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ABSTRACT

This report describes a set of building-block circuits

which can be used with commercially available microprocessors and

memories to implement fault-tolerant distributed computer systems.

Each building-block circuit is intended for VLSI implementation as

a single chip. Several building blocks and associated processor and

memory chips form a self-checking computer module with self-contained

input output and interfaces to redundant communications buses. Fault

tolerance is achieved by connecting self-checking computer modules into

a redundant network in which backup buses and computer modules are

provided to circumvent failures.

Included in the report is a discussion of the requirer.uta

and design methodology which led to the definition of the building-

block circuits. This is followed by a set of logic designs for three

of the building blocks. These are designs which are being used to

construct a laboratory breadboard of a self-checking computer module.

The logic designs will be modified and improved as the breadboard is

debugged and teeted. Further refined designs will become available

when the breadboard is completed and tested and again, hopefully, when

the VLSI devices are fabricated.
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SUCTION 1

SINVARY AN OVUVIIi

over the last decade, the methodology of fault-tolerant

computing has been developed to increase the reliability of cuter

systems. Fault-tolerant computers have bees designed to contain redun-

dant circuits and, when hardware faults occur, they utilise the rsduv-

dant circuits to continue correct computation. By and large, these

have all been customer-designed computer systems [AVIS 77).

This study was undertaken as part of the XM Very-Large-

Scale-integrated-Circuit Technology Program to define VLSI building-

block circuits which can be used with eomsmrcially available micro-

processors and memories to implement fault-tolerant computer systems.

This approach is taken with the view that a wide range of government

requirements can he satisfied with commercially developed processors.

Thus, the direction of this study is to define the supporting circuits

necensary to utilize existing processors in fault-tolerant configura-

ttons.

The principal result is a determination that a small number

of building-block circuits can be developed which will allow construc-

tion of both centralized and distributed (multi-computer) computer con-

figurations which are fault tolerant. These building blocks consist of

(1) an furor Detecting and Correcting Memory interface Circuit, (2) a

CORE Procensor Checker and Fault-Handling Circuit, (3) a Self-Checking

Programmable Bus-Interface Circuit. and (6) several 1/0 circuits to

perform voting, error checking. and short isolation. The design of the

first three building blocks for a feasibility breadboard are described

in this report. along with the rationale behind their selection.

1.1	 SYSTEM REQUIREMENTS

Reliability is a continuing problem in complex military

systems. The cost of unexpected failures shows up in many ways. includ-

ing reduced operational readiness. and the lar;?i number of personnel

involved in maintenance. Dollar costs are usually difficult to quantify
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because system procurement and costs of ownersbip are usually parcelled
r

Into various areas of respotnsibility. It can be said, bowever, that

costs of ownership often exceed proeuremsst costs in a large number of

major systems.

By increasing testability, maintainability and, in suss

cases, providing automated redundancy managament in the early stages of

a system.design, it is expected that life-cycle costs can be reduced.

This viewpoint advocates moderately Increasing initial hardware costs to	 i

achieve Improved reliability and reduced maintenance during a system's

operational lifetime.

The computers within a system provide the starting point for

automated maintenance. If computer reliability is assured, the com-

puters can be used for (1) subsystem testing and failure diagnosis,

(2) automatically replacing failed subsystems with spare parts, or

(3) where no backup spares are available, modifying on-board processing

to account for the degraded subsystem state. Stated another way, the

computer becomes an automated repairman.

A second area of requirements for fault-tolerant computing

occurs when the cost of computer failure becomes clearly unacceptable.

Digital flight control of low-flying aircraft is a dramatic example.

Although the number of applications of this type is relatively low,

they may be expected to increase as the computer is relied upon more

heavily.

1.2	 BUILDING-BLOCK C(WUTEA REQUIREMMITS

The user of a fault-tolerant building-block computer (FTBBC)

system should be allowed to specify a maintenance interval and the

reliability required over that interval. This has two major implica-

tions. First. the FTBBC configurations must allow the modular addition

of redundant elements so that the saws design, with differing numbers of

spares, can x ,:unumlcally satisfy both short- and long-life requirements.'I
Secondly. the fault detection and recovery mechanisms of the FTBBC must

be nearly perfect. Previous modeling studies have shown that "coverage,"

(thy conditional probability that the system can Implement recovery,
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given that a fault occurs) must approach IOU for lan;-term reliability"
whether or not a fault-tolerant system is periodically maintained

IBM 69) •

In order to be effective, a fault-tolerant computer mwt be

designed to recover from a comprehensive set of faults, i.e., all the

faults that can be reasonably expected to occur. We have attempted to

protect against stuck-at faults on a single chip, most massive failures

In a single chip or module, and most transient faults which create

errors but which are of short duration. We do not expect unrelated

hard faults to occur in different modules simultaneously.

