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ABSTRACT

The primary object of this report is to develop a linear model that
describes the perturbation motion of a spinning spacecraft made of a family of
tanks that are partially filled with fluid.

First the fundamental nonlinear equations of motion are derived and then
specialized to a steady~state rotation of the vehicle about a given axis of
rotation. Then, a thrust about the spin axis is introduced, Finally, a pertur-
bation solution is derived which linearizes the problem. The effect of the
centrifugal and coriolis accelerations together with vorticity are implicitly
taken into consideration in the formulation. A variational formulation of the
assoclated boundary conditions is presented., For most practical cases it is
shown that the simple classical pendulum representation for slosh is not very
appealing for a spinning spacecraft unless severe restrictions are allowed.
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INTRODUCTION

Problems concerning the behavior of liquid propellant motions in
partially filled tanks of spin-stabilized spacecraft have gained topical
importance recently, especially in those instances where the propellants con-
stitute a large percentage of the total vehicle mass. As is known, the
interaction between contained propellant and rigid bedy wotions plays a sig-
nificant role in establishing the design of the attitude control system and
assessing the performance of a spacecraft. Indeed, the action of liquid pro~
pellant motions on the tank walls ("sloshing") of a spin-stabilized space~
craft may couple with its natural nutational mod¢ of motion so as to saturate
the control system and pessibly cause flight dinstabilities, or severely
impair its performance such as maintaining pointing acecuracy. To predict and
control the mot.ons of a spin-stabilized spacecraft with partially filled
liquid cavicies, it 1s therefore necessary to single out the participation of
sloshing propeilants in the overall vehicle motions. Methods for character- :
izing the behavior of propellant motions in partially filled spherical tanks, ;
as encountered with the design of the Galileo Dual-Spin Jupiter Orbiter space- ?
craft, were originally developed under somewhat restrictive assumptions.

In 1978 Ref. 1 devised a perturbational construct describing the small
liquid motions in a partly filled spherical tank relative to a known refer-
ence state of motion. The reference motion was defined as one of uniform
rotation of the liquid cavity about a fixed point on a stationary axis under
the action of a coustant acceleration directed negatively along that axis. 1In
arriving at this construct, it was assumed that: 1) the propellant was an
inviscid fluid; 2) the vorticity was independent of the spatial coordinates, 3
i.e., a function of time only; 3) the steady state spin and all rotational ;
perturbations were instantaneously communicated to the liquid; 4) coriolis |
accelerations were significant throughout the liquid volume but negligible
at the free surface; 5) translational motions of the liquid tank systems were
nonexistent.

In 1979 Ref. 2 showed that assumptions 2) and 4) gave rise to spurious
instabilities for certain liquid fill ratios, and that assumption 3) was incon-
sistent with the mechanism of vortex transfer from the tank wall to the
liquid. The dinconsistency of the construct was further substantiagted by

Ref. 3.
' The primary aim of this investigation was to develop a Jlinear construct
that describes the perturbational motions of a spin-stabilized spacecraft, v

comprising N tanks partially filled with liquid propellants, relative to a
given state of motion. A further objective was to establish conditions under
which sloshing motions in spinning tanks could be represented by simple
mechanical pendulums.

The basic subject matter is kept as concise as possible. In Section 1, 5
tertain fundamental results and equations from classical mechanics and hydro- €
dynamics are used to derive the equations of motion of a spin~stabilized %
spacecraft comprising N tanks partly filled with liquid propellants. The par-
ticipation of the motions of the liquids in the overall vehicle motion is
singled out. Diverse forms of the equations are presented. The fundamental
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equations are specialized to the steady-state rotation of the vehicle, as a
single rigid body, about its designed spin axis under the action of a con-
gtant thrust directed along that axis. In Section 2, the nonlinear equations
are specialized to a reference state of motlion in which the spacecraft

(solid + liquids) undergoes a uniform steady state rotation about its
designed spin axis under the influence of a constant thrust directed along
that axis. Then, the vehicle is slightly disturbed from the known reference
state of motion and the resulting perturbational equations of motion obtained.
The perturbational equations are modified to reflect the correct mechanisms
of vorticity transfer from the boundaries of the tanks to the contained
1iquids in accordance with Ref. 2. In Section 3, the perturbational liquid
motions are made to depend on the solutions of N inhomogeneous boundary value
problems. The effects of centrifugal and coriolis accelerations together
with vorticity are implicitly taken into consideration in the formulation.
Variational formulations of the associated boundary value problems are pre-
sented. TFor most practical applications, it is shown that the use of mechan-
ical pendulums to represent sloshing motions in spinning tanks is suspect and
should be avoided, unless severe restrictions can be tolerated. 1In Section 4
the resulting perturbational equations are summarized.
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SECTION 1

EQUATIONS OF MOTION OF A SPIN-STABILLZED SPACECRAFT
COMPRISING N TANKS PARTLY FILLED WITH
T2QuUTl: PROPELLANTS

PHYSICAL ABSTRACTION

Imagine a spin-stabilized spacecraft carrying N tanks partly filled with
liquid propellants, as shown in Figure 1. Tt is assumed that: (1) the
1iquid cavities are arranged in a symmetrical pattern about the designed spin
axis of the vehicle; (2) in the abrence of liquids, the mass center of the
spacecraft lies on Its designed spin axis; (3) the propellants are ideal
liquids; (4) capillary and mass forces acting on the liquid are negligible;
and (5) mass forces acting on the solid are insignificant.

COORDINATE SYSTEMS

To describe the motion of the vehicle, take a right-handed cartesian
frame of reference .4 with origin ¢ and base vectors (I, j, k) fixed rela-
tively to the solid, To complete the specification of #, assume that ¢’ is
located at the mass center of the spacecraft sans liquids, and that k is
coincident +ith ils designed spin awis.

To describe the liquid motions in the nth tank, take a right-handed
cartesian frame of reference & with origin ¢4, and base vectors (ins In»
kn) fixed relatively to the cavity, such that #p || #. The position of n
relative to ¢ is designated by the vector Lp.

Finally, the motion of .4 with respect to inertial space is specified
by the translational velocity vector u and angular velocity vector w.
KINEMATICAL MOTIONS

Let r denote the position vector of a mass point in the solid relative
to #. Then, the velocity and accelsration vectors of the point are simply.

