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ABSTRACT

The primary object of this report is to develop a linear model that
describes the perturbation motion of a spinning spacecraft made of a family of
tanks that are partially filled with fluid.

First the fundamental nonlinear equations of motion are derived and then
specialized to a steady-state rotation of the vehicle about a given axis of
rotation. Then, a thrust about the spin axis is introduced. Finally, a pertur-
bation solution is derived which linearizes the problem. The effect of the
centrifugal and coriolis accelerations together with vorticity are implicitly
taken into consideration in the formulation. A variational formulation of the
associated boundary conditions is presented. For most practical cases it is
shown that the simple classical pendulum representation for slosh is not very
appealing for a spinning spacecraft unless severe restrictions are allowed.

PRECEDING PAGE BLANK NOT FILMS

iii

i



ACKNO14LEDGEMENT

This work was performed in the Applied Mechanics Technology section under
the supervision of Dr. Marc Trubert. It was sponsored by the Galileo project
and funded by the Control and Energy Conversion Division.

Appreciation is extended to Professor D. 0. Lomen of the Mathematics Depart-
ment, University of Arizona, for his constructive suggestions regarding the
correctness of the formulation and solvability of the fundamental boundary value
problems.

Appreciation is also extended to Dr. Michael El-Raheb of JPL for his pre-
liminary work, and illuminating technical discussions on the subject.



INTRODUCTION

Problems concerning the behavior of liquid propellant motions in
partially filled tanks of spin-stabilized spacecraft have gained topical
importance recently, especially in those instances where the propellants con-
stitute a large percentage of the total vehicle mass. As is known, the
interaction between contained propellant and rigid body motions plays a sig-
nificant role in establishing the design of the attitude control, system and
assessing the performance of a spacecraft. Indeed, the action of liquid pro-
pellant motions on the tank walls ("sloshing") of a spin-stabilized space-
craft may couple with its natural nutational moth of motion so as to saturate
the control system and possibly cause flight instabilities, or severely
impair its performance such as maintaining pointing accuracy. To predict and
control the moc:.ons of a spin-stabilized spacecraft with partially filled
liquid cavities, it i.s therefore necessary to single out the participation of
sloshing propellants in the overall vehicle motions. Methods for character-
izing the behavior of propellant motions in partially filled spherical tangs,
as encountered with the design of the Galileo Dual-Spin Jupiter Orbiter space-
craft, wore originally developed under somewhat restrictive assumptions.

In 1978 Ref. 1 devised a perturbational construct describing the small
liquid motions in a partly filled spherical tank relative to a known refer-
ence state of motion. The reference motion was defined as one of uniform
rotation of the liquid cavity about a fixed point on a stationary axis under
the action of a constant acceleration directed negatively along that axis. In
arriving; at this construct, it was assumed that: 1) the propellant was an
inviscid fluid; 2) the vorti,city was independent of the spatial, coordinates,
i.e., a function of time only; 3) the steady state spin and all rotational
perturbations were instantaneously communicated to the liquid; 4) cori.oli.s
accelerations were significant throughout the liquid volume but negligible
at the free surface; 5) translational motions of the liquid tank systems were
nonexistent.

In 1979 Ref. 2 showed that assumptions 2) and 4) gave rise to spurious
instabilities for certain liquid fill ratios, and that assumption 3) was incon-
sistent with the mechanism of vortex transfer from the tank wall to the
liquid. The inconsistency of the construct was further substantiated by
Ref. 3.

'	 The primary aim of this investigation was to develop a linear construct
that describes the perturbational motions of a spin-stabilized spacecraft,
comprising N tanks partially filled with liquid propellants, relative to a

+ given state of motion. A further objective was to establish conditions under
which sloshing motions in spinning tanks could be represented by simple
mechanical pendulums.

The basic subject matter is kept as concise as possible. In Section 1,
certain fundamental results and equations from classical mechanics and hydro-
dynamics are used to derive the equations of motion of a spin-stabilized
spacecraft comprising N tanks partly filled with liquid propellants. The par-
ticipation of the motions of the liquids in the overall vehicle motion is
singled out. Diverse forms of the equations are presented. The fundamental

v



equations are specialized to the steady-state rotation of the vehicle, as a
single rigid body, about its designed spin axis under the action of a con-
stant thrust directed along that axis, In Section 2, the nonlinear equations
are specialized to a reference state of motion in which the spacecraft
(solid + liquids) undergoes a uniform steady state rotation about its
designed spin axis under the influence of a constant thrust directed along
that axis. Then, the vehicle is slightly disturbed from the known reference
state of motion and the resulting perturbational equations of motion obtained.
The perturbational equations are modified to reflect the correct mechanisms
of vorticity transfer from the boundaries of the tanks to the contained
liquids 

in 
accordance with Rer. 2. In Section 3, the perturbational liquid

motions are made to depend on the solutions of N inhomogeneous boundary value
problems. The effects of centrifugal and coriolis accelerations togetherwith 

vorticity are implicitly taken into consideration in the formulation.
Variational formulations of the associated boundary value problems are pre-
sented. For most practical applications, it Is shown that the use of mechan-
ical pendulums to represent sloshing motions in spinning tanks is suspect and
should be avoided, unless severe restrictions can be tolerated. In Section 4
the resulting perturbational equations are summarized.
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SECTION 1

EQUATIONS OIL MOTION OF A SPIN-STABILIZED SPACECRAFT
COMPRISING N TANKS PARTLY FILLED WITH

TJQUTb PROPELLANTS

PHYSICAL ABSTRACTION

Imagine a spin-stdbilized spacecraft carrying N tanks partly filled with
liquid propellants, as shown in Figure 1. It is assumed that: (1) the
liquid cavities are arranged in a symmetrical pattern about the designed spin
axis of the vehicle; (2) in the hb pence of liquids, the mass center of the
spacecraft lies on its designed spin. axis; (3) the propellants are ideal
liquids; (G) capillary and mass forces acting on the liquid are negligible;
and (5) mass forces acting on the solid are insignificant.

COORDINATE SYSTEMS

To describe the motion of the vehicle, take a right--handed cartesian
frame of reference .hr with origin l,, and base vectors ( î, , k) fixed rela-
tively to the solid. To complete the specification of .F, assume that 0 is
located at the mass center of the spacecraft sans liquids, and that k is
coincident=: ',t;; 4 is 	 designed spin axis.

To describe the liquid motions in the nth tank, take a right-handed
cartesian frame of reference Jr with origin el and base vectors (in, 3n,
kn) fixed relatively to the cavity, such that orn 11 lF The position of 0n
relative to Ga is designated by the vector I.n,

Finally, the motion of .F with respect to inertial space is specified
by the translational velocity vector u and angular velocity vector w.

KINEMATICAL MOTIONS

Let r denote the position vector of a mass point in the solid relative
to m. Then, the velocity and acce?a^ation vectors of the point are simply.

V=u+rat Xr ,
(1.1)

u = V + w X  = a + w X r + w X(w Xr)

where

a= u+ w X u
	 (1.2)

1-t
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stands for the acceleration of the spacecraft, It should be appreciated
that differentiation with respect to jr(and jrn) is indicated by (.:.)

