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Introduction

The following is a report of progress made during the fourth six-month

period (July 1, 1980 to January 1, 1981) under NASA Grant No. NSG 32380

"Turbine Endwall Two Cylinder Program". under this grant an analysis and

a series tf experiments are being carried out to study the three-dimensional;

separation of fluid flow around two isolated cylinders mounted on an endwall.

The work reported comes under Tasks I and 11 of the program and deals

with:

a) water tunnel te,,;.ting for both the single and double cylinder cases.

b) wind tunnel flow characteristics.

c) static pressure distribution measured on the cylinders.

d) design and construction of a pressure reference system.

e) overview.

Water Tunnel Tstinc

Boundary layer flow past a single cylinder mounted on an endwall has

been investigated by a number of researchers (Ram', Peake and Galway',

East and Noxey', Belik I , Baker s ' 6 and others). Ram' presented data for a

single horseshoe vortex flow at the endwall cylinder junction. Baker""

found that under certain conditions multiple as well as oscillating vortices

can occur. Herein, we have presented saddle point location data, for both

the single and double cylinder cases, taken at low velocity in the water

tunnel.

The turbulence manipulators used at the water tunnel test section inlet

have been discussed in a previous progress report 7 . Although these manipulators

have straightened out the flow so that it is adequate for data acquisition,

a small amount tf b Ailging in the velocity profiles near the endwalls was
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observed. Laws and Livesey O suggest that this happens when k values are

9greater than I. Schubauer ) Spangenburg and KlebanofT found a K value OT

2.8 to be the optimum for making an arbitrary flow uniform. Our k is much

larger than this.

As was mentioned in the last progress report", boundary layer velocity

measurement is complicated by the fact that our hot-wire probe is not tempera-

ture compensated and therefore drifts slowly as the water temperature changes.

Another difficulty encountered while making this velocity measurement is

that caused by air coming out of solution and forming bubbles in the water.

These air bubbles often adhere to the hot-wire and change the local heat

transfer coefficient. The difficulties we have had measuring a velocity

profile are important because without the profile we cannot calculate either

a shape factor or a displacement thickness. Without a good shape factor

measurement, we have not been able to determine the boundary layer type

(laminar or turbulent); however, we have used the voltage output of the hot-

wire anemometer system to obtain 
an 

approximate boundary layer thickness and

to observe that the shape factor varies significantly with main stream velocity.

The method used for visualizing and locating saddle points was described

in the last progress report", Some sample limiting streamline photographs,

for various cylinder diameterss are shown in figure 1. These photographs

are taken from above the test section and they show the limiting streamline

pattern 
on 

the floor. The saddle points are Identified by small dots.

6
Both Belik' and Baker

5 
I have done dimensional analyses for the single

cylinder problem. 
In 

Baker s it is assumed that saddle-point standoff 'stance

depends 
on the following parameters:

R = fn(DoA U,6 * )Hsu 
I 
;lisp ) ,



.r. Figure 1 - Sample limiting streamline phototograph
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Non•dimencionalizing gives

UD D 
P d*, H s 1) .R/D a fn(T , i	 U	 0

For the cases presented in this report,O/Z is small and it is assumed that

the value of R/D does not depend on this dimensionless group. The variations

in turbulence distribution throughout the boundary layer have not been con-

sidered. For the presentation of our water tunnel data we have not considered

variations in H to be as important as UD/v or D/S k . * This removal of H from

our list of independent variables is sh,*awn to be valid (for our limited test

conditions) by the data presentation. In this report we have used boundary

layer thickness rather than displacement thickness as a variable. So then,

we are left with the following dimensionless groups;

vR/D - fn( "'!, D )•	 (2)
V 

Figures 2 and 3 show the coordinate systems used to locate the saddle

points for the single and double cylinder cases respectively.

We have taken the single cylinder saddle point location data for the

following reasons:

I. To visualize and become familiar with the flow before embarking

onto the two cylinder case.

2. To establish a data acquisition routine using a less complicated

flow than the two cylinder case.

3. To compare our re gults with that of other investigators.

Figure 4 is a plot of non-dimensional saddle point location,(R/D),

versus Reynolds number bas,A on cylinder diameter, taken in our water tunnel,

for the single cylinder case, for three different free stream velocities and
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five different cylinder diameters at each of those velocities.	 The valu%,-

of S/D are recorded along the side of each data point and two of the cylinder

diameters are indicated in the same fashion.	 Figure 6 is a plot of the same

data using R/D and 610 as coordinate axe2 and the values of Re D are recorded.