Xr ,
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stands for the acceleration of the spacecraft, Tt should be appreclated
that differentiation with respect to .# (and .#y) is indicated by (...}

Specify by ?ﬁ the position vector of a material point Q  in the nth

eavity relative to 4y, i.e., relative Lo the cavity. Then, the velocity
Vo = VoUnst) and scceleration ap = ap (Qy,t) of the liquid ave given by

Vn L R VC IR 4 Rn + "n ’
(1.3)

B eV + T XV =Tt u xR o7 x(TxE) 4 XV 4V
a = Vn + o X Vh Wk o X Rn +o X (e X Rn) + 2 Vo + Vi

where 3} = Vn (Qn.t) denotes the velocity of the particle relative to #p,
i.e.,

’{}‘n - ’En , (1.4)
and
Rn = Ln + L (1.5)

Note that Qu may be a point in either the liquid volume T, free liquid sur-
face op, or wetted boundary g, of the tank. (See Figure 2 for notations.)

The material derivative of a vector or scalar point function associated
with the motion of liquid in the nth container is defined as

(3 = 20aa) + Gy V) o) w o) o (T ) (1.6)

where, of course

S SR R TS - N1 CED BUOPI S
"n-i_n . +jn ay +kn7 ) 5t ( )t (1-7)

=

In particular,

Vo =y + (v V)YV =v 4V 5 Ve + En v, o (1.8)
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%gpra E} = Eh (Qnst) denotes the vorticity - tor of the liquid relative to
I i Q.
ns . »

T oav x7 . (1.9)

The vorticity vector of the liquid in the nth tank relative to inertial
space Ln * &y (Qn.t) 1s defined by

’ (1.10)

which_follows by taking the curl of (1.31). For reference, note that if
Yn * Vnp = Vn + ¥y = » everywhere, then it can be shown that

anannz:n-;-mxcn— (z;nevn) v’n

T—

- e MY v - e - "
=5, (Sn \n) v, -2 (u vn) v+ 2

(1.11)
= l;nt +V X @ X))
= f;nt + Vn X (P;n X vn) + 2w X t’;n - ?.Vn (» - V.n) + 2u
EQUATIONS OF MOTION
Considering body and liquid as a single mechanical system subject
to given forces, the equations of motion can, in view of the stated
assumptions, be written
N
Ma = F + E F o,
n
n=1
(1.12)

1-3




1
a ""—'Vp »
n p, M
Vn . V; = Vn . 3; =0 , Qn e T, (n=1,2,+++,N) , (1.13)
v Xz =0,

where (F T) are the resultant vectors of external forces and moments
applied to the system, (Fn, Tn) are the resultant vectors of forces and
momencs arising from the action of the liquid on the nth cavity wall,
Pp(Qyst) and i, denote the pressure and density of the liquid in the nth
tank M stands for the mass of the solid, and I is the momental dyadic of
the soiid, i.e.,

1= Jﬂ [l?lz E~-tr]dm, (E =11+ 33 + kk) . (1.14)
solid

Clearly, equation (1.12) govern the translational and rotational motions of
the vehicle. Equations (1.13), together with certain boundary conditions

to be established, govern the motions of the liquids in the N cavities.

For a particular tank, (1.131) is the classical Eulerian equation of motion
of a liquid in the absence of mass forces, and (1.137) is the mass conserva-
tion principle for an incompressible liquid, i.e., continuity equatiun.
Another form of the mass conservation principle used implicitly throughout
this Investigation is given by

(pn drn)'= 0, (n=1,2,+***,N) . (1.15)

Equation (1.133) is the result of taking the curl of (1.131), i.e., the com~
patibility \vorticity) equation.

BOUNDARY CONDITIONS

The liquid velocity relative to each cavity must satisfy certain kine-
matical conditions, namely, the component normal to the wetted surface oy,
of the tank must vanish (condition of non-adherence), and the component
normal to the free boundary op must equal the velocity of the surface
normal to itself. Thus, if the equation of the free boundary is specified
in the general form Fn(Qu,t) = 0, Qn € ap » one can write

1-4
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AV '\_' = (n=1,2,°°°,N) (1.16)

- Fnt/lvnpnl ’ Q% >

where v, 1s the unit vector along the outward drawn normal to the surface
under consideration.

The free boundary condition can also be written in the form

F +v. «-VF =0, Q eo s (n=1,2,***,N) , (1.17)

which follows by setting the material derivative of F, to zero. Clearly,

v, = vnFn/[vnFnl, Q, € an , (n=1,2,+++,N) . (1.18)
In particular, if
Fn =z - fn (xn, Yy t) =0, Qn e UFn , (n=1,2,.:+,N) . (1.19)

then the kinematic conditions at UF become
n

<1
<
I

fnt cos (Gn, En) , Q ec . , (n=1,2,+++, N) . (1.20)

Forms (1.19) and conditions (1.20) are used extensively later.

Kinematical conditions (1.16), in conjunction with (1.132) and the
divergence theorem yield the injunctions

'[(Fn /iVnFnI) dJF =0, (n=1,2,+++,N) , (1.21)
GF t n
n

i.e,, global continuity.




v =
1
e sy 4"9—;-4;
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The pressure inside each cavity must satisfy a condition of thermo-

dynamic equilibrium at the free boundary, which, in the absence of capillary
forces, can be taken

pn =0, Qn £ UF ’ (n=1,2,++*,N) . (1.22)

FORCES AND MOMENTS RESULTING FROM ACTION OF LIQUIRS

The forces and moments (T"—n,-i"n) resulting from the action of the liquids
on the walls of the cavities are given by

p
Fn b f Vn Pn d(’w; - f \’n pn ddw + f vn Py dUF
n n
9] 3) o
w W F
n n n
= f\)n Pn dU'n = fvnpn dTn » (n=1,2,*++,N) ,
) T
n n
Tn= f(RnX\))pndc = f(R X V) pd (1.23)
n n
o o
W w
9 :
+ f (R_Xv)p doF
n
Op
n
) f (Rn X \’n) Pn dUn - f (Rn X Vnpn) dTn ’ (n=1,2,°*+,N) ,
o, T
\

1-6
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in view of (1.22) and the divergence theorem, where
g - 0‘ +° » <n-1’2’.'.’n) . (1-24)

INSTANTANEOUS MASS CENTER OF SPACECRAFT

Let the instantaneous position of the spacecraft mass center (solid +
liquids) relative trv # be specified by the vector r ; then

N
- 1 — ‘
r, ﬂ'ﬁ*—ﬁ.{ E f Rn n d'rn . (1.25)
n=l =
n
in light of
f rdm=20, (1.26)
solid

where the total mass of liquids

N
M1 z: pn d'rn . (

OTHER USEFUL FORMS OF THE EQUATIONS

Equations (1.32), (1.1331), (1.23) and (1.25) make it possible to write
(1.12) as