Specify by 7n the position vector of a material point Q
n
 In the nth

	vavity relative to	 ite., relative to the cavity. 'Than, the velocity
Vn - Vn(qn,t) and acceleration an - 'an (Qn,t) of the liquid are given by

V	 + X In , un
(1, 3)

a	 V +	
V

x	 kx + X R + x	 x P
n	 n	 n	 n	

" n ) + 2,:X vn + vn

where vn Vn (Qn, t) denotes the velocity of the particle relative to PJVII,

Le,

v n	 r 
n	

(1.4)

and

i-r +7 -	 (115)
n	 n	 n

Note that Qn may be a point in either the liquid volume Tn, free liquid sur-
face "Fn or wetted boundary o1j, of the tank. (See Figure 2 for notations.)

The material derivative of a vector or scalar point function associated
with the motion of liquid in the nth container is defined as

+ (rn . V) (•,,)	 (...)+ (v • Vt	 n	 nipt 

where, of course

V	 + j	 + k
n	 n 'Dx 

n	
n Dy n	 nz n

(1.6)

(1.7)

in particular,

Vn n 
= V n t + (v n .Vn)  v n - v n t + Vn I v. + F n Vn

(1.8)
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(1.12)

where ^n " 4n (Rn ► t) denotes the vortiallt ,

n Vn .X vn

for of t.?a liquid relative to

(1.9)

The vorticity vector of the liquid in the n th tank relative to inertial
Space 4n - 4n (Qn,t) is defined by

n *° Vn xVn	 2w+ fin ,
	

(1.10)

which follows by taking the curl. of (1,31). For reference, note that if
Vn • Vn - Vn • vn = 0 everywhere, then it can be shown that

vn x an - rn + is x 4n - (rn Vn) Vn

F n - (^;n Ctn) vn - 2 (^,s Vn) vn + 2a

(1.11)

4n + Vn x (fin x vn)
t

F 	 + Vn X (F'n X vn) + 2c, X n - 2Vn (ati • vn) + 2tot
EQUATIONS OF MOTION

Considering body and liquid as a single mechanical system subject
to given forces, the equations of motion can, in view of the stated
assumptions, be written

N

Ma $ F+E1'n
n=1

N

Y w+ w x (I	 T +E Tn
n-1

1-3
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	an	 n ^o n 

V

	

o	 Vn 	 vn • vn 	0 ,	 Qn a ^n	 (ns1 , 2^...,N) ,	 (1.13)

nn X an ^0

where (F, T) are the resultant vectors of external forces ana moments
applied to the system, (Fn, TO are the resultant vectors of forces and
moments arising from the action of the liquid on the nth cavity wall.,
pn (Qn,t) and pn denote the pressure and density of the liquid in the nth
tank, M stands for the mass of the solid, and I is the momental dyadic of
the solid, i.e.,

> -	 .1	 C1r1 2 E-r	 dm,	 (E a	 +ja+t^t^)
	

(1.14)

solid

Clearly, equation (1.12) govern the translational and rotational motions of
the vehicle. Equations (1.13), together with certain boundary conditions
to be established, govern the motions of the liquids in the N cavities
For a particular tank, (1.131) is the classical Eulerian equation of motion
of a liquid in the absence of mass forces, and (1.132) is the mass conserva-
tion principle for an incompressible liquid, i.e., continuity equatit,:n.
Another form of the mass conservation principle used implicitly throughout
this investigation is given by

(f)	 do )• = 0 ,	 (n=1,2,....,N) .
n n

(1.15)

Equation (1.133) is the result of taking the curl of (1.131), i.e., the com-
patibility Lvortici.ty) equation.

BOUNDARY CONDITIONS

The liquid velocity relative to each cavity must satisfy certain kine-
matical conditions, namely, the component normal to the wetted surface own
of the tank must vanish (condition of r ►on-adherence), and the component
normal to the free boundary 

43Fn 
must equal the velocity of the surface

normal to itself. Thus, if the equation of the free boundary is specified
in the general. form Fn(Qn ,t) = O, Qn e (IF one can write

n
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0,	 Qneo
i^t

vn 	 v =	 (n-1,2,...,N)	 (1.16)

Fn /Ivnrn
l 	Qn a of •

t	 n

where vn is the unit vector along the outward drawn normal to the surface
under consideration.

The free boundary condition can also be written in the form

F
nt	 n

+ v - v 
n 

F 
n 
= 0,	 Q

n
 e a

Fn	
(n=1,2,•..,N) ,	 (1.17)

which follows by setting the material derivative of Fn to zero. Clearly,

vn = dnl''n /ItinFn l,	 Qn e of ,	 (n=1,2,...,N)	 (1.18)
n

In particular, if

Fn = Z  - fn (xn , Yn , t) = 0,	 Qn e of	 (n=1,2,...,N)	 (1.19)
n

then the kinematic conditions at of 
become

n

vn	 vn = fn cos (V n'% kn )	 Qn e a 
	

(n=1,2,..., N)	 (1.20)

t	 n

t.

Forms (1.19) and conditions (1.20) are used extensively later.

Kinematical conditions (1.16), in conjunction with (1.132) and the
divergence theorem yield the injunctions

f(F n 
/IV nFnI) du 	 = 0	 (n=1,2,...,N) ,	 (1.21)

oF	
t	 n

n

i.e., global continuity.
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The pressure inside each cavity must satisfy a condition of thermo-
dynamic equilibrium at the free boundary, which, in the absence of capillary
forces, can be taken

pn - 0 , Q  C 
a 	

,	 (n=1,2,.. . )N) .	 (1.22)

N

FORCES AND MOMENTS RESULTING FROM ACTION OF LIQUIDS

The forces and moments ffin,Tn) resulting from the action of the liquids
on the walls of the cavities are given by

a

1

F 
n	

J v 
n 

p 
n 

da	 J v 
n 

p 
n 

do x+- f v p 
n 

du
n	

wn	 n	 Fn

aw	 a 	 a 
n	 n	 n

f^n p
n dun = J Dnpn dTn ,	 (n=1,2,... ►N)

a	 T
n

'	

n

Tn	 J= 
	

(Rn X gin) Pn da -

wn	
J (Rn 

X v) Pnd w 
n

Cr	
a 

w	 w
n	 n

(1.23)

+ f (Itn Xvn)pn daF
 n

a 
n

`	 = J (Rn X vn) p  da	 J (Rn X Onpn) dTn	(n=1,2,...,N)	 h

	

a	 T

	

n	 n

µ
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in view of (1.22) and the divergence theorem, where

on 	ow + of 0	 (n, 1V 2,...,N) +
	 (1.24)

n	 n

INSTANTANEOUS MASS CT!NYTER OF SPACECRAFT

Let the instantaneous position of the spacecraft mass center (solid +
liquids) relative t •o 4r be specified by the vector rc ; then