In figure 5 it can be seen that at a constant value of S/D the magnitude

of R/D increases quite strongly with increasing Re
D

►
	

Figure 4 shows that at

a constant value of Re D , R/D increases strongly with increasing 6/0.	 In

both his paper $ and thesis', Baker points out that increasing the flow

velocity past a given cylinder does not affect saddle point location. 	 It

can, in fact, be seen in figure 4	 that increasing ReD by increasing U does

not have a strong effect 
on 

R/D.	 The implication is that U is not an impor-

tant variable.	 This is not at all the case oz is evident by the trends of

R/D = fn(Re,,	 S/D) just discussed.	 Increasing U and therefore ReD
	holding

all other variables constant tends to increase R/D; however, increasing U

also decreases 6/D and therefore a tendency to decrease R/D is simultaneously

enacted.	 The combination of these two effects yields a weak increasing

function of R/D with increasing U.

Figure 6 is a plot of the water tunnel data given in figures 4 and 5

using the coordinates R/6 vs. Re
D

.
	

These two coordinates include all of the

independent variables, and the plot reveals a unique relationship between

R/6 and ReD .	 The functional	 relationship given by the	 non-dimensional

analysis consists of three non-dimensional parameters,yet figure 6 shows

that only two parameters are necessary to determine the saddle point location.

The three variables that we have been dealing with are *given in equation (2).

Again,, their relationship is given by

R/D = fn(ReD, S/D)
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we have

	

W-fn(Reo, 6/0)	 (3)

and figure 6 shows that R/S and Rep are uniquel y related so that
V

R/S w fn(ROD)	 (4)

eliminating R/S between equations (3) and (4),

	

fn(Red * D/6 fn(Re,, 6/0	 (5)

In order for this to be true, the right hand side must be a function of

only Rep. For that to be the case, we must either have 6/D constant or

6/D and Rem, must be uniquel y ,-al'ated. 6/D is not constant 	 hftthrriurthout +I* —"Zp	 %4	 so W

data of figure 6 so that the latter must be true.

So then, for our water tunnel

Rep 
D 

fn(6/D ll	(6)

This is true if 6 and U are uniquely related and that is indeed the case

for a boundary layer developing on a fixed length of flat plate.

We can conclude that whenever we have flow past a cylinder mounted

on an endwall where the saddle point position can be determined using the

non-dimensional variables given in equation (2),and we also have a unique

-relationship between boundary, layer thickness and free-stream velocity,

that we will have a unique relationship between R/6 and ReD.

A comparison of our single cylinder data to that of other researcbers

is given In figure 7. The wind tunnel data shown here is at much higher

Reynolds numbers than Our water tunnel data.
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The one water tunnel study shown (Peake and GalWay 2
) is for the case

of a laminar boundary layer approaching the cylinder while all of the wind

tunnel studies are for turbulent boundary layers. Peake and Galway's 2 data

is for a fixed flow and four different cylinder diameters. Their boundary

layer thickness is calculated using laminar flow - zero pressure gradient

conditions (Blasius) and a flat plate length equal to the leading edge length

on the endwall. This laminar boundary laynr data falls very near the range

of our water tunnel data.

Ram's' wind tunnel data is for a single Reynolds number (fixed U and 0)

and two different turbulent boundary layer profiles. The thinner of these

two boundary layers (H # 1,56) developed In a natural way over the side wall

flow surface, whereas the thicker boundary layer (H - 1,36) was achieved by

means or' plates installed on the side wall leading edge. Figure 7 shows that

R/D Increases with increasing S/D.

Fast and Hoxey 3 g i ve us one data point taken in a wind tunnel, at very

high Reynolds number, for a turbulent incoming boundary layer.

Bellk's 4 turbulent wind tunnel data was taken over ranges oi l free stream

velocity, cylinder diameter and boundary 'layer thickness; however, it is

presented in such a way that it is hard to Isolate the effects of each. His

curve fit yields R/D increasing with increasing 6/1) and increasing Rep.

