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TECHNICAL MEMORANDUM

AN EXTENDED CLASSICAL SOLUTION OF THE
DROPLET GROWTH PROBLEM

I. INTRODUCTION

The growth or evaporation of water drops under motionless, steady
state conditions in air has been the subject of a number of theoretical
studies over the last 100 years. The problem is clearly of importance in
cloud physics for the growth of cloud drops up to 10 um and for the
development or dissipation of fog and haze in the atmosphere. Similar
applications can be made to aerosol/gas phase reactions and to numerous
chemical engineering processes, the dispersion of agricultural sprays,
spray drying, combustion, humidification, and spray cooling.

The rate of growth or evaporation is limited by transport processes —
of heat by conduction or vapor by diffusion in any inert gas present.
The first solution to this problem is attributed to Maxwell [1]. He
assumed that the surface of the drop produced a vapor pressure related
directly to its temperature through the Clausius Clapeyron equation and
that heat and moisture were transported by conduction and diffusion,
respectively, in a spherical diffusion field from the drop surface. This
first approximation is commonly quoted for growth of particles in cloud
physics texts [2-5] because it provides sufficient approximation for par-
ticles larger than approximately 10 pym, It was first noted by Larngmuir
[6] that these assumptions are not accurate, especially for small drop
sizes. Three physical factors impact the boundary conditions which were
used to represent the drop surface. First, there is not complete
"accommodation" at the drop surface — not all vapor molecules which strike
the surface stick to the drop, and the energy exchange when an air mole-
cule strikes the surface mav be incomplete. Second, there is a kinetic
limit to the diffusional heat and mass transfer processes. These fluxes
will increase as the gradients increase only to a point, the maximum kinetic
free stream limit. Third, the drop disturbs the gas near its surface so
that the "equilibrium" and "isotropic" conditions no longer strictly apply -
the diffusivity and thernial conductivity are no longer constant and the
velocity distributions are no longer Maxwellian. Considerable attention
has been given to these difficulties. Many investigators have recognized
that an exact solution is, in principle, not to be obtained using kinetic
theory based on Maxwellian distributions and have sought a basic solution
using Chapman Enskog theory, neutron scattering theory, or similar
approaches to the fundamental kinetics. This work has yielded valuable
insights into the problem, but it has not yet produced a complete solution
to this difficult problem. With the exception of the first-order attempt of
Monchick and Reiss (7], this work is beyond the scope of this study.
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Other investigators [8-18] have developed solutions using classical kinetic
theory methods coupled with various approximations and semiempirical rela-
tions to yield solutions with slight differences in empiricism and level of
approximation.

The primary problem here is that there is seldom a clear picture
of why these differences exist, since the classical physical assumptions
which form the basis of these approaches are very similar or even identi-
cal from author to author. Thus the question remains as to which solution
most accurately reflects the physical situation. Much of the problem
results from the usc of an artificial computational device, the "jump
length,"” A, to reach a solution in analogy with the problem of a hot fila-
ment in a rarefied gas. This approach divides the environment around
the drop into two regions, a near zone where the vapor flux is controlled
by free stream kinctics and a far zone where the flux is controlled by
diffusion. The "jump length" is the diztance from the drop surface to
the boundary between the zones. The jump length must be evaluated to
reach a solution of the drop growth problem, but no clear line of physical
reasoning has been presented that leads to a definite relationship to the
known parameters; the length appears to be only a computational artifice.
Thus, various assumptions have been made, and a proliferation of solutions
is the result.

This report presents a new solution to the droplet growth problem
that extends the solution to drop sizes smaller than the mean free path
and that does not rely on the "jump length" artifice. The solution is
based on the same classical physics and a boundary value method which
closely parallels the original Maxwell method. The impact of the various
assumptions can be clearly seen in the final solution. Thus, the method
is useful for pedagogical reasons. More importantly, however, it is shown
how other initial assumptions yield several of the more popular solutions
derived using the "jump length" approach. Thus, the physical basis for
some of the discrepancies currently in the literature is made clear.

[I. SOLUTION FOR THE GROWTH EQUATION

A. Initial Assumptions

Consider the growth of a drop of pure water (radius = a) at rest
in an environment of air and water vapor. The well-known correction for
a dissolved impurity in the drop could be easily included, but it has been
omitted here for the sake of clarity and brevity. Note that since a clas-
sical kinetic theory solution to the problem is sought, the accuracy of
this treatment, like any heat or mass transport problem, is limited to a
few percent at best because the temperature and density gradients which
produce the transport also invalidate the basic assumptions upon which
the theory rests. Thus, as a general guideline for this study, approxi-
mations and assumptions which could alter the solution by less than



P

1 percent have been freely made, while larger factors have been treated
as rigorously as possible. The resulting composite theory is expected to
be accurate to within approximately 3 percent for all drop sizes.

