number of input points. Al-

ternatively, an AUTOMATIC PANELING ROUTINE, or A.P.R. (described

in 5.4.1) may be activated which interpolates through the basic

points to 
form a new set (if points corresponding to panel and

subpanei corner points. (Note, this is just a temporary set

as the user may opt, to use the A.P.R. in the spanwise direction

as well, in which case the section points do not riek cessarily line

up with panel edges.) Subpanel points are always obtained by

interpolation whether or not the A.P.R. has been activated.

No matter which paneling option has been selected, basic

points should be reasonably dense in regions of high curvature,

such as near the wing leading ed.je.

Several options have been provided for defining the basic

points and these, in combination with th( , two-stage transforma-

tion described above, provide great flexibility when preparing

the input. The options may be exercised at the section level

so the input form may be changed from section to section. The

options available at this time are described below and are con-

trolled by the value of INPUT. INPUT values of 1 through 4 are

illustrated in Figure 24 together with instances for their use.

INPUT values of 1, 2 and. 3 are used when a section lies in

one of the reference planes of the chosen S.C.S.; in these

cases we have a constant coordinate, X ., Y, or z, respectively.

54



C.C.S.

Z = CONSTANT PLANE IN THE
COWONENT COOODIWvE SYSTEM

^„ y -AXIS OF THE SECTION
I	 y ^,.,._. COORDINATE SYSTEM IS

PARALLEL TO TIDE C.C.S.
X - Y PLANE

STX ,STY, STZ

PROJECTION OF S.C.S. X - AXIS
ON Z = CONSTANT PLANE

X

x

VIEW IN DIRECTION OF S.C.S. Y- AXIS

Fiqure 23. Section Transformation Into C.C.S.
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With one coordinate fixed we need input only two coordinates for

each basic point, e.g., y and z when INPUT - 1. Provision is

made to specify a third quantity to give a local adjustment to

the "constant" coordinate, e.g., when using INPUT = 2 we may
specify x, z and 6y. Usually the S-quantity is left blank

(i.e., 0). The basic value for the constant coordinate is zero

until the section points are transformed into the C.C.S., so

the value of that coordinate in the C.C.S. must be provided in

the transformation information.

INPUT value of 4, which requires all three components of

each basic point position vector, is used when defining a com-

pletely arbitrary section shape.
INPUT values greater than 4 are provided and access a NACA

four-digit equation to automatically generate a symmetrical
section, the thickness/chord ratio having value INPUT/100 (i.e.,

there is a lower, thickness limit of .05c). This option was

originally used to check out the geometry routines but it has
been left installed as a possible future convenience--other

equations could be substituted easily. The y coordinates are

generated in the INPUT = 2 format, i.e., x, z with y = 0.

Zero or negative INPUT values allow the present section's

basic points to be copied over completely from any previously

defined section. The section number is (-INPUT) except when

INPUT W 0; the latter copies ovec the points from the section

just completed. The section number specified is the absolute

number from the beginning of the input and includes other copied

sections as well as sections which may have been generated auto-

matically. If the section counting becomes complicated, alter-

native ways of copying are available as described later in 5.3.1.

The basic points are copied from the S.C.S. set (i.e., as crigin-

al.l ,y :specified) and are then transformed to the present C.C.S.

according to the new section's transformation information.

57



5.2.3 Churdwise Sljoni^_B2L _

The basic points defining a section may be assembled
in a number of CHORDWISE REGIONS for the purpose of controlling
the panel density and distribution on that section. In addition,
the option on manual or automatic pane.'ing is selected at the
chordwise region level, allowing the user to switch from one to
another within each section vnerever he chooses. Chordwise
regions are used only as an input convenience and are discarded
in the program as soon as the surface paneling is complete.

A chordwise region must end on a basic point called a NODE

POINT, Figure 25. A NODE CARD, containing the chordwise region
paneling information (see below), inserted after a basic point
in the input dock identifies that point as the end of a chord-
wise region Nude points are usually placed at "problem" areas
where larg( velocity gradients are exput.-ted to occur, e.g., flap
hinge line, leading edge, close-interference regions, but the
user can place them wherever he wishes to change from one panel
scheme to another. Four types of node point are provided at this
time and are described below.

The information on a NODE CARD consists of just three inte-
gers.

W NODE IC identifies the node point and its type..

(ii) NPANC is the numbu., of panels to be generated by

the A.P.R. in the chordwise region just com-

pleted--a zero value gives manual paneling.

(iii) ISPAC controls the form of the distribution in the

automatic paneling mode and is inactive: ,in

the manual paneling mode.

(The C on the end of each quantity distinguishes the chord-

wise from the corresponding spanwise quantities, which end in S,

5.2.4.)
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NODEC values of I or 2 specify the end of a chordwise

region witho resi •tively i continuous or discontinuous surface

slope onto the nex,. chordwise region. These values are, there-

fore, used only on regions ending in the interior of a section.

The last point on a section is specified by NODEC = 3 and is

-the only node paint that must always be specified even if manual

paneling has been selected. Negative NODEC values are also per-
mitted and initiate a special copying routine described in 5.3.1.

Four panel spacing options are provided in the A.P.R. The

action of ISPAC values cf 0, 1. and 2 is illustrated in Figure 26

and is based on the cosine distribution giving increased panel

density towards, respectively, the beginning and end, the begin-

ning on:y, or the end only, of the region. Equal spacing

throughout the rolion is provided by ISPAC = 3. Coupled with

the flexibility offered by the choice of chordwise region loca-

tion, these spacing options have proved adequate so far; however,

other options could easilybe added should the need arise later,

e.g., one based on increments in integrated surface curvature, or

on increments i.n doublet value from a preliminary two-dimensional

solution for the section.

Clearly, node cards provide the user with an extremely

versatile: paneling tool. With one card deck of basic points

defining the configuration geometry, he can, from run to run,

change the form of the paneling simply by changing two integer

values on each node card. Not only that, he can also move nrde

cards within the deck (but not the node cards at section ends)

or remove some or add new ones from run to run. This allows the

user to concentrate his paneling in areas of interest, leaving

other areas more sparsely paneled. It thereby provides a very

effective use of the limited nuiaber of panels available, yet,

on a subsequent run a few small changes to the node cards allow

the emphasis to be switched to another area without having to

punch a new basic geometry c7rd deck.
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Figure 26. Spacing Options 0, 1 and 2 in the A.P.R.
61



There is just one important ground rule for the use of node

cards; the total number of panels (automatic and/or manual) on

each section of a patch must be the same. The total is, in fact,

the number of panel rows, NROW, for that patch. The program

monitors the number of panels on each section and the calcula-

tions are terminated with an error message should the user make

a mistake. Provided this ground rule is satisfied, it is not

necessary for the panel distribution to be the same from section

to section--in other words, the number of chordwise regions and

their node information can vary from section to section. The

significance of this will be illustrated in 5.4.1.