N
1

rc	
M+^il	

Rn A n dTn ,	 (1.25)

n=1 T
n

in light of

fr dm = 0	 (1.26)
solid

where the total, mass of liquids

N

M1 = r f pn dTn	 (1.27)

n=1 T
n

OTHER USEFUL FORMS OF THE EQUATIONS

Equations (1.32), (1.131), (1.23) and (1.25) make it possible to write
(1.12) as

N

r .
01+M 1) [a + w X r  + w X (w X d] +	 f (vn + 2w X vn )E^ hdTn = I ,

n=1 `r
n

'

	

	 (1.28)
N

K  + w X (K-w) + (M+Ml ) (rc X a) +	 [K x(vn+2m X Vn) J 0nd'rn T,

n=1 T
n

1-7



where the dyadic

N
f r li 1 2 	 T1,	 1.29)K	 + 	 n	

n "I 
X11 dT n	

(

n-1 'r
n

Solving for 7x from (1.28 1 ) and substituting the resulting expression into
(1-282),

N
+ X (0	 +	 f ( (R	 x (v 

n 
+ 241 X v11 ) 1 p 

n 
dT 
n 

Y	 c X
n-1 Tn
	

(1-30)

where

0 - K - (M + M 1 ) 1 li
e 

1 1 H - 
`a c l 1	 (1,31)

Equation (1-30) clearly represents the rotaLlonal equation of motion of the
vehicle about its instantaneous mass center. Note that I is the 'momental
dyadic of the solid whose components have constant values with respect to 4r.

K - I is the momental dyadic of the liquids whose components are functions
of the instantaneous forms of the liquids inside the tanks. 0 -K is the
inertia Lessor whose components are functions of the instant,--.neous position
of the vehicle mass center relative to Jr.

Diverse forms or (1.13 1 ) are also possible. In particular,

v	 + 2m X v +x;11 x v + til X r + 
V n n = 0
	 (n=1,2,,,*,N)	 (1.32)

where the acceleration potential

Pn + .1 V2 	 1	 2
+	 + X T,	 R	 X i )	 (n,1,2,—,N)

n 
p  

2 n	 n	 11	 n

(1.33)

y.

1!^ 

I  	
1-8



can be derived from (1.3), (1.6) and (1.132). Taking the curl of (1.32)
gives the compatibility equation

P.
	

+ 2w X Cn + Vn X (fin X t1n) - 2Vn (ti • tt) + 20 ft d ,	 (tt=1 , 2,...,N)
t

(1,34)

STEADY STATE ROTATION OF VEHICLE UNDER ACTION OF CONSTANT THRUST

If the applied farces and constraints are such that the spacecraft
.	 (solid + liquids) performs a uniform steady state rotation w as a single body

about its designed spin axis k under the action of a constant thrust F
directed along k, the system is in equilibrium relative to the moving frame
of reference Fattached to the body, and (1.28), (1.30) can be written

(M+Ml) [cc + 	 X(7'^ Xxc}] -7,

(1.35)

u? x( 6 • w) ^ T	 rc XF - 0

But (1.352) implies

6 • ^ 	 c

(1.36)

T- rc XF=0

where c = c k. Equation ( 1.361) states that the angular momentum about the
center of mass is conserved. If

YY

t

(1,37)rc=rck,

then ( 1.362) is satisfied identically providing

r-0.	 (1.38)

With w = wk, r  = r  k and F = F k, equation (1.35 1 ) yields

a = -+M,  k- a k
	

(1.39)
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The area parameter c in (1..361) is given by

C . 
lkk W
	 (1.40)

where

Ikk _ k
	 6	 k	 (1.41)

is the moment of inertia of the spacecraft about the axis ft.

Now v11 - 0 in each tank, and (1.32), (1.33), it ,follows

n
_ + a . R  — 2

	
^(41 x nn) - 

Y 
n me en , Qn C Tn r	 (n=1  2, ... ,N} 

n
(1.42)

where cn are constants. ?f the equations of the free boundaries are speci-
fied as Fn = zn - fn - 0, then (1.42) can be written

pn xx (4011 (f 11 - zn) ,	
Q11 c T 	 ,	 (n=1, 2, ...,N) ,	 (1.43)

in light of conditions (1.22), where

fn 	 a (cn + 2 
(,,2L 

(Lln + xn) 
2 

+ (L 2n+ yt1 ) 
2
]) + 

L 3 ,	 (n=1,2, • • •,N)

(1.44)

and (Lln , 1.2n, L3n) are the components of Tan with respect to jV. The
equations

Fn = zn - 
n =
0 	

Ql1 
e r ,	 (n=1,2,...,N) ,	 ( 1 .45)

,.	 n

t

	

	 where fn are given by (1.44), are N paraboloids of revolution whose axes
coincide with the vehicle spin axis. The constants c  can be determined from
the known liquid volumes.

I
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Figure 1. Spacecraft and Tank Geometry
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Figure 2, Cavity Geometry
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SECTION 2

SMALL PERTURBATION EQUATIONS OF MOTION OF A SPIN-STABILIZED
SPACECRAFT COMPRISING N TANKS PARTLY FILLED WITH LIQUID PROPELLANTS

GENERAL CONSIDERATIONS

The equations that govern the motion of a spacecraft carrying N tanks
partly filled with liquid propellants are nonlinear, and do not admit general,
exact solutions. Nevertheless, it is sometimes possible to obtain or approxi-
mate particular solutions, such as steady state rotation of the vehicle about its
designed spin axis under the action of a constant thrust derived above. Then., if
the system is supposed to be slightly disturbed from this known state of motion,
the resulting small. motion of deviation can usually be described by a set of
linear ordinary and partial differential equations with appropriate initial and
boundary conditions.

Such equations are usually constructed in the following manner. Suppose
the complete nonlinear equations of motion of the vehicle and liquids to be
written for two states of motion: reference and disturbed. The reference
or 'undisturbed' state describes the path of the mass center. attitude of
the vehicle, and the shapes of the free liquid surfaces in the cavities. The
disturbed state describes the actual motions of the vehicle and liquid, and
consists of the reference motions plus small deviant motions therefrom. The
difference between the governing equations of the perturbed and reference
states, upon neglecting all terms involving products of deviant quantities
and/or their derivatives, yields the perturbation equations (Ref. 4).