Consider now the three physical factors mentioned previously which
affect the Maxwell-type solution. The first two factors, incomplete accom-
modation and the kinetic limit, represent cutoffs which keep the flux den-
gities from becoming infinite at small drop sizes. Fractional sticking of
molecules and exchange of energy proportionally require greater fluxes
to obtain the same result. Thus, the accommodation coefficients enter as
multipliers in the theory and their consideration is clearly important unless
they are known to be near unity. The kinetic limit becomes important
for drop sizes approaching the length of the mean free path in the gas,

A, as can be seen readily by evaluating when the kinetic free stream flux
equals the diffusion flux. The diffusion flux is approximately proportional
to the vapor density gradient

Here we have made use of a classical kinetic theory relationship between
the diffusivity, D, and the mean molecular speed, ¢ [19]. Thus,

AR =~ 4)\/3. Since we seek a solution applicable for small drop sizes, this
factor must also be included in the analysis.

The third factor to be considered is the change in the gas proper-
ties near the drop which result from the composition and temperature gra-
dients in that region. There are first-order effects of these gradients —
heat conduction and vapor diffusion — which obviously must be included
in the theory. However, these gradients also cause the thermal conduc -
tivity and the vapor diffusivity to he functions of distance from the drop,
they invalidate the Maxwellian molecular velocity distribution in that
region, and they give rise to "thermal diffusion" of the vapor (Soret
effect) and a heat flux due to the concentrati n gradient (Dufour effect).
All of these are second-order effects which make a contribution that is
small compared to the errors caused by the basic limitations of the clas-
sical kinetic theory. For example, examination of an extreme case for a
drop in the stmosphere — growth of a pure water drop by the Maxwell
equation under a constant 10 percent supersaturation starting from its
critical radius, 0.01 um — shows that the temperature deviates from the
environmental value by only a few tenths of a percent and the water
vapor concentration, a minor constituent in the gas, deviates by only

3 percent. Because the diffusivitv varies as the /-T/og. where pg is
the gas density, and the conductivity varies approximately as v T,

assuming that these quantities are constants, will not contribute appreci-
ably to the error already present in the classical approach. This allows
us to greatly simplify the problem because it implies that Laplace's equa-
tion for the temperature and vapor density is satisfied throughout the
region surrounding the drop.
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In summary, the following assumptions are made in this analysis:

1) Quasistatic equilibrium; i.e., changes in drop radius and other
conditions occur so slowly that equilibrium kinetics can be applied. For
justification of this assumption see Reference 2.

2) The air and water vapor behave as inert, ideal gases.
3) Maxwellian kinetic theory applies.

4) The thermal conductivity and vapor diffusivity are assumed to
be constants, independent of distance from the drop.

5) Fick's law of diffusion and the heat conduction equation apply
throughout the environment of the drop, even near the surface. Thus,
the only discontinuity is at the drop--air interface.

6) The drop temperature T d’ the mean temperature near the drop
T, and the environmental temperature T  are sufficiently close that

/2 /2 2

w1 : /2 _ mom 1
(Tg/D " 2 (gt )¢ =TT,y ' = 1

where this factor appears as a multiplier.

B. Vapor Density Boundary Condition

Far from the water drop the water vapor density has a constant,
known value, p_. As one apprcaches the drop along a radial vector, the

vapor density must be a smooth, continuous function of radius, R, until
the water surface is reached since there are no sources or sinks outside
the drop and the environment is assumed uniform (constant diffu-ivity).
Approached in this way, the limiting value of p(R) at the drop surface

is defined as Pas Pa does not equal the equilibrium value of vapor density

over the drop surface, Pgat* 88 is assumed in the Maxwell-type solution.

The difference is the "jump" which is well known from kinetic theory.
Note that this is a jump in vapor density at the location of a physical dis-
continuity in the medium, the drop surface. It is not ¢ jump in position.
Pa is the boundary condition for the diffusion fleld. It must be solved

for in terms of known parameters and parameters that can be eliminated
in the subsequ.nt derivation.

Consider first a drop in equilibrium, dm/dt = (. From elementary
kinetic theory one can write the water vapor mass flux (per unit area
per unit time) against the drop,

- e PP
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(sat) _ ST Y '
‘pm - psat R“Td/(z'") 1] (l)

because in this case the vapor density is a constant, Psat* Equation (1)

holds subject only to the static equilibrium assumption, independent of
f the size of the drop.

An expression for the mass balance at the air-drev interface is
also easily obtained for the equilibrium drop:

Flux in = Flux out = Flux reflected + Flux leaving drop

Making the definition, 8 = the fraction of incident water molecules absorbed
into the drop, it follows that

(sat) _

, _ay ¢ (sat) '
qin (1 2) Iin + ¢

d

Thus, for the flux leaving the drop

by =8 ~rin(s‘“) : (2)

For a drop not in equilibrium, i.e., growing or evaporating, the
mass balance condition at the intrrface is given by a similar equation,

Flux in = Flux reflected + Flux leaving drop
+ Rate of mass change/area;

1 dm
2 dt

.= (1 - B) by o+, o+
in in d 4m

Here it can be assumed that the flux leaving the drop, @d. is

only & function of drop temperature and not a direct function of the equi-
librium condition of the drop. Thus, one may employ equation (2) and
arrange terms to yield

o



= ¢ (Bat) + 1 dm

, (3)
in in 41180? dt

¢

where om(“t) is to be computed with equation (1) using the drop
temperature,

Next an equation is required that is similary in form to equation (1)
to relate the flux in to the vapor density field. Equation (1) no longer
applies because p(R) is not constant near the drcp. Thus, it is neces- -
sary to return to one of the integral formulations from which equation (1)
is normally derived (Loeb [19)) and make t* 2 adjustment for a vapor den-
sity which is a function of R