5.2.4 Spanwise Regions

Sections defined within each patch may be assembled in

a number of SPANWISE REGIONS for the purpose of controlling panel

density and spacing in the spanwise direction. In forming span-

*.,.,ise regions, sections defined by the user take on a similar

role to that of basic points in the chordwise regions. Although

the options available for the spanwise regions are essentially

the same as described for the chordwise regions in 5.2.3, the

two are applied completely independently; for example, the user

may request automatic paneling in the chordwise direction and

manual in the spanwise direction. As in the case of chordwise

regions, spanwise regions are usad only as an input convenience

and are discarded once the paneling is complete.

spanwise regions must end at user-defined sections, called

NODE SECTIONS, Figure 27. These usually coincide with kinks in

the spanwise direction on the patch planform, but the user can

place one whenever he wishes to change the form of the paneling

or to change between manual and automatic paneling in the span-

wise direction. For convenience, the spanwise Y,ca information

is included on the section card together with the section trans-

formation information (5.2.2). The function of tht spanwise

region node quantities, NODES, NPANS, ISPAS--distinguished from
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INTERA*DIATE INPUT SECT"

Figure 27. Spanwise Regions on a Patch.

63



the corresponding chordwise quantities by ending in S--follows

closely the description in 5.2.3. NODES, however, must be set

to zero (blank) on the first section of a patch and on all inter-

mediate input sections that are not node sections. (NPANS and

ISPAS are then inactive.) The last section on a patch is identi-

fied by a NODES value of 3, 4 or 5; 4 is used if the patch is

the last one on a component and 5 is used if the patch is the

last one on the configuration, in which case the present section

completes the basic description of surface geometry.

The total number of panels defined (manually or automatic-

ally) across each patch in the spanwise direction is monitored

by the program and becomes the number of panel columns, NCOL, for

that patch. In view of the ease of generating panels, the code

also monitors the running total of panels, and if a limit is

exceeded, the calculation terminates with an appropriate error

message. The limit is set internally by the storage capacity,

but the user is given the opportunit y to override that value

with his own estimate of the total he intends to use for that

case. In the event of an input error, this will avoid the in-

advertent and expensive use of, say, 1,000 panels when the user

intended using only 100.

5.3 Special Routines

The geometry routines described above may be applied for

the complete configuration; however, special routines have been

provided to reduce user input and, in particular, to avoid du-

plicating information already supplied. These routines, which

are described below, are optional.

5.3.1 Copying Routine

We have already seen (5.2.2) a copying facility acces-

sible at the section input level. This copies over a complete

section, including the chordwise region information, and has,
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therefore, a rather limited application. More general copying

routines are provided and are activated at the basic point level

to copy STRINGS OF BASIC POINTS, rather than complete sections.

This capability allows a new section to be assembled from ads

of previously defined sections. Several strings of basic points

may be assembled from a number of previously defined sections and

the points selected need not follow the same direction as origin-

ally specified. Furthermore, the copied strings of points may

be intermixed with strings of manually input basic points to

complete the new section.

For this copying mode, the value of INPUT on the section

card (5.2.2) must be in the range 1 to 4. The copying is acti-

vated by inserting a NODE CARD having a NEGATIVE sign on NODEC.

This is regarded as a DUMMY node card because it does not neces-

sarily terminate a chordwise region (see below). The negative

value for NODEC determines the action at the end of the copied

string of basic points. If NODEC = - 1 or -2, then the last

copied paint ijecoirtes the end of a chordwise region on the new

section and signifies, respectively, continuous or discontinuous

slope onto the next chordwise region. We then continue to spec-

ify further basic points, or, by inputting another negative node

card, we can copy another string of basic points, and so on. If

NODEC = - 3, then the last copied point in the string completes

the new section.

If the user does not require a chordwise region to end

at the last point in a copied string, then he sets NODEC = - 4

when he initiates the copy. When the string has been copied

over, the program then expects to receive further basic points

to complete the chordwise region or another negative node card

can be used to copy another string of points, and so on. Clearly,

if NODEC = - 4, then the NPANC and ISPAC values on the NODE CARD

are inactive and may be left blank.

Whenever a negative node card is inserted, it must always

be followed by a COPY CARD containing the following information
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(four integers) defining the location of the required string of

points, IPCH, ISEC, IB, LB.

IPCH is the patch number containing the required points.

ISEC is the section number relative to the start of that

patch.

IB, LB are, respectively, the first and last basic point

numbers (inclusive) defining the string. The number-

ing is relative to the start of the section ISEC.

Thus, even in a complicated configuration, it is relatively

easy to specify a string of basic points.

This option offers not only an alternative to the earlier

copying routine, but also a more general capability because the

copying is initiated at the basic point input level, rather than

at the section input level. For example, the complete copied

section need form only a part of the new section, it being pos-

sible to have other basic points, both before and after the

copied string. In additicr to this, the ability to break the

copying into strings of points allows a new distribution of

chordwise regions to be selected.

One restriction must be considered when using this copy

routine--the new section's value for INPUT must coir_cide with

the INPUT values on sections frciu which strings of points are

to be copied. This restriction has not posed a problem so far,

but if it does, it would not be too difficult to remove it.

An example of the use of this copy routine will be shown in

the test case in 7.1.

5.3.2 Automatic Patch Generator

Patches covering tip edges, flap edges, cutouts, etc.

can be input by the user as ordinary patches, but this can get

tedious. Optional automatic procedures have been installed which

simplify this input by generating a complete patch within the
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code. This AUTOMATIC PATCH GENERATOR, or A.P.G., is initiated

at the patch input level by inserting a non-zero value for para-

meter, MAKE, on the patch data card. The value of MAKE identi-

fies the patch number on the edge of which a closing patch is to

be generated. The sign of MAKE determines whether the new

patch is on side 3 (positive) or side 1 (negative) of the basic

patch.

Consider, for example, d tip-edge patch. Here we have al-

ready defined the patch representing the main surface. The end

section of that patch provides the BASE SECTION from which the

A.P.G. creates the new patch, Figure 28(a), according to user

instructions. When the A.P.G. has been activated, the next

card must contain the following:

NPANC, ISPAC, KURV, NODES, NPANS, ISPAS.

Referring to 5.2.3 and 5.2.4, the generated patch has one chord-

wise region with NPANC panels spaced according to the value of

ISPAC. It has one spanwise region with NPANS panels spaced

according to ISPAS. The value of NODES must be either 3, 4 or 5,

depending on the location of the patch in the input. The func-

tion of KURV is described below.

Sections defining the new patch are created automatically

from the base section coordinates. The contour of each section

generated may be either a straight line ("square-cut" tip) or an

ellipse, depending on the value of the quantity, KURV, supplied

by the user. If KURV is 0, sets of basic points are generated

on straight lines joining upper and lower points on the base

section. The same number of points is created even if the inter-

val across the base section is zero (e.g., at the leading and

trailing edges), Figure 28(a).

If KURV is 1, the basic points are created on semicircles

having diameter equal to the local "thickness" of the base sec-

tion.
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!	 Figure 28. Automatic Patch Generator.
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If KURV is gxeater than 1, the basic points are created on

semi-ellipses; the Lase section local. thickness provides one

axis, while the semi-axis is derived from additional user input.

A planform shape is input using a set of coordinates, xi' yi'
i = I f KURV, defined in a convenient local coordinate systeia

with origin at the trailing edge, Figure 28(b). The scale and

point distribution are completely arbitrary, so the points may

be conveniently measured from a planform view of the wing. The

program scales the shape to fit the length of the basic section

and interpolates to find the local semi-axis for each ellipse.