REFERENCE STATE OF MOTION

The reference state of motion embodying the particular desired attitude
of the spacecraft is, in general, one of nonuniformity. For many practical
situations, the reference state of motion may be taken as one in which the
spacecraft (solid + liquids) undergoes a uniform steady state rotation as a
single rigid body about its designed spin axis under the influence of a con-
stant thrust directed along that axis. With this approximation to the
actual reference state of motion, and assuming further no velocities of
liquids relative to the cavities, it follows that

W

a ai

to - 0

, Y = 0 , 7 X- ^,, x (K-^)

Fk , 7^1 X (I . W- )	 w- x [(K-T) • cij

N

r 
C = 

r 
C 
k 9 EF 

n

n=1

(2.1)
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--T
t
3

^f

N

n	 1) 7	 K	 (M*1 
l0r,1 1H - ^,i^l

n=1

N

K - I * F, f Tk-, 1 
2 

E - rtnKn n d t n 9 Wn a !,
o
n + 

^n
n=1	 t

tz

v
n

= 0 ,	 7,	 = 0
n

r,	 .	 2,^	 ,	 *	 tX0	 (f	 .,.z	 ) ,nn	 nn.	 n	 n	 ^n	
t	 ttl,

iV  = u + ., x R 	 , an 	 ;t + 71	 t	 ( r^' K)	 ,	 (tt=1, 2, ... ,N)

t
n

-
n

f * 	 0,

• A l n	 2	 ^ (Lin 	 n!	 ("2n+y,, )']  3nL)n f	 o
n

ix (I1n+1n)	 2n+yn)	 (tt=7 , 2, ... ,N)

• gn
lcn	

gn
n +	

gn	
n

= gn
I(x n , Y n ) = j

( 	 1/2
cx 2 +	 I (11In+xn) 2 + (L2n+yn) Zl 1	 (2.3)

'
gn

t LLL	 J ►

i
2-2



+E

	

	
(2-4)

 n

n-1

+ .7	 . 7)	 T +

nwi

in
	

P. n
p n

v 
n 

V n - vn v
n 

Ol	
n	 no

V
n
 x a n 

= 0

n	
Wn

%I	 • 
vn	 rt

fn COS (-nsKn)l (fn MO), 
n	

air	 (znmf n)
t	

n 

Pn	
0	

n 
r a 

F	 -(zn fn) 'n 	
(nolj2j.-#*N)

T." 
n f 

v 
n 
pn dow	

I ; n 
P 
n 

do +	
npn dap

t7 
w	

n	 w	 n far,	
n

n	 n	 n

f
v

n Pn don - f Vn p
n d 

'nn	
n

fin 
f 

(R
nx;n) Pn 

da 
w	

f	 'K 
n 

xv-
n

) P
n 

do 
wa	

n	 o n
w	 w
n	 n

	

+	 (K 
n 

x ^^ 
n ) 

p 
n 

da
d, =	 C%f	 X;n) Pn donfal..	 n	 0 

n
. f n

T 

CR 
n

xv 
n Prd 

d T 
a	 f nt cos ( ;t,,R n) doh, 
	

Ol

n

TI	 w	 F
n	 n
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' 'n
	dx	 0

In 11	 n
(2.7)

The constants cn appearing in (2,32) can be determined from the known liquid
volume in each cavity.

The foregoing completely define the reference state of motion of space-
craft and liquids.

PERTURBATION EQUATIONS

In the reference state of motion defined above, the spacecraft with
partly filled liquid cavities can be associated with a certain solid vehicle,
called transformed consisting of the given vehicle and frozen liquids with
free boundaries (2.3). Let us find the small deviant motions of the trans-
formed spacecraft in passing from a position corresponding to steady state
rotation under constant thrust to a neighboring perturbed position. One can
conceive of this transition as proceeding in two stages: 1) displacement of
the whole spacecraft, n.,; a single rigid body, to a perturbed position;
2) 4eformation of the forms zn ,.fn (n A1j2o.,.jN) of the liquids (by cover-
ing the free boundaries with layers an of zero volumes) into forms
zn * fn + fn' (nwl, l ..... N), where

E ll1 - dfn

are small deviations relative to the r,, and iA denote differences in the
forms of the instantaneous and reference volumes.

Regarding the nth cavity, lot ,,Pj 1, stand for the region of rhO xnyn-
plane bounded by the pro,jection of a closed curve representing the locus of
the itiLermection points (if 

the 
roference free surface with cavity wall(s)

"wn I Then, in 
the first approximat lon Rcf. - 4,

f +f If n n

+1	
dzi,	 dt n + ff dx 

n 
dy

n f	 dZ ns (2.6)

n ' n	 ateY?n	 fn

where (• ) can be at scalar, vector or dyadic point function. In particular,
we observe

n

2-4



owing to the incompressibility of tho liquid. Consider the disturbed form
of Fn ,  namely,

F+ 
In

I W	
167 

n 
p
n

+V 
n
P') din

n	 f 	 a
t +t'n n

f 'n pn d 'n + f % Pn' dt n +
to	 ;n

(2.8)

a fn

ffd x n 
dy 
n f	 V n Pn "n

'On	
fn

f +f- I
n n+ ffdx y	 V J)' dz

	

nd n f	 nn n
'Rn	 n

in view of (2.6), where 
Fn,Pn$ 

-1 
n 

are reference motion values, and

-	
I	 --T - dr
n	 n	 (2.9)

pn - 
dpn

are small deviations.

Subtracting out the reference value of Fn ,  i.e.)

n - 
fV 

n 
pT, d pn

T
n

2-5



i

from (2.$), it WIlows

f +f '

1
	 f 

Vnpn' 
dt n •I-	 dxndyo	 n n Vnpn dzn 	(2.10)

 f11t
o 	 ^Wn

	 f n

+ ff
f +f'dxndyn	 n n Vnpn' dzn

^' n	 f
n

which, to the first order of small quantities, becomes

f +f '
rn' r
	 Vnpn' dt n + ffdx

n
dyn 	n n Vn pn dzn 	(2.11)

T n	 '`fin	 fn

•
But, from (2.2 2) and (2,~3)11

Vn pn 	- n [ ix + r:r X (ix, X Rn ) 7	 (2.12)

Substituting (2.12) into (2.11) and performing the indicated integration,
one obtains, to the same degree of approximation,

1'n' =	 VnPn dTn - ar X [r^ X	 nfn % dxndyn )	 (2.13) f
T 	 Rn

Vnpn dar
n - W X [W X	 rnf' pn dxn dynJ

rn	 1Wn

in view of (2.7).

2-6



i

i

Using similar arguments, it can easily be shown that

V M	 (R X V p') d-	 (R X ^x) 0 f' dx dy	 (2.14)
n	 n	 n n n - 	n	 n n n n

I 
n	 `?n

--	 j Rn X [.xi X (,s X Ian) l j f ^'n dxn dYn sff
-Pn t
	 ►

N

re M+M 1 1:^n f n' ► ) n dxndyn 	(2.15)
 ff

n=l	 ";Wn

N
FM+M1

	

	
rnfn k n dXndYn

n=1 
ff

-R n.

N
K' s( {gn 2 .. Rn Ril ] fn K 'n dxndyn	 (2.16)

n=1	 . n

In arriving at these results terms involving products of deviant quantities
and/or their derivatives as well as local positional changes of liquid
particles were neglected.