N
( - 2 - - - - = v T
(m—Ml)[a twXr +o X (w ch)] + E f(vn + 20 X vn)ond'rrl =T ,
n=1 T
n
< (1.28)
N
Kew + B x(ReD) + QM) (F_x3) + z : f (R Xy +2 x V) Jonden = T,
\ n=1 T

1-7
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where the dyadic

N
K =1 +Z f [anl E-RR]p dr . (1.29)
n=l T

n

Solving for a from (1.28]) and substituting the resulting expression into
(1 . 282) s

N
o 40 X(B u) + E f[(l{n-rc) X (vn + 2w ><vn)]pnd'1'n =T - r, X ¥,
n=l T
" (1.30)
where
-2 ==
8 =K - (M+M) {Ircl E-T,r] (1.31)

Equation (1.30) clearly represents the rotational equation of motion of the
vehicle about its instantaneous mass center. Note that I is the momental
dyadic of the solid whose components have constant values with respect to 4.,
K - 1 is the momental dyadic of the liquids whose components are functions
of the instantancous forms of the 1liquids inside the tanks. 8 -K is the
inertia tensor whose components are functions of the instanteneous position
of the vehicle mass center relative to .4,

Diverse forms of (1.137) are also possible. In particular,

= L XD +FT XV +uxT = 21 2. 00s
v“t + 2m X'Vn + = X v, 4+ w X T, + Vn¢n 0, (n=1,2, sN) (1.32)

where the acceleration potential

= Pn + L Ga+nxT)y - R L om w2 vos
(bn - ‘6"; 2 vn (‘1 + @ X I‘ll) R\'l - -:,i (1‘ X Rn) y (1‘131,2, . ’N) 3
(1.33)
1-8
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can be derived from (1.3), (1.6) and (1.132). Taking the curl of (1.32)
gives the compatibility equation

E“c + 2 x'a"n + x(’?:‘n XV) =20 (@eV)+2=0, (m=1,2,0.0,N) .

(1.34)

STEADY STATE ROTATION OF VEHICLE UNDER ACTION OF CONSTANT THRUST

If the applied forces and constraints are such that the spacecraft
(solid + liquids) performs a uniform steady state rotation w as a single body
about its designed spin axis k under the action of a constant thrust ¥
directed along k, the system is in equilibrium relative to the moving frame
of reference # attached to the body, and (1.28), (1.30) can be written

Ot + M) [a + & x(&'\xfc)] =F ,

(1.35)
& x(e-&)=¥~§cx'r7ao
But (1.359) implies
B = ¢
(1.36)

T - rc XTF =0

where ¢ = c k. Equation (1.36;) states that the angular momentum about the
center of mass is conserved. If

r =r Kk, (1.37)

then (1.362) is satisfied identically providing

Tzo0. (1.38)
With o = wk, ;c =, k and ¥ = F k, equation (1.351) yields
d=—b—Kk=0ak (1.39)
M+ M

1-9
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The area parameter ¢ in (1.367) is given by

c ™ Ikk o (1.40)
where

Ikk =R 8k (L.41)

1s the moment of inertia of the spacecraft about the axis k.

Now x‘?n = 0 in each tank, and (1,32), (1.33), it follows

n, = = 1 ,~ . 2 _ e
3‘; + 0 Rn -3 (n x Rn) t,bu = Cn ’ Qn £ Tn ’ (n=1,2, N)
(1.42)

where c, are constants. If the equations of the free boundaries are speci-
fied as F, = 2, - fn 0, then (1.42) can be written

pn = ‘mu (fl‘l - Zl‘l> ’ Ql’l [ Tn ’ (n=1,2,°+,N) , (1.43)

in light of conditions (1.22), where

_'n!'q wl- 2 2 2 = e e

n 3n ’
and (Ly,, Laps L3p) are the components of Lp with respect to #. The
equations :
Fn =z - fn =0, Q ¢ Tp (n=1,2,+++,N) , (1.45)

where f are given by (1.44), are N paraboloids of revolution whose axes
coincide with the vehicle spin axis. The constants c_ can be determined from
the known liquid volumes. n

1-10
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SECTION 2

SMALL PERTURBATION EQUATIONS OF MOTION OF A SPIN~STABILIZED
SPACECRAFT COMPRISING N TANKS PARTLY FILLED WITH LIQUID PROPELLANTS

GENERAL CONSIDERATIONS

The equations that govern the motion of a spacecraft carrying N tanks
partly filled with liquid propellants are nonlinecar, and do not admit general,
exact solutions. Nevertheless, it is sometimes possible to obtain or approxi-
mate particular solutions, such as steady state rotation of the vehicle about its
designed spin axis under the action of a constant thrust derived above. Then, if
the system is supposed to be slightly disturbed from this known state of motion,
the resulting small motion of deviation can usually be described by a set of
linear ordinary and partial differential equations with appropriate initial and
boundary conditions.

Such equations are usually constructed in the following manner. Suppose
the complete nonlinear equations of motion of the vehicle and liquids to be
written for two states of motion: reference and disturbed. The refarence
or 'undisturbed' state describes the path of the mass center. attitude of
the vehicle, and the shapes of the free liquid surfaces in the cavities. The
disturbed state describes the actual motions of the vehicle and liquids, and
consists of the reference motions plus small deviant motions therefrom. The
difference between the governing equations of the perturbed and reference
states, upon neglecting all terms involving products of deviant quantities
and/or their derivatives, yield~ the perturbation equations (Ref. 4).

REFERENCE STATE OF MOTION

The reference state of motion embodying the particular desired attitude
of the gpacecraft is, in general, one of nonuniformity. For many practical
situations, the reference state of motion may be taken as one in which the
spacecraft (solid + liquids) undergoes a uniform steady state rotation as a
single rigid body about its designed spin axis under the influence of a con-
stant thrust directed along that axis. With this approximation to the
actual reference state of motion, and assuming further no velocities of
liquids relative to the cavities, it follows that

fo=wk , T=0, % (b)) =ux (Ked) ,
=0k , F=Tk , omx (I'®) =-x [(K-I) » a] ,
N
5"0 ,;c=t’ci€ » E an"bzla » (2.1)
< n=1
~
2-1
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N
- - - 2 N
2 T o=-vx[(KI) » ] , n=Kn=-~ (M-&Ml)[frgl E =, c] ’
n=]
N
: : o 2 [ i - .
{ n=] !n
‘Vn =0, F‘n =0, by ™ LI Py ® m‘n.(t?xl“le)’ Qn bl
l"\’f’n-6+3x“f£n LA mEkTx () (mdaZyee ol
' (2.2)
( Z - f - 0,
n n
: i‘ 1 2 2 271
I (cn tgw [(I‘ln+xn) + (I’2n+yu) ]’ tLgy o Qn voup
< n
- e . (L s ) - (Lo ty,) _ (n=1,2,...,8);
n gn n 8n n gn n
v 1/2
; 2 2 27|
\gn gn (xn, yn) lex o+ 1 [(I'1n+xn) + (I,2n+yn) ] ’ , (2.3)
2~2