KURV may also take a negative value. The generated patch

then uses the copying routine (5.3.1) to locate the four sides

of the new patch. In %:his case we input for each side a copy

card containing the four integers, IPCH, ISEC, IB, LB, to locate

four strings of basic points on previously defined sections.

The A.P.G. then joins points on side 4 to points on side 2 using

straight lines, i.e., sections on the new patch. The first and

last sections on the new patch are taken directly from the

strings of basic points for sides 1 and 3, respectively. I : the

copy cards for either of these sides has been left blank, then

the appropriate first or last straight line joining sides 4 and

2 become, respectively, the first or last section for the new

patch. This option in the A.P.G. is useful for fitting in side

openings left by flap-edge cutouts, Figure 28(c). Clearly,

when KURV is negative, the value of the parameter, MAKE, is no

longer important (as long as it is non-zero); however, the sign

of MAKE still determines which way the patch is facing. Accord-

ingly, we set MAKE = +1 or -1.

one final point--the A.P.G. works directly in the component

coordinate system (C.C.S.) even when copying strings of points.

It always generates patches with positive IDENT (5.2.1).
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5.4 Panels and Sum nets
5.4.1 Automatic Pane ling Routine

When the basic geometry has been specified, the panel

ax^d subpanel corner points are assembled, patch by patch. A

temporary set of chordwise points corresponding to panel and sub-

panel corners is first assembled on each of the defined sections.

This is performed in each chordwise region in turn (5.2.3) and

interpolation is lased when the A.P.R. is requested (i.e., when

NPANC > 0). Subpanel points are always generated by interpola-

tion; if the A.P.R. has been requested, then the subpanel points

are included as a set with the panel points. If manual paneling

is basing used, the subpanel spaca.ng is based on normalized point

subscript: (Appendix A); this creates subpanel intervals more

closely related to the changes in spacing in the user--specified

panel points.

The fora ► of the interpolation used by the A.P.R. depends on
the niunber of basic points available in the chordwise region,

including the two end points. The code augments this number by

taking a basic point from a neighboring chordwise region if con-

tinuous slope has been specified onto that region (i.e., NODEC

1 on '-his or the previous region). The A.P.R. takes the

available set of basic points and first eliminates zero length

intervals, then, depending on than number of basic points left,

i.e., one, two, three or more, it uses, respectively, constant,

linear, quadrat?.c or biquadratic interpolation to generate the

panel and subpanel points.

When the temporary set of chordwise points is complete for

a;.1 sections on a patch, corresponding points on each section

are joined by lines called SPANWISE GENERATORS. The panel and

subpanel points along each spanwise generator are then assembled

in a similar way to that described for the chordwise direction,

but now based on the spanwise region information. The i:.terpola-

tion routine is now applied along each spanwise generator in each
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spanwise region where the A.P.R. has been selected. The new set
of (spanwise) points are actual panel and subpanel corner points

from which the panel and subpanel geometry is generated.

The fact that we input just one set of spanwise region in-
formation for a patch means that the same spanwise interpolation

format is used on all the spanwise generators on that patch.

Thus the A.P.R. in the spanwise direction has lost generality

compared with the chordwise capability; however, this loss is not

serious (and to avoid it would require considerably more input).

At this time, therefore, the combination of the chordwise and

spanwise A,P.R. has the capabil.ity illustrated in Figure 29.

The general character when using simple input sections (planar)

is shown in Figure 29(a), while the: availability of more general

sections would ailow spanwise stretching or compression in the

paneling, Figure 29 (b) .

5.4.2 Panel and Subpanel Geometry

The four corner points, Ri, i - 1, 4, specifying either

a panel or subpanel quadrilateral are in the same sequence as the

corners on the parent patch, Figure 30. From these points we con-,

struct the two diagonal vectors

Dl = 23 - Y1	 ,4)

-P2 = E4 - i"2	 (5)

The vector product of theso diagonals produces a vector normal

to tho mean plane of the quadrilateral. We thereby construct

the unit normal vector:

p1 '' 12 2/121 1 221 IDENT	 (6)

"Llhe, value of LDENT (5.2.1) is taken from the parent patch

and ensures that the unit normal is always directed outwards

from the surface into the flow field. The modulus of the

-,qq

72



CYENEWnlw rnrcw
3

ISPAC

HOD

INTEVOWED
C:IWISE
F"14 13

NOV STATIONS
(INTE1th1EDIATE INPUT

STATIONS OMITTED)

(o) SIWLE SECTIONS

('b) GENERAL SECTIONS

Figure 29. General Character of Pan(A inq Offored by the A.P.R.
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diagonal vector product also provides the area of the quadrila-

teral projected onto the mean plane:

AREA = 
121 „ D2 1/2	 (7)

The center point is taken as the mean of the four corner

points:

4	
1

Two unit tangent vectors, Q, m, are constructed, which, together

with n form a right-handed orthogonal unit vector system for local

coordinates. This system takes the center point, 11e, as origin.

Tangent vector, m, is always directed from Rc to the mid-

point of side 3 of the quadrilateral, Figure 30. (This always

places m in the mean plane of the quadrilateral, even if the

corner points are not co-planar.) Thus,

m--	 R3 + R4 l /2 - Rc ) / (B3 +4/
 /2 - Rc	 (9)

1	 /	 I

With m and n known, we can construct Z:

Q - m „ n	 (10)

Next, the projectigns of the four corner points onto the

mean plane are expressed in terms of the local coordinate system;

that is, the relative position vector of R 1 from the local origin

is

L1 = R1 - Rc	 (11)

M
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This has components, Exl , Eyl , Ez l , say, in the local coordinate

system, or F 1 = Ex1 Q + Eylm + Ez l n, where Exl = E1	• R,	 etc.

The quantity, Ez l , is the projection distance of the corner

point from the mean plane and indicates the amount of skew of

the quadrilateral from its mean plane. The magnitude of Ezl,

which is the same for all four cornea points, ,should be kept

small in relation to the size of the quadrilateral.

The quantities, Exi , Ey i , i = 1, 4, define the flat projec-

ted panel or subpanel in the local coordinate system and are

used in the influence coefficient routine.

Finally we evaluate the halt median lengths, SMp, SMq, for

the quadrilateral. These are (Figure 30):

SMp -	 I ( 112 + R3/ /2 - Rc I	 (12)

SMq =	 R3 + R4) /2 - Rcl	 (13)

These are the half-lengths of the diagonals of the parallel-

ogram which is always formed when the midpoints of adjacent sides

of a quadrilateral are joined--even if the latter's corner points

are not coplanar; the parallelogram lies in the mean plane of the

quadrilateral and its area is half that of the projected quadri-

lateral.

Within each patch, the regular arrangement of panels and

subpanels causes the adjacent side midpoints of neighboring sub-

panels to coincide exactly. This allows the SMF) and SMq lengths

of subpanels to be linked, respectively, in the chordwise and

spanwise direction over the patch and thereby provides a close

approximation to surface distances between subpanel centers.

The geometric data evaluated above (except for D 1 and D2)

are stored for each panel and its subpanels as a complete set.

The arrangement of subpanels within each panel is always the

same, see Figure 31.

P
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5.4.3 Panel Neighbor Routine

In order that a reasonable two-way interpolation and
differentiation of the surface doublet distribution can be per-

formed, it is important that we can quickly locate for each

panel the set of four neighboring panels and their orientation.

