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ABSTRACT

The electrical conductivity of the upper mantle is estimated

from low latitude magnetic field variations (magnetic storms) caused

by large fluctuations in the equatorial ring current. The data base

is derived from satellite magnetic field measurements which offer

better global coverage than land based observatories.

The procedures ofanalysis consist of i) separation of the

disturbance field into internal and external parts relative to the

surface of the earth, ii) estimation of a response function "Q(w)"

which relates the internally generated magnetic field variations to

the external variations due to the ring current, and iii) interpretation

of the estimated response function using theoretical response

functions for known conductivity profiles. Special consideration is

given to possible ocean effects.

Magnetic field variations are derived from magnetic field

magnitude data measured by satellites Ogo 2,4, and 6 which collected

data fr)m October, 1965 to July, 1971. Flying nearly polar orbits,

these satellites sampled the field every 11 minute over an altitude

range of 400 km to 1500 km (Cain and Lange1,1971; Langel, 1974).

Best estimates of the response function Q(w) were obtained

using stacked, smoothed power spectra from eight storms. The frequency

range for these smoothed estimates is from 0.2 cycles/day to
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2.0 cycles/day. Also, to examine P possiL-IY: source of noise in the

data, a model of the crustal anomaly field (model by Mayhew, 1980)

was removed from the magnetic field data and a "corrected" Q was

calculated. Although the corrected Q differed slightly from the

original Q for individual storms, the stacked corrected Q did not

differ from the uncorrected stacked results. It is concluded that within

the reliability limits of -,he data, the anomaly field has no significant.

contribution.

Using a finite difference algorithm, a theoretical Q(w)

is calculated for a given conductivity profile. Matching a theoretical

Q to the measured Q implies a model where most of the upper mantle

has a conductivity of order 10 -2 mho/m. This value agrees with Banks'

(1972) model but differs from Parker's (1970) value of order 10-1mho/m.

Considering the high temperatures implied by Parker's model, geochemical

and petrological evidence favors the 10 -2mho/z, mantle.

Since the frequency range (.2 to 2. cpd) extends beyond

that used by Banks and Parker, considerations were made for possible

ocean effects. Representing the top 3 km of the earth with a shell of

conductivity equal to a weighted surn of oceanic and continental

conductivities, the ocean effect did not appear in our frequency

range until the continental conductivity was raised to 10 -2mho/m -- this

sets an upper limit of 10-2mho/m on the top 3 km of crust. Also suggested

by the data is a lower crust-upper mantle conductivity of 10 -3mho/m ,

extending downward to 30 km (upper limit).
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A temperature profile is proposed using conductivity-

temperature data for single crystal olivine (tiFo 90) (Dube, 1.976).

The resulting temperature profile is reasonable for depths below 150-

200 km, but is too high for shallower depths. Apparently, conductivity

is riot controlled solely by olivine at shallow depths.

As a new application of satellite data, the results are

most promising. Reliability of the estimates of Q(w) will be greatly

improved if more data sets are stacked.
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CHAPTER It INTRODUCTION

This thesis concerns the earth's electrical conductivity as

determined from low latitude magnetic field variations (magnetic

storms) caused by large fluctuations in the equitorial ring current.

Using satellite observations of these magnetic field variations,

information about the electrical conductivity structure and the

associated temperature profile can be obtained.

The procedures of analysis consist of i) separation of the

disturbance field into internal and external parts relative to the

surface of the earth, ii) estimation of a response function "Q(w)10

which relates the internally generated magnetic field variations to

the external variations due to the ring current, and iii) interpretation

of the estimated response function using theoretical response functions

for known conductivity profiles. Special consideration is given to

possible ocean effects.

1.1 Previous investigations.

In 1889, Schuster used observations of the diurnal (Sq)

magnetic variations to infer the general conductivity structure of the

earth. Using Gauss's spherical harmonic representation of magnetic

scales potential

U a a Z [iQ (a)Q+l + ems 
(r) )PR(810

R, ,m
(1.1)

where a is the radius of the earth, r is the radial distance of the

observer, im is the internal source coefficient and eQi s the external

source coefficient for spherical harmonic P m (©,^) of degree Q and
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order m, Schuster estimated im	mand a and co-icluded that the earth

could be rer , asented by an equivalent conducting sphere with a smaller

radius than the Earth's. Chapman (190) improved upon Schuster's

analysis and concluded that the equivalent sphere has a conductivity

of 3. x 10-2 mho/m and a radius of 250 km less than that of the earth.

Chapman and Price (1930) also studied diurnal variations and

obtained estimates of electrical conductivity compatible with Chapman's

(1919) earlier estimates. However, in their study of a non-periodic

phenomenon, namely magnetic storms, they found a significantly higher

conductivity estimate of 0-.:-tt 4. x 10 -1 mho/m. This higher conductivity

estimate was taken as an indication of a non-uniform conductivity

structure.

Lahiri and Price (1939) further developed the theory for non-

uniform conductors and obtained results which supported Chapman and

Price's view that an increase in conductivity existed at a depth of

250 km. They also concluded that an additional large increase in

conductivity (one to two orders of magnitude) exists at a depth of

700 km. Their results indicated an enhanced conductivity near the

surface of the earth, which they attributed to the oceans.

To improve the resolution of the electrical conductivity

structure, analysis of more magnetic variations of differing fre-

quencies was needed. Intuitively, this becomes apparent when one

considers the electromagnetic skin depth, a = (2/wou)^ , which is

inversely proportional to frequency w, conductivity a and magnetic

permeability fit. To obtain resolution near the surface of the earth,
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one needs magnetic variations with small skin depths. 'These have high

frequency components which are attenuated before reaching far into

the interior. To probe deeper into the earth, the magnetic variations

must have larger skin depths and therefore lower frequency components

so they can reach the interior before they are greatly attenuated.

Theoretically, a necessary condition for obtaining a unique model of

the earth's conductivity structure is that magnetic variations with

an infinite range of frequencies trust be sampled (Bailey, 1970).

However, an infinite frequency range of magnetic variations is

not available for induction studies. At the low frequency and, below

10-3 cpd (cycles per day) the geomagnetic spectrum is dominated by

"secular" variations originating internally at the core-mantle boundary.

At the high frequency end, above 0.25 cpd, lack of global coverage

along with possible lateral variations in the upper 400 km of the

earth hinders application of induction theory (Anderson, et al., 1979).

Not until the application of cross-spectral analysis tech-

piques (Banks, 1969, 1972) could the intervening continuum as well

as some major peaks associated with periodic phenomena (i.e. "Sq")

be included in induction studies. Using Gauss's potential field

representation (eqn. 1.1), Banks separated the observed magnetic

variations into internal and external origin. He then defined a

frequency response function QQ(w) by

QM 
Tm (w)	

(1.2)
BQ(w)
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where IR(w) and Em(w) are the frequency spectra for the internal and

external coefficients of degree k and order m in eqn. I.I. Using

standard cross-spectral techniques (Blackman and 'Tukey, 1958), Banks

estimated the response function (mainly Q0 (w) harmonic) and conducted

a Monte Carlo search fo& the most compatible conducting profile

(fig. 1.1).

Banks' estimate of Q 0 (w) and his resulting conductivity profile

are based on his analysis of magnetic variations of frequencies

0.003 cpd to 0.25 cpd. For frequencies above 0.25, estimates of Q0(w)

had nonphysical, negative phases. He attributed thin lack of relia-

bility for high frequency estimates to lack of global coverage and/or

lateral variations in the upper mantle and crust.

Using Banks' data, Parker (1970) suggested another conductivity

profile. Pa.-Aer obtained this profile (fig. 1.2) by applying inverse

theory after the fashion of Backus and Gilbert. As compared to Banks'

original 1969 model, Parker's model confirms the sharp rise in con-

ductivity at 400 km but differs in its near surface value: near 0.1

mho/m as opposed to Banks' figure of 10 -2 mho/m.

In the models thus far presented, existence of the oceans is

not considered. Since the high frequency estimates of'QO (w), near

0.25 cpd, is from the zonal (local time independent) part of magnetic

storm variations, 'Dst,' which is assumed to have only PO component

(eqn. 1.1), the effect of oceans are considered unimportant for Dst

variations (Lahiri and Price, 1939). For Sq variations (1 cpd and

harmonics) which have higher harmonic components, the oceans probably



5

Figure 1.1. Banks' 1972 conductivity profile. (J. Geomag.

Geoelectr., 24, 337-351 0 1972)

Figure 1.2: Parker's 1970 conductivity profile. (Geuphys. J.

R. astr. Soc. (1970) 22, 121-138)
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have a significant effect (Lahiri and Price, 1939; Bullard and Parker,

1970; Banks, 1972, Jady, 1974a,b). Banks (1972) later reworked his

data to include Sq variations, but he does not include a layer for

ocean conductivity. Ocean effects are usually included in local studies

only. More discussion of ocean fe y ,acts will be presented in chapter V.

As noted earlier, the low frequency end of the geomagnetic

spectrum is dominated by "secular variations." Since these variations

are of purely internal origin, induction methods used in the studies

already described are not appropriate. However, secular variations

still can yield inforriation about the earth's deep interior.

In a method developed by McDonald (1957), the attenuation

behavior of a sinusoidal magnetic variation originating at the core-

mantle boundary is used as an indicator of lower mantle conductivity.

Assuming spherical symmetry and a power law function for conducticity,

McDonald calculates ratios of attenuation functions of differing

harmonic degree as would be observed at the earth's surface for differ-

ent conductivity structures. Comparing these predicted ratios to

those obtained from spherical harmonic representation of observed

secular variations, McDonald inferred a conductivity profile with the

lower mantle conductivity of 10 2 mho/m.

As McDonald's work estimates the conductivity of the lower

mantle, local magnetotellunic studies estimate crustal conductivities.

Local measurements show the first few kilometers of the earth may be

fairly conductive, typically 0.01 to 0.1 mho/m while the underlying

rock may be as low as 10 -4 mho/m (Gough, 1973). Sea water.` varies in

VF
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conductivity according to temperature and salinity, but typically

is 3.3 mho/m.

The global coverage essential to conductivity studies of the

upper 400 km of the earth can be provided by satellite observations.

M
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CHAPTER II: SOURCES OF MAGNETIC VARIATIONS

Part of the objective of this study is to estimate a response

function (eqn. 1.2) relating the time-varying magnetic field external

to a conductor to that generated internally. Chapman (1919) concluded

that this "conduction" was within the earth and that the upper 250 km

and the surrounding space were nonconductors. Later investigations

concluded that the upper 250 km did have significant conductivity

and the boundary between conductor and nonconductor became the earth's

surface. In this study, the boundary shall be the surface of the

earth. This is a valid assumption if there are no electric currents

(hence, no conductors) between the satellite and the surface of the

earth. Ionospheric currents do exist between the satellite and the

earth surface, but these will be demonstrated to be unimporLant in

this study.

Another assumption in this study is that the equitorial ring

current,represented by a PO harmonic magnetic variation, is the sole

source of external magnetic field variations. This implies that the

observed magnetic variations of internal origin are due only to

induction effects from the ring current. This assumption is valid if

other current systems in the ionosphere and magnetosphere and their

induced fields are accounted for.

To examine the validity of these assumptions, we shall consider

the various electric current systems with regard to the position of

the satellite. The trajectories of satellites Ogo-2, 4, and 6 place

them in a polar orbit with altitudes varying 400 km to 1500 km. This
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orbit situates the satellite above the denser regions of the ionos-

phere and well inside the magnetosphere.

In the following section, electric current systems will be

presented as "external" or "internal," to the satellite's orbit.

II.1 External cur?lent systems.

The equatorial ring current and its associated magnetic

variations provides the source field for this study. Represented

approximately by a toroidal current flow, its influence on magnetic

field variations during magnetic storms is fairly uniform over the

mid- and low latitudes of the earth. However, as the earth's magnetic

field is distorted towards the sunward side, the ring current is also

asymmetric in shape with respect to the sun. This causes a slight

local time dependence for these variations. As for location, its

inner boundary is generally located at a distance greater than 3 earth

radii from the earth, though occasionally it will extend into the upper

ionosphere (fig. 2.1). In any case, it is located well outside of the

orbits of the satellites.

From a long tradition in characterizing land observatory data,

the magnetic disturbance field "D" iR expressed in terms of an axially

symmetric part "Dst" and a longitudinal or local time dependent part

"DS." Dst or "storm time variation" is the average value of the change

in the horizontal component of the disturbance field measured along

the equator. This is the principal influence of the equitorial ring

current for low and mid-latitudes. DS or "disturbance local-time

inequality" is the variation in D which depends on local time (Rishbeth

4
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Figure 2.1; (a) The earth's magnetosphere as viewed from the

equatorial plane.

(b) Location of the ionosphere in the atmosphere.

(Rishbeth and Garriott, Introduction to Ionospheric

Physics, Academic Press, New York, 1969)
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and Garriott, 1969).

D = Dst(t) + DS

where
	

(2.1)

DS	 A sin W + gin)

t is univaisal time, 1 is longiwude (relative to the sun), and 
C 

and Cn are the series coefficients. For studies using land obser-

vatory data, the DS component of the variation must be removed oefore

analysis of the ring current variation can be made.

However, with satellite observations, the trajectories are

such that measurements over the mid- and low latitudes are at a

constant local time. Hence, the disturbance field is measured at a

constant local time over successive orbits (see Ch. III) and local

time variations need not be removed. Unlike land observatories, the

satellite is constantly changing in latitude "S", so different sources

of magnetic variations are measured. This is particularly true in the

polar regions of the earth.

Current systems in the auroral zones are exceptionally active

during magnetic disturbances. During such times, charged particles

from the upper ionosphere and magnetosphere are absorbed in the polar

regions of the earth. These charged particles contribute to the

"polar electrojet" and other related current systems causing increased

magnetic variations in the high latitudes. Current systems associated

with auroral phenomena are more complicated in geometry and in tem-

poral behavior than the equatorial ring current. They also involve

regions of space both above and below the orbits of the satellites

Y
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and hence are not suitable for induction studies, at least not in the

manner presented here. Therefore, the best way to deal with polar

current systems is to exclude magnetic data taken in the higher latf-

tulles.

11.2 Internal currents.

The electric currents induced within the earth by the magnetic

variations due to the ring current are the currents of interest in

this study. However, other currents exist in the earth and in the

intervening ionosphere between the earth and the satellite.

The daytime ionospheric current systems originate in the "S-

layer" of the ionosphere at altitude ranges of 90-130 km. During the

course of a day, the tidal effects of the sun (and moon) produce

electric currents in the ionosphere. This "Sq" system causes the

diurnal variations observed in daily magnetic records with its peak

disturbance at local noon. Sq variations also induce electric

currents within the earth and oceans that contribute roughly one-

third to the total observed magnetic variation attributed to Sq

(Rishbeth and Garriott, 1969).

The geometry of the Sq current system is very complicated

and, when given a spherical harmonic representation, requires several

degrees of spherical harmonics;,. The currents induced in the earth,

particularly in the oceans, also are complicated in shape. In their

study of ocean effects, Bullard and Parker (1970) have analysed the

effect of Sq variations induced within the oceans. Because of the

ocean shapes and the insulating effects of the continents, the main

influence of Sq is in harmonics higher than P0.

r
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Sq is associated not only with the tidal effects of the sun,

but also with the density of free electrons in the ionosphere; the

degree of ionization and, therefore, the magnetic variations due to

Sq are local-time dependent (contribute to DS in equation 2.1), and

are at a minimum near local midnight.