The FTBBC architecture must be amenable to easy maintenance.

Plug-in replacement modules should require a minimum of contact pies and

should not require connectors at high-bandwidth, noise-sensitive points

in the computer. Similarly, the computer should be capable of identify-

ing, during routine maintenance, those modules which must be replaced.

The architecture of the building blocks should be capable of

supporting a wide variety of processor and memory chips, i.e., the

building block designs should not depend upon the peculiar I/O charac-

teristics of any given processor. By initiating all control and I/O

functions with out-of-range memory addresses (memory-mapped I/0), this

processor independence can be achieved.

For the building-block computers to find wide application

they should be consistent with military standardization programs. Thus,

external bus interface circuits in the building block architecture use

MIL-STD 1553A.

1.3	 DESIGN APPROACH

After a study of alternative approaches to the design of

building-block-implemented, fault-tolerant computing systems, the

following architecture was selected. The building-block circuits

being developed are used to assemble commercially available micro-

processors and memories into Self-Checking Computer Modules (SCCM), as
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shown in Figure 1-1. Each SOCK is a small computer with the unusual

property that its hardware to capable of detecting a wide variety of

Internal faults concurrent with normal'(user) program execution. It

can be connected (through a redundant external busing system), together-"

with *that SCCNIs into a redundet network, in which backup SCCEs are
provided to take over for a computer (SCCK) which has failed.

As shown in Figure 1-1, three of the building blocks Inter-

face (1) lccal memory, (2) the external busing system, and (3) local 170

to the processor. These interface building blocks are responsible for

detecting faults in the circuits that they interface to the SCCM's

processor, and faults in their own internal logic. They send fault

Indicator signals to the Core Building Block (Core-BB) if such a fault

is detected.

The Core Building Block compares the outputs of two CPUs

performing identical computations to detect (but not isolate) CPU

faults, and it receives the fault signals from the other building

blocks. It also checks error-detecting codes which are used to detect

errors on the internal busses of the SCCM. The Core is responsible for

disabling the SCCM upon detecting a fault anywhere within it. (An

optional program rollback may be attempted to recover from some transi-

ent faults locally.)

Although the primary means of fault recovery is to use backup

SCCMs to replace a SCCH which has failed, it is possible to.correct some

of the ,most likely faults in a failed SCCM (by an internal reconfigura-

tion) and reuse it. A SCCM can be reconfigured to recover from at

least two local memory faults through use of two spare-bit planes.

Redundant external Bus Interface Building Blocks (BIBB) allow communica-

tion through alternate buses if a bus interface should fail, and redun-

dant I /O Building Blocks can be used within a SCCM. (A design augmenta-

tion currently under consideration, allows one of the two CPUs to be

discarded when a disagreement occurs, and computation to continue with

only one. This is for non-critical applications since CPU fault detec-

tion is no longer available with only one machine.)

1-4
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1.4	 Tog BUUJ)UW-u 	CIRCUITS

The bulUlug-block circuits are briefly described to the
following pategrahe.

1.4.1	 The Mwery-Interface Building Block (MIBB)

This circuit interfaces a set of commercial memory chips to
the local bus within a SCCM. It is capable of detecting single faults

within the wry, effecting replacement of up to two faulty bit planes

with spares, and correcting single bit errors using a (SOC/DBU) Naming

code. It generates and checks parity codes to protect information

transfer on the SCCA internal bus. Special checking circuits are employed

In the MIBB to detect faults in the memory and within the MIBB, and

fault signals are sent to the Core.

1.4.2	 The Core Building Block (Core-BB)

This circuit provides a continuous comparison between two

processors that run.synchronously to detect processor faults. It also

includes parity generation and checking circuits to interface the proc-

essor with the SCCM local bus and to detect faults on that bus. Inter-

nal bus allocation (arbitration) is provided between the CPU and compet-

ing DMA channels in the other building blocks. Also, the Core is respon-

sible for disabling its host SCCM in the presence of faults and, option-

ally, attempting rollback/restart procedures. The Core, like all other

building blocks, contains internal checking circuitry to detect faults

within its own internal logic.