1 e 3 22 ©  m2 2n
Q‘in N AV§TT372 S c e de I 5 J. o(R) e-r/)‘ 8in® coes d@ ds dr
c=0 r=0 8=0 ¢=0
(4)
o n/2 2n
O = 15 [ ] emerr
in ~ IgX p e sin® cos6 d¢ d6 dr
r-0 6=0 ¢=0

The integration is over a half space in a (r, 6, ¢) coordinate sys-
tem centered on the surface »f the drop. Here ) is the mean free path
in the gas, v is the most proballe speed, and ¢ is the mean molecular
speed. From elementary kinetic theory,

c = SRWT/'n . (%)

s A PO

A i R R A
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In Section 1I-D it is shown that Fick's Law for the diffusion field
imples that the vapor density obeys the relation

T, - T,
P(R) = p, + (py = py,) a/R + [p, - P(R)] <_a__'1_‘____) alR .

Sinez | p, - p(R) | < | p, - o, | for all R and, as noted nreviously,
(T a’ T_)/T_ is less than a few tenths of a percent in even extreme
cases,* the last term can be ignored; thus

o(R) = p_ + (p, = p,) a/R . (6)

o

Using the law of cosines,

2 /2

R =(a" + r2 + 2ar cose)1

Performing the ¢ integral, breaking the integrand, and performing the
elementary ¢ and 6 integrals in the first term yields

P g (Pg = Py) €A (ald)
YT ? ) : (M

We have made the definition

ml2 -r/A

e sin6 cosf dédr
a/i j j ) 1/2 (8)
0 0 (a® + r“ + 2ar cosb)
1
—-12

-, 1\ -a/x [ a 2 a\ -a/x |,
)- (_... + é.)e + \2)\+ a 2) El(%\> - <3A)e a
(9)

* For droplet growth. The error could reach 10 percent for drops
evaporating in very dry air,

Aal/})

gl>
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-at/A
whereEl(%)'-: -1/ 3—;———- dt .

The expression (9) ropresents the second-order approximation to
the value of the integral. It gives a value for A(a/A) which is 10 percent
too low for a = A, but the accuracy improves rapidly for larger values of

X drop radius. Note that an error in the value of A(a/)\) causes a much
smaller error in the drop growth rate. Evaluation of the integral and
expressions for successively better approximate values and upper and
lower bounds are discussed in the Appendix.

Substituting equations (7) and (1) into equation (3), one approaches
the final solution for the boundary condition.

- P,) CA(al}) wld 1 dm

——— =D + -
4118&2 dt

4 2 “sat 2n

(10)
Using equation (5) and solving for Py making the approximation

12
(Tg/T,) ' 21

gives,

8]
sat 1 1 27 dm
At G A U B R el Rl e s = . (11)
a M(%) ( 2A(9\)) 8nsazA(t-:\-) v Rme dt

Equation (11) represents the boundary condition for the vapor
diffusion field at the water-air interface. Notice that in the limit of
large drop radius A(a/\) » 1/2, so the boundary cundition becomes

1 2n dm :
poo= o + / e a>>2x) . (12)
a sat - al RwT . dat h
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C. Temperature Boundary Condition

The solution for the temperature boundary conditions very closely
parallels the vapor density case. If ais defined as the fraction of energy
exchange for the air striking the drop surface,

- __Actual energy exchange
& = Maxdmum possible exchange '

consideration of the energy flux balance in equilibrium yields, in analogy
to equation (2),

Fy = oF (sa) (19)

for the flux leaving the di -p. Similarly, for a growing or evaporating
drop the flux balance condition is

- - S L dm
Fin = (1 - @ Fi +Fy P - T

where L is the latent heat of condensation. Assuming the directional
energy flux emerging from the drop is independent of the state of equi-
librium, one obtains

- L dm
F. -I-in(sat) 3 at . (149)

in
4n0a

Now expressions must be obtained for the incident energy fluxes
for the growing and equilibrium drops. In both cascs we begin by noting
that the energy flux, ¥, equals the product of the energy per molecule
times the molecular flux. Using equation (4) for the molecular flux with
the vapor density replaced by the gas censity and writing the energy
per molecule as translational energy plus internal energy to separate out
the dependence on molecular speed, yields
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L Fp—— ;Z' b ‘Ln(t‘;c— N }-:,' -r(n)) oo v _L_ ¢/} sino coss dedededr

Integrating over ¢

L

=1 o M du, P (R)  _
Fin = Avsn"ff”( T—* 7 37 TR £ ™ sino coss dededr

Since ¢ = 2v//T , V2 = 2RaT, and e, = 3Ralz + (ma)-1 aui/a'r, where
R a is the gas constant for air,

o 1w/2 27
(C +R /2) [ f f T(R) o (R) e r/A sinG cos® d¢dédr

(15)

F =

In equilibrium T(R) and pg(R), the gas density, are not functions of
position, so the elementary integration gives

Fin(sat) = (Cv+ Ra/2) Td pg /RaTd/(Zn)
= (3RaTd) pg / RaTd/(%) , (16)

where T d is the drop temperature (which equals the gas temperature).