N
M = F + Z'ﬁn (2.4)
n=),
, N
I A“*‘A‘K(I';\:‘) ‘T"‘ E .;fn
nm]
- 1

o , Qﬂx 3
_ n
. !1 -
fn cos (un,kn), (fn ‘-0), Qn L g s (zn-fn)
t t n
Q

=0 nt 9 (zn = fn) i
n (n=1,2,...,N)
= /; v,p, do = ! v Py dawn + / v, P, dog
Y w F
n n
- [ VaPy 4%, = / VoPy 41y o
n n
= (R xv ) p_ do =/ (Rxv_)p do
,[ n"'n” Fa v g n"'nt n T
W w
n
+ / (Rnxvn) Py daF = / (Rnxvn) Py dgn
(o n o

/ :
=] ([®Rxvp)dr / £ R -
n" n'n n n, cos ( \)n,kn) dOF =0,
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The constants ¢, appearing in (2,32) can be determined from the known liquid
volume in each cavity,

The foregoing completely define the reference state of motion of space-
craft and liquids.

PERTURBATION EQUATIONS

In the reference state of motion defined above, the spacecraft with
partly filled ldquid cavities can be associated with a certain solid vehlele,
called transformed consisting of the given vehicle and frozen liquids with
free boundaries (2.3). Let us find the small deviant motions of the trans-
formed spacecraft in passing from a position corresponding to steady state
rotation under constant thrust to a neighboring perturbed position. One can
conceive of this transition as proceeding in two stages: 1) displacement of
the whole spacecraft, as a single rigid body, to a perturbed position;

2) deformation of the forms zy = £, (n-l 2y.40,N) of the liquids (by cover-
ing the free boundaries with layers i of zero volumes) into forms
zn = fp + £ (n=1,2,...,N), where

fé - dﬁn y (n=1,2,,.,,N) (2.5)

are small deviations relatgve to the fy, and 1 denote differences in the
forms of the instantaneous and reference volumes.

Regarding the nth cavity, let ., stand for the region of the x,yu-
plane bounded by the projection of a closed eurve representing the locus of
the intersection points of the reference free surface with cavity wall(s)
awns  Then, in the first approximation Ref. 4,

f +f'
[+:' (*e) dln '&»-/‘ (+++) d; //dx d / --z} dzn’ (2.6>

n n in o/?

where {*++) can be a scalar, vector or dyvadic point function., 1In particular,
we observe

-//p fldx dy_ =0 , (2.7
nn o n o °n




owing to the incompressibiiity of the liquid.
of Fn’ namely,

I T 5 2 p!t :
P+ F) / (xnpn-i- aPa) 4t

!
tn+rn
’ 5] . } !
G / 0Py drn+ [&npn d:n+ /[dx“dyn
n n Ry
-t
f [an‘n
1 1
+ dxndyn VaPy dzn R
Ay £,

in view of
s'i?'xd“i'f‘
n n

t
lpnudpn

are small deviations.

Subtracting out the reference value of Fh, 1.0.,

Consgider the disturbed form

(2.8)

1
fn+ fn

%npn dzn

(2.6), where Fg, Pp? 1ty Ore reference motion values, and

(2.9)

R =

4

e b AL AR i b 54




from (2.8), it follows

X (Y
1‘n [Vnpn dtn

fn-Hfr'l
o+ dxndyn S Vnpn dzn (2.10)
R f

which, to the first order of small quantities, becomes

FT! = '
Fn fvnpn dtn

fn+fr; ,
+ dxndyn Vnpn dzn . (2.11)
£

Tl'l %n n
[ ]
But, from (2.22) and (2.53),
VR, = 70, [0 + 5 %X (@ xﬁn)] . (2.12)

Substituting (2.12) into (2.11) and performing the indicated integrationm,
one obtains, to the same degree of approximation,

il
<1
=
o
o
o
~
=]

in view of (2.7).

- o R f! )
0 X [w X // Rnfn N dxndyn] (2.13)

Ry

- o o~ - 1
w X [w x //rnfn Py dxn dyn] ,

R

n

2-6




Using similar arguments, it can easily be shown that

! ™~ R ' T P R ~ e M ]
1‘n / (Rn X Vnpu)d " [/ (Rn X w) "y fn dxndyn (2.14)

1 iﬁ’n

n
- [‘E X[WX(ﬁxT{')]’ £' p dx d
| n * * n’' | "n Pp 9%q 9y o
#y

N
"‘!.......l_ R £
r Ty E Rnfn P dxndyn (2.15)

n=] ARy,
N
S E r £' p dx_dy
M+M1 nn n m-°n °’
n=l %)n

N
S22 FT® e
K' = z : [[HRn; E-~RR]E o dxdy . (2.16)

n=1 ,y?n

In arriving at these results terms involving products of deviant quantities
and/or their derivatives as well as local positional changes of liquid
particles were neglected.

Working to the same degree of approximation,

|

=u'"+ ' XR +v' ,
n n

V' =0+ ' X R+ aX v+,
n, n n
t
al =V 4+ a'X V4o xV' o, (2.17)
n n n n

=ua'+ ' XR +w0'X (@ X R)+aX (@ XR)
N n n
+ 22X V' +V o,
n n

t
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where
' =0k a'x udtwxua . (2.18)

The perturbational equations that govern the small liquid motions in
the N cavities are obtained in a similar fashion. They are

£ 3 e = 1 D =
£ cos(\»n , kn> dog //fn dxndyn o ,
t n t

( 0 by QL (2.20)
n
G . \-;' =—‘) (n=l,2,"')N)’
n n, ’
£! (\) d E ) Q t “| ] (Z =f ) [y
\ e D n n Fn n
2-8

(-, . )
1 o oot ' .1
4 P Vnpn ! (2.19)
n
. ”.' = . —' 5
Vi Vn vn Vo ¥ o Qn o
-y
n x 4 0 >
n
{ Gﬂ * ;1‘1 = }(n""'l)z:"')N)'

e




e

and

The disturbed form of éhe translational equation of motion of the
spacecraft is given by