1.4.3	 The Bus-Interface Building Block (BIBB)

This circuit can be microprogrammed to perform the functions

of either a controller or terminal (adaptor) to an external 1553A bus.

Several BIBBs can be used within an SCCM to provide communications over

several redundant external buses.

The BIBB provides the hardware interface between an external

bus and the internal bus of its host SCCM. Internal fault-detecting

circuitry is provided within the BIBB, and the parity and status

1-6



massages employed in 1553A are used to verify proper message transmissiom

and reception.

1.4.4	 I/O Building Bloch (1088)

A discussion is included later is this report on the various

circuits required to provide fault-detection and redundancy in the

interfaces between an SCCM and its associated peripheral devices.

1.5	 SCCN PROPERTIES

A "typical" SCCM would consist of the following integrated

circuits: 32 commercial RAN chips, 2 commercial microprocessors,

I MIBB, 1 Core, 3 BIBBs, two IOBBs, and several additional HSI cir-

cuits. A previous report has indicated that its characteristics would

approximate those listed below if the building blocks were implemented

as VLSI devices. (RENN 78a)

Power 8W

Weight 1.4 lb*

Volume 23 in. 3*

Cost $13,600*

*Not including power supply.

The cost represents high reliability production, (e.g.,

MIL-SfD 883B) and could be greatly reduced in large quantities. Fig-

ure 1-2 is an estimate of the reliability of a single SCCM, a SCCM

backed up by a standby spare, and, for comparison purposes, a non-

redundant computer made with similar technology. A simple combinational

model was used (see RENN 78a) and it was assumed that a 10,000-gate

VLSI device has a failure rate of one failure per million hours. An

SCCM costs approximately 50% more in power, weight, volume, and dollars

than an equivalent non-redundant machine; but since it can tolerate

internal memory faults, its inherent reliability is 2-3 times greater

(over the period being modeled). A pair of SCCMs can provide fully

fault-tolerant operation with very much improved reliability.

1-7
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Figure 1-2. Reliability Improvement Using SCCMs

1.6	 THE DISTRIBUTED COMPUTER (SCCM) ARCHITECTURE

An architecture has been selected for implementing fault-

tolerant distributed computing networks made up of SCCMs. The selected

architecture consists of a number of computers (SCCMs) performing

separate tasks, and which are connected by a redundant multiple bus

structure, as shown in Figure 1-3.

There are two classes of SCCMs used within this network,

designated Terminal Modules and High-l-evel modules. Each Terminal

Module is embedded within a particular subsystem and performs local

control and data gathering tasks. The High-Level computer modules con-

trol the functioning of various terminal modules by controlling an

intercommunications bus. Using the bus, a High-Level SCCM can move data

directly into or out of memories of other computers and thus broadcast

commands or gather data for its various processing functious.

In this configuration, several techniques are employed to

achieve fault tolerance. First, all of the computers are self-checking

(SCCMs) and are designed to detect their own internal faults.
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1.7	 SUMMARY

This phase of the building-block. Fault-Tolerant Co"utleg

Study has two intended results. The first is the design of three

building block circuits ,. (1) the MIBB, (2) the Core. and (3) the SIBS.

The second is the verification of the building-block designs by con-

structing a breadboard, consisting of two SCCMs employed as high-level

modules. This can be done by injecting simulated faults into one SCCM

and verifying that the fault is detected, and the other SCCM recovers

correct computations.

This report describes the design of the building-block

circuits. The designs presented herein have been used for the initial

breadboard layout, and will be modified as debugging progresses.

	

1.8	 REPORT OUTLINE

The following two sections (2 and 3) provide background

material on the methodology of fault tolerance, and the specific assump-

tions on technology and application requirements which led to the

selection of the building-block SCCM architecture described in this

report. The reader who is interested primarily in design details can

skip to Section 4, which provides more detailed descriptions of the

individual building-block circuits.
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Tq8 Ot>ngCF.>!TS OF FAULT-TOLWM COWUTW

The purpose of this section is twofold:

(1) to provide the overall context of fault-tolerant

computing as a discipline of computer science and

engineering within which the specific results of this

study are to be interpreted; and

I (2) to supply a self-contained complete introduction to

fault-tolerant computer systems for readers who have

not encountered this aspect of computer system design

in the past.