10
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For drops not in equiibrium the analysis of the diffusion field
given in Section II-D shows that the temperature field is given by

;\ T(R) =T, + (T - T))aR amn

where T a is the gas temperature at the drop surface and T is the envi-

! ronment temperature. After inserting equation (17) into equation (15),
C integration yields the desired solution fer the energy flux into the drop,
Fin' In this case the gas density is constant in the region about the

drop (to a close approximation), but the temperature shows the same
radial dependence as the water vapor density did in the previous case.
The solution is

2n n/2 w

3R ¢ p -r/\
Fip =~y B of ({ (S, {T +(T, - T,) “R]e sin@ cosd drdodo
= [3R 0] l: 2 4 -2 5 - (18)

A(a/)\; s again defined by equation (8). Combining equations (14), (16),
and (18) as before., one obtains the final boundary condition:

T = -j-d—— er [1- L S i (911) (19)
a /a ® a 2 fa at | °
ZAU) ZA(X) 24naR L A(*g)

Again, since A(a/)\) -~ 1/2 for a >> A, the large drop limit is

L »’5-’1/ a_T-

o fdm
T = r-: — R (_..-..) (a >> X) . (20)
a d  Jonqa’R R dt
ag

11
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D. Solution of the Diffusion Fields

Now that the boundary conditions for the vapor and temperature
fields have been established, equations (11) and (19), the solution for
the droplet growth rate can be obtained. The problem contains four
unknown parameters: the growth rate, the latent heat released at the
drop, tr» drop temperature, and the equilibrium vapor density above
the drop. Thus, four equations are required: Fick's law for the diffusion
of vapor, Fourier's law for the conduction of heat, the proportionality
between latent heat release and change in mass, and the Clausius-
Clapeyron relationship between temperature and equilibrium vapor density.
These yield a solution in terms of the known environmental parameters.
The method parallels the textbook solution of Mason [3] with different
boundary conditions and with Fick's law written in terms of the mole
fraction, x, rather than the approximate expression in terms of vapor

density.

Beginning with Fourier's law of heat conduction and noting that,
for a steady state system, the heat flux across any spherical shell con-
centric with the drop is constant, independent of time and radius, we

have

49 _ 4% - -4’k 9T -
at = 4mR°F = 4nRKdR = constant. (21)

An additional term could be included in equation (21) to account
for the energy flux carried by the mass flux. However, this term must
be less than Cv dm/dt, where CV is the specific heat. Since the total

heat flux must equal L dm/dt, the fraction contributed by the mass flux
term must be less than Cv/L ~ 0.0005, which is clearly negligible. There-

fore, returning to equation (21),

%? 9—‘-; = —4andT .
R

Integration and application of the boundary conditions, T = T _ at
R+ «,and T = Ta at R = a, quickly yields

& = amk (T, - T,) . (22)

12
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and

T=T, +(T,-T)§ .

which is equation (17) which was used earlier. If one makes use of the
definition of latent heat, L, equation (22) can be related to the growth
rate

dm _ 4rnaK _
a =T (Ta T,) . | (23)

Next a similar solution for the diffusion field is obtained using Fick's
law [20] and the "steady state" assumption.

9
g—:—n= 47R“¢ = constant

2
_ 4R C(R)MWD dx (20)
(1 - x) de '

where x is the mole fraction of water vapor, C(R) is the molar concentra-
tion of the moist gas (air + water vapor), and MW is the molecular weight

of water. From the gas law,

C(R) MW = P/(RWT(R))

Inserting equation (13) for T(R) into (24) and integrating from
’ R = a to » gives

13
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Or, ~fter integration,

R T +T 1 -x
w ™ dm 8
7(_.,.._3 ‘)ar - ad m(_...1_,‘00)

2
X, - X, (xm-xa) .
w 2 \T1T-x_

Solving for dm/dt and neglecting the higher order terms leaves

"
-3
=
o

'
»
!

dm _ 8naPD Xo = Xg (25)
d "R, (T, +T) \ 1-x_ :

This approximation is quite good. The series expansion is always valid
since the absolute value of (x_ - xa)/(l - x_) is less than one. In the

rather extreme case of a drop at 20°C evaporating into dry air;
x, =0, X, = 0.023; the error caused by neglecting the second-order term

is only 1.2 percent,

The mole fraction is related to the vapor density by the expressions,

R pT R p T
_ waa _ TWhe T
Xg = P ' Xy T P
Therefore,
dm 8maD (o, T - p,T,)

at " T+ Ty (1- R, o T_/P)

> ]

2T p
- 4D R _.a _

te

4maD Peo
(rrm [(ow - Pg) - T, (Ta - Tw)] . (26)

14
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The approximations used to reach the final form of equation (26)
introduce negligible error as long as the quasistatic assumption is
valid. Tney can be shown to be equivalent to neglecting the term

(py - 0) (T, - T,)/ 2T, S

plus higher order terms. Considering a drop at 20°C evaporating in

90 percent relative humidity — a significant departure from quasi-
static — the error contributed by this approximation would be less than
0.7 percent.