Each panel, therefore, keeps an array of four neighboring panels,

NABORi , i = 1,4 (in the same sequence as its sides), together

with the adjacent side numbers of those panels, NABSID i , i = 1,

4, Figure. 32. Tile side number takes a negative value if the

order of the side,3 on thr• neighboring panel is reversed relative

to the present panel--it is useful to regard this as a change in

panel POLARITY. This reversal can occur when a neighboring panel

is from a patch with a different IDENT (5.2.1), or when a panel

takes a reflection of itself, e.g., at the plane of symmetry.

Clearly, within the rectangular grid system of a patch lo-

cating neighbors is easy; even so, the neighbor information is
still stored to form a consistent system and to avoid repetitive
calculation. Across the joints between patches, however, panel

neighbors are not immediately available; for example, one panel

may be neighbor to several smaller panels on an adjoining patch

as we saw earlier in Figure 18. An automatic procedure has,

therefore, been installed in the code which scans patch side

panels in a search for possible neighbors across patch joints.

In this search only patches within the same assembly of compon-

ents are considered. "Undesirable" neighbors are quickly elim-

inated on the basis of relative geometry during the assembly of

a short list of possible neighbors for each side panel. From

this list of candidates ono PRIO.:ERRED NEIGHBOR is selected.

At this time, preference is given to the panel whose control

point lies closest to a normal plane constructed on the side

panel, Figure 33. This plane contains the side panel's control

point, unit normal vector and the side midpoint of the middle

subpanel at the patch edge.
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Figure 32. Panel Neighbor information.
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5.4.4 Subpanel Usage

Two extremes of :subpanel usage are illustrated in

Figure 321 on the left of the figure, panel size is fixed as

subpanel density (i.e., number of subpanels per panel) its in-

creased, while on the right, subpanel size remains constant as

the density increases. For a given surface area, the former

case keeps the number of panels (and, hence, unknowns) constant

as the subpanel representation becomes increasingly detailed,

while on the right, the number of panels decreases rapidly with

increasing subpanel density. In practice, we should fall be-

tween the two, but the potential savings in the number of un-

knowns, examined below, indicates we should perhaps lean towards

the system on the right in Figure 34.

For the purpose of evaluating the potential savings in the

number of unknowns for the system on the right, we consider a

surface represented by a 105 x 105 system of subpanels. We

then assemble these into panels having 1 x 1, 3 x 3, 5 x 5 and

7 x 7 subpanel arrays. Table 1 compares the corresponding

number of unknowns with the number of influence coefficients

(panei plus subpanel) evaluated for one velocity calculation.

The latter assumes ten panels have their subpanel systems ac-

cessed. The table also compares the approximate storage regtuire-

inent for the subpanel doublet multipliers (see 6.1) with that

for the matrix of normal influence coefficients. The table

shows the rapid reduction in the number of unknowns as the sub-

panel density increases with they major reduction occurring for

the 3 x 3 scheme, i.e., 89% compared with 96% for the 5 x 5 sys-

tem. The corresponding reduction in number of influence cooffi-

cient evaluations when going from the basic panels (i.e., the

1 x 1 system) fol7,ours a similar trend; the 3 x 3 system offers

an 88`h reduction compared with a, 94., reduction for the 5 x 5

scheme. Going to higher subpanel densities than this decreases

the benefits because of the high number of subpanels involved

with the assumed 10-panel near-field set.
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The additional storage needed for the subpanel doublet mul-

tiplier is clearly insignificant in comparison with the savings

in storage for the matrix of influence coef.fic:Lents.

These comparisons are based on a simplified arrangement and

should be regarded only as a rough guide. Even so, there is an

obvious attraction to use a 3 x 3 system and little point in

going to 7 x 7 densities or higher. For this reason the new

coding has an upper limit at the 5 x 5 subpanel scheme.

5.5 Wake Routines

5.5.1 Initial Wake Geometry

Wakes are formed after all the surface patches have

been paneled and the neighbor information stored. The user

identifies strings of WAKE-SHEDDING PANELS, the side geometry

of which defines the FIXED BASELINE. of each wake. At the end of

each string of wake-she:ddinq panels, the user has the option

of defining the initial (i.e., prior to wake relaxation) stream-

wise geometry of a lire on the near-wake (4.2) using a set of

BASIC WAKE POINTS. The function of these points is similar to

that of basic points defining chordwise sections on patches

(5.2.2). Node cards are used here also and allow the user to

select wake panel density and form of distribution in accordance
with the expected location of the relaxed wake; in this way,

wake panel detail may be used efficiently in relation to the
expected wake curvature and surface interference. As a minimum,
one basic wake point must be provided on each streamwise line

defined--this point corresponds to the downstream end of the

near-wake. (The upstream end is taken automatically from the
fixed base line.) Multiple basic wake points are essential only
in the case of multiple high-lift devices and allow a represen-

tative initial wake geometry to be do ined which should reduce

the number of wake shape iterations later in the calculations.
Figurt- 35 illustrates the case of a wing with slat and slotted
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f lap and shows a typical set of basic wake points.

When the basic wake information has been oupplie,1 1 the pro-

gram generates streamwise sets of wake panel corner points ac-

cordinq to the user's instructions on the node cards. A set of

points is generated coEresponding to each wake-shoddinq panel
corner: point on the fired baseline and ends at the downstream

edge of the near wake:,. Linear interpolation is used in both
streamwise (between basic points) amd spai-r qiso (betwe(on stxoam-

wise lino.3) directions for the ;-vivpose of generating theje

initial sets of wake panel. corner points. The user should bear

this in mind when seloctinq the number and location of both

basic points and streamwise lines. It must: be emphasized, how-
ever, that this information is used only to clef -ine the prolimin-

ary wake for the purpose of the first solution—thereafter, the

wake relcixation rout:Lno will redefine the wake (jeometry at each

iteration.

5.5.2 Wake Panel.,; and Subpanelo

The procjram	 the stroalilwise , wts of wake panel

cornet points and qe)aerates subpanel Corner points U.,iiigj t7wo--

way biquadratic interpolation. Waku panel and subpanel Parameters

are then formed as in the (,, ase, of surface patches (5.4.2). Al--

thou( h thero, A s an obvious sim-il,, 'ity between a patch and a wake,

the doublet distribution on the i.inter i,:3 less complicated as it

is c-onotant cllonq the (streamwise) oolumnB. DOUblet Multipliers

(	 ake^ subpanels aro therefore6 00 I .- ItOr in 6.1) assooiated with wL

dc?pendorlt only Oil the spanwioo quometry, which changes with each

wab-k , relaxation iteration.

Viie kloablet value on each column of wake panel ,; is, the dif-

foronce betwoon the values on the oorresporiding wake-13hodding

panel and its neighbor across thca sheddin(j line. This neighbor

rolationshj.p ' 1cross the shedding line is terminate 	 ed onco th

wake has been Al.-ormed, the doublet distributioa then pas5os

smoothly onto the waku, from both sides of the sh(Adlng line.

P
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5.5.3 Wake Relaxation

After the initial processing of the input, each near-

wake shape is alwa-s stored in the form of the streamwise sets

of wake panel corner points. After a doublet solution has been

obtained, velocities are calculated at each of these points,

Figure 36. Each set of points is then .relaxed into the local

flow direction as iefined by the local velocity vectors. These

calculations proceed from the (fixed) first point in each set

and finish at the downstream end of the near-wake.