For the purposes of this report the most useful data shown is that given

by Baker $ , for a turbulent boundary layer, because he presents enough data. so

that we can compare trends. In Baker's paper for a laminar Incoming boundary

'layer s there is a presentation of vortex position data-that was obtained

empirically; however, the saddle point position discussion is short and analyti-

cal. Figures 8, 9, and 10 are plots of Baker's 6 turbulent case data in the

same coordinate systems used to present our own water tunne' data. His data
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is given in terms of S * so that in order to compare it to our data in

terms of 6	 we have assumed a fully developed, flat plate, -turbulent velocity

profile (H	 1.3) where 610 a 8.04.	 There is quite a bit of scatter in

the data; however, some overall trends can be observed. 	 From figure 8 we

can conclude that at constant Re D , R/D increases as 6/D increases.	 This is

consistent with our own water tunnel data; however, figure 9 shows that at

constant SID, RID decreases for increasing Re D , opposite to that found in

our water tunnel. 	 When this turbulent (in air) data is platted in the R/S

vs, Re D coordinate system (figure 10) we do not have R/S as a unique function

of ReD as	 we do for the data taken in our water tunnel. For Baker's' data

we do have a unique relationship between 6 and U as the data was taken in

a fixed geoiretry test section. 	 'The implication here is that, over the range

of flow conditions considered by Baker', there is some independent variable

effecting saddle point position that is not considered in equation (2),

Out, single cylinder study as well as the comparison of our data

data of other investigators serves very well as a precursor to the double

cylinder study.	 Although there is some disagreement between the trends found

in our water tunnel experiment and Baker's 6 wind tunne l '	 study we have identi-

fied the variables that are important to the prediction of saddle point loca-

tion past kin obstruction.	 Although the two cylinder case is an obstruction

of different geometry than the single cylinder case we will show in the

following section of this report that the coordinate system used to display

the single cylinder data is a good base to start from in the description of

the two cylinder data.
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The data presented here is for flow past two cylinders mounted on an

endwall in a low velocity flow of water. Referring to figure 3, we measure

both saddle point standoff distance R and saddle point turning angle 0 as

a function of the following variables:

R	 fn(VD,Sd)

0	 fn(V,D,Std)

where d is the distance between the centers of the cylinders. Figure 11

is a plot of saddle point standoff distance versus non-dimensional cylinder

separation, d/D, for one test section velocity and two cylinder diameters.

Figure 12 is a plot of saddle point turning angle 0 as a function of d/D for

the D=l" case. At large cylinder separation there is a saddle point in front

of each cyl 'nder. As the two cylinders are brought closer together the

saddle points start to turn 
in 

towards the other cylinder. The fact that

the flow field around either cylinder is indeed being affected by the other

cylinder is dcironstrati, "-4 by this turning.

The plot, in figure 11 shows that the value of R is not strongly affected as

d/D is decreased until a critical value of d/D is reached. At this critical cylinder

separation, the two saddle points combine to form one saddle point, located

on the centerline between tho, two cylinders and further upstream. figure 11

shows that as d/D is decreased below this critical value, 
the 

standoff

distance of this single saddle point increases markedly,

it is expected that at large cylinder separation the flow past either

of the cylinders is as it would be for a single cylinder 
in 

the same flow.

With this in mind we have plotted the data of figure 11 in the same coordinate

system used for single cylinder data (RP vs. ReD),

Figure 13 shows that prior to saddle point combination R/6 is a unique

function 
Of Re D' as 

is the case for single cylinders.	 After saddle point
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combination this no longer holds true. The magnitude of the increase in

R/a upon combination is not a simple function of cylinder diameter and

saddle point combination does not occur at a specific value of d/D.

Upon running the two cylinder experiment in the wind tunnel,, ws can

expect that prior to saddle point combination the standoff distance will

vary very much like it would for the same cylinder alone in the flow. However,

after combination the two cylinders offer an obstruction whose geometry appears

quite different to the flow than that prior to combination. In the wind tunnel,

we have the free-stream velocity and the boundary layer thickness varyinq

independently of one another so that even prior to combination we will not

have a unique relationship between R/a and Rep.

Wind Tunnel Flow Ch,,raci,eristics

Our first evaluation of the test section flow characteristics revealed

a boundary layer thickness that varied significantly as one traversed across

either the upper or lower endwall (see figure 14) where the upper thickness

was larger than the lower (figure 15). It was also found that both total

pressure head and velocity head increased monotonically, by about 2.5 percent

of main stream velocity head, as one traveled from north to south in the main

stream flow (see 'Figure 14). As reported in the last progress report' O , a

total pressure mapping done at the inlet exit plane showed that both the

boundary layer variations and the main stream non uniformity were present

there as well. In an attempt to cause the transition from a laminar to a

turbulent boundary layer to occur at the same streamwise location for all

locations across the inlet a number of different boundary layer trip geometries

were installed on the inlet floor (various streamwise locations along the

contraction as well as multiple trips). The effects of the different trips
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t