N
M(G+a') =F+TF + Z F + T (2.22)

where, as before, u, F, Fn are reference motion values given by (2.1) and
(2.48), and

a' = da
F' = dF (2.23)
F' = dF
n n

are small deviacions therefrom. In the reference state of motion

N
M = F + Z F oo (2.24)

in view of (2.41). Subtracting (2.24) from (2.22), one obtains

N

Ma' = F' + (2.25)

; ™
n ’
n=1

il it cm . .t i, e s

L ) "
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i
vt
e 1

¥

for the perturbational equation of translational motion of the vehicle.
Now, from (2.13),

N N /!
T ' - o
E Fl o= E /Vnpn di - X [iw X /Rn P xudyn]
1

n=] n=] nzl R
n
(2.26)
N
= Z / v“p;1 dr = (MM, ) R Eé) ; ,
n=|

n

in view of (2.15). 1In addition, from (2.1.91) and (2.173),

[, - fo= ot kY 1 - R
\'npn == | al o' X Rn + ot x (G an)

n

+aX @ XR)+2oxv +v' |,
n n ts

sa that

E f v.po dr o= - M o' - (M+Ml) w' X i’c

n=l ‘r

1

¥

(M+M, ) @' X (X ;c) - (M HD) mx (mr X ;c)

™M=

] 1] P
[ (vnt + 2w X Vn) Py drn

T
n

3
i
f—

= o R = - - = et jot
Ml o (Ml+M) w' X r, (Ml+M) w X (w'X rc)

M-

-y} - '}
/ (V“t + 20 X vn) Py d"cn ,
T

n

o
i
—
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where

N
- 1 — - - -
R v z /Rnpnd'tn:rck,mﬂmk (2.28)
n

n=l T

Owing to (2.26) end (2.27), equation (2.25) becomes

fq = =, = .- 1 ot = = pof}
(M+Ml) (o' + ' X r, +tuwX (w' x rc)'+ w X (X rc)]

N , (2.29)
n 2:/ &'+ 2 X V) p dr =T .
n, n” 'n " n
n=] Y
n
Equation (2.29) can also be obtained by perturbing (1.281) directly.
The disturbed form of the rotational equation of motion of the
spacecraft can be written
N (2.30)
I+ w+e)+@+a)x [T+ @+a)] =T+T" + E (T +T')
n=1
which, upon discarding nonlinearities involving w' and subtracting out
reference equation (2.42), yields
N
I o' +a'x (Teoa)+m X(Len')="T"+ "‘I'l, (2.31)
n=1
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for the perturbational motion. But, from (2.14)

N N
X vy '
Z I E [ ®, X Vnpn) ay

n=1 n=1 ln

[f(R ) g £1 dx dy

nrl R
(2.32)
| X Logr s
Z ffR x [w (wa )] f n dxndyn
n=l R
N
= $t) ' - % >

E / (Rn X Vnpn) dxn (M+Ml) (ré X a)
n=] t

n

- X (K'Y e D)

in view of (2.15), (2.16) and the ldentity

E . TXR = K!

n=]
Moreover,
N (2.34)
T ? ] v - —: ;-' — - 7l .;'
E / (Rn X \:npn) dtn (M+Ml) (lc X ') - (K-I)
n=1 1

n

- U X [(K-I) ¢ 0] - a x [(R-T) + &)
E / x(v' + 2% v | » di,
n ‘ n n

2-12
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in light of the identity

N
‘ - -‘-’ . q: .——-
E ./.l Rox [3'% ( x.Rn)]} w41,
nml 1
1
N (2.35)
2 IR X (rx T
+ X f l Rnx [u x (ir X Rn)] ’ y‘n dtn
n=] t
n
= TUX [(K-I) » o] a2 [(R-T) ¢ ']
Because of (2.32) and (2.34), equation (2.31) assumes the form
Koot e ot X (K e o) + X (Ko a') 0 XK« )
ot . = o
+ (M+M]) (ch a) + (M-i-Ml) (r(‘x a')
(2.,36)
N
R ol a7 o = T
+ E [Rn X (vnt + 20 % vn)] Py dtn T .
n=l 1

n
Equation (2.36) can also be deduced by perturbing (1.28,) directly.

The foregoing results are predicated on the assumption that vhe
steady state spin and all rotational and translationsl perturbations are
instantaneously communicated to the liquids inside the cavities. As noted
in Ref. 2, this assumption is at variance with the mechanisms of vorticity
transfer from the boundaries of the tanks to the contained liquids. This
can best be understood by the following.

Suppose that the cavities are motionless for t < t, and that the
rotation of the vehicle about its spin axis attains its steady state value
by accelerating smoothly so as not to cause any ripples on the free
boundaries. Then, under these circumstances, vorticity is, for the most
part, transmitted by coriolis and centrifugal effects in thin Ekman layers
(Ref. 5). On the other hand, these layers do not develop for periodic
motions at spacecraft control frequencies. Consequently, even though
steady state spin equilibria may be attained throughout the viscous liquids
after some transient time, small periodic rotations about local axes of the
tanks can never be transmitted to the cores of the liquids and should,
therefore, be neglected.

2-13
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The above arguments require that the terms ' X ¥y, &'X Ty In (2.17)
be discarded. With this injunc¢tion, the perturbational equations that govern
the motions of spacecraft and liquids become

P N (2.37)
M:;' 'F' + E ’ﬁt'l »
n=1
N
I ea' 4 X(I +a)+mX (I + ') =T 4 E "'f;‘ ,
n=l
51'1 - - Vnp' ? )
! Pn n
. —' = L] "i'
n Vn Vn Vp =0 ann’
]
n T 0
0 , Qn v, s
n
Vo v =
n n
(] 9 e b s
L fnt (\ln kn) ’ Qn O (Zn‘fn) !
- F! = e oy =
Pp = Py j"n 0 Qn v 0Fﬂ ' (zn fn) !
[ O 4 = ' =
f fn cos (\n , kn) daF // fn dxndyn o ,
o t n R t
* Fn Tt
>(7=1!2""',N)!
T = I T y R 1
Fl / Vnpn dtn o X [w X /f R fn o dxndyn]
'n Ry
= 9 ' - o R ! 4 )
[ v Py dqwn wx [w X /:[ Rn En pn dxndyn] p
T Ry
=~ n ' =
2-14
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Y