A fault is an abnormal condition that appears during the

operation of an information processing system. Its manifestation may

cause a departure from the expected behavior and force the system into

an undesirable (error) state or sequence of states. The arrival at an

error state, in turn, leads to a partial or complete failure of the

system to execute the specified function, unless provisions exist to

cause a return to the expected behavior. Causes of faults are either

adverse natural phenomena or human mistakes. Because of their disrup-

tive effect on system operation, the avoidance and/or tolerance of

faults are major problem areas in contemporary information-processing

activities, including the design, analysis, management, and use of

information systems

The word "fault" in the subsequent discussion means "an

abnormal condition of hardware, programs, or data that may cause a

deviation of the information-processing behavior of some part of the

given system from the expected sequence," and "system" comprises all

hardware elements, programs and microprograms, input signals, stored

information, inter-system communication, and man-machine interaction

I	 functions. All these parts of the system have to b^_ considered because

In practice they all are affected by faults. As a consequence, the

fault problem transcends the traditional "hardware-software" applica-

tions boundaries and become: a global problem of information processing.
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The word "expected" is preferred to the word "correct" in

the description of fault-free behavior because the question of correct

behavior, as it has been specified by the originator or user of the

system, exceeds the scope of fault-tolerance considerations. For example,

the choice of an unsuitable algorithm by the user will lead to expected

behavior that is not correct with respect to the user's ultimate goal.

The various types of faults that are encountered during ays-

tem operation fall into two fundamentally distinct classes: physical

faults and man-made faults. Physical faults are faults caused by

adverse natural phenomena, such as failures of hardware components, and

physical interference originating in the environment. Man-made faults

are faults that result from human mistakes, including less than perfect

specification, design, production (assembly), and man/machine

interaction.

Fault-tolerance is a property of the entire system that

allows it to continue the expected behavior regardless of the appearance

of certain (explicitly specified) classes of faults (physical, man-made

or both) that would otherwise force the system into an error state. The

most commonly accepted notion of fault-tolerance refers to phyztcal

faults only. The inclusion of man-made faults is a recent generaliza-

tion that offers a major challenge to investigators and designers of

information processing systems.

A complete discussion of fault-tolerance must deal with its

three fundamental aspects:

(1) The pathology of faults, including study of their

causes, classification according to their immediate

manifestations, and characterization according to the

symptoms (errors) observable in system behavior.

(2) The implementation of tolerance, encompassing the

three basic functions of masking, detection, and

recovery.

i
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(3) The modeling, analysis, said evaluation (ummursment)

of fault-tolerance by means of methowtical techniques,

simulation, and experimentation with implemented

system.

The goals of this section are: (a) to present a unified

view of the many aspects of fault-tolerance; (b) to identify some

obstacles that main to be overcome; and (e) to discuss the prospects

for future advances in this field. Fault-tolerance with respect to

both physical and man-made faults is considered, with emphasis on the

more developed field of tolerating physical faults. The current state-

of-the-art in the design and application of fault-tolerant systems is

illustrated by examples of existing systems and innovative proposals.

The viewpoint presented here is that the purpose of fault-

tolerance is to provide the means for the idgalized (fault-frea)

abstract logical structure of a computing system to function success-

fully while embodied in its fault-susceptible implementation. Conse-

quently, fault-tolerance attains full significance only when it is

Incorporated and utilized as an integral function of an information

processing system. Outside of this system context, it remains, at best,

a potentially applicable exercise for a researcher, and at worst, a

tool to support naive or irresponsible promises of near-perfect

operation.

2.1	 APPROACHES TO THE FAULT PROBLEM

While conceptually the digital computer is a logical system

for the storage and manipulation of symbols, in practice it is imple-

mented using physical components and exists in an environment in which

it is affected by various natural phenomena. Some phenomena, such as

physical changes in 0e components and adverse effects of the environ-

ment, disrupt the operation as it is specified by the designers and

programmers and lead to deviations from the expected behavior. These

deviations have variously been called failures, faults, errors, inter-

mittents, glitches, crashes, etc. They occur because we attempt to

t
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carry out abstract symbol manipulation operations in a physical world

which offers less than perfect cots and less than completely

benign environments.

The problems of avoiding these phenomena, and of recovering

from their effects after they have occurted, hove been of interest to the

entire community of computer theorists, designers, builders, analysts,

and users ever since the first calculating devices were devised. The

first pioneers who attempted to implement their ideas were simply over-

whelmed by the adversity of the physical world, such as in the case of

Babbage's Calculating Engine.