f
	 on the downstream flow were to increase the boundary layer thickness every-

where without eliminating the variations in thickness, implying that our

problem was not one of transition. We then removed the honeycomb From the

inlet entrance. A total pressure mapping shows that the boundary layer

thickness has become much more uniform over the test section endwall,

particularly on the Floor (figure 16) and that many of the main stream velocity

profiles have become much more uniform. 'rhe reason for these changes could

be that air had been leaking around the edges of the honeycomb causing varia-

tions in initial boundary layer thickness and that at some places the honey-

comb was not knit tightly to the perforated plate, causing small nonhomogeneities

in resistance over the cross section of the tunnel entrance (non uniform

velocity profiles).

Although re^ioying the honeycomb yielded significant improvements, we

still had a wall rronotonic total pressure and velocity increase across the

tunnel. Total uressure r'appings both upstream and downstream of the perforated

plate identified the perforated plate as the cause of this main-stream problem.

Although the high resistance of the perforated plate makes the plate very

effective for isolating the tunnel from the room (this has been verified by

drastically altering the room flow with a large plywood baffle and observing

that the tunnel flow was not changed), it is also the controlling factor for

the flow downstream of it,

At present A with the honeycomb removed the maximum deviation in total

pressure in the inviscid core of the test section is

PT	 (;j) pU2

Static pressure was found to be constant across the test section. A simple
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one-dimensional analysis shows that , a variation in the hole diameters of

the porous plate (nominal hole diameter of 0,0625 in, and porosity of 23%)

of 0,0004 fi': could account for 'this sm,411 variation in total pressure.

Such a variation could be caused by the paint on the plate itself.

Using the results of Schubauer, Spangenberg and K1ebanoff 9 , an addi-

tional porous plate of inuch higher porosity (40%) was installed at exit

plane of the inlet. However,, it was found that rather than making the flow

in the test section more uniform, it distorted the flow.

This low resistance po rous plate has been removed. At present we plan

to add more resistance (screens on the porous plate of the inlet) on the

side of the tunnel that has the highest total pressure. It should be empha-

sized that the variation given in e quation (7) is small and correctable

As discussed in the last progress report", the mass of the centrifugal

fan base was increased. The fan was then lifted off the floor and mounted

on vibration dampers. A new flexible connection was installed between the

fan and the diffuser, This has isolated the tunnel from all vibration caused

by the blower and 'its motor.

Cylinder Mid-Span Pressure Distributions

The two aluminum cylinders described in the last progress report" have

been installed inthe tunnel. The mid-span static pressure distribution was

measured for the cases of a single cylinder on the tunnel centerline, two

cylinders with a cylinder separation corresponding to d/D = 2.2, and two

cylinders with d/D = 1.5 (D = 6.25 in.). Figures 17, 18 and 19 display these

pressure distributions and compare them to the distributions that would

exist if the flow 
were a potential flow around the cylinders mounted in the

same test section.
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For the case of the single cylinder we obtain the potential flow using

the two-dimensional potential flow program (see ref. 10) and calculating the

flow past an infinite cascade of single cylinders with the cylinder spacing

equal to the width of our test section.	 For the two double-cylinder cases

we calculate the flow past an infinite cascade of groupings of two cylinders

where the distance between the two cylinders in any group is given by the

value of d/D and the distance between the symmetry lines of two adjacent

groups is equal to the test section width. 	 The pressure coefficients are

plotted as a function of angle on the cylinder where positive 0 is shown in

the	 figures.	 As expected, for the single cylinder case the measured and

potential flow pressure distributions agree quite well in the region of the

L-+2.r1kNM	
one tra v e I 6 tan gen tia ll y around 4-he cy linder awa yOn	 poi nt .	 A L	 WIM,	 I %A	 1,	 Q	 tan 	 I%A	 J	 %AtAlu	 .2	 flay	 J	 J

f i	 ,he st'nation point, the two distributions differ, due to the effects

of increasing boundary layer thickness, separation, etc.

For the case of two cylinders with d/D = 2.2 the stagnation point for

both the potential flow and the measured values has moved tangentially inward,

with the measured value moving further than the potential value. 	 The flow

is most like potential	 flow on 'the outer portions of the cylinders and least

like potential flow between them. 	 As the cylinders are moved even closer

together,	 d/D = 1,5, the stagnation point moves even further tangentially

inward and the deviation from potential flow is of the same sense but every-

where greater in value than for d/D = 2.2. 	 In all cases the pressure dis-

tributions are symuietrical	 About the centerline of the tunnel.
r.