Sometimes considered part of the Sq system is the "equatorial

electrojet." This current flows eastward along the dipole equator

during the day, causing large magnetic variations at equatorial land

observatories. A return current flows at night, but the effect is

much less intense than during tte day.

These "quiet day variations," Sq, L (lunar variations), and

the equatorial electro,jet, occur every day and are periodic in nature.

They are easily detected by land observatories. Their effects on the

data can be minimized by applying a one-cycle/day filter to the data

or by simply considering data at one local time, particularly at night.

During magnetic disturbances, additional currents appear or

are enhanced in the ionosphere; in the polar regions, current systems

assaciated with increased auroral activity are stimulated. Higher

electron densities appear in the E-layer, principally in the high

latitudes. Other currents are induced in lower latitudes, but these

are strongly local,-time dependent because of solar effects on ioniza-

tion. It then follows that DS variations from ionospheric currants

are minimized during the night for the low and mid-latitudes; in the

polar regions where particle absorption from the upper ionosphere and

the magnetosphere takes place, magnetic variations can be active in

nighttime as well as the daytime.

VW
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The PO magnetic variations due to the ring current induce

currents within the ionosphere. However, the integrated conductivities

for the ionosphere, measured over hundreds of kilometers, vary from 10

to 1,000 whos (dependent on direction of integration) and therefore

imply a very low conductance with regard to this study. Induction

effects in the ionosphere will be essentially noise in the data.

As for induction in the ocean from ring current fluctuations,

the PO currents should be much less than the P1 and P2 currents assor

ciated with Sq. This reduced effect is because of the insulating

influence of the continents on a current that would have to flow

around the equitorial regions of the earth. The ocean effect is

further discussed in Chapter V.
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CHAPTER III: DATA

III.1 Data collection.

The magnitude of the magnetic field was measured by satellitefi

Ogo-2, 4, and 6 which collected data from Octohsr, 1965 to July, 1.971.

Flying nei.rly polar orbits, these satalliLes sampled the field every

112 minute over an altitude range of 400 km to 1500 km (Cain and

Langel, 1971; langel, 1974). These magnetic field measurements were

made by a rubidium vapor magnetometer with an accuracy of 6 gammas

(10-5 ,,auss s 10^ teals.).

With each orbit taking approximately 90 minutes, the flight

path from pole to pole essentially followed a longitudinal. line.

Since it took about 20 minutes to fly between -50° to +50° latitude,

measurements at mid- and low latitudes were made at a constant local

time (relative position of the sun). During the course of one orbit,

the satellite crossed the equator twice and hence can be characterized

by two local times corresponding to the two equatorial crossings.

Over a period of a few days, these local times for equatorial crossings

remain almost constant.

Data types for these sate" tes included geographic longitude

and latitude, geomagnetic latitude, local time, universal time:., and

altitude for each data point. This arrangement allows for easy

elimination of data collected over the polar regions. It also allows

for selection of data at particular local times.

VF
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111.2 Data selection.

In studying magnetic field variations associated with

fluctuations in the equatorial rind, current, one needs data drawn

from periods of large magnetic disturbances. Such data are here

defined as having negative deviations in magnetic field magnitude

greater than SO gammas as compared to normal daily variations.

Fuv "her selection of data was based on local time. Since

the satellite orbit is characterized by two :focal times which remain

constant over a few days, one has the option of selecting only that

data which corresponds to one local time. Since the field fluctua-

tions due to the ring current have a local time dependence, only

data from one local time can be used. Furthermore, the nighttime

data has been selected in order to minimize the effects of ionization

currents.

The data and local times for data used in this study are

presented in Table 3.1.

111.3 Field separation into internal and external coefficients.

	

For esch data set listed in Tables 3.1 	 , two time

series e(tn) and i(tn) are extracted from the satellite data. These

time series correspond to the external coefficient "eO" and internal

coefficient "i0" of a harmonic representation of the scalar potential

for disturbance field D

A= -DU

	

U = a(e0 (r) + 10 (a) 2 ) PO (cos 6)	 (3.1)1 a	 1 r	 1
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TABLE 3.1: DATA

Date

March 5, 1970

July 26, 1969

*April 21, 1970

June 11, 1968

December 31, 1967

October 30, 1968

February 8, 1968

September 29, 1969

tMarch 22, 1966

MQ41fied Julian Date Local Time (Hrs.)

4065040657 19.50

40428-40430 0.50

40697-40698 1.75

40018-40022 23.00

39855-39860 15.75

40159-40165 21.00

39894-39900 23.00

40493-40498 16.25

39206-39209 15.75

* included only in stacked data with anomaly correction.

t included only in stacked date without anomaly correction.

m

f
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where a is the radius of the earth, r is the radial distance of the

observer, 6 is the colatitude and PO (cos 6) is the spherical harmonic

of degree 1 and order 0. During the course of the magnetic distur-

bance, the coefficients e0 and i0c hange with universal time t, so

the time series for a0 and i0 can be defined.
To identify these time series, the disturbance field D must

be extracted from the observed field magnitude data IB°I. This is

done by defining an observed change in total field, "ABo" by

ABo - IBo I - I Bm I
	 (3.2)

where IBm I corresponds to the quiet day field represented by a field

model of degree 12 (Langel, 1974).

disturbance field D,

A theoretical AB t, which includes

ABt - IBm
+51 - I gm i
	 (3.3)

is then fitted to the observed ABo . Since D varies with colatitude A,
this fit is performed for data points between -50° to 50° for each

orbit. This results in one estimate of e0 and i0p er orbit. When

data is considered for the whole magnetic storm, each e0 and i0is
estimated at a different universal time t, defined to be the time of

crossing the geomagnetic equator.

The resulting time series e(tn) and i(tn) are equally spaced

in time by approximately 90 minutes and have a total period equal to

the duration of the storm.

This e(tn) and i(tn) analysis is a slightly different approach

than that applied to land observatory data. Since observations on

land vary with local time, the DS part of the disturbance field is

W



21

subtracted from the observations--only Dot is used for magnetic storm

analysis. In this satellite data, local time is constant, so the

analysis includes more than ,just Dot.

An example of a field separation for the strong magnetic

disturbance of March 5-9, 1970 is presented in fig. 3.1.

A possible source of error in this field separation is the

crustal anomaly field. To explore this effect, a field model (courtesy

of Mike Mayhew, 1980) is subtracted from the total field measurements

before the field separation is performed. This anomaly field proved

to have small effect on large magnetic disturbances and on stacked

data (see Ch. IV), but has some effect on field separation for weaker

magnetic disturbances.
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Figure 3.1: Field separation into external (e(t)) and Internal (i(t))

parts for March 5, 1970 magnetic storm.

f

0



co

0
x

O

O
cv

o[,Z!TT,,'AL PAGAE I

OF POOR QUALITY

II

--7-----7 77777—23

J

"Woo

X34
c0 90 I

0 e
x

YSCJXo
-0

X•

0 

0	

XX

0	 c

000

8,

zo; 0 01

I	 I
0

CY	
V4,v p)

8p0



by

Q (w) - I w)
E(w)

(4.3)
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CHAPTER IVs DATA REDUCTION AND ANALYSIS

The magnetic field data measured by the satellites are

expressed in terms of two time series e(t n) and i(t n), n - 1,. . . ,

N for each magnetic disturbance observed. The external field varia-

tion represented by e(t n) is the "input" and the internal field

variation represented by i(t n) is the "output" for the linear system

i(t) - q(t) * e(t)
	

(4.1)

where "*" denotes convolution and "q(t)" is the linear impulse function.

This operation can also be represented in the frequency domain by

I(W) - Q(W) E(W)
	

(4.2)

where I(0 and E(w) are the Fourier transforms of i(t) and e(t) and

Q(w) is the "frequency response function." To ascertain the conduc-

tivity structure of the earth, we first must estimate Q(w).

From eqn. (4.2), the frequency response function can be defined

If the above definition were applied to the original time series e(t n)

and i(t n), n - 1 9 . . . , N, the resulting estimate of Q(w n), n - 1,

. . . , N/2 would have the highest resolution that l"he data could

provide, but the least reliability.

To improve reliability of an estimate of Q(w), one needs to

smooth the data, either in the time domain or the frequency domain.

5	
However if one were to smooth the frequency spectra I(w) and E(w) and
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then estimate 4(w) with eqn. (4.3), one would have a very biased

estimate of Q(w) (Bendat and Piersol, 1971). Instead, a better

estimate of Q(w) involves smoothed estimates of the cross-power

spectrum C12 (w) and power spectrum C11(w)

C12(w)
Q(w) - „	 (4.4)

C11(w)

knowing that the cross-power spectrum can be expressed as

C12 (w) - E* (w) I(w)
	

(4.5)

where denotes complex conjugate, and the power spectrum C 11 (w) is

C11 (w) = E* (w) E(w)
	

(4.6)

one can easily see that eqn. (4.4) is an equivalent definition o

eqn. (4.3). The difference between the two definitions is in the

amount of bias when one smooths in the frequency domain. Eqn. (4.4)

will yield a less biased estimate than eqn. (4.3).

To obtain a reliable estimate of Q(w) for each data set listed

in Table 3.1 , the following procedure as recommended by Bendat

and Piersol (1971) was followed:

1) preprocess time series e(tn) and i(tn), n - 1,..., N.

2) calculate the Fourier transforms of e(tn) and i(tn)

3) calculate the raw estimates of the cross-power spectrum

C12 (w) and power spectrum C11(w)

4) smooth the spectra C12 (wi) and C11(wi) for frequencies wi,

. . , M

5) estimate Q(w i), i - 1,.., M, M < N/2.	

i
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The preprocessing in step (1) involves removing a linear trend,

defined as the line which was tangent to the endpoints of the time

series. The resulting time series starts and ends at the zero base

line with the maximum well above zero.

The Fourier transforms of e(tn) and i(tn) are routinely calcu-

lated using the fast Fourier transform or FFT algorithm. The resulting

spectra have half the number of original data points due to folding

around the zero frequency axis.
A	 A

In step (4) the raw estimates C12 (wn) and C11 (wn ) ' n 1,	 ,

N/2 are made using eqn. (4.4).
A

Smoothed estimates of C 12 (wi) and C11 (wi) are made for selected

frequencies wit i - 1 0 , ,	 , M, where M << N/2. This is to improve

A

the reliability of estimates of Q(wi).

A

Finally, Q(wi) is estimated for the selected frequencies wit

i-1, . . . , M.

The best procedure found for step 4 was one formerly applied

to magnetotelluric studies, known as a "constant Q" analysis (Thayer,

1975). After selection of "centered frequencies" wit i - 1 0	, M,
/ 	 A	 A

M < N/2, the raw estimates of 
C12 (wn ) ' Cl1(wn) and C

22 (wn) are smoothed

around each frequency w  using a Gaussian window W(w i - w n )

W(wi-wn) - (2F/wiS) exp (-(wi-wn)2/w2iS2))
	

(4.7)

where S is the "selectivity." The selectivity defines the width of

the Gaussian windows, which was set at S - 0.2 in this analysis. A

"constant Q analysis" is one where the selectivity is held constant

for all frequencies w i . This kind of window smooths less at longer

i
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periods than shorter periods, which is necessary in order to ^isintain

relatively the same resolution at depth as near the surface of the

earth. Specific listings of the programs used for this window are

given in Thayer (1975).

As noted earlier, smoothing increases the reliability of the

estimate. Statistically, it increases the "degrees of freedom" of

the estimate at frequency w i . By increasing the window width, more

data points are included in the smoothing and higher degrees of

freedom are provided for the estimate. Since the constant Q analysis

varies the window width with frequency, the number of degrees of

freedom also varies with frequency.

Within the "95% confidence interval" around an estimate of

Q(wi), there is a 95% probability that the true value of Q(w i) will

exist. This confidence interval depends upon the number of degrees

of freedom.

For complex number Q(wi), the confidence interval is defined

in terms of a radius i(wi) and a phase range 4O(wi) where

IQ(wi) j - r(wi) < IQ(wi) < IQ(w t ) + r(wi)

(4.8)

O(wi) - AQ(wi ) < O(wi) < $(w i) + 4O(wi)

where ' AI denotes "estimate." These are defined by Bendat and P'iersol

(1971).

A2 	 2	
2	

C22 ((01
r (wi )	 (n-2) F2,n-2:a[1

-Y12(w1 	 C (wi)

11 i
(4.9)

r (w )
A^(wi) = sin-1
	 i

L TQ(wi)

F
eel
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where

n • number of degrees of freedom

F2,n-2sa ' 100a percentage point of an F distribution

with nl 2 and n2 • n-2 degrees of freedom
A
Y12 (wi) • estimate of the coherency function between E(wi)

and I N ) defined by

2	
^C12(wi)^ 2	

<

12 1.	 1w )

	 C11(wi) C12(wi)

M example of jQj and Q estimates for March 5-9, 1970 magnetic

storm is presented in fig. 4.1 a,b.

To obtain a better estimate of Q(w i), the power spectra of
A	 A
C12 (wi) and C11 (wi) from several magnetic disturbances were i t

Stacking wa:i accomplished by forming a weighted sum of spectra at

each frequency 
W  

from eight data sets listed in Table 3.1. Each
A	 A

spectral estimate of C12 (wi) and C11 (wi ) at frequency W  
for data

set j was weighted with the factor n i (wi)/En i (wi) where n  is the

number of degrees of freedom for that estimate at frequency w  of

data set J. The results for magnitude and phase are in fig. 4.2a

and fig. 4.2b.
A

To improve the reliability of estimates of Q, power spectra

estimates at frequencies w  which had squared coherencies Y
12 (wi)

less than 0 . 60 were eliminated from the stacking procedure. This

A
resulted in estimates of Q which have better reliabilities as shown

in fig. 4.3a and fig. 4.3b.

F
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J

Figure 4:1: Response fraction estimates for the March 5, 1970

magnetic storm.

(a) Magnitude of Q
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Figure 4.1: Response function estimates for the parch S. 1910

magnetic storm.

(b) Phase of Q
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Figure 4.2: Response function for stacked data listed in Table 3.1

(a) Magnitude of Q



w

O
0

cx
w
CL

C3

U-0

w

r^
i

0
0

axw
CL

0
O
J

w0

z

-oi	 0 30 3aniIN08w

34



35

Figure 4.2: Response function for stacked data listed in Table 3.1

(b) Phase of Q
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Figure 4.3: Response function for stacked data of Table 3.1 with

X12 > 
.6.

(a) Magnitude of Q
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Figure 4.3: Response function for stacked data of Table 3.1 with

y12 > .6.
(b) Phase of Q
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A possible source of error in these estimates of Q comes from

contamination of the total field measurements by the crustal anomaly

field. Using a field model developed by Mayhew (1980), the crustal

anomaly field is subtracted from the total field before separation

into e(tn) and i(tn) contributions (Table 3.1). In larger magnetic

disturbances such as of March 5, 1970, there is little change in

e(tn) and i(tn) or in the response function. In smaller magnetic

disturbances such as Sept. 29, 1969 there is a slight difference in

estimates of Q(w) between the anomaly corrected data and the uncor-

rected data (fig. 4.4 and 4.5). There appears to be no significant

difference between stacked corrected and stacked uncorrected data sets.
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Figure 4.4; Response function for September 24, 1969 magnetic storm

with corrections for crustal magnetic a ►omalles.

(a) Magnitude of Q
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Figure 4.4: Response function for September 29, 1969 magnetic storm

with corrections for crustal magnetic anomalies.

(b) Phase of Q
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Figure 4.5: Response function for September 29, 1969 magnetic storm

without anomaly corrections.