The invention and refinement of electromagnetic relays,

vacuum tubes, delay-line and cathode-ray tube storage, paper tapr, and
6

punched cards finally made machine computing feasible in the 1940'x.

However, the history of.the early d..ys of machine computing is filled

with accounts of the continuing str,iggle against the imperfections of

components and hostility of environments. Ingenious defenses against

faults, such as duplicate units, error-detecting codes, etc., are found

in most early digital computers. [IRE 531, [EJCC 531.

The advent of the transistor and the magnetic-core storage

element in the 1950's brought about a major increase in component reli-

ability and at least temporarily relegated the concern with system

reliability into the hands of component experts, and away from the main

concerns of system designers and users.

The problem of reliability reappeared as a major issue

again in the early 1960's when the applications of computers expanded

into the areas of space exploration, real-time system control, and

especially manned space-flight, in which the lives of the crew literally

depended on successful computer operation.

The reliability of components has continued to improve

since that time. However, the expanding range of applications and the

growing complexity of systems has kept the reliability problem in the

foreground and has led to the evolution of the concept of fault-tolerant

computing, which is the designer's and the programmer's method to pro-

vide reliable computer operation while using less than perfect components
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	 in less than ideal environments (AVIZ 75a). The moor part of this

section considers the tolerance of physical faults; the issue of mss-

made faults is addressed in Section 2.5

2.1.1

	

	 Tolerance and Avoidance: Complementary Approaches to the

Fault Problem

A look at computers of the present and of the Immediate past

shows that many systems have either very few fault-tolerance features,

or none at n11. In these cases, reliability with respect to physical

faults is soumnt by means of the fault-avoidance approach (also called

"fault-intolerance" in some papers) in which the reliability of comput-

ing is assured by a priori elimination of the causes of faults. The

elimination takes place before regular use begins, and the resources

that are allocated to attain zeliability are spent on perfecting the

system prior to its field use. Redundancy is not employed, and all

parts of the system must function correctly at all times. Since in.

practice it has not been possible to assure the complete a priori

elimination of all causes of faults, the goal of fault-avoidance is to

reduce the unreliability (expressed as the probability of system failure

before the end of a specified time interval) cf the system to an accept-

ably low value. To supplement this approach, manual maintenance proce-

dures are devised which return the system to an operating condition

after a failure. The cost of providing maintenance personnel and the

cost of the disruption and delay of computing also are parts of the

overall cost of using the fault-avoidance approach. The procedures

which have led to the attainment of reliable systems using this approach

are:

(1) Acquisition of the most reliable components and their

testing under vai:3us conditions within the given cost

	

>	 and performance cov it r.iints.

(2) Use of thoroughly refined techniques for the Intercon-

nection of components and assembly of subsystems.

(3) Packaging and shielding of the hardware to screen out

expected forams of external interference.
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(4) Carrying out of comprehensive testing of the complete

system prior to its use.

Once the design has been rompleted, a quantitative predic-

tion of system reliability is made using known or predicted failure

rates for the components and interconnections. in a "purely" fault-

avoiding (i.e., nouredundant) design, the probability of fault-free

hardware operation is equated to the probability of correct program

execution. Such a design is characterized by the decision to invest all

the reliability resources into high-reliability com 4 t.&ents and refine-

ment of assembly, packaging, and testing techniques. Occasional system

failures are accepted as a necessary evil, and manual maintenance is

provided for their correction. To facilitate maintenance, some built-in

error detection, diagnosis, and retry techniques are provided. This is

the most common current practice in computer system design; the trend is

toward an increasing number ut built-in aids for the maintenance

engineer.

The traditional fault-avoidance approach of diagnosis-aided

manual repair, however., ha:. proved to be an insufficient solution in

many cases because of at least three reasons: the unacceptability of

the delays and interruptions of real-time programs (air traffic control,

process control, etc.) caused by manual repair action; the inaccessi-

bility of some systems (space, undersea, etc.) to manual repair; and

the unacceptably high cost of lost time due to manual maintenance in

many installations. The direct dependence of human lives on some

computer-controlled operations (air traffic control, manned spaceflight,

etc.) has added a psychological reason to object to the fault-avoidance

approach: although only one system in a million is expected to fail in

a given time interval, all users of the entire million systems are sub-

ject to the anticipation that they may be involved in this failure.