Ty,

\

where

- 3y ¥ !
(Rn X ann) di,

I
n

- //{’ﬁn X[a+ X (T;xii'n)] } £1n dx dy

Ay
- &%) o [
' / (Rnx \‘)n) Pn dnwn
i
w
n
- I'] 54T r
//l Rnx {tl + o X% (e X R“)J
Ao

V' o= u' + o' x 'i?n+"\}' ,

n n
T' = u' +0'X L +0xv' +v
n n n n
t
Al =V S+ o'X Vo +ax V!
n n N n

=54 x Lo+ atx GxT)

Tx X T 4 2ix B
+ o X (s In) 20 % Vn Vnt

' =g+ ' utwexut o,
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Py
f“ Py dxn’dyn

(2.38)
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In addition, observe

o )
0 ’ Qn F nw , (2.39)
n
A
n nt
£! (\)’E)’Q*U‘ ’(Z"f)p
\ bt n n n I"n n
( Q
Q » £ o »
n Wn
vy =
T \
£! (G 'E) s Q £ O :(Z'f)r
\ . n n n I‘n n n
Vn.vl 'v.;x; = () ’ Qny Tn s
: ¢ et > (n=1,2, %+ ,N)
— .
/"/‘I{u fn Hn dxndyn
Ay
= r - !
leln fn o dxndy
R
e Y ' . T
——/ Rn f "y (v kn) an
o n
T
n
== ' 9 [ ™
rof, fn (vn kn) ann s
A
\ I.n J
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and

N
- 1 Z A
fo UMW %o o v Py
Ry

N
- i ot "N
M ,[/ "n fn iy 9% dyn (2.40)
n=} R N
N
TR Z ,[ Ry G e k) dop
1 n=1 Op "

2=17
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SECTION 3

PERTURBATIONAL LIQUID MOTIONS REDUCED TO SOLUTIONS OF N

INHOMOGENEOUS BOUNDARY VALUE PROBLEMS

PERTURBATTIONAL EQUATIONS DESCRIBING LIQUID MOTTONS

In light of (2.37) and (2.38), the perturbational equations that govern
the motions of liquids inside the N cavities can be written

r

! s o [} 0
vnt+2m Xvn +Vn4tn' )

!
s v =
V'n n 0,

ra o o meu!) =

n + 20 X i;‘,n 2Vn(m vn) 0o , Q. er
| T . R
¢n pn/pn + Bn Rn ’

By = &' 4 o' X i’n+r3' X (Sx'i,‘n) + o X (Q'xfn) ,

@ = pk = wﬁn » (w~ constant)

0 ? Qn > (jw »

vV oey! = n

n n

£! (vn-kn) s Qn € 0p (zn = fn) ,
t n
p& - aonfé =0 , Qe % (zn = fn) ’
n
' 9 ok = ' =

f £ . (vn kn) dan [/ fnt d}cndyn o ,
(o

Fn Ry

3~1

(3.1)

\» (n=1,2,...,N)




In addition,
(d

0o , Q en
" ! n n
"”n ' v'ﬂt "
£! (G 'E) » Q o ,(Z-f),
ntt n n n Fn n
0o , Q v a
’ n vy
v, ' i -
Lttt ' . ( £
£ (v " k), Q e, o (2 =1L ),
ntttt n n n Fn n
. ! . ! o
Vn vnt = Vn vnttt = (0 Qn £
| — [
£ (\)n k) do, = En dx clyn = 0,
o i1 n Q \ |
Fn it
< ! r [ - - kY ! d
Fn = J Vnpn dr“ -4 % [m X Rn fn by 4% dyn]
t /
n n
= J v, P down - X [w X Rn fn Py (vn kn) an],
o, ' Tp
n
- ' — — -
. , o
T = (Rn X Vnpn) dtn {Rn % [o 4+ w X (0% Rn)]}
n
T Rn
n
1 ‘ - ' — —
£ e, dx dy = | (R x vn) p dﬁf: - {R x [a
i
% Op
n o
- e - ]
towox (wxRIIPE P (v * k) daFn.
v —
Pp (vn : kn) chn = P dxx dyn =0,
g y
L r\'l .%u
3-2

(3.2)

L(n-l,z,...,w)




DERIVATION OF BOUNDARY VALUE PROBLEMS
The determination of perturbational iiquid motions inside the N cavities

can be made to depend on the solutions of N boundary value problems with
acceleration potentials ¢ as dependent variables. This can be shown in the

following manner,

Consider the nth cavity. Take the divergence of (3.11).

e O m v! LI
Vn <vnt + 2 X vy + vn¢n) o ,

obtaining
v2g) = 25 + E (3.3)
n n ’ *
in view of
- 2!
v V! o= . 'z . B Y") =~ 2 ¢ E!
Vn Vnt 0o , Vn Vn¢n Vn ¢n , Vn (2w n) 2 En .
Differentiate (3.3) partially with respect to time,
2, m I
Y ¢n = 2w ° En . (3.4).
t t
Tak: the -=calar product of w and equation (3 °
o s ' o X E' = aev! =
2w [En + 2w X &n ZVn(w Vn)] 0 ,
t t
obtaining
20+ B! =he oV (uevl) (3.5)

t
in light of

25-(2;3x€r'1)=o.
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Substitute (3.5) into (3.4) and differentiate the resulting expression
partially with respect to time,

2

Ve xaa-v(«'&-;'). (3.6)
n ntt n nc

Take the scalar product of @ and equation (3.13)

S e lor h " ' =
X [vnt + 2w X vn + Vn¢n] 0o ,

obtaining

fA";' -'-"—:’T\'V\f)'
n

» (3-7)
t nn
owing to
woe (253)(5&) =0 .

Substitute (3.7) into (3.6),

240 2 4 = -
\ n\hn + 4“ (,bn O y Qn T n . (3 . 8)
tt 2 Z

nn
In view of

- - 9
oo T v ') = wlh!
W Wy (w ¥n¢n) Wy

z 2z

nn

Expression (3.8) is the desired partial differential equation for ¢;.

To establish boundary conditions for ¢;, first differentiate (3.11)
partially with respect to time,

V! 4+ 2axv. +Vad' =0 (3.9)
ntt nt l‘lﬂt




o e e

R

Now, from (3.11)

' moe U A - 9 !
V“c Vol -2 X (3.10)

Substitute (3.10) inzo 3.9),

9! 2= - 2 T oy ' b ') =
v“tc + 4w va b kn (kn v&) + vn¢nt + Vv, x (2m¢n) o , (3.11)
in view of

] = 1 PN - ]
Vn X (2m¢n) 2w X Vn¢n

Differentiate (3.11) partially with respect to time,

'+ hedS - 4R (12 3
n n n n

Lttt t n nn

)+ vl o+ x(zzﬁnpl; )= 0. (3.12)
t tt t

Take the scalar product of En and equation (3.1,),

-
vy K o0 (3.13)
t Zn

because
o . - el ]
kn (w x'vn) o ,

r . N —
kn vn¢n ¢nz
n

Substitute (3.13) into (3.12) and rearrange.