(a) Magnitude of Q
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Figure 4.5: Response function for September 29, 1969 magnetic storm

without anomaly corrections.

(b) Phase of Q
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CHAPTER V: INTERPRETATION OF THE ESTIMATED RESPONSE FUNCTION Q.

In order to interpret the response function Q(w) obtained from

the satellite data (fig. 4.3), one must solve the "forward problem":

given a conductivity profile, what is the response function?

The response function Q is calculated for various conductivity

profiles and compared to our best estimates of Q. All response

functions are calculated for periods 10 4 to 106 seconds which includes

the range of our data. Chosen conductivity profiles include homogen-

eous sphere, profiles by Banks (1972), Parker (1970) and other profiles

with various upper mantle and near surface conductivities.

V.1. Solution of the Forward Problem.

The method presented here is a finite difference method operat-

ing with real notation.

Consider a sphere with some known conductivity profile depen-

dent upon radius only. Surrounding the sphere is a nonconducting

space with some source of time varying magnetic field. From Maxwell's

equations, in MKS units

OxH =Sp +Jf	
(5.1)

where magnetic field B = uH, D is the displacement field D - EE and

if is the free current density. For slowly varying magnetic field,

displacement current is negligible, SD = 0. So, inside of the sphere

0 x H = j 	 (5.2)
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Taking the curl of (5.2)anJ using E - A results in

°2 B	 - fit° x Jf	(5.3)

Knowing GE - Jf and ° x E - - b , this becomes

° 2A -Po 6 t
- PVC xE
	

(5.4)

For constant conductivity, the °o x E term will vanish. For conductivity

that varies only in the radial direction, the E field produced by

Va x E term would only have 6 and 0 components. Assuming that any

initial charge density would decay to zero, °o x E 0 (Rikitake, 1966).

So, the final equation to consider is

°2B ^ u^ t 
	

(5.5)

A complete solution to (5.5) is composed of a toroidal field

T which would be restricted to within the sphere, a poloidal field S

which would be detected outside of the sphere, and an arbitrary scalar

field W which can be assumed to be zero. Since the eventual goal is

to determine the field measured outside of the :sphere due to both

(5.5) and (5.6), the only solution of interest is the poloidal field S:

9=-°x°x (rp)

So field equation (5.5) can be reduced to

°2p = PC dP
at

(5.6)

(5.7)

where ° x (rp) is the poloidal potential.
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Outside of the conducting sphere, where no free currents exist

axH -0 	(5.a)

Since (5.8) holds, f can be represented by a scalar potential U such

that

B - - VU
	

(5.9)

Since B of eqn. (5.9) consists of field contributions both of

internal and external origin (relative to the sphere of radius a), U

can be represented by

U - na (en (t) (r)n + in (t) (a)
n+l) 

Pn (c os e)	 (5.10)

where a is the radius of the sphere, r is the variable radius, 8 is the

magnetic colatitude, en is the external coefficient, in is the internal

coefficient, and Pn (cose ) are the Lnegendre polynomials of degree n.

Assuming that the dipole term is sufficient to represent the time-

varying disturbing field used in this study, U can be simply represented

by

U - a (e1
 (t)(a) + i1

 (t)(
r)2 ) PO( cos 0)	 (5.11)

Since the response function Q(w) is ideally

F(il(t))	 (5.12)
Q(w) - F(e14(t))

where F(i1 (t)) and F(e I (t)) are the Fourier transforms of 1 1 W and

el (t), it is convenient to represent e l and i1 in terms of a Fourier

series
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e l _
	

In cos wn t + E2n sin w n 
t

(5.13>

it = ^ 'In cos wnt + I2n sin w 
n 
t

where el is the external field contribution and i I is the induced field

contribution to the potential. 
EIn' E2n , IIn I I 

2 are the Fourier

coefficients to the power series. Substituting (5.13) into (5.11) gives

a simple power series representation to the potential U.

From the poloidal field (5.7), p can also be represented by a

Fourier power series using the dipole term P O (cos 8)

pr
-ln
An(r) P0(c os e) cos nt+ 	 Cn (r) P0 (cos 6) sin wnt	 (5.14)

Substituting (5.14) into the differential equation (5.7) results in a

coupled pair of egaations

2
d An -2 r

-1 A	 1 w C
dr2	 n p n n

(5.15)
2

d C2 _2 r-2 Cn = - P w
n An

dr

where p = 
III 

,a is resistivity and u- uo is the free space permeability.

(We assume p _ p  for the sphere.)

Using the conditions at the surface of the sphere (r = a) for

continuity of the B normal and H tangential components, we arrive at

the boundary conditions at r = a
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2
a dry ^a + 

A i
(a)	 2 

a 
Eln

(5.16)

a jrn ( 
a
+ 
Cn(n) . 2 

a2 E 
2ax 

Since these equations ( 5.15) to (5.16) are solved numerically,

it is desirable to express them in nondimensional form; we make the

following change of variables

r=a - (l-z)N6
An = a An	(5.17)

2Cn = a Cn

Substituting (5.17) into (5.15) yields (5.18) where c - NS/a and

d - ( 2/pwa)1
/2

2^
dAn_
	 2c22^

A - 2 N C

dz2	(c(z-1)+l)2 n
	 n

(5.18)

2^
d C	 2

2n -
	

2 
c	 2 Cn= - 2 N2 An

dz	 (c(z-l)+1)

with boundary conditions at z - 1

de3Z

=1

 + c An (1) c  
E1nI 

(5.19)
dc	

3

dzn
zsl 

+ c C
n (1) = c 2 E 2

( 
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where c = Nd .
a

Examining the poloidal field, must go to zero at r = 0, so

An (z = 0) and Cit (z = 0) goes to some small number as z - ► 0, since the

strength of the inducing field decreases with depth. By normalizing

with "N" skin depths, z -0 implies that the field is very small when

it has penetrated N skin depths. So, additional boundary conditons at

z=flare

An(0) = a

(5.20)

Cn(0)

where a. and a are small and are assigned according to "N".

The actual solution of (5.18) is accomplished using a Runge-

Kutta finite difference algorithm, for 4 simultaneous first order

differential equations

Y  = An (z)

sY2 = An (z)

Y 3 = Cn(z)

Y4	Cn(z)

then (5.18) becomes
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dY1

P1 dz	
Y2

2c 2Y
F	

l	
+2N2Y

2	
(c(z-l)+1)2	 3

dY 3
F3 dz	 Y4

dY	 2c2Y
F = 4^	 3	 -2N2Y4	 dz	 (c (z-1)+l)2	 1

(5.21.)

are c = d and z is radial distance.

A theorem for differential, equations (Boyce and DiPrima, 1969)

states that for a system of n first order, linear, homogeneous differ-

ential c rations

xl = p1l(t)xl + ... + Pln(t)xn

.

xn	 Pnl ( t ) x1 + ... + pnn(t)xn

each solution x y(t) of this system can be expressed as a linear

combination of x(1)(n)... , ;(n), with arbitrary coefficients c 

x	 cx (1) (t) + ... + cnx(n)l	
(t)

in exactly one way. Knowing this, 4 independent solutions to (5.20)

A	 A	 A	 A

are obtained using arbitrary An (0), An (0), Cn (0), Cn(0). The final

solutioi ► , c 1Anl (z) + c 2An2 (z) + c 3Ans (z) + c4An 4 (z), must meet the

four boundary conditions (5.19) and (5.20). This requires solution
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to a not of four equations with four unknowns c  c 2 , c 3 , c4s

A	 A	 I
c 1Ani (0) + c 2An2 (0) + c 3An3 (0) + c 4An4 (0) = a

A	 A	 A	 h
c 1Cn1 (0) + c 2Cna (0) + c 3Cn3 (0) + c4Cn4 (0)	 B

c 1An1 (1) + c2An2 (1) + c 3An3 (1) + c4A t (1) .	
(5.22)

C(3/2 Eln - c 1Anl (1) - c2An2 (1) - c 3An3 (1) - c4An4 M )

A	 A	 A	 A
c 1Cni (1) + c2Cn2 (1) + c 3Cn3 (1} + c4Cn4(1)

A	 A	 A	 A
C(3/2 E 2 - c 1Cn1 (1) - c2Cn2 (1) - c3Cn3(1) - c4Cn4(1))

where c - a6 , Eln and E 2n are input amplitude (eqn. 5.13) and

denotes first derivative with respect to z.
A	 A

Once the final solution for An(z) and Cn(z) is obtained, for

particular conductivity profile and frequency w. the response function

for the assumed 
Eln 

and E 
2 

input (arbitrary since Q involves a ratio,

so Eln - E 2 ' 1) is computed

I In (W ) - jI2n (wn )
Q(wn) 	

Eln - J E2n

(5.23)

where ,j - 3=1 and 
IIn 

and I2n are derived from the boundary conditions

(5.19).	 The response magnitude JQJ and the phase ¢(Q) can be

expressed by
(22 + 12 )1/2

^ QI in	 2n

(E2 + E
2 )1/2

in	 2n

and	 _	 (5,24)

arctanc^(Q)	 (^1nE2n	 z2nE1n}

(I1nEln + 12nE2n)
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Alternative methods for ,solving the forward problem involve:

solving the "R" part of the poloidal field equation (sea eqn. 5.7)

after separation of variables. One method requires a series of shells

of constant conductivity where the analytical solution for each shell

is known (Banks, 1969). The Runge-Kutta method can also be applied

to the "R" equation in complex notation (Parker, 1970). Eckhardt

(1963) transforms this same "R" equation into a nonlinear first order

differential equation and solves it numerically.

V.2. Behavior of the Forward Problem Solxttion.

Response functions were calculated for periods 10 4 to 106

seconds, mantle conductivities .001 to 100 mho/m and an accepted

core conductivity of 3 x 105 mho/m (Stacey, 1977). This highly

conducting core also insured that the boundary conditions at N skin

depths would remain within the dimensions of the earth.

The response function for the range of periods considered is

most sensitive to the upper regions of the earth. Further, the degree

of sensitivity depends upon the conductivities involved and the rate

of cv..age of conductivity with depth. Large conductivities tend to

hide variations in conductivity-while lower conductivities are more

transparent. Large changes in conductivity over small changes in

depth are also more visible than gradual changes. For example, Parker's

1970 profile (fig. 1.2) compared to a homogeneous sphere of .1 mho/m

shows only a small change in response function (fig. 5.1). Parker's

profile is a smoothly varying model with the upper mantle having a

conductivity of .1 mho /m. In con-trast, Banks 1972 model (fig. 1.1) is
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Figure 5.3.: Parker's 1970 model compared to homogeneous sphere of

.1 mho/m«

(a) Magnitude of Q
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Figure 5.1: Parker's 1970 model compared to homogeneous sphere of

.1 mho /M.

(b) Phase of Q
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composed of a series of steps with large changes in conductivity and

an upper mantle conductivity of .01 mbo /gin. Banks' model compared to

a homogeneous sphere of .01 mho /m (fig. 5.2) shows a large contrast

in response functions.

In assigning starting depths, it was found that the calculated

response function was fairly insensitive to changes in N (number of

skin depths) for N > 5 and a and $ of order .001. This is particularly

true for conductivity profiles with near surface values greater than

.01 mho /m. Banks (1972) also calculated the response function for hi3

conductivity profile and for Parker ' s (1970) using the analytical

solutions for constan t conductivity shells. Our response functions

agree fairly well with Banks' calculation of Parker ' s profile, but

disagree with Banks' calculation of phase for Banks' profile. Our

phases for small conductivities tend to increase more rapidly with

period than do Banks'. Low conductivities have large skin depths, d,

so "c" (5.17) is greater than one. The phase is greatly affected

by how much of the layer with c > 1 is included in the finite

difference calculation. The phases presented here are the largest

allowable. However, the magnitude calculation is essentially exact.

General behavior of the response functions is best illustrated

by calculating Q for homogeneous spheres (fig. 5.3a ,b). As conduc-

tivity increases, the magnitude of the response function, 1Q1,

increases while the phase, ^, decreases as a function of period.
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Figure 5.2: Banks' 1972 model compared to homogeneous sphere of

.41 mho/m.

(a) Magnitude of Q
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Figure 5.2: Banks' 1972 model compared to homogeneous sphere of

.T,. mho/m.

(b) Phase of Q
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Figure 5.3: Response functions of homogeneous sphere of varying

conductivity.

(a) Magnitude of Q
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^igure 5.3: Response functions of homogeneous sphere of varying

conductivity.

(b) Phase of Q
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V.3. Comparing Estimated Q to Calculated Q.

As a first atop in interpreting the estimated values of Q,

calculated response functions for simple conductivity profiles were

compared to the estimated response. When response functions of

homogeneous spheres are compared to estimated responses (fig, 5.4),

the magnitudes lie in the vicinity of the .01 and .02 mho/m curves

for periods greater than 105 seconds. For periods less than 105

seconds, the estimated magnitudes lie well below the .01 curve. For

all periods considered, the phase lies below or within the 95% confi-

dence interval of the .1 mho/m curve. Neither estimated magnitudes

nor phase show the same monotonic shape as do the response function

curves of homogeneous spherec. Clearly, a homogeneous sphere of any

conductivity cannot explain this data.

Next, the estimated response function was compared to the

response function for Banks' 1972 proL°ile (fig. 1.1, fig. 5.5a) and

Parker's 1970 profile (fig. 1.2, fig. 5.5b). The estimated magnitude

(fig. 5.5c) is compatible with that of Banks' for periods greater

than 105 seconds, but the phase is not (fig. 5.5d). The phase curve

for Parker's model lies within the 95% confidence interval of the

estimated phases but does not show the same monotonic shape. In all

of the foregoing comparisons, the phase and magnitude estimates seem

to indicate conductivities which are nearly an order of-magnitude

different from each other. Since the phase estimates contain no;1-

physical negative values, more credence is given to the magnitude

estimates. Modifications of Banks' conductivity profile (fig. 5.5a)
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Figure 5.4: Comparison of best estimate of response function to

those of homogeneous spheres,

(a) Magnitude of Q
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Figure 5.4: Comparison of best estimate of response function to

those of homogeneous spheres.

(b) Phase of Q



v	 o	 o	 O
Q1	 ^D	 d'	 N

0 J0 39UHd

0

w

O
0"

cx
W
CL

C3

U-
O

W

Q

CL

U
W

I

O

Cr.
W
CL

r
Cfj

r' NO p

OJ

76



77

Figure 5.5(a): Banks' 1972 conductivity profile as used in this

study.
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Figure 5.5(b): Parker's 1970 conductivity profile as used in this

study.
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Figure 5.5(c): Comparison of magnitude estimates to those of Banks'

and Parker.
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Figure 5.5(d): Comparison of phase estimates to those of Banks and

Parker.

$3
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should yield response functions that are compatible with esti.matad

magnitudes.

Since the frequency range considered should be sensitive to

near-surface conductivity structures, layers of varying conductivity

were superimposed onto the top 500 km of banks' model. With a 30 km,

.001 mho/m layer replacing the top 30 km of Banks' model, the calcu-

lated response magnitude agreed well with the estimated magnitude

for periods less than 105 seconds (fig. 5.6, fig. 5.7a). Changing

Banks' .01 mho/m layer to .02 mho/m, but maintaining the 300 km lower

boundary (fig. 5.7) in this model, improved the agreement of esti-

mated magnitude to the calculated magnitude in the vicinity of 105

seconds; the values for longer periods were too high. This establishes

a conductivity range of .01 to .02 mho/m for depths gust greater than

30 km (fig. 5.7). To test the sensitivity to layer thickness, the

lower boundary of the .01 Layer was varied from 500 km to 350 km

(fig. 5.8); the magnitude shows very little change in this frequency

range. Variance of conductivity from .01 to .02 mho/m with a lower

boundary of 350 km (fig. 5.9) also shows very little change.