Based on the new sets of points, wake panels and subpanels

are regenerated after each wake relaxation. The wake doublet

values are assumed to move with the center subpanel in each wake

panel. In this way the stretching and contraction of the wake

affects the vorticity level when the spanwise gradient of the

doublet distribution is evaluated.
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6.0 SURFACE DOUBLET DISTRIBUTION

6.1 Doublet Multipliers

In order to evaluate the doublet values at subpanel centers,

we form a two-way biquadratic interpolation through neighboring

panel doublet values. The interpolation is based on surface

distances, p, q, respectively in the chordwise and sparwise

directions over each patch. Surface distances are normalized

to a, s, respectively, using local intervals between control

points, Figure 37(a). Intervals in p and q are evaluated on

the basis of straight-line distance across subpanels, i.e., by

using the stored SMp, SMq information (5.4.2). The two-way bi-

quadratic scheme requires a 4 x 4 set of panels for interpola-

tion within the central area, Figure 37(a). one , x 4 set,

however, only covers one quarter of the panel= four such sets

are, therefore, required to cover all the subpanels on a panel.

Since the foe^r sets overlap they can be selected from a 5 x 5

panel set having the panel at the center, Figure 37(b), i.e.,

within this 25-panel set, the panel itself is always at location

13. with this arrangement, the selection of panel sets for sub-

panels within each panel follows a common rule throughout the

configuration. Not all the subpanels require a 4 x 4 panel

set to define their doublet value= a subpanel which lies on a

grid line joining panel control points requires only 4 panels;

for example, with the 3 x 3 subpanel scheme shown in Figure

37(b), subpanel number 3 is related to panels at locations X3,

8 1 13, and 18. In particular, the middle subpanel takes the

panel doublet value so it has just one multiplier which has unit

value.

The doublet value at location a, $ is given by

1:4 u
i j Dij	 (14)

i-1,4
j-1,4

^! (a. S)

89



- FAI`N0. C0040ft P01lits

M •

^^^ ` WNW

A

^
11

!
1

•

1 A
1S

1601

X62 2,3

2,1 32 3 3 3

41 4,2 3 44

(a) LOCAL 4 x 4 PANEL SYSUM

i'

ASSOCAM W""
StJ01PAN^ 2

cHONowaE

1 6 it 16 21

2 7 12 .17 22

3 • 18 23

4 9 14 19 24

3 10 Is 20 25

3 u 3 KWANK lCIrW
smm ON X11[ M*k

(b) THE FANEVS 25 - PAWL SET

Figure 37. Two-Way Biquadratic Interpolation for Subpanel
Doublet Values.

90

ORIGINAL PAGE IS
OF POOR QUALITY



where i and j refer, respectively, to the row and column numbers

in the 4 x 4 panel set and Dij are the doublet multipliers ► evalu-
ated at a, $ and are given by

Dij = dij eij	 (15)

(This is a simplified scheme which may give distortions in ex-

tremely irregular grid patterns--an alternative, more rigorous

(but also more complicated) scheme is held in reserve should the

simple scheme fail,)

The dij and eij are the column-wise and row-wise biquadratic

multipliers, respectively, evaluated as follows:

first define	 a1j = - Apl, Apt	 (16)
J	 J

a 2j ` (Ap 2 . + Ap3 .J ) / Ap2 J.	 (111)

where Apij pi+l,j - pij are the surface length increments;

hence,

d1j	 G1 (a,a l ) ; d 2 = G2 (a, a l ,a 2 ) '.(18)
J	 J	 J	 J

dij = G2 (1 - a, 1 - a 2 , 1 - al ) ;	 (19)
J	 J

d 4 = Gl (1 - a, 1 - a 2 . ) ;	 (20)
J

with Gl and G2 being the general biquadratic multipliers (Appen-

dix A). Similarly, in the S direction

t oil ' - Aqil 
/,Iq 

i2	 (21)
i

oil _ (Agj.2 + AqD) /Aq i2	 (22)

91



Hance,

Iii , Gl(O,Sil ) t e12 " G2(OrO il' s i2 ) f	 (23)

S13 - G2 (1 - Or 1 - 012 r 1 - Oil)'	
(24)

e14 ' Gl (1 - Or 1 - 0 12 ) .	 (25)

At the beginning of the calculation, the panel doublet

values, uij (solution 
part) are unknown and so the subpanel

doublet multipliers, D ij , must be stored to be later applied

to subpanel influence coefficients (6.3.3).

6.2 Augmented Patch

To facilitate the collection of the 25-panel sets in a

regular manner without problems at patch edges, an AUGMENTED

PATCH is temporarily formed for each patch in turn. The aug-

mented patch has a two-panel deep fringes of panels surrounding

the basic patch, Figure 38. The fringe panels are assembled

from the neighboring panel information and the complete set of

panels and grid distances, p, q, are formed for the entire

augmented patch. Each panel in the basic patch can then quickly

locate its 25-panel set together with the grid distances, even

if it is a one-panel patch.

in forming grid line distances within the fringe areas,

the orientation of the neighboring panels must be considered.

Four panel sides and the panel polarity (4.5.3) lead to eight

possible orientations of a neighboring panel across a patch

side. All these possibilities are covered by the coding, but,

further refinement is needed when evaluating surface distances

in the fringe area in cases where there is a large mismatch in
the neighboring panel alignments.
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6.3 Influence Coefficient

The influence coefficient routine for the doublet singular-
i.tty model is arranged in three parts for application in far-field,

middle-field or near-field velocity calculations, So far, the

distances to the boundary of each of these regions has not been

fully explored, but approximate guidelines are indicated below.

These distances, which are measured from the panel control point,

are given in 'terms of panel "size "= this is defined as the square

root of the panel area at this time.

6.3.1 Far-Field

In the far-field, say beyond ten panel sizes away,

the doublet distribution on a panel is regarded as piecewise

constant. The influence coefficient is then that of a quadrila-

teral vortex defined by the panel's four corner points. The

vortex strength, r, is the same as the panel doublet value.

The velocity induced by each of the four sides of the quadri-

lateral vortex is obtained from the Biot Savart law:

v = r a A b (a + b) /{&b (ab + a • b) ) 	 (26)
47T -

where	 a = ja, , etc.

where a and b are the position vectors of the velocity calcula-

tion point relative to the start, and, respectively, of the

straight line segment. The lengths of these vectors are deno-

tated by a and b, respectively.

The form of the induced velocity expression, which was

developed during the course of this work (Appendix F), eliminates

the numerical problem associated with earlier forms when calcu-

lating a velocity close to the extended line of the vortex. The

new expression passes correctly through zero without special

treatment for this condition.
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6.3.2 Middle Field

Between, say, three and ten panel sizes away, a panel

is regarded as having a two-way linear vorticity distribution.

The vorticity value and slope are derived from the doublet dis-

tribution by passing quadratic curves in the p and q directions

through the neighboring panel doublet values, Fi gure 39(a).