An alternate approach which alleviates most of the above

shortcomings of the traditional fault-avoidance approach is offered by

fault-tolerance. In this approach the reliability of computing is

assured by the use of protective redundancy. Faults are expected to be

present and to cause errors during the computing process, but their

effects are automatically counteracted by the redundancy. Reliable
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computing is made possible despite certain classes of hardware failures,

external interface with computer operation, and perhaps even some man-

made faults in hardware and software. Part of the resources allocated

to attain reliability are spent on protective redundancy. The redundant

parts of the system (both hardware and software) either take part in the

computing process or are present in a standby condition, ready to act

automatically to preserve its undisrupted continuation. This contrasts

with the manual maintenance procedures which are invoked after the

computing process has been disrupted, and the system remains "down" for

the duration of the maintenance period.

It is evident that the two approaches are complementary and

that the resources allocated to attain the required reliability of com-

puting may be divided between fault-tolerance and fault-avoidance.

Experience and analysis both indicate that P balanced allocation of 	 •

resources between the two approaches is most likely to yield the highest

reliability of computing. Fault-tolerance does not entirely eliminate

the need for reliable components; instead, it offers the option to

allocate part of the reliability resources to the inclusion of redun-

dancy. One reason for the use of a fault-tolerant design is to achieve

a reliability or availability prediction that cannot be attained by the
t

purely fault-avoiding design. A second reason may be the attainment of

a reliability (or availability) prediction that matches the purely

fault-avoiding design at a lower overall implementation cost. A third

reason is the psychological support to the users who know that provisi-

ons have been made to handle faults automatically as a regular part of

the computing process. The fault-avoidance approach clearly was the

dominant choice in the 1950's and 1960'x. In recent years, the fault-

tolerance approach has been making significant inroads with respect to

physical faults. Its application with respect to man-made faults has

remained very limited.

2.1.2	 Classes of Physical Faults

Physical faults are caused by three classes of phenomena

that affect the hardware of the system during execution of programs.

They are permanent failures of hardware components, temporary
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malfunctions of components, 'and external interference with system opera.

tion. There are three useful dimensions for the classification of

physical faults:

(1) Durations transient vs. permanent

(2) Extent: local vs. distributed

(3) Value: determinate vs. indeterminate

Transients_ faults are faults of limited duration, caused

either by temporary malfunctions of components or by external interfer-

ence. The characterisation of a transient fault must include a

"maximum duration" parameter; faults that last longer will be inter-

preted as permanent by recovery algorithms. Other characteristics are

the arrival model and the duration of transients ]AVIZ 75a]. Permanent

faults are caused by irreversible failures of components. They are

characterized by the failure rate parameter; often two or more failure

rates are used for the same components under different condit: 	 such

as power-on and power-off states. The following classifications

according to extent and according to value are applicable to both tran-

sient and permanent faults.

The extent of a fault describes how many logic variables in

the hardware are simultaneously affected by the fault which is due to

one failure phenomenon. Local (single) faults are those that affect

only single logic variables, while distributed (related multiple) faults

are those that affect two or more variables, one module, or an entire

system. The physical proximity of logic elements in contemporary MSI

and LSI circuitry has made distributed faults much more likely than in

the discrete component designs of the past. Distributed faults are

also caused by external interference and by single failures of some

critical elements in a computer system, i.e., clocks, power supplies,

switches used for reconfiguration, etc.

r

s
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The value of a fault is determinate when the logic values

affected by the fault assume a constant value ("stuck on 0" or "stuck

on 1") throughout its entire duration. The fault is indeterminate when

it varies between 11 0" and "1" throughout the duration of the fault,

but not in accord with design specifications. The determinacy of a
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fault depends on the failure mechanism. For example, drift of c4mponent

values or "shorting together" of two signals are likely to cause indetdtr-

minate faults.

It is important to note that the description of fault extant

and fault value applies at the origin of the fault; that is, at the point

at which the failure phenomenon has actually taken place. The fault-

caused introduction of one or more incorrect logic values into the com-

^t
	 puting process often leads to more extensive fault symptoms farther away

(in space and/or in time) from the point of failure. At other times, the

presence of incorrect logic value is masked by other (correct) logic

variables and no symptoms at all appear at more remote points.. Confu-

sion and ambiguity are avoided when the term "fault" is restricted to

the change in logic variable(s) at the point of the,physical hardware

failure. The fault-caused changes of logic variables which are observed

farther away on the outputs of correctly functioning logic elements will

be called "errors." This choice of terms describes the following cause-

effect sequence:

t	 (1) The failure; which is a physical phenomenon, causes a

fault, which is a change of logic variable(s) at the

point of failure.