Changing the conductivity from 2.mho/m to l.mho/m for the layer below

500 km did not change the response function at all.

V.4. Ocean Effects on Response Function Q.

An electric current travelling a near-surface equitorial

path would encounter continents with a lower conductivity than the

oceans. The effective conductivity of an ocean-continental medium

can be considered as a simple model in which the oceans and continents
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are slabs of uniform cross-section but have a variable thickness.

From Ohm's law one can calculate the effective conductivity

of a medium made up of slabs of varying thickness and two conductiv-

ities a 1 and a2:

a	
t	

a l a2	
(5.25)

T a2 + T a1

where t11 is the thickness of the ith slab of conductivity a 1 and

t 2 is the thickness of the 
jth 

slab of conductivity a 2 . T is the

total thickness and all slabs have the same cross-section area.

Applying equation 5.25 to an ocean-continental medium,

surface area fractions of ocean ( Z tli/T) and continent (Z 
t2j/T)

were estimated along the equator between 30°N and 30° S latitude.

Using a 5° x 5 0 grid, estimates were made for each 30° longitude

spread along the equator. Using typical continental conductivities

of 10-3 to 10
-1
 mhos /m derived from magnetotelluric data (Gough,

1974), effective oceanic conductivities were calculated. For an

ocean of 3.3 mho/m, these values are:

3.78 x 10-3 mhos/m for 10-3 crust

3.76 x 10-2 mhos /m for 10-2 crust

3.49 x 10-1 mhos/m for 10-1 crust

The above relationships indicate that the effective conductivity is

dominated by the continental conductivity.

Resporse f ,znctions were calculated for effective ocean
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Figure 5.6: Comparison of estimated magnitudes to calculated magnitudes

for Banks' 1972 profile and for Banks' profile with a 30 km

surface layer at .001 mho/m.
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Figure 5.7: Effects of variation of second layer (lower boundary at

500 km) from .01 mho/m to .02 mho/m.

(a)with .01 mho/m layer

(b) with .02 mho/m layer.

3
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Figure 5.7: Effects of variation of second layer (lower boundary at

500 km) from .01 mho/m to .02 mho/m.

(c) Response magnitude estimates compared to calculated

response magnitudes.
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Figure 5.$: Effects of variation of second layer thickness.

(a) Lower boundary of .01 mho/m layer at 500 km.

(b) Lower boundary of .01 mho/m layer at 350 km.
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Figure 5.8: Effects of variation of second layer thickness.

(c) Response magnitude estimates compared to calculated

response magnitudes.



D
O

m
W
a

C3

LL
0

w
0

z0
0
r-

w

i

0
0

0
w
CL

0
O

,_Q t m 0 3n 3oni l NOUW

96



97

Figure 5.9s Effects of variation of second layer (lower boundary at

350 km) from .01 mho/m to .02 mho/m.
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conductivities superimposed onto the model (fig. 5.7). The

.00378 mho/m ocean of 3 km thickness made virtually no difference

in calculated response function when compared to the original model.

The .0376 mho/m ocean raised the response function magnitude for

periods just below the data range. For effective ocean conductivities

greater than .0376 mho/m, the response function magnitude is signifi-

cantly raised in the frequency range of interest. Since our estimated

magnitudes are much lower than these values, an upper bound of .01 mho/m

is placed on continental conductivity for the top 3 km (fig. 5.10).

i
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Figure 5.101 Conductivity profile for estimated response function.
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CHAPTER VI; TEMPERATURE IN THE MANTLE

VI.1. Relation of temperature to conductivity

Electrical conductivity estimates for the earth are often

related to temperature. This is a valid relation if the conductivity

is intrinsicly controlled by temperature and if the composition is

known. Estimated electrical conductivity for the upper mantle and the

crust is within the range of semiconductors (10 -9 to 102 mho/m). For

these materials, conductivity depends upon populating the "conduction

band" ( gig. 6.1) with electrons from the "valence band". In the

intrinsic temperature range, electrons are thermally activated into the

conduction band, where they become mobile and contribute to the

conductivity. This temperature dependence is expressed by

a = a  exp (-E g/2kT)	 (6.1)

where k is Boltzman's constant, T is temperature, a 0 is a constant

characteristic of the semiconductor, and E  is the activation energy

or "gap energy". A plot of the logarithm of resistivity vs 1/T

reveals a straight line (fig. 6.2) if the semiconductor is intrinsicly

controlled.

At higher temperatures, a semiconductor may become an

"ionic conductor". Here, the charge carriers are ions (lattice defects)

rather than electrons (electron-hole pairs). Conductivity is controlled

by the rate of diffusion of the ions. For sufficiently high temperatures,

ion diffusion is also temperature controlled, implying that conductivity

can be represented by

w
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Figure 6.1: In an intrinsic semiconductor, electrons are thermally

excited from the valence band into the conduction band, where they

become mobile. (Kittel,1971)

w
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Figure 6.2: A material may be as extrinsic semiconductor at low

temperatures and an intrinsic semiconductor at higher temperatures.

Here, germanium is doped with varying amounts of galliura resulting

in different temperatures for intrinsic semiconduction to occur.

(Kittel,1971)
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a • a0 exp (-E/kT) - Nqu exp (-E/kT) 	 (6.2)

where a  = Nqu, N is ion concentration, q is charge, p is ion mobility,

and E is the activation energy for an ion to move from one location

to a similar one.

Pressure effects probably have little or no influence

on intrinsic semiconduction where the charge carriers are electrons.

Experimental results for pressures up to 8 kb indicate that conductivity

is weakly affected (Duba,et.al .,1974). Pressure effects might become

more significant where ionic conduction is the dominant mechanism

since lattice compaction may affect ion mobility. However, it is

difficult to say what such pressure efects might be (Misener,1973).

In any case, it is probably safe to assume that temperature effects

will dominate over pressure effects.

VI.2 Composition of the mantle

The velocity of the seismic P-wave in the upper mantle is

8.2 + 0.2 km/sec-which indicates a density of 3.3 g/cm 3 . This

observation along with petrological considerations, suggests an upper

mantle composition of peridotite (olivine + pyroxene + spinel) and/or

eclogite (pyroxene + garnet + quartz). Eclogites, which are thought to

be of mantle origin, tend to have slightly higher density than expected

for the mantle. Peridotite is generally considered the more likely

mantle material.

A peridotite mantle is also suggested by the common

occurrence of peridotite inclusions found in Kimberlite pipes.

Among these xenoliths, olivine (Fo88-94) is the principal mineral,

t
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with an average olivine/orthopyroxene ratio of 2/1 (Ringwood, 1975).

Garnet lherzolite -- the most common peridotitic inclusion -- is com-

posed of olivine 64%, orthopyroxene 27%, clinopyroxene 3%, pyrope - rich

garnet 6% (Ringwood, 1975). Such petrological observations lead to the

assumption that the properties of the upper mantle can be approximated

by the properties of olivine (Fo88-94 ). This single mineral model is

further supported by Birch (1969), who concluded that the elastic

properties of the upper 2C0 km of the mantle could be represented

to first order approximation by a homogeneous layer of olivine.

A peridotitic mantle, composed mainly of olivine, is also

a convenient model for explaining various seismological occurrences.

First, the almost worldwide increase in seismic velocity at the

Mohorovicic boundary could be attributed to the transition from a

gabbroic lower crust to a peridotitic upper mantle. Secondly, the

increment in seismic velocity observed at 420 km could be explained

by a phase transition of olivine from a low-pressure orthorombic form

to a high pressure spinel structure. Finally, the low-velocity zone,

occurring between 60 and 150 km beneath the oceans and in the vicinity

of 200 km under shield areas, is believed to be due to incipient

partial melting. This localized phenomenon could be the result of the

depressed melting temperature of peridotite at 20-30 kb in a CO 2 and

H2O environment (Eggler and Kushiro, 1979; Fig. 6.3).

Alternative mantle models have included an eclogite mantle

and an eclogite + peridotite mantle. As already mentioned, an eclogite

mantle would have a higher density than would be expected from seismic

observations. Also, an eclogitic mantle would require an intermediate
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Figure 6.3: P-T diagram for the reaction En + Mag = Fo + CO2.

(A) Calculated boundary for the reaction. (B) Shown are the phase

assemblages for a peridotite composition in the system Mg0-Si0 2-0O2

-H20 containing less than 20 weight percent CO 2 . The solidus is for

peridotite with amounts of 11 20 and CO2 small enough to be buffered

within the system. (Eggler and Kushiro,1979)

4
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step between the gabbroic crust at 15 kb and the eclogite mantle at

pressures above 20 kb (Carmichael, Turner, Verhoog+en, 1974). A garnet-

granulite assemblage (garnet + pyroxene + plagioclase) could exist

at the 20 + 3 kb pressure regime but, the complex "phase transition"

of gabbro-granulite-eclogits is incompatible with the sharp Moho

discontinuity. Although an eclogite mantle is favored by some for its

compatibility with certain magma genesis models, a peridotitic mantle

seems the preferred model.

VZ.3 Electrical condvctivity of olivine (Fo	 )
88-94

Early investigations (Misener,1973) indicated that olivine

(Fo88-94) is an extrinsic (impurity controlled) semiconductor below

80000. Later measurements (Duba,1974) showed the expected temperature

dependence for temperatures greater than 800 0C. Because of kinetic

effects and apparatus problems, accurate measurements of conductivity

is limited to temperatures below 1500°C.

A necessary condition in all high temperature experiments

is to have controlled oxygen fugacity (f0 ). NitsRn (1974) showed
2

that olivine (herein chosen to be the representative case of Fo90)

is stable over a limited range of oxygen fugacities. Outside of

the stability field, olivine w411 oxidize or reduce to other minerals.

Duba (1976) found that electrical conductivity varies less than 1/3

of a magnitude for changes of f 0 within the stability field. However,
2

for f0 variations outside of the stability field, conductivity can
2

change by several orders of magnitude (fig.6.4). These reaction

products apparently provide better electrical pathways.
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Figure 6.4: Stability field of olivine (Fo 90) is defined with

regard to temperature and pressure (Nitsan, 1974). Also included

are buffers bQPM (fayalite-quartz-pyroxene-magnetite), 4QM (fayalite-

quartz-magnetite), MW (magnetite-wustite), and WI (magnetite-iron).

"Error bars" are the region where Dubs (1976) tested the variation

of conductivity with variation in f 4 within the stability field and
2

found that conductivity varied less than 1/3 magnitude.
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It is reasonable to expect the upper mantle to be in

thermodynamic equilibrium. It Is unlikely that laboratory experiments

totally reach equilibrium because of the brief time that they exist.

This idea is confirmed by Duba's (,et.al.,1974) observation at fixed

temperature, pressure, and f0 where conductivity varied with time
2

over a period of a few hours.

Considering all of these experimental difficulties,

conductivity for two samples of olivine (tiFo90) have been measured and

are presented in figure 6.5 (Dubs and Nicholls, 1973; Dub&, st.al .,1974,

Duba,1976). For comparl.son, the conductivity of basalt (Duba,st.al .,

1975) is included (fig. 6.6), but these results should be viewed with

caution due to the inherent experimental difficulties encountered when

dealing with a Mck rather than a single crystal.

As previously mantioned, pressure effects on the intrinsic

conductivity of olivine is probably small for depths less than 400 km.

However, pressure could change the shape of the stability field with

regards to f0
2

.
 
This change can be estimated by (Catmichael.,et.al.,1974)

	

log(f )
P 	) 1 	 AV 

Sol 
P-1)	 (6.3)

	

02 P	 02 1 bar 2.303 RT
where P is pressure, R is ts,, gas constant, T is temperature, and AVsol

is the change in volume for the solids in the reaction. For the reaction

3Fe2SiO4 + ^O2
 = Fe304 + 3FeSiO3 	(6.4)

fayalite	 magnetite orthopyroxene

an oxygen fugacity of log(f0 ) _ -8 at 13780K and 1 bar will
2
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Figure 6.5: Variation of conductivity as a function of temperature

for single crystal olivine (tiFo90).(a) Olivine from San Carlos Indian

Reservation (Dubs and Nicholls,1973;Duba,1976) (b) Olivine from St.

John's Island (Dubs, et.al .,1974; Duba,1976) All are under controlled

oxygen fugacity.
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Figure 6.6: Flectrical conductivity as a function of temperature

for basalt at controlled oxygen fugacity (Duba,et.al .,975).
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become log(f
02	02

) - -7.94 at 32 kb and log(f ) _ -6.02 at 124 kb. The

rate of change of log(f0 ) with pressure is different for different
2

reactions, so the overall shape and location of the stability field

will change with pressure. Compared to the stability field at 1 bar,

there will be little change at shallow depths (100 km, 32 kb) and some

change before the transition zone (400 km, 124 kb). Still, since the

electrical conductivity does not change drasticly for f 0 within the
2

stability field, this pressure effect is of minor importance in this

study.

VI.4 Temperature as a function of depth

Numerous chemical, analysis of basalts from around the world

imply that.the f0 within the mantle should be near the fayalite-
2

magnetite-quartz buffer (fig.6.7). The olivine conductivities (fig.6.5)

used here are at controlled f0 's within the stability field of
2

olivine (Fo90) but vary from the oxidizing side to the reducing side

as a function of temperature (Auba,1976). Knowing that variations in

f0 within the stability field result in changes of conductivity up
2

to 1/3 magnitude, a certain amount of error is allowed for f 0 Also,

knowing that the depths obtained in the estimated condw--tivity profile

(fig.5.10) derived from "Q" are upper limits, error is allowed for

location. Considering these error contributions, a temperature profile

based on the conductivity of olivine (1,Fo90) and basalt is presented

(fig.6.8). The two profiles differ a great deal, but this difference

may largely be due to experimental errors in the determination of

conductivity in basalts.
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Figure 6.7% Oxygen fugacity calculations for basalts from around

the world. There is a strong tendency to follow the fayalite-magnetite-

quartz (FMQ) buffer (Haggerty, 1976).
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Figure 6.8: Temperature profiles estimated from response function

Q and associated conductivity. Conductivity-temperature relation for

olivine is from fig.6.6. Conductivity-temperature relation for basalt

is f rcm f ig. 6.7 .



20C

18C

V 160
0
m 140

0 120

E100

80

ivins	 ,

123

_7

60
0	 200	 400

Depth, km
600 800

P



124

Temperature estimates for depths down to 200 km were made

using detailed compositional analysis of kimberlites (Boyd, et. al.,

1973; fig. 6.9). The resulting temperature profiles (fig. 6.10) inter-

sect tke "Q" profile (based on electrical conductivity of olivine) in

the 150 to 200 km range. For shallower depths, the geochemical

geotherms are much lower than what is indicated by Q. This disagreement

may be due to several factors. One very likely error is in.assuming that

olivine is the controlling agent for shallow conduction. Other materials

are probably controlling conductivity at shallow depths. At temperatures

below 800°C, conductivity is impurity controlled rather than temperature

controlled -- leading to conductivity values higher than would be

expected. Finally, very low conducting surface layers (10 -4 mho/m or

less) would not be seen by the induction method employed here for

frequencies of 0.2 to 2.0 cycles/day (according to tests employing

the forward problem calculation for Q). The pyroxene geotherm combined

with the olivine measurements indicate a conductivity of 10 -5 mho/m

near the surface -- this value is too low to be detected.