Using the nomenclature shown in Figure 39(a), the gradient

and second derivative of the quadratic curves in the p and q

directions are evaluated at the panel center as follows:

U a 
fu

B APD /(ApD + APB) - PM (Apo
 - APR) ` APD } / APB

- PD APB / t AP D (ApD + APB) 
j
	 (27)

aP
2

= 2 { ()'D/"PD + PB/'APB) (ApD + APB)

- PM ' (Apn APB) ^
	

(28)

a{ PC AqA I ( Aq + AqC) - PM ( AgA - AqC ) AQA ) I AqC

I	
11

PA AqC fAq A(Aq A + AqC)^	 (29)

A

h

8	 2
(A A4A + PC/AqC) (AgA + AqC)

a	 l	 Ig
'f

UM ( AqA AqC) 
1	

(30)
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•. 0 -46

(b) PANEL VORTICITY COMPONENTS

Figure 39. Evaluation of Vorticity Value and Gradient on a Panel.
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The vorticity components in the panel's local coordinate

system (see Figure 39(b)) are obtained at the panel center:

x	 q
	 ( A )

and	 y' x
a2q

(yx gradient in this q direction)
(32)

yy. q
-	

t	 P I/	 t, (33)

and	 y' _ { 8zL m t - a.Zu	 k • t
y	 aq2	 apz

where t is he unit vector in the direction from the panel

center to the midpoint of side 2.

The linear vorticity influence coefficient for the panel

is accumulated by considering each side in turn, applying the

model shown in Figure 40= for simplicity, this illustration

and the following description are for the case of y x , but the

Y  value is treated in a similar way.
The basic linear vorticity model has two semi-infinite

strips of opposing vorticity separated by a swept tine (i.e.,

a panel side). The strips are aligned with the vorticity vector

while the vorticity gradient is normal to that direction (Figure

40) .

The velocity induced by the strip is

V ; 41r f 
vm + wn	 (35)

(34)
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where

V " YX1 
T + Y' x an (L - XJ)

W - Yxl (L - 1J) - Y' x I (alJ + X (b - a) /e 3 + a,T)

T - tan-1 
1 

an (aPb - bPa ) / (PaPb + a n 2 ab)

J= _---11.,RnI (^b - bm - bR)/^a-am-aaR)
V e3 

L= fin !(b- be 1(a+ a, )/(b+bk)/(a_aR)I

Pa = X ( am t + an 2 ) •- am a 

Pb = a(bm 2 + an 2 ) - b  bk

Y xl = Yx + Y i x ( ya + am)

e3=1+^2

al aam - a 

and
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X _ (xb - xa)/yb - 4) -- slope of joint line

az , am , an , bR , bm , bn are the components of position

vectors at a and b (Fi,ure 40) in the panel's local coordinate

system.

Applying this model to all the sides of a (closed) polygon

causes the vorticity to reinforce (double) in the interior re-

gion and to cancel everywhere else. (The factor of 2 has been

taken into account in the influence expression above.)

6.3.3 Near-Field

For velocity calculations within about three panel

sizes from a panel's control point, the panel's subpanel set is

accessed. (This includes the case for the influence of the

panel on its own control point.) Each subpanel uses the linear

vorticity model described in 6.3.2, except that here the vorti-

city value and slope are evaluated using neighboring subpanel

doublet values rather than the panel values indicated in Figure

39.

As each subpanel's influence coefficient is evaluated, it

is fac.ored by its set of doublet multipliers (6.1) to get the

corresponding contributions for the associated local panel set.

Th9se contributions are then accumulated in the matrix of in-

fluence coefficients.
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7.0 TEST CASES

A number of preliminary tests have been carried out to

check the working of the modified routines. 1',.wo of these cases

are described below, but further tests need to be carried out,

especially for general configurations. in particular, experi-

mental data in part-span, high-lift devices is needed for com-

parison purposes to thoroughly check the code.

7.1 Geometry Code

As a preliminary check of the paneling capability, a general

configuration was assembled h"ving part-span, high-lift devices,

Figure 41(a). Calculations for this case were terminated after

the panels had been genarated. The configuration consists of

three separate COMONEN TS (limit is 10) represented by twelve

PATCHES (limit is 100).

The slat is represented by three patches. Patch 1 covers

the main slat surface--trailing edge through leading edge back

to trailing edge, and root to tip. It is defined by two chord-

wise sections--one at the root, and one at the tip. The tip-

edge Patches, 2 and 3, are generated automatically (5 ".2) from

the root and tip edges, respectively, of Patch 1. The y..: -t-wo

patches were specified to be flat. The option provided to gen-

erate a streamlined tiA-edge patch is exercised on Patch 7--

the wing tip; here, an automatic tip-edge patch was requested on

the outboard edge of Panel 6, but the planform contour was de-

scribed. The contour description is a set of points (any spac-

ing and any scale) going from the trailing edge to the leading

edge. The program generates tip-edge sections using semi-el-

lipses based on the local thickness of the basic patch edge

(i.e., Patch 6), and the local offset of the tip contour plan-

form (after internal scaling and interpolation).

Other flat-edge patch options are exercised on Patches 8,

9 1 11, and 12. For patches 8 and 9 1 the partial section copying'
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Figure 41. Tests for the Geometry Code.
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option (5.3.2) was used; this special input requires 4 sets

(one for each side of the nnw patch) of 4 integers. The four

integers include the patch number, the section number on that
patch, and the first and last point subscripts on that section

which are to be copied for the new patch. A similar option is

employed to define the first section of Patch 5: here, the

majority of the section has already been defined on the last

section of Patch 4. The 	 +t section of Patch 5 can, therefore,

be defined by reading in . ` 3w points (seven in this case) to
define the cove contour (	 the detail in Figure 41) followed

by a copy (5.3.1) of the set of common points from Patch 4.

Figures 41(b) through 41(e) show plots of the panels and

subpanels generated. Figure 41(b) shows the genenal view of

the panels on the complete configuration and indicates the di-

rections of detailed views shown in'Figures 41(c), (d) and (e).

Figure 41(c) gives the detail of panels and subpanels on the

wing tip, Patch 7. The closer geometric representation offered

by the subpanel scheme is obvious in this case. (Note: the

control point conditions for each panel are taken from the

central subpanel on that panel. Also, the panel influence on

itself always uses its basic subpanel set.)

Figures 41(d) and 41(e) show similar details for Patches

10 and 11 and for Patch 8, respectively. Patch 9 1 at the out-

board end of the flap cutout, is very similar to Patch 8.

7.2 Wing Case

The modified potential flow code was applied to a rectangu-

lar wing of aspect ratio 2 to check the routines through to the

pressure calculation. The wing section was the 11.1% t/c,

Boeing Section TR 17 and angle of attack 5.73 0 . Figure 42(a)

shows the chordwise pressure distribution at .125 semispan cal-

culated using panels distributed.in a 24 x 4 array on the main

surface patch and a 2 x 12 array on a tip patch with semicircular
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(d) PANELS AND SUMANEL,S ON FLAP (PATCHES 10 AND 11 ONLY)
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Figure 42. Rectangular Wing Pressure Distribution.
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I

sections. For comparison, Figure 42(a) also shows solutions

from the original VTP3D program (36 x 4 array) and also from

the USSAERO proclram (Ref. 9). There in very close agreement

between all three programs. This is very encouraging because

the doublet solution used a less dense panel system than the

others.