Because of the spherical symmetry and steady stat. assumptions,
the mass flux across any spherical shell concentric with the drop is a
constant. Thus, rewriting equation (26) for ar-itrary R leads to an
expression for the vapor density profile,

g—?— = constant
- 4maD ( °a
TUTR o TP |Pe =P~ (Ty = To)
W ® "o o

= ﬁ%ﬁp“ - o(R)] - E{:&) {T(R) - TQ]]
W ® ®

Solving for p(R), using equation (17), gives

a Ta ~Ta) 4
P(R) = 0, + (0= 0 ) g+ log - (R | —— ) &

te

Pp * (P = Po) B

15



This is the vapor density profile, equation (6), which was employed
earlier in Section II-B.

Now Pg can be eliminated from equation (26) by substituting in the
boundary condition, equation (11),

dm imaD Po = Pggt 'S"I(an dm Pa T -T)
a - ) ay T /a ( ) 7 a ‘e
SN2 2A 878a°A ®

Next, substituting from equation (23), (T - T,) is eliminated to give a
solution for dm/dt. *

dm _ _ 4mD (P, - Pgq)
a (a)[ R, PuTe Dév/R T, . Dea L]
2a(2) |1 -
X P
ZBaA(-X)
= 41!;.D (P = Pgap) - (2D

where the parameter B is defined to equal the denominator of (27)

f T D.&n/n T_ DLo_
B = zA(‘\ ) + Ry 'K'l"‘ (28)

This expression, equation (27), appears in the original solution by
Maxwell [1] with B = 1. It represents a solution for the droplet growth
rate which is independent of the thermal conduction field. Thus, one
must have independent knowledge of the drop temperature to specify
Psat in equation (27).

Likewise, an expression for the growth rate can be obtained from

the thermal fleld by substituting the temperature boundary condition,
equation (19), into equation (23).

16



dm 21rKa_('1‘d - T,)

(29)

at a Kﬂn/RaT"
LA('x) 1+ a
. GaanapgA(-x)
_ 47Ka
\ =g (Tq - Ta)

where, to simplify notation, we have defined

a ™

- a K 2n
C: ZA(X)[I + SR o AGTT) /e ] (30)

Just as the saturation vapor density over the drop, p__., must be

sat
known to use equation (27), the drop's temperature must be known to
use equation (29). This difficulty can be eliminat:d by using &an expres-
sion which will be derived from the Clausius-Clapeyron equation,

1 dpsat _ L

. (31)
Poat 49T RwT2

Using the gas law to wriite this in terms of vapor density, rather
than pressure, gives

dpsat(T) _ L
psat(T) (

Integrating from Td to T yields:

o (TP L(Ty - T) T
sat’ "d” ) _ d ol d
In <o (Tm)>‘ R T,T In (T:) (32)

T

sat wde

17



The approximation Td = T_ and the expansion, In(x) = x - 1,
for x = 1 applied to equation (32) ylelds

" (pm('rd)> (L - R,T,)) (Tq - T,)

Psat(T) R,TZ '

Taking the exponertial of both sides, expanding, and dropping the
higher order terms leaves:

osat(Td) L- RWT‘” -
Pt =\ gz )T T
sat' "« RwT“

Substituting for (T a- T,) from equation (29) leaves

PeatTd) = Pgat{Tx) - (L j RwToo) (LC ) (QQ_) (33)
2 4nakK dt '
Peat(Te) RyTe

(T_), one has

Recalling equation (27) and dividing it by Pgat

P 7 Pgat _ B dm)

Ty T 7 T (34)
Peat(Ts) dmeDp (T ) \dt

Since it is assumed here that the water drops are pure, the equi-
librium vapor density over the drop, Peat’ is related to the equilibrium

vapor density over a flat surface of water at T (Td), by the Kelvin

v P
R t
equation: d sa

20
p = p,(T,) exp ———————)
sat sat*°d (pLRWT da

18
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= (TH{1+
Psat d ( ""ﬁL W'T' d )

2°psat(T )

LRTa

je

35
psat(Td) + (35)

The linear epproximation for the exponential is adequate for wacer
drops larger than 0.1 ym. For application to smaller drops the ouedratic
term should also be included. The temm for dissolved impurities could

have been included at this point by the textbook method [3,4], but it is
amnitted here to shorten the solution.

Substituting equation (35) into equation (34) and adding result
to equation (33) gives:

2000,,t('1‘ )
p_ - t(T ) -

© sa w pLRwT a ) L - Rme LC
psat(T“) Rw'ff, 4maK

+ B (Qﬂ)
4TraDosat(Tw) dt

Using the definition of the saturation ratio, S,

P
S:=

sat(T )

The final solution can now be written:

20
4ma | (S - 1) - —F——-
LR T a]

LefL - RwTw)+ B '
X RwTi Dot (T

l‘lg.

(36)

(=%
-
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where

T, D/aRT_ Dpr] n

R, 0
w
24(%) [1 T v *t@mA@M™ *RT_

B =
. 4a K /21/R T
oz W)\ 1+ smR At | s

A(a/})) is the integral, equation (8), which is evaluated in the Apr 2ndix

n/2 w I/

A(a/)) = “”‘f __e‘2 ;x_ne cosf dr clilez
0 ¢ (a° + r® + 2ar cos®)

Since

_4 3
m=gzna‘e

2

dm/dt = 4na PL

da/dt ,

the radial growth rate can be written

20
d (S - 1) SR T a
a -9 = L w . (39)
dt ;)LLC L - Rme . pLB
K RWTW2 Dp“t(Tw)

As noted previously, a second-order correction to the Kelvin tera may be
desirable for some applications involving very small droplets.