Figure 6.9 Geotherm estimates based on detailed compositional

analysis of lherzolite nodules from kimberlites. Slight differences

in geotherm will occur depending on how pressure is calculated

(Boyd and Nixon, 1973).
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Figure 6.10: Comparison of "Q" geotherm to pyroxene geotherm of Boyd

and Nixon (fig.6,9). Q geotherm is based on electrical conductivity

of olivine (fig-6.5).
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Figure 6.11; Expected electrical conductivity profiles for the upper

250 km IS pyroxene geotherm is correct ( fig.6.9). Conductivity

estimates are based on olivine (fig.6.5) and basalt ( fig.6.6).
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CHAPTER VII: CONCLUSION

A global electrical conductivity prolAle for the upper mantle

and crust is obtainable through analysis of satellite magnetic field

data. The resulting profile is based on estimates of Q(w) for

frequencies of 0.2 to 2.0 cycles/day. This range is higher than that

generally used in global induction studies using land observatory

data.

The upper mantle has a characteristic conductivity of order

10 2mho/m. This result is compatible with Banks' (1972) model but is

not compatible with Parker's (1970) values of order 10-1mho/m.

Considering laboratory measurements of conductivity of olivine (Dubs,

1976), Parker's conductivity would correspond to temperatures that

would melt the mantle.

Shallow structures are indicated by the response function

Q(w). An upper limit of 10 2mho/m is placed on the top 3 km of crust.

Beneath this, a conductivity of 10 -3mho/m extends downward to at

least 30 km depth before increasing to values of order 10 -2mho/m. The

bottom of the 10-2mho/m , layer is difficult to define because of the

limited range of frequency, but the lower boundary has an upper

limit of 350 km.

In relating temperature to conductivity, the temperature

profile derived from conductivity estimates is acceptable for depths

greater than 150 -- 200 km. For shallower depths, temperatures based

on olivine conductivity are too high for a peridotitic mantle.
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This disagreement between the "Q" geotherm and the pyroxene geotherm

leads to several possible problems. One is in assuming that olivine is

the contolling agent in shallow conduction . We know from numerous

geological studies that it is not the main material in very shallow

depths. Basalt conductivity measurements may be more appropriately

applied to this study, but laboratory measurements tend to be

unreliable. Another problem concerns the sensitivity of this induction

method to shallow, low conducting layers. The pyroxene geotherm combined

with the olivine measurements would indicate conductivities of order

10-5mho/m -- such conductivites would not be seen by Q estimates for

frequencies 0.2 to 2.0 cycles/day. Whether or not the surface conducti-

vity is 10-4 or 10-5 is a moot point with regards to temperature since

at such low temperatures, the conductivity is impurity controlled.

As for the conductivity profile itself,magnetotelluric

measurements are compatible with the shallow structure -- but local

field measurements also indicate values both higher and lower than

estimated from Q. However, the upper mantle value of 10 -2mho/m seems

quite reliable.
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Appendix A: Polar Orbit

(illustration on next page)

Characteristics of satellite orbits:

Satellite	 launch date	 inclination perigee apogee

OGO 2	 Oct.14,1965	 87,30	 410 km	 1510km

OGO 4	 July 28,1967 86.00	410 km	 910 km

OGO 6	 June 5,1969	 82.00	 400 km	 1100km

(Langel,1979)

'x5
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Append-, x H: Main program for finding e(c) and i(x)
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C
C
C
C
C
C

C
C
C
C
C

PR++GRA00	 NA m E	 IS	 'F1F191

## AS nF MARCN 7919pn
ATTEMPTS TO WRITE ON TEMPORAkY DISK FILE* ++'	 y
NOTF JCL r	 t
LALLS 61JESS5 FOR	 1NTE14POLATION !► 0^ ► ( 	 ► +^^^
CA+„I.S FC7MP FnR AN01-ALY CORRECTION 7

000600 u'
PI ► RPnSE	 IS	 TO CALCULATE	 E (T 19 I (T ). +Iu•)Jui}L
('IRIGINAL PROAK0	 WAS	 I TS7 0 	WHICH CALCULATES uvuo.)l -
F(F ► •I(F).RATIn.	 ANn PLOTTING Rn( ► T1NES. )11,
MGM# ^F#########tM^ #### ^k#####+t###•##w#*##A ## li'.

INTEG;:A*2	 14110950E • IPASS +UVVUi 3^
DIMFNSION AREA (3n1)•MSIr'15n) a+^:+	 !14
nl +okh► SInN	 EI'dATI I Sool
DIMF•v SION OUT2(150.4) uu;!	 :lAu
fOM NI(Id uU+ii +17•
nATA RATIO/.l0/9RAn/57.29577Y/ 1u+
I11ME^ +SJ(IN 	POT15.150) •,,1y
NhAL*N nTAPE +;vu,	 ?1
DATA	 nT APE/ I nF42nh I /. SEAS/ 1./•Ir+TYPE/1/9NU'+' IT/ k/•IPh S S/	 0/ ^	 n	 •,,,,^,
DATA	 I 0 /0/ 9NFILE /1/	 •IX 101 Uuul" z.'
F(IOIVA+_ENCEIIN11 .11,AREA (52)1	 .( M.)n,AREA11)1•(MSIVI1)•AREAl211 90Vivk-to
CiommnN /CAL•SWITCH uu%.'vaQ5u
SRHOE IMAT FOR E ANn	 1: o00ukj2AU
SWITCHn0.0 0000027U
SWITCH=l.n INnICATES CALCnMP PLOTS OU 4jo? 90
1TESTuO uUl	 .,,'eu')
IF N O qn io	 'i	 .,

L-1 uu:•,	 ^1-
CAL	 F IEL nG (n.90.•0.9)96 9 .•lA•L•A.n•C•FI ,	 lk.
REwINn 5 ui'a11,aa
RF.An ( 1594001 N.jnS*NjnE,MSS,MSFqIP9 cjuut: ;34•,
WkITF.(79400)	 NJDS,NJDEvMSS•PiSE91PK Uvu.)"349.
FORMAT	 (215.31101 0Ui'!	 31
WRITE	 It+,50ll	 NiDs9NinE•MSS•MSE	 91Pk U	 3^++
FORMAT	 12X9215931101 OU'JOU37+:
TM*CNVJUL (NJDS ) 0o6%;,13Ao
LRFAn a 1 0Uj%j'r3(-!
LPRI NT n l uuow)4o1;

400

501
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0000041
0000041
0000043
0000044
0000046
0000040,
0004047
0000040
000004y'
0000050
00000511
00000521
00000530
00000541
OOOOU54c
0000055
00000561
00000571
000005Ar
000005Q0
0000060C
00000610
000OU62U
00000630
00000640
00000650
00000aaIj
00000A7t
000006AL
00000690
000007UU
00000710
00000720
00000730
00000740
00000750
00000760
00000770
00000700
00000790

00000810
00000820
0000OA30
00000840

NMX m 14
CALL MOUNT(IOTYPEgNUNIT•OTAPEI

1	 INC nO
DBM s 0.
IFS • O
INL•O
IPC n0
TT•0.0
RA n0.0
1C n0

C	 DUMMY VARIABLE IC USED FOR PLOT SUBROUTINE. HAVI
C	 MODIFIED ORIGINAL PROGRAM BY ADDITIONS AND BY
C	 CALLING OTHER SUBROUTINES AT NUMBER 500 INSTEAD OF

READ 115.450 ) TU•.•. -.» r
WRITE179450) TV

450 FORMATIIX•FS.2)
WRITE16 9 4701 TU

470 FORMATIIX# l LOCAL TIME USEDtlo2X9F5.21
A nTU+ 1.0
BA nTU-1.0

4	 CALL POSN(IOTYPEeNUNITrNFILE)
S	 CALL FREAD(AREA.NUNIT9LEN9G500.6S)

IFILEN.NE.1204) CALL ASENDIS)
IFIMJD.LT.NJDS1 GO TO 5
1F(MJD.GT.NJOE) GO TO 500
INC a INC + I

6	 po So I n 1.50
IFIMSINII).EA.-9991 GO TO 5
IF(MSINIIi.LT.0) GO TO 50
IFIMJD.GT.NJDS.AND.MJD.LT .NJDEI GO TO 8
IFIMJO.EQ.NJDS.AND.MSINII);LT.MSSt GO TO SO
IFIMJD.EQ.NJOE.AND.MSINIII.GT .MSEI GO TO 500

8	 IFIIPASS.EQ.D) GO TO 9
IFIIPASS.EQ.IN449I1) 40 TO *i0-^^-^ -+^ ^ 	 ••
IF I IP.LT.201 GO TO 

9 ,s.,._..'... ^ykas."r^.``•..^'.'......

IF(DPM.GT.S.I GO TO 9
IFIA.LT.24.O.AND.8A.GE.0.01 GO TO 12

C	 I HAVE REPLACED .OR. WITH .AND. IN THE ABOVE STATEMENTI
C	 LOCAL TIME CHOICE CORRECTED HERE * 1 HOPEIIIIII

IFITML.GT.O.O.AND.TML.LT.I.O ► GO TO 2
IFIA.GE.24.01 GO TO 3
BAn BA+ 24.0
RA•ABSITML-BAI
BA nBA-24.0
IFIRA.GT.I.01 GO TO.9

STOP2.
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1 r+

1?
1b

l3

1 r.

95

Gn TO 15 Uuuu+j a 5•
RA n ARSIA-TW.) uuf)uvxA,
IF IRA.roT.2.0)	 GO TO y uv	 +.,	 s 7
Gn Tn I5 t)U ^^^ „^ v
IF(A.(',E.24.0)	 GO	 Tn	 14 rt,.,„'^wv.

RA*AHS (TML-9A )
IF(k4,nT.2.0)	 GO TO 4 Ut,t •++ul,
All	 Tn	 15 rn, ,, , +,4^,•
A n 4-24.0 Uui)U)g9,
Ra n AKS I A -TM I. ► ^^U'^ ,1+J aa

a n A+24.0 )UU'. •.,v ,
IF(kA.r,T.1.01	 Gn	 Tf)	 y +i^^U ^y^.,
Al 	 Ti)	 15 t uvt 147-
IF(TMd o 1.T .A4 * nR.TN L.r,T.A)	 R0 TO 4 UU1,101) u.
Ft . SOMS
UTH4 n A MS/3600000. i)u•1•,l+
Isw n 	 1 .;+,tj	 I,.,
nu	 Inn K n I9IP ONJLsl
IFI vnTI1,K1.LT o 45, n o

 OR, PnTIIoKI . ATa115.)	 Gn TO	 IW) (fu0%!)"^

k	 n 	 unT(7,i)	 +	 x+371. ,	 .1,1•	 •^
TH n 	 190.	 -	 PAT(4.K	 )1/14411
ST	 n 	 S1 14ITH ► .;,,tuI	 ti
CT	 n Ci ► S I TH 1
PH	 a	 VhT159-<1/ku 1 ) ,^•.,i'•^

CALL FIELn I 
Atli	 :	 r,371./ k tn! i,	 11.,.
A11#43	 n 	 4l )k**3 Ovvul1 —
THh n PnT11•KI/4An v,1'jU114,
STO n SIN(THD) 0OU0117:^
r,Tn n r.ns (THn) 0000110+0
C11SA .	 1.9MO?.7 - CT*CT01/STD/ST uuuU117^,
IF(CUSA.GT.I.)	 COSA .	 I. uuau I Imo
IF(C0SA.LT.-I,)	 COSA • -1.	 , 000(111 (j•
SINA n SORT	 (1. - COSA**?) UU1.101'e-.

ATO n KT *CnSA - AP*Slh!A vw"viz),
A 3D n MP*C0S4 + MTOSI14A Ou'IV t1z1
1F(ISw.E12.11	 Or) TO	 18 UUUUI?:ii
nH s -(E * AnR3*FI) *STn Uu'J"I/ti;+
D7	 n 	 IF -2.*AO93*Fll*r,Tn utwuIe';l.
On n SOAT I I DH-dTn )**2 ♦ I D7.-NR ► **2 * 4Pn**2) tH,•1u l	 A
DH	 00 - R UUU,,127,
IFIIPR.EA.II	 NRITE(6995)(PDT(J.k).J n 1.5 ► .nH•nL.n4o%n•H ,U)uitk^
F(IRMAT(//92X.10F12.3) uu') +1t4,
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I"

1 01)

A.r

M'1

Mh
Uri

97

23

9K

4A

9

Kr 1	 ^1	 S r l	 +	 I n,+-PnT ( 3.K 1 10*2 t,.)	 ^	 1 a
(;it	 Tit	 Inn
09 1 	 n 	 M Tn*ST) t,
F? a Hk*CTn
AFTA	 • FI	 +,7.* C P i.,,,r	 ,Iji«
ALM«a	 n 	 FI	 - F?. 	 1 uu,r ,131
Fl	 r	 AI.PHA/4 .-J1)0I3A.
F7 n 	 ( KETA*AU K l) /K OUVOI 37
SCI	 •	 S f;I+PATi ll.K}*FI UUOUI3A.
SC?	 •	 51.2 +	 0nT(3.K ► MF7 U,r	 x,,19(.
S 1 1	 s	 $11	 +	 F2 *F 1 i,u,l+,14.1,
Si7	 :	 %1? +	 F7*FY 000 ,141
5 iw I	 •	 SFI	 +	 Fl* F l t.uuu144e,
C)iwTlw, a uu; :149
i^l lt•,^,.E.11	 r;,i	 TV	 PS t	 rr.,144
k	 n 	 IS r'I*512-5(? w Slll/1581*S1? — ST1rtS111 t,u+	 ,1dA:
E I	 - I a*SFl-^^11/5I1 .,J(j16,.

401f ,	 n 	 F1/F uu.)iI L7
TTs1ITH1	 +Inv- . ;,li)51 n ^4.rt ,)„ r;); L.+.
IC n I r +1 out),	 r 4„
tc(tC,.^,F.19^) 1	 Wl	 T()	 W 9 t<<i„	 1 a,	 :
wkITFIh.MO1 0111',)151,
F)1d	 AT0X. r = Kr„:.	 WFRE	 HAVE	 MORE	 THAI•	 15n, 0 ^I"1 TS 4 9l/1 : r X15:
11^(I r .E)6151)	 ICa150 •^a3
I t- ( 1 r:. = ,1 .15 1 1 1	 GO	 T11	 5r)n 1 ^.,
ktatnTI1C.11•TT U,.	 1^

EIMAT1IC•31•FI r•r:157-.
wKITF (h 4 441) "-wj5mt^
F(W-AT ( 2X.ITHIS	 IS	 M•,In.UTNN . TnTAL	 TImF.nmiA g L r!CAL 	 T.E91 0 1 VU0.)l54L
WkITF(6*97) Knv.UTNN.TT0AM.TML9E9F1 OuuuIAUt)
FnRMAT(2X.15.hFM.?I OuoulAlV
IS w 	 s	 2 UQJUAA/.
SCI	 n n. W"0111431
I:In	 Tr)	 11 uulrJ1"At"
AM n 	 IR UU0014511
SCI n SORTISCUAPI uu,)vIktl.,
wit ITF (/1.9041	 ' UGJC1	 7-.'
FUR %S AT(?. Xg O rM .MoE.FI•RATIO • ANn %IrvMA	 1 :}uc)Ulh140
WRITE	 ( 04 9YA)	 O4M•E . FI.RATIO ,SC,1 t,UU.lI'•+
Fil+li4AT	 (5X•SF12.5)
ISw	 .	 I Uuu,.171,
IPASS	 •	 IN(M.II 1)U,),)1711
SC1 n n. t}U1r1I l73
SC2 = n. •,) -W174-
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$11	 R	 !). ,,,,n(,J7t

S12	 n 	 ,1. ,..+.),17,,
Sol	 a 17
nMH a	 inn. nu.r(!170
np M	 a	 P il o 00-1-L 7--f
IN a n r1u`lo lA J

nw LAT	 n 	 INI y .II +J+JUt)Ia1,
n v r. A Ya nrr.AT/1{ 11 ). )r,•1• ► 1 a/
Aro s AkS(nPLAT)	 ' o01i11uj,
nr,	 s	 1	 I A * I) 1 — p)1 G4
nM a Do/In. uu.n., I a S.
I0I010 .11-T.20.)	 Gn	 Tli 411 (.1-iuluo
lO(a 004T.11PP) GO TO ?h 1a7
nV4	 a	 41 1 P ,...^	 ,1,+w,
Al. Sn V 	it	 I^'(5911/Ion 1„,.100
IFl nk .(;T.nM4!	 Gn TO 4n tr,,r•rlu,•
n,.b,	 a	 n„ ,•	 tvl
ALT	 a	 1 • 1 14.1 ) +1. .lw
mq	 a 1101. AT v.;110S,
T f- 1.	 a	 1',1(7.I1 r,,.,)vq
TrL	 a	 T ,r L/1000 . ,,.,•	 1^7
-,%	 a	 ; iSI if I ) )•)., r as

K7Vsh• •1n )..	 :,14.7
I,j	 a	 10	 I „••,,,.luv
I 09 (1 ►+ . r;T.ISn)	 C A LL	 ANENn1401 uvv, ,Icou.