The tip patch paneling in the doublet model allows pres-

sures to be calcul ptad round the tip edge. Figure 42(b) shows

pressure distributions plotted in the spanwise direction from

lower surface round the tip and back along the upper surface

at x-wise stati,:;ns .0036 and .889. Values are plotted from two

panel distributions, one with 4 equal spanwise intervals and

one with 6 spanwise intervals with cosine distribution giving

increased density towards the tip. The latter improves the

matching in panel size between the main surface and tip patch

compared with the first case which has panel size ratios of the

order 50 passing onto the tip patch; this probably accounts for

the discrepancies between the two solutions near the tip in

Figure 42(b). Large and sudden chenges in interval size can

cause numerical error when interpolating or differentiating the

surface doublet distribution.

At the forward station, the spanwise flow from lower sur-

face onto upper surface clearly has a monotonically decreasing

pressure. Towards the trailing edge, however, the upper surface

suction level has disappeared while a peak suction has developed

on the tip surface, Figure 42(b). At this station, therefore,

the spanwise flow is suddenly faced with a strong adverse pares-

sure gradient as it climbs round the tip edge and will lead to

the conditions for tip edge separation.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

An investigation in two-dimensional flow demonstrated that

a doublet subpanel technique has the required behavior for cal-

culating interference pressures in a vortex/surface interaction

case: the close-approach problems associated with earlier panel

methods is essentially removed without increasing the panel den-

sity. Because the subpanel model provides a better representa-

tion of curved surfaces and smooth singularity distribution, it

gives the effect of increased panel density without increasing

the number of unknowns. Subpanels are accessed only on panels

close to the velocity calculation point.

Results from preliminary test cases of the three-dimensional

form of the doublet subpanel technique have been encouraging.

The VIP3D geometry routines have been extensively modified to be

compatible with the technique and also to allow application -to

general high-lift configurations. For this purpose a,versatile,

user-oriented scheme has been developed based on multiple patches

of panels. Preliminary test calculations have shown very close

agreement with solutions fron, the original VIP3D singularity

model.

Further test cases need to be performed, but experimental

measurements on general high-lift configurations are required

having detailed pressure distributions and flow visualization.

In particular, cases having part-span, high-lift devices need

to be examined.
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10.0 APPENDICES

A. Biquadvatic .iterpo:ation

The biquadratic interpolation scheme dexcribed below is

applied in a number of routines in the new code. Its simple

multiplier foinn is very convenient to use and yet it is a "con-

strained" cubic, i.e., it cannot oscillate wildly. Experience

with the routine over a number of years in the codes of Refer-

ences 2 through 7 have shown it to be a reliable method.

Given a set of position vectors, Pn, n-1,2,...,N, defining

a smooth space curve, we wish to interpolate for additional

values in, say, the interval between P  and _xi+1' Figure Al.

We first: generate the integrated contour length, sn , to each

point from the beginning of the -.urve, i.e., from P l . For con-

the 	 i. , . tg Ch 7 a ,used across- a_arh inter-Ve113.enCe, trie $tralgi lL tyeyiueia^.. ... `̂ aay ^.sa .....,

val, i.e., s  - 
I 

Pn+l - Pn (, but arc lengths could easily be

substituted--or indeed, any other parameter that varies smoothly

and monotonically along the curve, i.e., without introducing

multiple value problems. For example, the point subscript in-

terval is used in some parts of the program.

Next, we generate two quadratic curves: SLl (a,al ) passing
n

through points P n_ 1' P ► Pn+1' and g2 (a,a 2 ) passing through_	 _n	
n

points Pn , Pn+l' and Pn+2, Figure Al.

The normalized i. erpolation parameter, a, ranges from 0

to 1 in the nt interval, and has value

a l at pn_ l and a 2 at Pn+2
n	 n
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Figure Al. Biquadratie Interpolation.
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where

a 1 = (sn-1 - sn ) / (sn+l - an) i and
n

012  	 (sn+2 - sn ) / (sn+l - an)n

In the nth interval, we take a linear combination of ^l

and g2 to define the biquadratic interpolation curve there:

T ' x) = acj2 (a,a 2 ) + (1 - a)al (a,al ) .
-	 n	 n

The biquadratic is, therefore, a cubic, but it is constrained to

lie between two quadratic curves. It can't therefore, behave

wildly.
The value of a for a point distance, s, from the start of

the curve (but located in the n th interval) is

a = s/ (sn+l	 sn)

The form of the interpolation curve can be expressed in

terms of biquadratic multipliers, Gl, G2, applied to the four

local position vectors:

P (a) = Pn-1 G1(a,a l ) + P  G2 (a,a l , a2 )
n	 n	 n

+Pn+lG2(1-a, 1-a 2 , 1-al )
n	 n

+ Pn+2 Gl (1 - a, 1 - a 2 ) .
n
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The forms of Gl, G2 are:

Gl (a, b) - a (1 - a) 2 /{b (1 - b) }

G2(a,b,c) = (1 - a) fl - all - a)/b - a 2 /c} .

These multipliers, based on the linear combination of two

quadratics, give continuous slope and a piecewise linear --but

not necessarily continuous--variation of second derivative across

each interval. A similar set of multipliers-has been formed

which gives continuous second derivatives, but it has not been

thoroughly checked out at this time.

The G multipliers can be differentiated to give the tan-

gent vector:

t (a) = Pn-1 Hl (a , a 1 ) + P  H2 (a , a l , a 2 )
n	 n	 n

Pn+l H2(1 - a, 1 - a 2 , 1 - a l )
n	 n

- Pn+2 Hl (1 - a, 1 - a 2 )
n

Where the tangent multipliers are:

Hl(a,b) = (1 - 4a + 3a2 )/{ b(1 - b)}

H2(a,b,c) = (4a - 3a2 - 1)/b + (3w2 - 2a)/c - 1

dsNote: this is not a unit vector; It(a)) = ds .
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The G multipliers can also be integrated to give the area

under the curve between the nth and (a + 1) th points:

An 
3" C 

Pn-1 F1 (al ) + En F2 ( al , Q2n)L	 n	 n	 n

+ P	 F2 (1 - a, 1 - a ) + P 	 Fl (1 - a ) ] ds—n+l	 2n	 1	 • n+2	 2n .1 as
n

where the integral multipliers are:

F1(b) - 1/{12b (1 -- b) )

F'2 (b,c) = {1 - (1/b + 1/c) /6)/2

This assumes that the value of Ka is constant over the interval.

In this case, therefore, it would be an advantage to use the arc

Length intervals rather than straight line intervals when cal-

culating surface distances.

The F multipliers are used in the integration of surface

pressures to obtain forces and moments.
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B. Numerical Integration for Doublet Influence Coefficient

A doublet singularity can be regarded as the limiting condi-

tion when a source and oink of equal strength became coincident

in such a way that the product of their strength and distance

apart remains constant. This constant is the doublet strength,

P, and the unit vector, n, in the direction source-to-sink de-

fines the axis of the doublet. The velocity induced by the point
doublet is then

V ^ ^.^. 
`
^ n _ 

3a n a

_	 4 Ira' ( 
_	

a 2	 1

Where a is the position vector of the velocity calculation

point relative to the doublet.