Working to the same degree of approximation,

V' +	 ' X R	 + v'
n n	 n

V' -— u I +	 ' X l2	 + r^ti X	 fir '	 + v'
n n	 n	 nt

a' = V' +	 X V	 + of X V'
n n n	 n

rx' +	 ,t' X R	 +	 X	 (ta+	 X	 R )	 + a'i X	 (rya' x R )
n	 n	 n

+ZOX vp +vri
t

(2.17)
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where

The perturbational equations that govern the ona11 liquid motions in
the N cavities are obtnined in a similar fashion. They are

-	 lo, = ^~- Y p , ,	 (2.19)
o	 po on

	

-~/	 _
V ^ V" = V ~ v.'	 O *	0 m r

n	 u	 u	 n	 .0	 o

~"V x or = Ou	 o ,

	

0	 ,	 V̂ u	 'wn

^ 	 , -` =	 n=1,2,-- N).
u	 u

(^ ^ ^ 1 ,	 O c	 ,	 (u =[

	

^ n `'n	 -o'	 1m	 -^	 ` o u'

	

^ c	 o

u' - p
o u [' = D ,	 O c n"	 , {uo=fu)

o

f' com -
	

^ ^ 1 ^o	 =	 f"	 = 0
n	 ``u	 ''o'	 ^	 n -~n-^o

^ f ^	 o ff L
k o	 ^^_	 }~ ^	 '-"

n

To the same degree of approximation, it can be shown that

0	 , Q z	 n
^ o	 ,	 (2.20)^ o

-	 _.»	 ^ ». =	 (o^1,2,^"^30),n	 n t

	

N ^'	 (^ ^ - )	 O c r	 {o =f )	 N

	

n	 ^'o	 ~o	,	 `o	 Y	 ,	 o n " ^ytt	 o

'^
^



N

Mix = F +	 Fn

n=1

(2.24)

	

0	 Q  € aW 	,	 (2.21)

n

n	
nttt

r

fn	 (vn	 kn )	 Qn	 aF	
(zn='n)

ttCt	 n

and

The disturbed form of the translational equation of motion of the
spacecraf t is given by

N

M (a+a') = F+T' + l..: (Tn+ Fn'
	

(2.22)

n=1

where, as before, U, T, T are reference motion values given by (2.1) and
('2. 4$ ) , and	 n

at = da

T = dT	 (2.23)

F' = dF
n	 n

are small deviations therefrom. In the reference state of motion

in view of (2.4 1 ). Subtracting (2.2 4) from (2.22), one obtains

N

Ma' = F' +	 F' ,
^^^...III n

n=1

(2.25)

2-9



for the perturbational equation of translational motion of the vehicle.
Now, from (2.13),

N	 N

E
1. ' =	 V p! dt — axe x Csa x	 R fnpn dx^dyn^

	

n E	 n11 n	 ff ll 	 1

n=1	 11M1	
1n	

n=l n
(2,26)

N

Vnpn d t o - (M+MI) r^^ x (g;, x r)

	

n= 1 	 ',n

in view of (2.15). In addition, from (2.19 1 ) and (2.170 ,

nn	 n(	 n	 n

n	 n	 nt

so that

N

V 
n n̂

' din - M 1 	 (M+M I	x rc

n= 1	 r
n

(r1+r11) tcf' X	 X rC )	 (Ml+M) t«1 X (tai' X rc)

N
-	 -	 (2.27)L	 (vri + 2^a X v

t1) p n d^^n

n= 1	 T	
C

n

a - (m1 01) {a' X r  - Of +M) w X (w' X id

N

-	 (vn + 2tkv X vn ) pn dTn

n=1 to
t

2-10



F^

4

6

c

where

N

M	 rc M+M	
Rh on dT =rc k	 c^^=mk

l 
n=1 fTn

Owing to (2.26) and (2.27), equation (2.25) becomes

(M+Ml) [cx' + W I X rc + w x (w' x rc ) + F0 x ((A x r^) l

N

+	 x
`vn	

1-^I vn) pn dTn F'

 ,^	

+ 2

t
n= 1 T

n

(2.28)

(2.29)

Equation (2.29) can also be obtained by perturbing (1.28 1) directly.

The disturbed form of the rotational equation of motion of the

spacecraft can be written

N	 (2.30)

I	 (c^^ + w , ) + (w + w' ) X C I	 (w + w') ) = T + T' +	 (Tn+Tn)

n=1

which, upon discarding nonlinearities involving m' and subtracting out
reference equation (2.4 2), yields

N

+ m X	 + m X (I	 T' +	
Tn	

(2.31)Fa 
n=1



r:

^ S	 Y

for the perturbational motion. But, from (2.14)

N	 N

E ,fin	
1:

(Kn X ^npn ) `1
n=1	 n=1	 to

N

E(fin X 
tY) 

k'n f n ctxndyn

n-1

N

ff 
ftn X [w x (w x 1i11)J	 fn ''n dxtzdyn

n-1 n

N

(R11 x Vnpn) dz n - (M+M 1 ) (c X tx)

n=1	 z
n

^d x (^: I 	,`)	 P

to view of (2.15), (2.16) and the Identity

N

ff Rn X , x (^§ X Rn) ] j fn k'„ din ayzt ^` K'

n=1	 <p, n

Moreover,

N

	

(-Rtn X Vnhn) It,, 	 (M+M 1 ) ( -r e x  ') - (K-l)	 ;;'

n=l	 t
n

(2.32)

(2.33)

(2.34)

N

n=1	 r

	 Rn x (vn t+ 
2 "'

X vn) 
'gi n d 'n'

n

2-1.2



in light of the identity

N
X	 X	 X	 di

n	 n	 n n
nul

(2.35)

dx	 X X
+ 2:	 1 .

	 ltn ) ] ( 11 n
n-I f, n

7 1 X	 + ^11 X7

Booause of (2-32) and (2-34), equation (2.31) assumes the form

+ q, X (K' - 70+	 X (K	 + X (K

+	 X	 +	 X

diX	 + '.' X v'] o+	 f n	 1)1E	 t	
11 n

JIM1	 t

(
,%. ^6)4 J

Equation (2.36) can also be dedut^ed by perturbing (1.28 2 ) directly.

The foregoing results are predicated on the assumption that :he
steady state spin and all rotational and translatiori-:l perturbations are
instantaneously communicated to the liquids in s ide the cavities. As noted
in Ref. 2, this assumption is at variance with the mechanisms of vor•icity
transfer from the boundaries of the tanks to the contained liquids. This
can best be understood by the following.

Suppose that the cavities are motionless for t z to and that the
rotation of the vehicle about its spin axis attains its steady state value
by accelerating smoothly so as not to cause any ripples on the free
boundaries, Then, under these circumstances, vorticity is, for the most
part, transmitted by coriolis and centrifugal effects in thin Ekman layers
(Ref. 5). On the other hand, these layers do not develop for periodic
motions at spacecraft control frequencies. Consequently, even though
steady state spin equilibria may be attained throughout the viscous liquids
after some transient time, small periodic rotations about local axes of the
tanks can never be transmitted to the cores of the liquids and should,
therefore, be neglected.