HT	 s	 1' 14. 1 ) sst;	 "),C- ,.
AL(lr , 	a	 !0(391) I:
ALAT	 n 	 UN(2911 uu-jeic
PnT	 II.IPI	 n 90.	 - nPLAT 4U00203+
PMT 19. 1 k 1	 s	 WT/)f). (104,12114:
PnT (3. 1 w 1	 a nk Uuvooe, a,
PnT(4.I01	 a	 A l.&T /Inn. 1)(1• ► u4Ua,
PnTIS.IN)	 s	 ALON/1011. U0U0i0r7*
IKIIT g ST.Nx.n1	 r.n TO 610 0000/!ra,.
WXITEI A . A(In)	 ALT . PnT12•IPI • PnT1391P1 • PnTI&•iv1 . Pr)T(S . IN) uuuudtiul
FnAMAT(IX. ► ALTs	 1 .E10.3 9 1 	HT n 1 .E10.3. 1 	 nAs	 0 9610.39 1 	LAT s1 . UUJullo(
1E10.3. 1	LONGn 1 .E10.31 0000211(

ITE5TaIT65T+1 uuuutlz,
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XLATwpnTl4. IP 1 0000dl5c
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XL0wGsAA0n(PpT(591P1+360.9360,1 00Gu217(
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A

Appendix Ct Data reduction programs for estimating Q(w)

includes 

Had

INT3

Stack

Imsl and system library functions are also required.

Unlisted subroutines in Mad are listed in thesis by (Thayer,1975)
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FILE: BAD	 PONTN&1 Al
	

*** Nrons University Computer Cen,

C	 MAGNETIC ANALYSIS PROGRAM
	

N'
C	 OCTOBER 1979
	

N'
C
	

H.
DINNNSION PERIOD	 25) • Q(500),WINDOW (SOO),TITLB ( 1S) ,C(2) N.
DIVERSION COHSQ(251 ,CON(25) ,QNAG1 (25) ,QNA62 (2S) !!}
DIVERSION QPNASI(23),QPEAS2(25) N ►
COMPLEX Ci (IOQA),C2 ( 1000) ,P(2,2,25) ,Z1Q(1000) ,x29(1000) H
COMPLEX Q1(25) , QZ (26) , RNERQY (500) H'
DATA NA1w/1000/, NA=PE1/25/ H%
RADDIGu S7.295700 5t
READ (5 , 1000 , 31D-Ill) INPUT,NPER , INAZ,LADD,NMIN,SBL,EITENT Nj
FORMAT (515,2710.0) HI
READ (5 , 2000)	 (PERIOD (I),In l,NPER) H:
PORNAT (6710.0) Ht
xRITE (6,3000) at
FORMAT	 H&GSAT	 «+ /^I, Ht

1	 +«+,t/i,+e+/11,13(+•+ ► ////11, at
2 + TNR INPUT DATA 821IE31 +//1 at

51

FFT COEFFICIENTS ARE BRAD IN 	 5t
Nt

CALL IOFFT (INPUT , TITLE , 5,NC0EFF , NAZN , DT,C1 , C(1))	 51
CALL IOPFT (INPUT , ZZTLE, I,NCOXFF , NlZl , DT,C2 , C(2))	 Mt

Nt

1000

2000

3000

C
C
C

C

4000

IF (IV&1 . zQ * oj 	IN&1-N at
WRITE	 (6,4000)	 (C(I ► ,2n 1, 2) , SRL,LADq , IN&X,SMIN , NPER,

at

1(PE1IOD (I) ,In 1, NPEB) at
FORMAT (/// 11,+TVE CONPONEWTS USED IN THIS ANALYSIS ARE: 	 Z1 n $ , Ht
1A4, +	Z2 n + ,A4/////11, 0 GAOSSIAN SPECTRAL WINDOWS: + //tI, at
2 + SELECTIVITT I5 + ,76 . 4/11, Nt
3 + 105321 OF INTERPOLATIONS BETWEEN EACH FAIR + /1Z, Ht
• + OF ADJACENT to at
4 4 HARHONICS IS SPECIFIED 13+,I3/11, 5t
S + THE NUMBER OF HARMONICS USED ON EACH SIDE 07 LACH INTERPOLATION9,Ht
6 + IS + ,I4/11, It
7 + PENEST TOTAL ENERGY DENSITY VALUES ALLOWED IN RACE SPECTRAL', Ht,
O f WINDOW IS + ,I4/1Y, It
9 + TNERR ARE + ,I3, + PERIODS AN1LYZED: + /(11,10712.2)) HA
TOnN•DT NA
WRITE	 (7,7000)	 (TITLE (I),I-2.X5) up
FORMAT (14&4) NA

NA
TBANSIENT SPECTRA IN T52 FREQUENCY HANDS ARE CALCULATED at

7 000
C
C
C

DO 10 L- 1,NPE2
WRITE ( 6017000)

17000 FORMAT (181,72 °e+)/11,72(+•+)/11,201,+•«e• BAND AN
1111A
WRITE (6,13000) (TITLE (I),In 1,15),PRRZOD (L),SEL

13000 FORMAT ( IN ,15X4//11,51 , + PERIOD- + , 712.2, + SEC.+,51,
1+SELECTIVITY-+, 77.4)
CALL PP&RNT (V,DT,NNII , S.ADD,INTERP,PERIOD (L),SEL,N,
1 ILOW,INIQN , VFPT , NBELOW , NA30TE,EZTENTI
CALL HCOV (CI,C2,EVERQY,ILOW,INICR,3)

C

NA
NF
Ht

&LYSIS	 at
a 

Nt
at
a 

NA
HA

Ht
HA
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FILE: nAD	 FORTRAN AI	 ••$ Brown University Computer C.n•

C	 EQUATION (7), PAGE 229 R.E. TNATZI PM.D. "ISIS, 1975 	 N.
C	 h

NOnIlIZ (5.0132565*SEL*N•D?/PERZOD(L)*1.)	 N
NOnIlIZ (FLO•T (NO) / N)	 N'
CALL RAND (N,DT , INAZ,N,Q,ILOW , INIGE,NFFT , IMERP , NIELON , N6R0/E,	 N'

1 C1,C2,=1Q,120)	 Nt
C	 Nt
C	 SNOOTEED ENERGIES ARE CALCULATED	 !!?
C	 Nt

QOsTO/PERIOD(L)	 N)
CALL FWNDOW (Q, B,QO,SEL,WINDOW , WEIGET►	 BY
CALL PRIORI	 N)
CALL FRNGR! ( ZiQ,I2Q,WINDOW , WEZGNT , N,P(1,2,LI,ENERG?) 	 M)
P(2,I,L)•CONJG (P(1,2,L))	 B)
CALL PRIOR! ( 12Q, 12Q,WINDOW , WEIGBT,E , P(2,2,L) , ENERGl)	 N)

C
C	 CALCULATE RSTINATES FOR Q • I/2
C

Q1 (LO U P (1,2,L)/P ( 1, 1,L)
Q2 (L) •P (2,2,L) /P (2,1,L)
CONSQ (L)-REAL( (P(2,1,L ) ^P(2,1 , L) ► /(P (1,1, L)•P(2,2,L)) )
CON (L) •SQRT (CONSQ (L) )
QNAG1 (L) •SQRT ( REAL( Q1 (L) •CONJG (Q1(L) ) ) 1
QPSASI (LI u&TAN2 ( AIMAG (Q1(L ► 1 , REAL(Q1 (LI ) 1 • RADDEG
Q BAG2 (L) •SQRT ( REAL( Q2 (L) •CONJG (Q2 (L)) ) 1
QP8AS2 ( L) n ATAN2 ( AINAG (Q2 (L) ) , REAL (Q2 (L) ) ) • RADDRG
WRITE ( 6,14000) 50,8

14000 FORMAT (/// 1I, # TRIBZ ANN 1 ,24, 0 DEGREES OF IREE9O81,3I,
19(N s I,FS.401)0)
WRITE ( 604500) CON (L)

14500 FORMAT (/IZ, l CONERENClt ',!12.41
WRITE (6,57000)
WRITE (6,2005) NU

2005 FORMAT (////1I, # SR0OTNED SPECTRAL ENERG
Y
 NATRIZ',51,1(0,I4,

1 • DZGR22S OF TIERDOM) $"/261,0EZTO ,27Z,IIRTI /95,9.0,60(0-0)/
291. 0 4 )	 t

WRITE (6,2001)
WRITE (6,2002) P(2.1.L) .P(2.2,L)

2001 !ORBIT (SZ, fEIT 0 ,2(21,2214.5)/91, 1 0)
2002 !ORBIT j5I, lINT 1 ,2(21,2214.5)/91, 9 1)

202=2*10
CALL COP?XD (NU2,COBSQ(L),P(1,1,L),P(1,2,L),P(2,1,L),P(2,2,L),

1 QNAGi fL) ,QPNASI (L) ,DRLQ,DELP)
WRITE (6,2004) Q1(L),QNAG1(L),DELQ,QPNASI(L),DELP

2004 FORMAT (///11, 1 2ESPONSE !UNCTION ESTINATES21//1Z,
1 l Q1 • ( 9 ;2E14 . 5, I ) f /201 , 1 8AGNITUDE •	 O,P12 . 4/201,
2 • PEASE 	 9,!5.2,1 DEGREES')
CALL COVPID (202,CONSQ (L),P(1,I,L) , P(1,2#L),P(2,1,L) , P(2,2,L),
2 QNA02(L),QPNA32 (L),DELQ,DELP)

WRITE ( 6, 2006) 02 (L) , QNAfi2 (L) ,DELQ, QPNAS2 (L) , DELP
2006 FORMAT ( 111O, I Q2 n ( 1 ,2214 . 5, 9 1 1 /201 , 0 8AGNITUDE a I,P12.4,

1	 0,112.4/201,
1 1 PEASE	 1,F5.2 ,11 DEGREES*)
WRITE (7,7001) PERIOD (L),S2L , WU,COMSQ(L)
WRITE ( 7,7002) P(1, l ,L) ,P(1,2,L)
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l
FILE: MAD	 F01tTRAN S1	 000 )rows University Computer Cent

REITE (7,7002) P(2 1 L1,P(2,2,L ► 	 ht
7001 FORMAT (F10.1,F/0.l,i10,F10.5) 	 !I;
7002 FORMAT (2(21,2214.5))	 !!^
10	 CONTINUE	 !il

00 TO 1	 q1
111	 STOP	 N1

END	 ht
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OREAn 1NT3	 FORTRAN C1 TEST	 6/14/40 21176
C	 TO APPLY LINEAR INTERPOLATiON TO MiSSiNr• ONTO PQ11NITS
C .111MF	 14.190(1

1	 1	 ,

DIMENSION TI1?MI.Ei1? p l•Ftll?Rt•COnE11x F 1 f•^
OIMENSInN E3112^1•F1311?^1 " 1^
DIMENSION T11151•T?1151
RFAn I49001	 IT111191•1.151
RFAQ IS•1001	 iT211)•1 n 1.151
RFAn 19.2M1) N

Inn Ff1RAAT	 1 15A41 ! n lu'
?nn FnR-AT	 1131

RkAQ	 45•2SOI	 ITt11.F.111.F1111•^OnE111•F3(11•F13111•I n 1•h'1 7'.

?Sn Fn+4MATtlx•4E1n.31
nn In 1020N
Jr. 	 an TO in i"f"
iF	 Ifn0E11-11.F.^1.1.1	 r11	 TU	 In 1''1!
nn ?n jxIqN
IF	 IrnOEft*,II.E'1. p ,f	 rn TO 3A

2n C110471NUE
30 Al•IF.11+.11-E11-111/IT11+.11-Tit-1t1 1'	 T,.:

A3•IF311+.11-F311-111/tT(I+J ► -T11-111 1	 '^••

A9 n IFili+Jl-Flli-111/ITii+JI-T11-111 t'	 ^•'
A4 n IF1311+.11-P 1311-1i1/ITI1+J1-T11-111 J'•'fl''
R1 nF11 = 11-Al*T11-1! 1^'t+'
113 n iE31 1-1 1-A3*T I I-1 1 1'177'
!!2 nFIi l-i l •A2*Ti 1-11 it4Tw
A4nF131i-11-A4*711-11 imTur

On 40 K n 19J 1'1T'v
E11-1+KI n A1*Ti 1-1+K1++il '"'1^%'
F.3t1-1+K1•A3*T(I-I+KI+03 1"1u
FII 1-1+K1 n A2*T11-1+KI+M? !r,TL,

F13(I-1+K 1•A4*T (I-1+K I+N4 1 'V 1 L',

41) GnNTINUE Pilau

in VINTiNUE 1:4w
WRITE.	 14.1001	 iT1111.1 • 1.151 !NT,Iu

WRITE	 (4.1001	 111T211191 8 1.151	 , 114u!)
WRITE 4 4.2001 N iR'TvkI

WRITE	 14.3001	 ITiII•EiI)•F11II•COnEII1.E31Ii.FI3(1)9I • 1•NI If"I	 ,
300 FORMAT (hE10.3) 1o'T C

STOP T t'

Emit
t.,,I	 ,.