Pressure Reference

A system to Supply four known pressures to be used as reference pressures

for wind tunnel measurements has been designed and built by a mechanical
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engineering senior.	 Four vertical columns of water of Various heights are

used to supply reference pressures.	 A photograph of the four column system

is shown in fig ►ire 20 and a schematic representation of one column is given

in fig ►,are 21.	 The column of water is fixed to the pan of a beam balance

(Ohaus Model	 1050 cat. #12338-048) and moves up or down with the balance.

j
t

A thin glass tube with a crook at its lower end extends into the column from

above.	 The tube is Fixed in space and therefore does not move with the

column.	 A volume of water (it will become evident that a precise measurement

of volume is not necessary) is introduced into the column.

Using a regulatMd air pressure supply we force the water level in the

{ tube down to a scribed reference line on the horizontal part of the crook.

f-
We then adjust the balance to obtain a measurement of the combined column and

4 water mass.	 Adjustin g the balance effects the position of the menicus in

the tube thereore this process is repeated until a mass reading can be taken
r

with the meniscus at the reference mark. 	 The supply pressure is then measured

using a r,icromanometer and the mass of the water and column is recorded.

Repeating this procedure for a number of different volumes of water yields

a calibration relating probe air pressure and mass balance reading so that

we can easily supply a known pressure for the wind tunnel pressure transducer

scanivalve system. Water levels can be chosen so that the range of pressures

b	 to be measured in the wii

advantage of this system
d

in the column an",,' is not

Our design ;,g al was
t

the pressure rangg e 0 - `a

id tunnel is best covered by the reference. One

is that tube pressure is fixed by the mass of water

affected by room temperature.

a device accurate to within 0.001" of water over

psig (27,7" water). The balance is precise to 0.1

grams; therefore, for 0.001" of water to be detected by the balance we must

have a minimum column diameter of 2.78"	 The diameter of three of the columns
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Figure 20	 Photograph of pressure rcfci%,,lie system
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used is 3 1" so that the beam balance precision is adequate. A problem arises

in that the balance has a maximum capacity that is reached when a column is

filled to 13,8" of water. In order to cover more of the design pressure range

we have installed one column with a 2.4" diameter which gives us a range of

21.8 1" at a resolution of .0013" of water. The Betz micromanometer used for

calibration has a 0 - 10" water ranee and a resolution of 0.001" water.

Overview

The water tunnel tests were completed. Single cylinder data was taken

to compare against published data and to identify the important variables.

Tests involving two cylinders were run and the results of these tests gave a

physical picture of the separation process as the distance between the cylin-

ders is decreased,

a
The comparison of our single cylinder data to that of Baker' has shown

some differences in saddle point location trends. As a result of these dif-

fere^c ps the trends that will be obtained during wind tunnel testing are

not obvious. Besides the higher Reynolds numbers obtainable in the wind

tunnel we are also capable of varying 6 and U independently, therefore un-

coupling ke D and 6/D

After an intensive search for the causes of observed wind tunnel flow

distortion, the variation of the boundary "layer thickness on the tunnel

endwalls has been eliminated by removal of the inlet honeycomb.

Initial pressure distribution measurements on the cylinders have been

made. Work on an important part of the data acquisition system, the pressure

reference system, was completed:

Work will continue on the data acquisition system. Meanwhile flow

visualization tests in the wind tunnel will be started. On the analysis side

of the problem, a student has begun work on the Oswatitsch model.
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Nomenclature

A	 flow area

CPT	 total pressure coefficient

d	 distance between the centerlines of the two cylinders

D	 cylinder diameter

H	 shape factor at cylinder position with cylinder absent

k	 loss coefficient for screen or perforated *plate

k - AP/((Ij.)pUI)

cylinder height

PT	 total pressure, at exit of inlet or at test section

PT.o	 - total pressures reference probe upstream of cylinders

PS	 - static pressure

R	 - dist'ance from cylinder axis to saddle point

ul	 - distribution of turbulence within the incoming boundary layer

U	 - free stream velocity

6	 - boundary layer thickness at cylinder position with cylinder absent

6*	
- displacement thickness at cylinder position with cylinder absent

11	- dynamic viscosity

P	 - mass density

%) = JI/p - kinematic viscosity
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