2-13



I

The above arguments require that the terms ^P X ;n, -I ' X rn In (2.17)
be discarded. With this injunction, the perturbational equations that govern
the motions of spacecraft and liquids become

N	 (2-37)

M -1	 1' '	 F. I	 P+ Fa n
n=1

N
+	 x (I +	 x (I Y' +

n
nwI

I	 V pn'n
fill

V
11

V
n	 n	 n

0 Q	 T
n	 11

VV11 a	 0
n

0 Q 
n 

r 17w
n

n n

%.	 f11, 0"n 	 n)
Q 
n	

t'	 oill (z 
na

t

1) i'i "n. fnI	 0 Qn t' 
0 F z 

n=f n)
n

f

f ,
n	

cos 0
n

dur V
n	

dx 
n. 

dy
ff

n	
0

a i,

t n t
'-w n

n
7-1,2 ...... N),

F
n' =	 f Vn

I d ,t
pn	 n

x	 F^i X ,ff n 
f P
n n

dx 
n.
dy

 n
T 
n n

pnI	da,,,	 x	 (4 x	
f' PIf dx dyn I

n
n

n	 n n	 n

w n
n

t
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*f I (7R
n

- f	
X V ') dln

n 
	 npn

t
n

f
xX+1 'i	 7 X (7, !^ ) ) I f, I j) 	 x

f 1 n	 it	 n a 
d 

n
d y 

n

ign

X ;n) p I do

-fa	

11 w 
n

w
n

f
1 li X	 + 7,, w (T X R

n	
dx,dy,f n 

tVn

where

+	 x U	 -
+V'n n	 n

U' +	 )< +	 x vo +n n	 n	 n t

V , +	 x v	 +	 x V,
rd n n	 n

+	 x I.	 +	 x	 x 1,
n	 n)

+	 x (.7	 x	 + le )< v I + vl
n	 n	 nt

ILI +	 x u + w x u

(2.38)

(n-1,2,---,N)
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r	

- - 
T

In addition, observe

	

0	
n 

V 0 

"'n

n	 nt

f
n	

(V	 Q
n	 kn	 n 

v1,	 (zn-fn)
n 

0	 Q 
n 

f;sew

n

•	
n,,t

Vin'
	

(V 
n	 4n	 n N d'
ttt, 

V	 V v	 - 0 t Q
•	 n t
	 n,tt	

n	 n

ff 
K f I '' dx 

d
n Yn

t;w	
n n n

 n

f I p dx dy
n n n n n

eWn

Tn fn Pn (;n - Kn ) 
dryV 

n

n

r n Pn fn ( )̂n 'd 
dil F

Fu

(2-39)

)- 0-1 , 2 i - - -,N)
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and

N
1

rr M	 ff n n ''n dxndyn

dal 4Vn

N

Y

	
ri1+M 

n-1	 ;fin ^ 
fr ikn 

dxn dy
n
	

(2,40)

N

Ni +fit	
t nitn 

("n - kn ) d 'r
nul	

TV

n

r

F
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SECTION 3

PERTURBATIONAL LIQUID MOTIONS REDUCED TO SOLUTIONS OI L N
INHOHOGENEOU^S BOUNDARY VALUE PROBLEMS

PERTURBATIONAL EQUATIONS DESCRIBING LIQUID MOTIONS

In light of (2.37) and (2 . 38), the perturbational equations that govern
the motions of liquids inside. the N cavities aan be written

vn + 2w X v' + Vn^n = O ,	 (3•I)
t

9	 v" 0,
^^	 n

+ 2 f x x n - 2Vn (t,s • vn)	 0	 QnCT
Int

^n - 
pn/An + Sn • Rn

7On = ( " + I'l, X	 + T')" x (°;iXt.n} + Cif X (eet"X^n)

ca wk - wkn , (w" constant)

O	 , Qn e o w ,

v	 v' -	 n
n n

f' (vn • ltn) , Qn C oP	 (zn = fn}

t	 n

pn - (xpnfn = 0 , Q  a or,  	 (zn - fn)
n

fn (v n • kn) doF =	 fn dxndyn : 0

of

	

,
t	 n	 t

n	 n

3-]



In addition,

0

VA t

n (vn
tt 

0

v
n	

n ttt

f n tttt (vn

Q 
n 

C 
own p

Q 
n 

f; (IF 0 (z n 
w 

fn ) ►
n 

Qn 
t , a 

w a 
I

Q n 
t : 

n F. 
(Z 

n 
0 f d t

n 

(3•2)

vn • V , - Vn	 V , 	 0	 Q	 'r

nt	 nttt	
n	 11

F

fn
 

(V 
n 

K 
n	

w ffQll fn dxn
 'y

n
 = 0,

n 

n

V p ! di	 X Fo x	 f , d xy
n	 n n dill	 ff	 n n n 

d 
n If

n	
1fln

don f Pn (7n	
du

wn	 n

T	 (n x V npn) 
dr 

n	
f,f

n x
	 + 7 x (7m x i n ) 7}

n f	 ffR
	fn p 

n 
dx 

n 
dy 

n	
(R n x V 

n) P.,
	 fa f'K 

n 
x [afaaw 	 a 

F

	

+ ('7 x cw X'R 	 f, p (v • k
n

 ) dder
n	 n. n	 n 	

n

p
n 

(v-	
aF

d	 pn dx11 
dy

n
 = 0,

.fn
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DERIVATION OF BOUNDARY VALUE PROBLEMS

The determination of perturbational liquid motions inside the N cavities
can be made to depend on the solutions of N boundary value problems with
acceleration potentials ^' as dependent variables. This can be shown in the
following manner.

Consider the nth cavity. Take the divergence of (3.1.1),

Vn	vn+ 	 2w X vn +Vn¢n = 0
t

obtaining

V 2^n = 2w • fn

in view of

V • v' = 0 , V • V ' = V 2 ^	 , V • (2w v') _ - 2W'tn	 n.	 n	 n n	 n n	 n	 nn

Differentiate (3.3) partially witli respect to time,

V 2^	 2w • V
n 	 n 

Tak,.: the -:t alar product of w and equation (3

2W  + 2w X n - 2Vn(w • vn) = 0
t	 t

obtaining

2W	 4w • Vn (w•vn)
t

in light of

2w • (2jij x En) = 0 .

3-3
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Substitute (3.5) into (3.4) and differentiate the resulting expression
partially with respect to time,

v 
n
2 

^ n' t t - 4	
nV	

7,1 • v' t )	 (3.6)
(	 n

Take the scalar product of ii and equation (3.11

7
 - [

vn + 27,j x 
`' t

n + VAli]	
0

t 

obtaining

n	
v 
n ^ 1.11	 (3-7)

owing to

2Fa X V') = 0n

Substitute (3.7) into (3.6),

v 
2 

^, ,1	
+ 4,' ' 211	 n'	 Q	 Qn	 '^n

n n

In view of

v	 V
n	 n n	 n

z z
n n

Expression (3.8) is the desired partial differential equation for ^ "
n

To establish boundary conditions for Vi n , first differentiate (3.1,)
partially with respect to time,

+ z-.1 X V- 	 +P,'	 0	 (3.9)n tt	 n t	 n n t
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Now, from (3.1

n
V	 2w x	 (3.10)	n n	 n

Substitute (3.10) into 3.9),

2-
+ 4W V' - 4(ti -k	 + V	 + V x (27^i^')	 0	 (3.11)

tt	 n	 n n n	 n n t	 n	 n

in view of

V x (244	 2W- x V
n	 n	 n n

Differentiate (3.11) partially with respect to time,

	

2^,	 ,2F
+ 4 w	 - 4	 - V	 x (2N4 1 t	 0	 (3.12)11 ttt	 n t	 n (F" n nt )+ V Al	 + Vi t ,	 n	 n

Take the scalar product of R n and equation (3.11),

n
. FC n = - $'	 (3.13)
t 	 n z

n

because

k
n 	 n

(w x v')	 0

Vn	 n4 n	 n
z
n

Substitute (3.13) into (3.12) and rearrange.