147

skCAi)	 STAfK	 FORTRAN	 Cl	 TEST	 4/26/An	 9:39
f	 STArK S1M.
C	 ►1fT	 76.1979 S1	 ^,,,,	 ..
C	 T(1 SE !.EUIVFIY STAK ENER41E5 FnR A GIVEN PFklOn !)R 5Ta ► ^n:
C	 FkFOIJENC,Y ANn ME14HT EACH ENTRY RY 	 ITS N4.	 nF nEGREfS OF FRcE()n i-• STut,w,-
f,	 NX*Nn. OF PawinnS CnVSInFR C n STwv".0,

C	 NSET*N0. (IF I)ATA SETS CONSInEREn STAi,,,(,.
C	 NnRail l) *Nn. nF nATA SETS STACKEn AT PERInn Pw h STA7 n,'
C	 CIIfI1•C121I ► .02111)•C22(I)	 ARE 4	 SEPARATE	 ENERAIV	 FIJNCTln %, S STAUv).
C	 AT PERM b%j-- u)

C	 N*N0,nF nE4REES OF FREEnOM FOR SPECTRAL ESTIMATES AT Sn m c PFRISTAU,)I.
C	 1) STA.:-11 t
C	 No Nn. OF nE aR EES OF FREEnnm FnR PERM S TA;;,-1e
C	 Nne(+III•r- INA! NO 	 OF nEGRF.ES OF FREnnM FnR PER III sTAvPI-
C	 *w	 IF W ISH A SPECTRAL ELFI ENT NOT Tn HE	 INCLIInFn	 IN STACKI %Jr, ^,Tauol^
C	 AT THAT	 PER(I I •	 SET " 1 4n 51,+	 =,1"

nIMF NSION PEkl25)•Nn 604 (25)9NnEr•1?51 $)a,	 1^
nIMF.NSInN	 SUM112519SII kfp IR51•	 SUM3(2519Sl► M4(25) ST,.,,	 1
nIMENSION SEL(251 a)'u^	 1~

.C(1MPLFX	 Sr. 11(25)•SCI?(25)9 SC. ?1(251•SC72125) ti)u	 ti^
C( ►MPLFx T„
nATA bl.,vu[1

1	 SC22/25*(().09().())/ STu,.2i
nn TA S ►►M I/25 *n. n/• SIIM2/2S*n.n/ •5 (IV 3/25*n.n/•SUM4/?5*( ► .0/ STa;	 2s
nATA NnEG/25*n /.NnRM/25*0/ STAL1,124

NX* y S1Auu25
NSET*R STA00dic,
RAnnEr. n 1Nn./3.1415 STAUU27
On 20 IX*19NSET STAvu2w
nn In	 I n 1 •NX S7c% J !l2a
RFAnl5 • l0n)	 PER111 9SEL(1)•M JTuk,,;3,,

Inn	 Ff14 14AT(F10.1•F1002.11n) S1„	 131
RFAn15.2nn)	 C,11111•C12(I) S1AU,i3^

2nn Fr)RMATf2(2Xv2E14,5)) S141(1k1
RFAn(5•?nn)	 C21(l l •f,?Z(I) STA. ,r3-.
IF(N.NE6nINORM(I1 n(4nRM(II+1 S(Aui,3 5

SC111I)*SC111lI+N*01111) STAUO3R
SC12(i) n SC12(I)+N*C12(11 STAU()b7!
SC211I)*SC21(11+N*C71(ll ST4003)4
SC2?(I)•SC2211)+N*C22(II JIA1)u34
NnkG(i ) nNOEG ( I I+N STAW 4.1

^I
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I() C(INT1%+IIC ST„ r14 
2 ( t r+iraTI'.IIF

nt+	 "4n	 Ial •MX
NIPF(.l l IsIg nE( 4 1I Is?	

I'
Sl4.1 'Nu

hwwIl r l.25tti)	 6)r-kl l ► •NnF.r•111•NoRM(I) a1A 1,141

2h11 F ++ N'1AT (1x. lpa w lnl) n ( • F1().3. f	nEr.KEES	 nF	 FREFnn t: n ( . 15 • I	STnk"asf.1a1!lAt„a4#'

—IT 9 14•1001	 S' 11 I I l.tr12111•Sr21111•SC77.111 bT„'; ­ 7
4nrr FIN147( 5x• O CI1s'•2E15. 4. O C12 80 92E15.4•/•5x9 0 C2l s '•%E15. 4 • sTAU,)4,

1 ^f,2?s^.?515.41 y1AtiUh4

to? s S +t KTI w FA!,ISf,12(i l 1^+*?+AlµAr,ISr.121111**?1 S161',s,
017sitl 7/SttKTtKFALI SCII11 I1**21 1111-I+	 sil

071sS+!kT(QFALISr22t I I )**71 S(Au"a,t
r.t?I n +'?1/SURTIRt	 AL(Sr,?1111)**?+AINA14(SC2l( 11)* *21 STa+)u5a

PNASEsATA N +( A IMn(;( SC121 I I I /REAL I SC124 1 1 1 ) *NAnnEr, STA+)1054
r flHsli a e.lS,l?( I11**7+4lWhN1Srl7111)ON 57A1)	 S5
(;rl►lsr +^^/114EALICr,111III*RFAL1SC2211 ► I ► STAu	 s,^

w+e1TF(A * 4nn) 	 1+12#0 21.wwACE •rnw ,I :	 57
4nn Ft y ^,nT11><.^*s 	•+Ir,17is^•F17..4•(	 t•1(r,711s^•F12.4. + 	PwASEs(•FI%.4• STaof!Al-

q(	 ^fiN?a	 O.r12.41 510	 1,+54

CALL	 C0NFlnl ( ncr+111•COM • SCII.SC12 • Sr,21•Sr. 7290129 PwA SF• n FL ' I.t1F L N 1 ;,TA',,A-
wwjTF(a,,tinn ► 	 nFt,n.nFLv Ala.,,	 ^1

AW, F1I+tr AT(5x	 nFLTA	 tls	 (•F12.4.(	 nELTA	 Pwls	 I • F12.4 9/) s7w.,,,Ae

ST++N h 1 U  L; A4
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Appendix D: Programs for calculating Q(w)

Program name: Multi

Subroutines:

Solve

Simu1

Runge

Step

Safe

Requires IMSL library and systems library
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1
2
3
4
8
6
7
e
9
10
11
12
13
14
18
16
17
18
19
,0
21
22
23
24
23
26
27
28
29
30
31
32
33
34
38
36
37
38
39
40
41
42
43
44
43
46
47
48
49
30
31
32
33
34
53
36
37
58
39
60

9 CHAT (OSiDERLIS, SYR-) VINE XQCAL HS LA 1117 S S 72

	

C	 1-NA T1

	

C	 JUNE U8,1900

	

C	 TO COMPUT RFSI'ORSE FOR MULTI LAYER MODEL
C

PROCRAit QCAL(IMP)
CALL CIIAl4CF.( • +RUN" )
CAIJ. AOS1CN(3,18, "OUTPWO O- )

REAL 1IN,12N
1)I ,.ENS;ION X(4,4),DEP'1'HM(50)
DIPIENNION S1CMA(50),C(58),M(80),ANF'(50),CNF(80)
N23

READ IN CO3DUCP i V ITY MODEL
I tA1TE( 59,1 )

	

1	 F011'iA7'(IX. "NO. OF SICMAW )
RUAf)(59,2) NS

	

2	 FU;GIAT( IU)
D0 10 I=1.NS
wit 1'1'E (59 , 3 )

	3 	 FORHAT ( 1 X, "S I ('.MA AND DEPTH OF' CHALICE 10 METERS • )
READ(59,100) SICMA(I),DEPTHM(1)

100 FOIDIAT(2F10.3)
10	 CON'1"1NUE

W:CITE(3,4)(SICMA(1),DEPTHM(I),Isl,NS)

	

4	 FORMAT(3X,"SICMA ",E10.3," DEPTHM •,EI0.3)

DO 300 JFREQsl,19
X(l,l)s.l
X(2.1)*.2
X(3,1)2.3
X(4,1)2.4
X(1.2)2.3
X(2•,2)=.6
X(3,2)9.7
X(4.2)2.6
X(1,3)2.93
X(2.3)2.84
X(3,3)2.63
X(4,3)2.41
X(1.4)2.16
X(2,4)2.37
X(3,4)2.69
X(4.4)2.99
P2(FLOAT(JFREQ))*10.**4
IF(JFIIEQ.CE.II) P2(FLOAT(JFREQ-9))*10.**8
WRITE(.3,801) JFREQ,P

801 FORMAT(IX,"* JFRDQ 0 ,15," ** INITIAL PERIOD 8,EI6.3)
EIN21.
E2N a I .

CALL STEP(P,N,H,NH ,C.IIIAX,SICMA,DEPTHM,IIS.ZIN)
WRITE(3,111) IMAX,NH

III FOR1'!AT(1X,"IMAX 2 11 ,13," AND NO. OF STEPS 9 0.13./)
CALL SAFE( C,NH,H,NH,N,ANF,CNF,IMAX.X.ZIN)

	6 	 FOIL4AT(1X."USE ANF s ",E10.3," AND CNFs ",E10.3)
I I N 2 E I N/2 . —ANF (I )lA)E )
12N=E2N/2.—CXF(I?IAX)

	

7	 FOIUTA'I'(IX."IIN • ,E10.3,"12N ",EIO.3)
Q2 ) 1 N**2+ 1211**2

Q=SQRT(Q/(EIN*EIN+E2N-='E2N))
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61	 PBASZw (I I N, F.ZN-12Nxv E l n )
62	 PHASEBAIAN(PHASFs(IIN *E1N+120*E2N))
63	 WR1`1`E(0,n) Q,rKASE
64 8	 FOIUTAT(IX, "** /Q/ n ",E14.0, 0 PHASE R ",E10.0,//)
6b 5p0 corrINUE;
G6	 CALL E;XIT(1 )
67	 END



132

69
69 C
70 C
71 C
72 C
73
74
75
76
77 C
78 C
79
80
at
82
03
04
83
86
87
BB
89 100
90 5
91	 110
92
93
94
93
96 120
97
98
99

100
101
102 125
103 C
134 C
105 C
136
107
106
109
110
111
112 10
113 130
114
115
116
117 C
118 C
119 C
120
121
122
123
124
123 30
126 200
127 205

SUBROU'T'INE BAFE(C,IC,N,IN,N,ANF,CNF,IMAX,X,ZIN)
JULY 711980
UPWARD INTEGRATION, 4 SOLUTIONS, SOLVE
MATRIX FOR 4 CONSTANTS

DIMENSION C(IC) ,H(IN).ANF(IMAX),CNF(INAX),Y(4)
DIMENSION X(4,4)
DIMENSION AN( 50 ,4),CN(50,4),DAN(50,4),DCN(U,4)
DIMENSION; DANF(50). DCHF (50),A(4,4),B(4).WKARF.A(I6)

** INITIALIZE
EIN=1.
E2N=1.
1DGTx3
ALPHAs0.001
BETAr0.001
Msl
IAs4
INs4
Jsl
WRITE(3,100)N
FORPIAT( IX. "FOR IN 0,15.4 SKINDEPTHS•,/)
CONTINUE
FORMAT(1X,"READ IN INITIAL AN,DAN,CN,DCN *** ",/)
AN(I,J)sX(1,J)
04N(I,J)=X(2.J)
CN(l,J)sX(3.J)
DCN(1,J)=X(4,J)
FORMAT(FIO.3)
Y(1)sAN(I.J)
Y(2)sDAN(1,J)
Y(3)=CN(1.J)
Y(4)=DCN(I,J)
ZXZIN
FOIL 1AT( IX, "Y(K) ",4E10.3)

SOLVE SIMULTANEOUS EQUATIONS

CALL SIMUL(Z,H,IH.N,C,IC,Y,ANF,CNF,DANF,DCNF,IPIAX)
DO 10 Is1.IMAX
AN(I,J)=ANF(1)
DAN(I,J)sDANF(1)
CN(I.J)sCNF(I)
DvN(I,J)sDCNF(1)
CONTINUE
FORMAT(IX."I ",15," J 0 ,15," AN 0 ,EIO.3," DAN ".EIO.3. /,5X,
1" CN ",EIO.3," DCN ",E10.3)
JsJ+I
IF(J.LT.5) GO TO 5

DEFINE ELEMENTS OF MATRIX

DO 30 J=1.4
A(I,J)=AN(1.J)
A(2,J)=CN(l.J)
A( 3,J)=DAN(IMAX,J)+C(IC)*AN(1MAX.J)
A(4.J)=DCN(1MAX,J)+C(IC)*CN(IPIAX,J)
coN*rl NUE
FOIL IAT (1 X, / , " ELEMENTS OF MATRIX-,/)
FORMAT(1X,4E10.3)
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128 D(I) "'ALPHA
129 II(2)mDETA
130 8(3) n3,/2.*C(IC)*EIN
131 B(4)&U./2.*C(IC)*E2N
132 210 FOItMAT(IX," B(1)+ ",4E10.391)
133 CALL LLPQTIF(A.M,IN,IA,B,IDCT,WKAREA,IER)
134 220 FORMAT(1X,"TAE FOUR CONSTANTS ARC O 0,41;10.3)
135 Wlt I TZ ( 3 , 230 ) i ER
136 230 FORMAT(IX,/," ERROR PARAMETER 0,15)
137 C
138 C USINC THEOREM THAT TkERE EXISTS ONE SOLUTION .
139 C XIsCI*Y11+C2*Y12+C3*Y13+C4*Y14,ETC
140 C
141 DO 40 Is1,IMAX
142 ANF(I);D(i)*AN(1,1)+B(2)*AN(1,2)+B(3)*AN(1,9)+8(4)*AN(1,4)
143 DANF(I)sB(I)*DAN(1,1)+8(2)*DAN(l,2)+B(3)*DAN(1,3)+B(4)*DAN(1.4)
144 CNF(I)gD(1)*CN(1,1)+D(2)*CN(1,2)+B(3)*CN(1,8)+8(4)*CN(1,4)
143 DCNF(I) n D(I)*DCN(I,1)+B(2)*DCN(1,2)+B(G)*DCN(1,3)+8(4)*DCN(1,4)
146 40 CONTINUE
147 C
148 C ARE CONTINUITY CONDITIONS MET?
149 C
130 WHITE(3,300) ALPHA,ANF(I)
151 300 FORMAT(/,IX,"ALPHA ",EIO.3," ANF(I) ",E10.3)
152 WRITE(3,310) BETA,CNF(1)
153 310 FORMAT(1X,"BETA ",EIO.3," CNF(1)	 ",EIO.3)
154 TESTI=(—I)*C(IC)*ANF(IMAX)+(3./2.*C(IC)*EIN)
155 TEST2=(-1)*C(IC)*CNF(IMAX)+(3./2.*C(IC)*Z2N)
156 WHITE(3,320) TESTI,DANF(IMAX)
157 320 FORMAT(1X,"TESTI ",E10.3," COMPARED TO DAN(IMAX) 8,E10.3)
158 %ltITE(3,330) TEST2,DCNF(IMAX)
139 330 FOR(PIAT(1X,"TEST2 ",E10.3," COMPARED TO DCN(IMAX) 0,E10.3)
160 RETURN
161 Elio
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162
163
1'54
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
1()1
182
183
184
1811
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
243
204
205
206
207
208
209
210
211
212
213
:x.14
215
216
217
218
219
220
221

SUBROUTINE 51MUL(Z. B.1N,N,CC.IC,Y,AN,CN, DAN, BCH,IMAX)
C	 ** AS OF APRIL 28,1980
C	 CALCULATES SOLUTION TO PAIR OF COUPLED simuANEOUS
C	 2ND ORDER DIFFERENTIAL EQUATIONS OF FORM D2A/D7.2s(2*C**2
C	 *AN/(C*(Z-1)+I)**2+2*N**2*CN,WRERE C IS A GIVEN COEF-
C	 FICIENT. RETURNS AN AND CN AS FUNCTION OF DEPTH. Z IS
C	 NONDIMENSIONAL AND VARIES 0 TO 1. REQUIRES FUNCTION RU140E
C