20
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III. NUMERICAL EVALUATION

The numerical values of A(a/})), B, C, and da/dt are illustrated:
in Figures 1 through 7 to indicate their magnitudes and dependence upon
temperature, pressure, saturation ratio and drop size. Figure 1 illus-
trates the value of the integral, A(a/)), as a function of drop radius
divided by the mean free path. The third-order approximation given in
the Appendix, equation (A-6), was used to compute the graph. Note /
that the value of the integral is well defined for all values of radius.
In the limits, A(a/A) + 0 as a+ 0 and to i/2 as a + ©, |

The difference between this formulation of the droplet growth theory
end earlier solutions is contained in the terms "B" and "C" which are
given by equa’ rns (37) and (38). These are plotted against radius in
Figures 2 and 3, respectively, for various values of the thermal accom-
modstion coefficient, o, and sticking coefficient, 8. If a and B were
about equal, then "B" and "C" would be of nearly equal significance; but
since it is generally believed that o is near unity and B is small, probably
between 0.03 and 0.04, the "B" term must be regarded as having the
greatest impact on the growth rate. However, as pointed out by Chodes
et al. [21] and others, the measurements upon which this judgement is
based are difficult to make with high accuracy, so the values of o and
B must still be regarded with some suspicion. In the limits both "B"
and "C" become inversely proportional to "a" for smell drop sizes; but,
since the entire denominator of the growth rate equation is multiplied by
the radius, the growth rate would remain bounded as a + 0 except for
the Kelvin term in the numerator. As the drops become large, "B"
(approximately) and " " approach unity; thus, equation (39) approaches
the c.ussical solurion.

The remaining figures (4 through 7) illustrate the magnitude of the
radial growth rate, equation (39), as a function of radius with temperature,
pressure, saturation ratio and sticking coefficient as parameters. As
will be discussed in the following section, the numerical values do not
differ appreciably from those presented by other authors. In each of
the curves plotted, the growth rate is carried to zero by the Kelvin
term. If that were absent, the curves would approach a constant value
somewhat greater than the peak values shown. Of course, to accurately
reflect the growth of a real drop in the atmosphere one must include, in
addition to the Kelvin term, a term to describe the influence of the nucleus
and any chemical impurities in the drop.

21
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IV. COMPARISON WITH EARLIER STUDIES

Sorting out the differences in the notation, assumptions, and lines
of reasoning which were used in the various prior treatments of this
problem is a difficult and generally profitless enterprise because the dif-
ferences are often quite subtle and not verifiable by experiment. Thus,
a comparison of this type will not be attempted in this report. However,
it was noticed in the course of this research that several of the more
recent and widely used expressions for the droplet growth rate could
easily be derived using the line of reasoning presented here — with
appropriate changes in the initial assumptions. Thus, it becomes an easy
matter to evaluate the differences among these formulations. It is these
cases which are discussed in this section.

Consider first the solution presented by Fukuta and Walter in 1970
[14]. It differs from the solution presented here in two aspects: (1) the
terms - prwTw/P and DLp_ /KT _ in our expression (37) for "B" and

(2) A(a/X) = 1/2 rather than the integral, equation (8), presented here.
The additional two terms in the expression for "B" in the solution pre-
sented here derive from the use of equation (24), the basic formulation
of Fick's law of diffusion in terms of the mole fraction rather than the
approximate formulation in terms of the vapor density gradient. The
propriety of using the mole fraction formulation was pointed out by Feard
and Pruppacher {22] and Carstens [18]; its influence on the growth rate
is illustrated by Figure 8. The second condition, substituting 0.5 for the
value of the integral is equivalent to using the large radius limit. As
Figure 1 illustrates, A(a/A) approaches to within 10 percent of this value
by the time a/) reaches six. Since the Fukuta and Walter solution is
limited to a >> X\ by their method of derivation, the solution presented
here can be viewed as an extension of their work to small drop sizes.
However, it is perhaps more revealing to note that making the assumption
that the vapor density and temperature are constant near the drop, i.e.,
p(R) = Pq in place of equation (6) and T(R) = T, in place of equation

(13), yields A (a/A) = 1/2 directly. Thus, the Fukuta and Walter solu-
tion fails to account for the vapor density gradient near the drop which,
it turns out, is not important unless a < 6A. Figure 9 illustrates the
absolute value of the total difference between the two solutions.