V	 + V x	 + 4w2	 VI)	 (3.14)n n tt	 n	 n z n	
(n' +4W2-

ttt	 n
t)	 n
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t

k	 nroJect (3.14) along the outward directed normals to ow 
and v	 j

n	 n

2
v	 V	 + V x (2ca	 }+ 4wk	 0	 Q E o	 (3.15)

n	 n ntt	 ii	 nt(	 n2 n	 n	 wn
n

.- (; • k11 ) fn+ 	 4w2fn 	 ,Qn try irr 	 { zn 
=

fn) ,
tttt	 tt)	 n

in view of (3.21) and (3.22). To complete the specification of the boundary 	 y
conditions, solve (3.14) for pn

r 7z	 1
pn	 n 

{^,n - n Vin)

and substitute into condition (3.1 8), obtaining

-

	

cif^l = Gin 	 Itn 	Q	 (3.16)n ^_ crr 
n

The free surface displacement can be eliminated from the problem as follows.
Solve (3.1,6) for fn and substitute the resulting expressirn into (3.15),

V '	 + V x (2,)	 + 4t
'
t2 ^h'	 lc	 = Q	 Q t: a	 (3.17)

n n 
ntt	

n	 nt	 nz n	 n	 wn
n

- - 1	 ,'	 + 4w2^+ - 1	 Gii •	 n	 +4ti2 i
n	

Qn^;cr^,	 (zn°fn)
gn	

TI
	 ntt) g 	 tttt	 tt	 n

where

3.18g11 n ._ .^ 
^n	

Vin , Qn	 tTpn	 (	 )

v	 k
n	 n (3.19)

En -	 ^x	
(Equation (2.3

3))	 Q  ^' op
	

.
n
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T'	
(Rn 

X v)' p da -

	

n 	 n n n n
Cr 
f
n

i

Take the divergence of (3.14) and make use of (3.23),

V	 V '	 + V X 2m ^' } + 4w 2 ^	 is
n	 n 

ntt	
n	 nt /	 nz n

n

(3.20)

vn^n + 4w 2^n	 = 0 , Qn e Tn
n	

,

tt	 xxn

F	 ^

in agreement with (3.8).

The inhomogeneous boundary va gue problem defined by (3.8) and (3.17)
governs the perturbational liquid motions inside the nth tank. The effects
of centrifugal and coriolis accelerations together with vorticity are
implicitly taken into consideration in tLe formulation.

Observe that the excitation vector ^n is a function of the perturba-
tional translational, and rotational accelerations and rotational velocities
of the spacecraft. They, in turn, are related to the motions of the liquids
in the remaining N-1 tanks via the perturbational equations of translational
and rotational motion of the spacecraft.

The force and moment resulting from the action of the perturbational
liquid motions on the tank wall can be written

^, x (c^ x R )
Fn =	 vn^pn pn dan	

gn	

n 
n ^'n da

Fn - a
n 	

pndTn

an	 aF	 ^n
n

(3.21)

(o x 0,3 X Rn )	 _

gn	 (din Rn) pn daFn

CT F

n

(Rn X Rn) pn dTn +

T

f n)))
gn	

`fin pn daFn

aF

n	 (3.22)

f

^_"n X	 X(^^Rd

gn
	(BnRn) 

pn daFn
a n n
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'n]
= 0 , Qn G Tn ,

kn = 0 , Qn f° caw ,
n

(3.23)

in light of (3.14) (3.2 $) (3.26), (3.27). (3.18), (3.19) and the divergence
theorem.

VARIATIONAL FORMULATION OF ASSOCIATED HOMOCENEOUS PROBLUI

Consider the associated homogeneous boundary value problem pertinent to
the nth tank,

Vn	
Vn^ '	

+ V n X 2car n 	 + 4w2c I

CC	 - C f	 zn

vn
[Vn^l tt

+ VnX (2w n + 4m n

  J	 zn

n'kn)2-	 (14-- (n 	+ 4(A) n	 Qn " o'F,	 , ( zn = fn)
tttt	 tC	 n

It is fairly straightforward to show that the first variation of the
functional (81 = 0)

t

	

J. = 2	
^ntr2 - 4ixi

2^nz	 - 2w my^
nx -n tx any	

dT

t	 r [(n 1	 n	 `	 n n	 n n(
U ' n

	

-	 n

tt 
)2 - 4 	

^2 
(Vn • kn ) do  ^ dt

 ` t	 ni

c^F

n

(3.24)

subject to

I t
t0	 t0

gives the boundary value problem (3.23)
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The functional (3.24) together with the methods of Rayleigh and Ritz
make it possible to obtain approximate solutions of (3.23) in terms of
eigenfunctions and eigenvalues of simplex, but: related, boundary value
problems.

For instance, the eigenfunctions 	 and elgenvalues K satisfying

	

the boundary value problem
	 n I	 n i

V 
2

q)	 0
n	 n	 n

0	 Q n t- o 14	 (3.25)
n

n - V n 
4t 
n 

i W

K
n
—

n	 n	 (zn 'n)

	

n	 n

and orthogonality conditions

K
	 i

1	 1)
It 

4 
d(i	 K	 J-i'ni	

In
V
n

f
V
nn	

Vq,
n nj 

di
 n

0

gn
41 n i 

2 (ILI	 xe	
n	

iJ-
f	 F n 

n

du
f -'n	 n
"IF	

0

(3.26)

0

A

where

9	 - - k )/a
n = (

V
 n	 n



q W
n	 n

(3.28)

are available for a spherical container,ltef. 1. Assume that + I 
can be expanded

in a series	
n

where qn,(L) are 
to be determined. Substituting (3.28) into (3,24) and

performing the first variation of the resulting expression (Mitt
 = 0)

subject to

L t

(-I 
n 

J

t 
0

q
t0

. 0

one obtains tile system of ordinary differential equations

q	 K + 4,
I, Y	 X11	 n	 n +	 fi	 i	

^V 

ct	
n	 n

(3.29)
ttt	

+

n	 n

n	
n i 

dT	 q	 0	 mli 	2, ......	 .2	 f Iz 1z	 n	 11J
tt i 	 t o

for the determination of the q n , Other examples can be adduce d.
i 

If Lhe excitation vectors tin are regarded as preassigned functions of
time, the inhomogeneous boundary value problem defined by (3.8) and (3.17)
can be deduced from the first variation of the functional

lk
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i

Tn 2	 (Ynt
 /2 4w

2¢n 
2_

2w +n ¢n --c , n	 drn

CO t 7 
	 zn 	 yn x 	 Cxn y 	

r

-	 ^n 2 - 4w  $n 2 (vn kn) daF 	(3.30)
tC	 C	 n

 of

+ ^
	 Sn	

+Grt2sn
	

Rn (vn•kn)^hn doF dt.o	 tttt	 tt	 n
F
n

CHARACTERT2ATTON OF THE BOUNDARY VALUE PROBLEMS

For a single frequency excitation

^n = cn 
e iu t

(3.31.)
_	 eiS2t

^n -fin 	 '
the inhomogeneous boundary value problem spelled out by (3.8) and (3.17)
becomes

e

2	 2	 2^

3 2+3 ^2+ 1
4a2	 2 =0 19 Qn6Tn

Ox 	 D yn	 st	
3 Ln

V	 3 	 i + 

3)n 
j t° 1 - 

4w2^n 
k - i 

2w
x (k ^V) = 0n	 a 	 n Syn n	 02 8zn n	 2 n	 n n

Q  e Qw

n

Q
2	 2	 2	 2

-=
g 1 -

42 *n -9 1 - 2 (cn •Rn)	 Q n a F

n	 o	 n	 S^	 n

4

(3.32)