DIMENSION AN(IMAX),CN(IMAX),Y(4),8(19),F(4).CC(IC),DAN(INAX)
DIMENSIONi DCN(IMAX)
INTEGER RUNGE

C
C	 INITIALIZE
C

50 FORMAT(3X,"** INITIALIZATION **")
60 FORMAT(IXo"YI",EI9-3 # 0 Y2".ElO.3," Y3 0 .E10.3," Y40,E19.3)

AN(1)sY(1)
CN(1)sY(3)
DAN(I) sY(2)	 ,
DCN(1)sY(4)

65 FORMAT(IX," AN(1) n 4 ,EI9.3," CN(1)• •,E/9.3./,
65X,"DAN(1) s ",E10.3," DCN(1)s
Isl

C
C	 START INTEGRATION
C

4 IF(IN.EQ.I) STEP1111(1)
IF(IN.©Q.1) GO TO 5
STEPsH(1)

68	 FOMAT(IX,"1 ",15," STEP ",E10.3)
5 Y.=RUNCE(4,Y.F,Z.STEP)

101 FORIIAT(9X,"K s ",I3," Zn ",E10.3)
IF(K.E(I.0) GO TO 10

G
C	 DERIVATIVES ARE DEFINED
C

IF(IC.EQ.1)CsCC(I)
IF(IC.NE.1)CsCC(l)

104 FORMAT(1X,"C s ",E10.3)
F(I)sY(2)
F(2)s2*C**2/((C*(Z-1.)+1.)**2)*Y(I)+N**2*2*Y(3)
F(3) =Y(4)
F( 4)s2*C**2/((C*(Z-1.)+1.)**2)*Y(3)—N**2*2*Y(l)

102 F0RMAT(IX. "F1s",EI0.3," F2 s ",E10.3," F380,E10.3," F4s",E19.3)
GO TO 5

C
C	 WREN K IS RUMRNED AS 0 ,INTEGRATION 18 COMPLETED
C

10 lsl+l
200 FORMAT(1X,"I s 0 .15," Zs ",E10.3)

AN(1)MY(l)
CN(I)=Y(3)
DAN(I)sY(2)
DCN(I)sY(4)

300 FORMAT(5X,"I w ",I5, 0 AN(I)",E10.3," CN(1)",E19.3)
IF(1.LT.IMAX) GO TO 4
IF(I.NE.IMAX) WRITE(3,400)

400 FORMAT(9X, "INDEX IMAX IS NOT CONSISTENT")
RETURN
END



155

222 FUNCTION RUNGZ(N.Y.F,X.B)
223 C
224 C TOX !UNCTION RUNGZ MnArtS TAX FOUIKM-MM RUM -
225 C KUTTA ME 110D WITS KUTTA'S COEFFICIZNTS TO IMMUTZ A
226 C SYSTEM OF N SIMULTANEOUS FIRST ORDER ORDINARYDIFFERENTIAL
227 C EQUATIONS F(J)•DY(J)/DX, (J+I r2 ..,N), ACROSS ONE STEP OF
228 C LENGTA A IN TAX INDEPENDENT VARiABLdV X, SUBJECT TO
229 C INITIAL CONDITIONS Y(J), (Jm1,2,..,11). LUX F(J), DZRI-
280 C VATIVE OF Y(J), MUST BE COMPUTED FOUR TI1m.PZR INTZ-
gal C ORATION STEP BY TOZ CALLING PROGRAM. THE FUNCTION MUST BE
282 C CALLED FIVE TIMES PER STEP (PASS(1)... PASS(S)) SO THAT TAE
g33 C INDEPENDENT VARIABLE VALUE X AND TAE SOLUTION VALUES
234 C (Y(1)...Y(N)) CAN St UPDATED USING TAE RUNOE-ID=A AL-
234 C GORITSM. N IS TAZ PASS COUNTER.RUNGE RETURNS AS ITS VALUE
236 C 1 TO SIGNAL THAT ALL DERIVATIVES (TILE F(J)) SE XVALUA-
237 C TED OR 0 TO SIGNAL TuAT TI(X 1RPERGRATION PROCESS FOR TAE
236 C CURRENT STEP IS FINISHED. SAVEY(J) IS USED TO SAVE TAE
239 C TAZ INITIAL VALUE OF Y(J) AND PII1(J) IS TAE INCREMENT
240 C FUNCTION FOIL TAZ J(TA) EQUATION, AS WRITTEN, N MAY BE
241 C NO LARGER TIIAN N. CARt1ARA11,LUTHER, + W1IJ[ZS,APPLIZD
242 C NUMERICAL MZTAODS, JOAN WILEY + SON/, N.Y.,I%$.
243 C
244 1NTZGM RUNGE
240 DIMENSION fltt(N),SAVIE1fl80),Y(N),F(N)
246 DATA M/01
247 C
248 IIwM+I
249 1" FORMAT(7X. 8PASS 9,18)
230 GO TO (1,2,39496),11
231 C
282 C .....	 PASSI.....
233 1 RUNGE•1
234 RETURN
233 C
236 C .....	 PA882.....
257 2 DO 22 J n I,N
250 SAVEY(J)nY(J)
239 Pet (J orm
260 22 Y(J) nSAVEY(J)+0.8*N*F(J)
261 X•X+0.3*S
262 RUNGZ•1
263 RETURN
264 C
263 C .....	 PAS93.....
266 3 DO 38 J•l,N
267 PSI (J) nPII1(J)+2.0*F(J)
268 33 Y(J)•SAVEY(J)+0.3*H*F(J)
269 RUNCE81
270 RETURN
271 C
272 C .....	 PASS4.....
273 4 DO 44 J n 1,N
274 PHI(J)aPHI(J)+2.0*F(J)
275 44 Y(J)•SAVEY(J)+x+1r(J)
276 XRX+0.3*H
277 RUNGEa1
278 RETURN
279 C
280 C .....	 PASS3.,....
281 5 DO 55 Jml,N
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k$12	 64 Y(J)*RAVCY(J)+(PUI(J)+F(J))*0/6«*
203 Mae
234 RUMOZOb
205 RETURN
2116 C
2117 Elf 0
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289
290
291
292
293
294
295
296
"297
298
299
300
301
302
303
304
305
306
307
008
:309
310
311
312
313
314
315
316
317
318
319
320
321
322
3'23
324
U25
326
337
328

330
331
3:32
33;3
334
:335
336
337̂)
a) IO
3:39
310
341
342
1
344
41 t5
^46

:7

318
wtq
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SUBROUTINE STEP ( P,N,BoNN , C,NZ,SICPIA , DEP77M,NSS,Z1fi)
C
C	 SEPT.4,1980 (NOV25,1980)
C	 TO DEFINE STEP SIZES C1VEN CONDUCTIVITY PROFILE
C	 PsPER10D(SEC),NsSKIN DEPTHS NORMALIZATIO14,8(1)s
C	 STEP SIZE,NH nNO, OF STEPS, CC(I)mW*DELTA/(637!*
C	 10**3),NZsNO.OF DEPTHS Z 28 TO I,I.E. IMAX IN SUB.
C	 SAFE.
C

DIMENSION A(50),HH(50)$DEPTH(50),DELTA(50),CC(!10),Z(50)
DIMENSION SICMA(50),C(d9),DEPTHM(50)
NSsNSts
P1s3.1415
FREQs I . /P
DO 20 lsl,NS
DELTA(I)sSQRT(2.*10.**7/(8.*Pl**2*FRM*SICMA(I)))
C(I)sN*DELTA(I)/(6371.*10.**3)
DEPTH(I)sDEPTUM(I)
IF(I.EQ..1) DEPTH(1)sl.—DEPTB(I)/(N*DELTA([))
IF(I.NE.1) DEPTH(I)xDEPTH(1-1)-((DEPTBM(1)—DEPTHM(1-1))/

I(N*DELT.'.'1)))
IF(C(I).fjE.1.) DEPTH(I)sl.
IF (DEPTH(!) .CT. 1.) WRITE(59,10),I,DEPTH(I)

10	 FORMAT("EIUIOR 1 •',15,"DEPTH(!) s 6,E10.2)
IF(DEPTB(I).LT.O.)NSsI
IF(DEPTH(1).LT.O.) CO TO 21

20 CONTINUE
CO TO 22

21	 DEPTH(NS)=0.
22 NHx0

WRITE(3,200)(J,DEPTB(J);DELTA(J),C(J),Jcl,NS)
200 FORrtiAT(IX,"J " ) 13," DEPTH ",E10.3 9 " DELTA ',E10.3,'C 0,E10.3)

DO 30 Is1.NS
DC 25 Js1,5
IF(1.EQ..1) HH(NH+J)s(l.—DEPTH(I))/5.
IF(I.NE.1) HH(NH+J)s(DEI"1'B(1-1)—DEPTH(I))/5.
CC(NH+J)zC(1)
IF(HH(NH+J).EQ.0) CC(NH+J)zC(I+1)

IF(HH(NH+J).EQ.0)WRITE(3,3)(NH+.),I,DEPTH(I)
5	 FORMAT(IX,"SPECIAL CONDITIONS NH+J s ",13,' 1 ",

I	 **NOTE CONDITIONS ON STEP HH **
25 CONTINUE

NHzNH+5
30 CONTINUE

Z(1)sDEPTH(NS)
300 F0IUlAT(/.1X,"THERE ARE ".13,' STEPS",/)

DO 40 lnl,NH
K=NH+I—I
H(i)=lfll(K)
C(I)--CC()'.)
Z(!+l)=Z(I)+H(I)

400 FONIAVIX,"l ",13,"Zs *,EIO.3,"TO Zs ".E10.3,'
40 CONTINUE

NZ Z MI+ 1
IF(`L(NZ).NE.1.) !'&(NH)zl.—Z(NH)
%ItITE(3,450)(I,Z(1),Z(I+1).H(I),C(I),Iul,NH)

4	 F0JUlAT(/,IX,"FINAL Z S .H S, AND C S ',/)
450 FOIUTAT(1X,"l ",13,"Zs ",E10.3,"TO Zs 0,Ef0.3,"

1" C r ".E10.3)
ZI l% z Z(1 )

B L7 URN
END.

i

)

13,"DEPTH 0,E10.3)

H= 9,E10.3)

Hs ",E10.3,
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350 SUBROUTINE LEQTIF (A,M,N,IA,B,IDGT,WKAREA.IER)
351 C
332 C—LEQTIF -------- B ------- LIBRARY 3-----------------------...,.-------------.
353 C
354 C FUNCTION	 — LINEAR EQUATION SOLUTION — FULL STORAGE
355 C MODE — SPACE ECONOMIZER SOLUTION.
356 C USAGE- CALL LEQTIF (A,M,N,IA.B.IDGT,Wl_VM,IER)
357 C PARAMETERS	 A	 - INPUT MATRIX OF DIMENSION N BY N CONTAINING
358 C THE COEFFICIENT MATRIX OF THZ EQUATION
359 C AX n B.	 1

360 C ON OUTPUT, A IS REPLACED BY THE LU
361 C DECOMPOSITIO14 OF A ROWWISE PERMUTATION OF
362 C A.
363 C M	 — NUMBER OF RIGHT —HAND SIDES.(IFPUT)
364 C N	 — ORDER OF A AND NUMBER OF ROWS 1N 8.(1XPL'T)
365 C IA	 - NUMBER OF ROWS IN THE DIMENSION STATrtirNT
366 C FOR A AND B IN THE CALLING PROGRAM. (INPUT)
367 C B	 — INPUT MATRIX OF DIMENSION N BY M CONTAINING
368 C RIGHT—HAND SIDES OF THE EQUATIOV AX s B.
369 C ON OUTPUT, THE N BY M SOLUTION X REPLACES B.
370 C IDGT	 — INPUT OPTION.
371 C IF IDCP IS GREATER THAN 0, THE ELEMENTS OF
372 C A AND B ARE ASSUMED TO BE CORRECT TO IDGT
373 C DECIMAL DIGITS AND THE ROUTINE PERFORMS
374 C AN ACCURACY TEST,
375 C IF IDCC EQUALS ZERO, THE ACCURACY TEST IS
376 C BYPASSED.
377 C WKARF.A — WORK AREA OF DIMENSION GREATER THAN OR EQUAL
378 C TO N.
379 C IER	 — ERROR PARAMETER
390 C TERMINAL ERROR = 128+11.
381 C N = 1 INDICATES THAT A IS ALGORITHMICALLY
382 C SINGULAR. (SEE THE CHAPTER L PRELUDE).
333 C WARNING ERROR a 32+11.
3:34 C N : 2 INDICATES THAT THE ACCURACY TEST
385 C FAILED.
386 C THE COMPUTED SOLUTION MAY BE IN ERROR
387 C BY MORE THAN CAN BE ACCOUNTED FOR BY
338 C THE UNCERTAINTY OF THE DATA.
389 C THIS WARNING CAN BE PRODUCED ONLY IF
390 C IDCI' IS GREATER THAN 0 ON INPUT.
391 C SEE CHAPTER L PRELUDE FOR FURTHER
392 C DISCUSSION.
393 C PRECISION	 — SINGLE
394 C „=D. IMSL ROTITINES — LUDATF,LUELMF,UERTST
395 C 1ANGUAGE	 — FORTRAN
396 C-----------------------------------------------------------------------
397 C
3:8 CC ----------------------------------------------------------------------
399 CC+
430 CC+ LAWRENCE LIVERMORE LABORATORY
401 CC+ NUllERICAL MATHEMATICS GROUP -- MATHFIIATICAL SOFTWARE LIBRARY
402 CC+
403 CC----------------------------------------------------------------------
434 CC+
405 CC+ CLASS TWO ROUTINE:	 LEQTIF
436 CC+ EDITION:	 5
407 CC+ DATE LAST CHANGED: 	 76-04-01
403 CC+
409 CC+ CLASS TWO ROUTINES ARE MADE AVAILABLE BY NMG AS A SERVICE TO THE
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Appendix E: Glossary of Symbols

^̂
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Glossary of Symbols

s	 radius of the earth

An 	series coefficient for p

B	 magnetic induction

Cn 	 series coefficient for p

Cij	
cross power spectra for series i and j

Cij	
cross power estimate

c	 normalized skin depth - N 8/a

c i	constant coefficients

D	 electric displacement field; magnetic disturbance field

DS	 disturbance local-time inequality

Dst	 storm time variation

E	 activation energy

E	 electric field

Eln' E2n	
series coefficients for e l-e (t)

m
et (t)	 external magnetic field variation of order m, degree k

f	 frequency, cycles/sec

Fi	differential equations

F( )	 fourier transform of

Xi	 magnetic field intensity

Iln , I2n	
series coefficients for i1=10(t)

i. 
m
(t)	 internal field variation of order m degree Q

Jf	free current density
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M.	 countin£; index

N	 counting index; number of skin depths

n, ni	nrunber of degrees of freedom

p	 scalar part of poloidal field S
P ia coefficients

e, Po
legendre polynomials

n	 1

Q response function

Q estimate of response function

q electric charge

r radius vector

r radius

S selectivity

S poloidal vector field

Sq quiet time daily variations

T total time; total thickness

t, to time

tli,	 t
2j

thickness of ith slab ( ,nth	 slab)with conductivity a1 (a2)

U potential

W(wi-wn ) Gaussian window

X, x variable

Y 
	 derivatives for finite difference algorithm

z	 normalized radial distance
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P

Q

E

8

W
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constant

constant

skin depth

change in volume

coherency between series 1 and 2

arbitrary coefficient

permittivity (electric)

longitude

permeability (magnetic); ion mobility

phase

function
t

1/au

conductivit

summation

latitude

frequency, rad/sec

Greek

OE

QV

Y12

n

t

a

y
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