The velocity induced by a doublet distribution on a flat

surface, Figure a.L, has ! -sac a.^aa.au

V	 4iiJf I k -
3a (a, o) • k a (a, $)

a2 (ai o)

u (a, S) dsda

a , (a, 0)

where

a2 (a, S) = r2 ( a, o + z2

and

r2 (a, S) s (x — a) 2 + (y — S) 2

The component of velocity normal to the surface has polar

symmetry about the doublet axis, k, and the integrand is

Iw(r) —	
r2 — 2z2

{r 2 + Z 215/ 2   
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Figure Bl. Nomenclature for the Doublet Integration.
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A
This has the form illustrated in Figure B2(a). A number of

'	 interesting features can be evaluated.

The negative peak value occurring at r - 0 depends on the

k	 height, z, of the point above the sheet.

Iw (0)	
-2
z9

The radius at which Iw passes through zero is

	

r l =	 V1 1 z I

The secondary (positive) peak value is

Iw (r 2

	

2 ) a	 52 
95	 z

and is located at

r2 a 21 z I

It is important to note that both Iw(o) and IW(r 2 ) go singular

(in opposite directions) as z tends to zero.

The velocity component tangential to the sheet also has

polar symmetry and is radial. The integrand for this has the

form

	

Iv (r) -	 3zr
(r 2 

+ z2) 
5/

which is illustrated in Figure B2 (b) .
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(b) TANGENTIAL COWONENT

Figure B2. Behavior of the Doublet Integrand.
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The peak value ix

Iv(r3)	 48 
z a

and occurs at

r3 s Iz1 /2.

The locations of the peaks in both velocity components

were used to define separate regions in which the Romberg inte-

gration technique, Reference 10, was applied. Transformations

were applied in each region according to the local behavior of

each integrand. The aim was to obtain a more linear variation

across each region. This would allow the Romberg Integration

technique to converge more rapidly since it is based on the
trapezoidal rule.
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C. Linear Vorticitj Influence Coefficient in Two
D ens ons

There are a number of two-dimensional potential flow codes

based on linear vorticity panelas however, the influence coeffi-

cient used in the present work was formulated differently from

earlier forms and is based on the panel center rather than the

panel ends, Figure Cl. This is more convenient when working

with the surface doublet model.

The induced velocity is

V = VT t + VN !

Where the velocity components tangential and normal to the

panel are, respectively:

VT a 11 yo T + y' (T at + L an)

VN =	
n

^yo L +^y'(s-- Tan +L at)

where Yo and y' are, respectively, the vorticit:y value and

gradient at the panel center, and

T = Tan 1 ans/(a 2 - .25,52)

L	 IjLn ha^^  - ats + .25s 2 )/(a 2 + ats + .25s2)i
11

at = a • t

a = a n
n	 — —

and s is the panel length.
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Figure C1. Linear Vorticity on a Flat Panel.
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D. Newmann Boundary Condition Applied to a Suri

When the Neumann boundary condition is applied to a surface

doublet distribution, the solution can diverge near the airfoil

trailing edge. To find the source of the Problem, we examine

the simplified situation where the doublet sheets on the upper

and lower surfaces are close to each other and are parallel,

Figure Dl. Consider the Neumann boundary condition applied to

a control point on the upper surface. The major terms are

h CPU PL) = VN

Where uu, uL are the local upper and lower doublet values,

respectively, and VN is the local normal component of the onset

flow.
Next, divide the doublet values into symmetrical and anti-

symmetrical parts:

u u = us + uA

and

uL = 11 s - uA

The equation above then becomes

b u s + VI - (u s `- PA) l = VN
l	 l

or

uA = VN
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Figure Dl. Parallel Doublet Sheets in Close Proximity.
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That is, the symmetrical part, U s , has disappeared. In

this simplified situation, therefore, the syPtrical part

could take any value and yet the Neumann boundary condition would

still be satisfied. Thus u s is indeterminate.

In practical cases, this condition is rarely met with ex-

actly; however, it is approached in the neighborhood of sharp,

trailing edges. In these circumstances the Neumann boundary

condition is weak, and we sometimes observe that the upper and

lower doublet values deviate from the exact solution, but they

move together. The difference between them, i.e., the antisym-

metrical part, is generally close to the exact value. This

numerical ill-conditioning is especially serious when using

iterative solution techniques.
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E. Streamline Calculation Routine

A numerical procedure was developed for calculating

streamline paths. The procedure is based on finite intervals,

a mean velocity vector being calculated in the middle of each

interval as we proceed along the path, Figure E1. The velocity

calculation point, RP, is obtained by extrapolation from the two

previous intervals on the'L-tsis of constant rate of change in

the velocity vector direction; i.e.,

RP = R  + " Sn t

where En is the previous point calculated on the streamline,

S  is the present interval length, and t is a projected tangent
vector. ,

S  + Sn-1
t =	 Sn-2 + Sn-1 to-1 - to-2 + to-1

Vn-1where to-1 _
	 , etc. Vn-1 is the velocity calculated

I -V n-1 I	 -

in the middle of the previous interval.

RP does not necessarily lie on the streamline path.

When we have calculated the velocity, Vn , at Rr we use this to

evaluate the next point on the streamline, i.e.,

S V

Rn+l = R  
+ n —n

1 °-n I
An automatic

changes the intery

tangent direction.

the value of S isn

procedure is included in the routine which

al length, S n , in accordance with the change in

If a large change in direction is calculated,

decreased and the calculation is repeated

128



n-2

STREAMLINE PATH

Lo

s

M

® r

Vn . I	 NEXT VELOCITY
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Fiqure L1. Streamline Calculation.
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until the change in direction is within a specified amount.

If the change in direction is smaller than a certain amount, then

the interval length for the next step is increased.
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F. Vortex Segment Influence Coefficient

The familiar expression for the velocity induded at a

paint, P, by a straight vortex segment is, referring to Figure

Fl:

	

V	 -	 r	 cos 8 l + cc$ e2 I r^

n is the unit vector normal to the plane containing the segment

and the point, P.
A more convenient form for three-dimensional analyses

(Ref. 4) is

r	 a b	 a 
bfa -t- 1,^ 	 11

4^r	 (a ^ b » a A b)	 -' 1	 ate'

which avoids the evaluation of trigonometric quantities.

Both expressions have a numerical problem when P approaches

the extension of the segment. (The case where P approaches the

segment is a separate problem requiring special treatment, such

	

as a core model.)	 1

The computer is then faced with dividing one small number

by another small number. The r,-,suit should pass smoothly through

zero as P passes through the in-line condition. In practice,

round-off in the computer creates spurious results which neces-

sitate a special local treatment..

A solution to this problems has been found in the present

work by rearrangement of the second expression. This can be

written

V =
a„ 1)(a+b)(1 - cos0

a 2 b 2 sin 2 6
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Figure Fl. Vortex Segment Nomenclature.
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The cause of the numerical problem is clearly the sinz6

term in the denominator--Q being 0 when P is in line with the

segment. This term can be cancelled after multiplying numerator

and denominator by (1 + cos 0), leaving:

IN 	 b(a+b)

-	 alb? (1 + cos 0)

or	 a	 b (a + b)
V - rW ab ab^+ a • b

This expression passes through zero correctly without special

treatment as P passes through the in-line condition.

The corresponding form for the semi-infinite vortex is

a (a + a • t) t

where t is the unit vector alono the vortex.
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