- 2. = . -
Vo' + V. x[2' ) + 407" k=~ [v' Hu'v! (3.14)
nfy, 0 ( “t) nzn n et e
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Project (3.14) along the outward directed normals to 0, and Op s
n n

Z
n

3 e ' P | 2 1 w
v“ [ Vn¢ntt + Vu X (2m ¢“(;) + 4u \bn kn] o, Qn t an (3.15)

——

- 2
=-(v_ -+ k) (£ + 4o“f! , Q oeag, (z2o=f),
nn A M Bet L

in view of (3.21) and (3.23). To complete the specification of the boundary
conditions, solve (3.14) for p‘fl

" [ S
Py = Py (b = B, Rn)

and substitute into condition (3.18), obtaining

[ Y = B + R . .
dan afu Bn Rn R Qn £ GFn . (3.16)

The free surface displacement can be eliminated from the problem as follows.
Solve (3.16) for fr'l and substitute the resulting expressicn into (3.15),

tt Z n
n

O ' i~ 2 ic = .
vn.[vn¢n + VX (2m¢nt) + hop! kn] =0, Q vu (3.17)

1 2 1 = - 2~
= o ! + 4w )+—R - (B +iw B ), Q ev, , (z =£),
By ( et e/ Ba O Dot M) O F, oo

where
1 1 = -
LI N S 1 . .
fn o ¢ o Bn Rn’ Q“ Y n ’ R
\—)n ) 1-En
gn = —T— (Equatlon (2.33)) [} Qn € UFn . (3‘19)

I
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S 1

Take the divergence of (3.14) and make use of (3.23),

. ' oA 2, iz =
v [ vl VX (Zm 8! )+ ho"gt
tt t Z4

(3.20)

V2¢' + 4m2¢' =0 , Q eT_ ,
n'n n
tt Z2 2
n'n

in agreement with (3.8).

The inhomogeneous boundary value problem defined by (3.8) and (3.17)
governs the perturbational liquid motions ingide the nth tank. The effects
of centrifugal and coriolis accelerations together with vorticity are
implicitly taken into consideration in tle formulation.

Observe that the excitation vector B is a function of the perturba-
tional translational and rotational accelerations and rotational velocities
of the spacecraft. They, in turn, are related to the motions of the liquids
in the remaining N-1 tanks via the perturbational equations of translational

and rotational motion of the spacecraft.

The force and moment resulting from the action of the perturbational
liquid motions on the tank wall can be written

_ _ @ x (@xR) _
P = ' - 4 -
n vn¢n pn don gn 4)n fn dUFn Bn pndTn

T

% o n
n
- - = (3.21)
wx (WX Rn) _ .
, n n
r
n
_ o {%, x [@riao® )}
v ' _ '
n (R, % Vp) ¢y Py 4oy g, %n P dGFn
o og
n (3.22)

R X [w+mX(wan)]}
g

(B 'R ) p_ dog
n n

1
*—-__\
Cl
ot
X
wl
=1
L
©
3
[a %
—~
=}
+
-

T T




in light of (3.14) (3.25) (3.24), (3.27), (3.18), (3.19) and the divergence
theorem.

VARTATIONAL FORMULATION OF ASSOCIATED HOMOCENEOUS PROBLEM

Consider the associlated homogeneous boundary value problem pertinent to
the nth tank,

r~ —

- 9 -
o ' ¥ b ! ' - v
WY a Vn:bn + vn X (Zsmbn ) + 4w ¢n kn o , Qn €T,
tt t 4
n -~
- i 2 =
. ' ' ' = - .
R AT M A (2m¢n )+ bo'e!  k f=0 ,Q eo (3.23)
tt t Z n
. no
ok ' w2 , ‘)
o \b + 4) li) ) » Q £ 0“ » Z = .
o ( ntttt n. n Fn n n

It is fairly straightforward to show that the first variation of the
functional (SIn = ()

:-:l- - - 9 ' ! '
=3 /; [[(Vnd’r'l) Ay 2‘“(% on "9 ¥ )J dr
, . t z t X tx 'y

L 1 n n ‘n n
0 n
l (3.24)
1 ' 2 2 2 - =
- - 4 (¢' ) (v k) do., l dt
W f [(ntt) ., n n In
g
n
subject to
t t
e = Sb! -
M“,c S9! |c 0,
0 0

gives the boundary value problem (3.23).
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The funetional {3.24) together with the methods of Rayleigh and Ritz
make 1t possible to obtailn approximate solutions of (3.23) in terms of
eigenfunctions and eigenvalues of simpler, but related, boundary value

problems,

For instance, the eigenfunctions wn

the boundary value problem

v \i'“ =0, Qn €l
i
0
Yo © Vn wni =
Kn
i
8,

* 1 . i (] T
_/“'nl"ni &nqnj d[n

i i
Qn vy
n
Qn by R (zn = f )
n
—L \f’a 2 .
g gn ni n
¥
n
0

and eligenvalues Kn satigfying

(3.25)

J#i

(3.26)

(3.27)




ST —

oit...; F

¥

are avallable for a spherical container,Ref. 1. Assume that @é can be expanded
in a series

- : i
4’“ ;‘3“1 q“l(t) ’

where qp,(t) are to be determined. Substituting (3.28) into (3.24) and
performing the first variation of the resulting expression (61“ = ()

subject to

(3.28)

t
=9 1 n
0 i

= () R
o

S q
Bl e

one obtains the system of ordinary differential equations

o0 Ay
et (k44 9y L. 2 Z ni ny
qni' ( n, v ) Qni'+ Il v |‘2 y "S&n "ﬁin‘ -
ny J “n
thi’ l D]::‘li
Voo o | Wt (3.29)
n n i
R1 S&
ha? Z fn, Mo,
T Wz Dz dTn In =0, d=l,2,e00000,
‘lwn I' : t n n 3
L n

for the determination of the 9, Other examples can be adduced.

i
If the excitation vectors B, are regarded as preassigned functions of

time, the inhomogeneous boundary value problem defined by (3.8) and (3.17)
can be deduced from the first variation of the functional
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CHARACTERIZATTON OF THE BOUNDARY VALUE PROBLEMS