Another solution which is closely related to the Fukuta and Walter
formulation is the one developed by Rooth [12]. Rooth's solution is equiv-
alent to equation (27) if one seis A(a/)) = 1/2 and drops the two terms
discussed in the preceding paragraph. Rooth considered only mass trans-
port and ignored the heat transport portion of the prctlem. Thus, his
solution and others similar to it can be applied when the drop temperature
is known independently, as when the drops are resting on a surface or
suspended from a thermocouple. As far as the treatment of the mass
transport problem is concerned, the Rooth solution is equivalent to the
Fukuta and Walter treatment; therefore, the same comments apply to both,
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A third formulation which is widely used and is also closely related
to the Fukuta and Walter work was developed by Carstens [17,18].
Carstens employed a classical kinetic theory approach from Kennard [23)
to account for the temperature and vapor density gradient near the drop.
The method presented here yields the Carstens solution if one replaces
equation (6), the solution of Laplace's equation near the drop, with an
expression of the form

la (40)

Qlﬂ-
wilo

p(R) = fa + R cosb

and likewise for the temperature field. This is equivalent to considering
a flat water surface and a one-dimensional variation in vapor density when
deriving the boundary conditions. Thus, Carstens fails to correctly
account for the spherical geometry near the drop. In his second paper
[{18] he works from the mole fraction formulation of Fick's law, but he
makes approximations so the the "mole fraction" terms do not appear in
his equivalent of our "B", equation (37'. The droplet growth solution
developed by Monchick und Reiss [7] bears the same relationship to the
Carstens solution as the Rooth solution does to Fukuta and Walter. Thus,
the preceding comments apply to it as well,

The difference between Carstens' work and the solution presented
here can be evaluated by considering the second-order approximation to
the value of A(a/)) presented in the Appendix, equation (A-5). For
a/X > 3 the three exponential and exponential integral terms provide a
negligible contribution and one has

A(a/A) = 1/2 - X\/3a . (41)

Making use of the classical kinetic expressions D = ¢c)/3 and
K = g snRa where 11 is the viscosity (1/3 ogEA) and ¢ is a numerical con-

stant between 1 and 2.57, depending upon the mathematical analysis (see
Loeb, [19] pp. 245, 441), one quick'y obi ins

A, = (3D/4) / 2n[RwT (42)
and
\y = —K __ SnRT (43)
2710 ¢p R a :
g a
32
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Thus, one can write
A(a/)) =1/2 - 4D/a / 2n/RwT (44)

and, choosing ¢ = 1.2,

K 27

. (45)
12Rapga Ra

A(a/}) =1/2 -

Substituted into equations (37) and (38), respectively, these equa-
tions yield the Carstens solution. Equation (42) is an expression for the
mean free path of the water vapor molecules, while equation (43) refers
to the air.

Relations (42) and (43) caa also be used to aid intercomparisons of
the solution presented here with those developed by Fuchs [9], Bradley
et al. [10] and others that leave the final expression written in terms of
X or A, the "jump distance" which is not defined analytically in the solu-
tion. Consider, for example, the well-known Fuchs solution {9]. Fuchs
considers the vapor and heat transport problems separately and does not
combine the two, so we compare with our expression (27). Fuchs' expres-
sion (5.6) in our notation is

4maD(p_ , - £,,)

dt a +_Il 2n
a+ A Ra RwT

4maD(psat - 0,)

D I '
2A (1 + 2 ——)
F ReA, /R T

if one defines AF =1/2 - 2—(—5%\—3 , which compares to our A(a/A). Fuchs
argues, based on analogy with heated filament work, that A = ¢l where
¢ is a number greater than one for small drops. This does not appear
correct in light of the present analysis which shows that Laplace's equa-
tion for the thermal field is obeyed to within a few percent even for
rapidly growing or evaporating drops. The problems associated with the
sharp temperature differences near a hot filament do not enter the analy-
sis. Fuchs notes that : + 2/3 for large drops, so in this case
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AF =~ 1/2 - )/3a =1/2 - 4D/a ¥ 211/Rw'l‘ .

This is, again, equation (44). Thus, for large diops the Fuchs
solution reduces to the Carstens, Monchick and Reiss solution. As dis-
cussed previously, it differs in the presence of the two terms related to
the use of the mole fraction gradient form of Fick's Law and in the value
of A(al/)).

V. CONCLUSIUNS

In this repcrt a solution for the growih of water droplets under
quasistatic conditions is presented which is accurate to within the basic
limitations of classical kinetic theory, approximately 3 percent. The anal-
ysis is based on the concept that the diffusion field and thermal conduc-
tion field are continuous right to the drop surface; there are no ahrupt
changes in the properties of the media in the near vicinity of the drop.
The validity of this concept is verified by the analysis for essentially all
circumstances of interest in the atmosphere; that is, that "qnasistatic"
approximation implies that the temperature and vapor density fields near
the drop are Laplacian to within an accuracy of just over 1 percent or
better. For a drop evaporating in a very d.y environment, the vapor
field is non-Laplacian to an amount approximately equal to the dew point
depression divided by the absolute temperature, i.e., a figure which could
reach 10 percent.

The theory presented here is rigorous within the limtations of the
classical kinetic theory. Thus, no approximations have been made which
would cause a deterioration in the accuracy beyond the few percent level.
The solution is applicable to drops small compared to the mean free path
as well as to laige drops; thus, it represents an improvement over the
previous theories which required that the drop radii be large compared
to A.