(3.33)
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If Z,)/k,, <1, the partial differential equation (3.32) can be brought to an
elliptic form by the transformation

Z	 /^..,2
x 
n 

M X
n P 

Yn w Yny n 
V1Z

2 	
n

namely,

1
2
	3 2q,

11
2	 2	 2
+	 n +	

n . 
0	 Q 

n
c T
 n

x 
n	

y 
n

(3.34)

with boundary conditions

^-2
n

1	
""4

1',2	

77 V 
x

nn	 I x 
i
n 

+ 

y n 

+	

2	
- n 

1	
n	 'fin)

	

I 
n	 n	 S41	 D z 

n

0	 Q
n 

^. (I*	 P	 (3.35)
 w

n

1
4,)	

n
- ^— ^l -	

Qn

'I9	 12	 ,2	 n	 F
n
( -	 4'n 911	 n

* 
are the stretched values Of Tn, aw	where Tnt Nn , "Fn	 Fn; On the other

hand, if 2,,%/ , .' S l, the )artial differential equation (S.32) an be brought

to an hyperbolic form by the transformation

2
x n	 n, Yn = Y z	 in 9 n	 U

namely,

2	 2,	 2
qD 
n

Q F T*	 (3.36)

;lxOy 
n 2
	

")z n 2
	 n	 n



with boundary conditions

+ L^ Ln	 .2	
In	 L	 0

;_ _ 1 
L

sF,	
X

	

a 
n	 ►

Yn 
n	 z 

n 
n	 n	 n n

W
n	

(3.37)

	

2	 2 2	 ,,2

F)	 - 

1 

( gin Q

	

9	 11 +	 n	 n f' CrF

	

n	 n

For low spin rates the liquid motions are governed by an elliptic
partial differential equation with mixed bou^idary conditions. As the spin
rate is decreased indefinitely the governing equations degenerate to the
classical lateral slosh equations. This strongly suggests that the custom
of representing sloshing motions in spinning tanks by simple mechanical
pendulums is valid only for 0 < 2fo/, ^ <1.

	

For ratios of	 in excess of unity, the sloshing motions are governed
by an hyperbolic partial differential equation with mixed boundary condi-
tions. The nature of the hyperbolic differential system together with the
form displayed in (3.19) point out that the representation of sloshing
motions in spinning tanks by mechanical pendulums is, in general incorrect.

Yet, for most practical applications 2txiA4 >1. Consequently, tb^, use
of mechanical pendulums to reproduce sloshing motions In spinning tanks is
suspect and should be avoided, unless severe restrictions can be tolerated.

The nature of the solutions of the above boundary value problems in
the case of a completely filled spherical tank is discussed in Ref. 5.
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N

+	 FE n
n-1

(4•1)

SECTION 4

SU101ARY OF PERTURBATIONAL EQUATIONS

The perturbational, equations that describe the small motions of a space-
craft with N partly filled liquid propellant tanks relative to a reference
state of motion wherein the vehicle undergoes steady state rotations, as a
single rigid body, about its designed spin axis io a constant acceleration
field are collected below.

X	 + X	 -Y+

V • V ^1	 + t.7 x ( 27^n, t ) + 4^, , n,
n	 n n

tt	
n	

Zn

N

T'n
n-1

Kn] w 0 ' Qnb"n ►

9

-^n ' [Vn't; 	 + V n X (27,^; t ) + 4''2¢.n  	 "kn] "' 09 Qn k, (1w P

tt	 z n	
,

in 
nl tttt + 4o 2 ^n' tj + 91n ( ^ntttt

+ 4 fo 2 g 
n 
tt )

 • R n , Qn"'F n ' (znmf n)

w x (A) X R n
T"	

f V ^nn p dan	 f	 pn d	 d
n 

i 
nn	 n	 ^'n aF	 ^n f

an	 F	 r
n

+	 of	 gn n	 n p 
n
d F n

Fn

(n=1,2,...,N),
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f ^ Rn}c;,gin , ^n^.nd^^n ..

n

+
tll

f

R
n X F1 + 7"X(wXRn)1)+n1 ondor

	

o1: 

1	 gn	 n

n

If

W X	 + u), X (U XW

	

I	 A	
(On, Rn) -^n doF

	

0 
F	

n	 n

n
4

where

f 	 4
	

0F 0n	 I % ( n 7 n 	 Qn	
n

(4.2)

p	 W
n	 n	 n	

kin 	Qn	 to

n
ft , +	 X 14n + :A0 X (wXL + 77 X Cox	 (n-1,2,	 ► N),n	 Td ' Qn t' 'n

9 IN 
(V 
n ' 

k 
d

n	 Ix	 11
n

0 at 0	 +	 I

n	 n

and the reference state parameters are spelled out in (2.1, 2, 3, 4),

CONCLUDING RMARKS

The perturbational liquid motions in the nth cavity are governed by the
boundary value problem displayed In (4.13) and (4.14)- Further meaningful
progress is not possible until a method is devised for solving this differ-
ential system.

For a single frequency excitation and low spin rates, the. problem reduces
to an elliptic partial differential equation with mixed boundary conditions.
This differential system can be solved numerically in a fairly straight-
forward manner. However, this case does not seem too important in most
practical applications.

For a single frequency excitation and high spin rates, the problem
reduces to an hyperbolic partial differential equation with mixed boundary
conditions. Numerically, the solution process of this differential system is
formidable. However, a numerical approach using Green's function appears
promising. This would, of course, require extensive analyses to develop the
computational algorithms.
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Another approach to the general problem is to employ a variational
formulation in conr;anr.tion with the methods of Rayleigh and Ritz. Basi-
cally, the technique depends on being able to represent fin in the form

^n " Fa ^n q n (t),
i	 i	 i

where the ^ni are eigenfunctions of a related, but simpler, boundary value
problem, and the q n i are generalized coordinates to be determined from the
solution of an infinite set of fourt ►i order ordinary differential egvations.
This set of equations is obtained by minimizing the variational integral
with respect to the Independent coordinates q ni. Such a method was used
to arrive at system (3.29). In light of the discontinuous nature of the
problem, this approach should be used with caution.
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