For a single frequency excitation
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5 oo Glut
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(3.31)
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the inhomogeneous boundary value problem spelled out by (3.8) and (3.17)

becomes
aijn 321pn by azwn
» + + 11 = 0 , Q E T (3.32)
2 2 2 2 n n
9% 3y Y} 9z |
n n n
Y oy 2\ 9y
= = n - _ b o 2w _
, . Yn [ax I T By, ip ¥ Q2 57 Kn D 'n % (k¥ )] =0,
Qn €0, (3.33)
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If 2a/:2 <1, the partial differential equation (3,32) can be brought to an

elliptic form by the transformation

Xy = X Yo =V 2= \/1-4w2/u2 En R

n

namely,

2, 2 2
3 Y ? lpn ? ¢n
5 + 2 + =0 , Q & T*
Ix dy 9z ° n n
n n

A EEY 2 0
- n - oo 4y n - 24, -
Vi, 5§—'in + Ty iy + /1 = ---_-_---»kn i e Jn X (kn wn)
n n & 02
n
=0 , Qn § 03 ,
n
2 2 2 2

Ry ) b2 ; = Y *
= \1- iﬁ?) Yo~ i_’m(l - &%?) (Cn ) Rn) v Q& 9 ’

&y . By " n

X K *
where t,, oy,» Op, arc the stretched values of Tqn, 0oy

(3.34)

(3.35)

» Op,+ On the other

hand, Lf 2w/u >l,nthe partial differential equation (g.32)'can be brought

to an hyperbolic form by the transformation

2
X = X = 2 = [fA 13
n n’ Yn T I’ % a2 n
namely,

32(,"! f\zi,')n 3211;

=+ - =0, Q ¢k ,

2 2 2 1 n
X Oy 2z

n n n
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with boundary conditions

W oy 2 5
- n = n - 4. n - 2 -
1 r"{ .Ln+7;- n " 3 1":;;&; kn-i'—"ln)((kn‘i’n) =0 ,
“n n
x
Qn € 0wn ) (3.37)
2 2 2 2
[$] ,‘c‘\ b 4«13 - —
PURTE — ] ¢; »*-r;-— ety ] (c :R), Q FO'-"*
n 322 n 'n ig2 n n n 1n

For low spin rates the liquild motions are governed by an elliptic
partial differential equation with mixed boundary conditions, As the spin
rate is decreased indefinitely the governing equations degenerate to the
classical lateral slosh equations. This strongly suggests that the custom
of representing sloshing motions in spinning tanks by simple mechanical
pendulums is valid only for 0 < 2u/y <1.

Tor ratios of 2/ in excess of unity, the sloshing motions are governed
by an hyperbolic partial differential equation with mixed boundary condi-
tions. The nature of the hyperbolic differential system together with the
form displayed in (3.19) point out that the representation of sloshing
motions in spinning tanks by mechanical pendulums is, in general incorrect.

Yet, for most practical applications 2w/w >L1. Consequently, tho use
of mechanical pendulums to reproduce sloshing motions in spinning tanks is
suspect and should be avoided, unless severe restrictions can be tolerated.

The nature of the solutions of the above boundary value problems in
the case of a completely filled spherical tank is discussed in Ref. 5.
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SECTION 4
SUMMARY OF PERTURBATIONAL EQUATIONS

The perturbational equations that describe the small motions of a space~
craft with N partly filled liquid propellant tanks relative to a reference
state of motion wherein the vehicle undergoes steady state rotations, as a
single rigid body, about its designed spin axis in a constant acceleration
field are collected below.

p N
Mi' = T + E 'f‘fl'l 4.1)
n=]
N
I ot w' X (Iom) #m X (Iw') =T + E "i“l'x
nx=]
\
. _ 5 _
ty . ! ! 7 ! ah! = X
Vo v ¢“nc + v x(z rpnt) + 4 pnz k) 0, Q&1 »
n

e O £ z n

v o vl Y ><(2?.T¢t'1 ) +4.n2¢_('1 'En} =0, Qo
n

—

.o L (4,' + byt )+.l.( B
8a \ Preee tt]  Bal Preee

2
+ 4" *R, Q0 , (z =£)
ntt) n’ n En n n
_ _ WX wXR B &
q' = — Srr———————— ' - -
M fun¢>npndgn 5 ¢npndan B, ppdi > (1=1,2,...,N),
CH Gp T,
n
wx @xR) _ _
o 7 "
=~ Fn ~
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T = / (Rnx ‘xn)q"n‘ a4 l 2 )"‘n“nd"pﬂ
28 x!I,
" n
_[w - (R % [7+5x @R . -
n 18
F
n
where
,f""‘lz‘(‘ﬁ'“g'“ﬁ) Q.+« ) (4,2)
n 1t n n m’? n Fn ’ .

= ! =B+ z £l
pnr Wn (¢n 5n zn), Qn n '

ﬁ %nﬂ'+wxbn+WxMM%)+mxﬁ&%L %yrn,}mﬂﬂwumh
G k)
n n
By * a vyt e
n
g =g & ’
L n Wn I‘n J

and the reference state parameters are spelled out in (2.1, 2, 3, 4).

CONCLULING REMARKS

The perturbational liquid motionsg in the nth cavity are governed by the
boundary value problem displayed in (4.13) and (4.14). Further meaningful

progress is not possible until a method is devised for solving this differ-
ential system.

For a single frequency excitation and low spin rates, the problem reduces
to an elliptic partial differential equation with mixed boundary conditions.
This differential system can be solved numerically in a fairly straight-

forward manner. However, this case does not seem too Important in most
practical applications.

For a single frequency excitation and high spin rates, the problem
reduces to an hyperbolic partial differential equation with mixed boundary
conditions. Numerically, the solution process of this differential system is
formidable. However, a numerical approach using Green's function appears

promising. This would, of course, require extensive analyses to develop the
computational algorjithms.

4-2




; Another approach to the general problem is to employ a variational
formulation in conjunction with the methods of Rayleigh and Ritz, Basi~
cally, the technique depends on being sble to represent ¢ in the form

“1
3! = L"‘ni a, (©)
T i

where the yny are elgenfunctions of a related, but simpler, boundary value
problem, and the qp; are generalized coordinates to be determined from the
solution of an infinite set of fourth order ordinary differential equations.
This set of equations is obtained by minimizing the varilational integral
with respect to the independent coordinates qpj. Such a method was used
to arrive at system (3.29). In light of the discontinupus nature of the
problem, this approach should be used with caution.
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