Numerical evaluation anc study of the differences which exist
between this and previous theorie. reveal that the differences are not
significant in most cases. Indeed, since it appesrs that the state of
the art limits the precision of growth rate measurements of small diops
to something in excess of 10 percent and that a and { are poorly known
gquantitics, separation of the theories does not appear possible based upon
experiment. Numerical evaluation shows that the solution presented here
lies between the Carstens and the Fukuta and Walter formulations, and
even for a = ) the solutions do not diverge by more than 7 percent.
Thus, it appears that the differences in handling the physical assumptions
which gave rise to the many different formulations in the literature are
not important to the applhed problem.
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APPENDIX
EVALUATION OF THE INTEGRAL, A(a/})

If we write s for a/) and t for r/a, then equation (8) in the text
becomes

o w2 -st _,
A(s) = s[ e sinf cosoO

de dt
0 0 (1 + 2t cosf + tz)”2

and one integration yields

« 2.3/2
AGs) = 3 e—St<(1+t) - 1 -t)d‘
3“€ t2

According to the Binomial Theorem,

..}
@ 3(1) ... (3-2n .2n .
2‘ 2(4) . . . (2 + 2n) t or 0<t<1

n=
a+ 1532 .

1 S 3L ... (-2m 1
2 g 2(4)...(2+2n)“t’2n+1for 1<t

and, hence,

1 2,3/2 _ ® 2.3/2
A(s)=-§|:f0 es‘<£.1_+_1.%___..__1__t)dt+fl est((1+t; L G

t t
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-8t 3(1) ...(3-2n) 7 e8¢
g;Td“,,Zo D ... 2+ [ w1 ot '

or, with some combination of terms,

1 at oSt
A(s) =- § j;e t at +‘/'1 ——t—é—dt
.8 § 3 ... (3-2n) (_fe-Sttzndt-l»fm e St at
an..=402(4)...(2+2n) 0 112n+1
(A-1)
Now, if we let
1 o -st
- -st .2n e -
Y (s,n) —/;) e t dt + fl 't-z—m dt ' (A-2)

whenever n is non-negative and s is positive, (A-1) may be written as

1]

o0 -
Z 3(1) . . . (3 - 2n) (s.n)

- _ 8 1 s )
A(s) = 54'(5- 'z')*ﬁ I I RS )

or, with the first two terms interchanged,

_s _ s 1, .8 w 1¢-1) . .. (3-2n)
A®) =3 4.0 -3 uey) + 3 ¥ T~ eI Ve
n=1

=3 0(8.0) - 3 U(8,1/2) + F U(s,1) - g V(s.2) + . . .
(A-3)
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In view of (A-2), we see that

1 .2n o 1 _ 1 1 1
S, v meT d=g 71t “n
0 < y(s,n) < - o -
fleStdt+f estdt___é
0 1
and that

oo

1 -st
9 ’ - -2 Int
Bolen) =f0 e St (2 muat+f © tszl ) gt < 0

Thus, {(s,n) decreases steadily to zero as n incr.ases and, since the
multipliers in (A-3) also decrease in magnitude, it is clear that (A-3) is
a convergent alternating series. Moreover, each partial sum is an upper
or lower bound for A(s) depending on whether the number of terms
included is odd or even. For example:

0 < A(s) < %\P(S,O) ’
1 1
2 V.0 - 3ufs, 3) < A < Ws,0) - So(s ) Fues

and so on.

The following well-known formulas may be verified by successive
integration by parts for s * 0 and n > 0:

1 0 k
-st ,n _ _n! _ -8 s
[ e tMdt = KX (1 e ) "E!') ,

0

-.t ,n n! -5 @ s
f e t dt = n+l e Z 1—{'!— .
S n:O

3



and

- []
1 t21\ + 1 (n-1) K=0 k +1
where
o e_t o e-st
B = [ Foa=f oo
5 1

We use these and equation (A-2) to obtain the alternative form

e on _k _13 2, 2n
v(s,n) = 200 (1 -y %)+ cnns (El(s)
s k=0

s 2L kg
- e Z .
=0 s +1 )

In particular, using An(s) to denote the sum of the first n terms of
equation (A-3), we have

A =3 w0 =5-5 €S+3E () (A-4)

= _ 8 _1 _ _}_ _ _ 1 -s
AZ(S) = AI(S) 3 y(s,1/2) = 3 s ( 3s + E)e

[ ]

2
*( *%)Elm'% e (A-5)
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, s 11,1 (1 1. 1\-s
A® = Ay +F VD =f- g+ Ly (_4;,[ Lo i.‘),,

2 3 2
S ., 8 ) _{13s . s -8
*(7*“3'*%)31(8) (_48 "ﬁ)e .

Substitution of a/A for s shows that equation (9) is the same as
A2(s). By taking higher values for n, we can obtain approximations for

A(s) to any desired degree of accuracy. For example, As(l) = 0.31933.
A6(1) = 0.31920, and we see that A5(1) can be in error by no more than
about 1/10 of 1 percent. Also, it can be shown that, if n is positive,

lim
s>0

lim

s" Ei(8) = |, s E,(s) =0 (A-T)

and, consequently, the formulas for Al(s) and A2(s) are sufficient to
imply that

Lim

_ Lim -
s+ 0 A(s) = 0 and o> o A(s) =

DO -

. (A-8)

The numerical value of A3(s) is illustrated graphically in Figure 1. This

third-order approximation to A(a/)) should be more than adequate for
most practical applications of this droplet growth theory.

As a by-product of the preceding derivation, we have obtained a
Laplace transform of

2,3/2
2

a-+t 1

-t
t

Generalizations are clearly possible for some exponents other than 3/2.
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