(2) The fault supplies incorrect input(s) to the computing

process and may cause an error to be produced by sub-

sequent operations of failure-free logic circuits.

The number of points that can be observed for the purpose of

fault detection is limited because integrated circuits are internally

complex, and have relatively few outputs. Digital-logic simulation pro-

grams which analyze the behavior of faulty logic circuits and predict

the errors that will appear on the outputs (for a given class of faults)

are essential tools for the generation of fault-detection tests

[SZYG 16). An illustration of a simulation and analysis program to

analyze the behavior of faulty circuits is the Logic Analyzer for Main-

tenance Planning (LAt1P) system [CHAN 741. In addition, LAMP also per-

forms logic design verification, generates fault-detection tests, evalu-

ates diagnostics, and produces data for trouble - location manuals. LAMP
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examplifiss'-the current trend toward isdtipurpose simulation systems in

digital system design.

2.2	 YOLEBIl E OF PHYSICAL FAMTS

Fault-tolerance functions in computer systems are not

necessary (redundant' as long as faults do not occur, and they can be

deleted from a perfectly fault-free system: without affecting its per-

- formance. In fault-susceptible systems they are implemented by the

means of protective redundancy, which becomes effective when faults

occur.

The implementation of fault-tolerance may be discussed from

two viewpoints: according to the functions being performed, and accord-

ing to the forms of redundancy that are used to provide these functions.

From the functional viewpoint we distinguish three classes of fault-

tolerance functions: masking, detection and recovery. Each class con-

tams several distinct approaches to implementation which will be dia-

cussed in this section. The other viewpoint distinguishes different

foraks of protective redundancy. The redundancy techniques have been

developed to enable three different forms: hardware (additional compo-

nents), software (special programs), and time (repetition of operations).

In this discussion, the functional classification is con-

sidered to be most suitable for the exposition of implementation tech-

niques. Each function is discussed separately, outlining the redundancy

techniques that are available for its implementation.

2.2.1	 Fault Mas'•ing

The masking function employs redundancy to assure that the

effect of a fault is completely contained within a system module. As

long as the redundancy is not exhausted, the fault is concealed within

the module and no symptoms whatsoever appear on its outputs. When the

redundancy is exhausted or overwhelmed by a fault, module failure

results. Separate detection and recovery functions are not identifiable

when the module is viewed from outside. Because of this, masking has
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been called a static redundancy technique [MR 68) and has been used in

the design of various structures, e.g., airplane frames, bridges, etc.,

prior to the appearance of digital systems. Masking is also thought to

be the form of fault-tolerance used by the nervous systems of living

organisms [VONN 561.

A key question in masking ii choice of the size of the

module within which the masking occurs. The smallest module is a set of

individual hardware components (e.g., diodes, relay contacts, connec-

tions, etc.). On the other extreme, a module may be as large as an

entire computing system, in which case the module terminals are the out-

put devices. Theoretical analyses of masking usually do not specify the

module size; it depends on the feasibility of implementation.

In digital systems, masking is usually accomplished by hard-

ware redundancy, i.e., by the taplication of hardware elements. The

fundamental theoretical analysis of masking is due to von Neumann

[VONN 561, and Moore and Shannon [MOOR 56]. Its early appearance can be

attributed to the previous use of masking in other disciplines of engi-

neering. The techniques of introducing hardware redundancy have been

classified into two categories: static and dynamic [SHOR 681. The

static method implements the masking function, since the redundant

components contain the effect of hardware failures within a given hard-

ware module, and the outputs of the module remain unaffected as long as

the redundancy is effective. The static technique is applicable against

both transient and permanent faults. The redundant replicas of an

element are permanently connected and powered; therefore, they provide

fault masking instantaneously and automatically. However, if the redun-

dancy is exhausted, or if the fault is not susceptible to masking and

causes an error, a delayed recovery is not provided. In practice, we

find that two forms of static redundancy have been applied in U.S. spare

program computers: replication of individual electronic components, and

triple modular redundancy (TMR) with voting [COOP 761. Several other

forms have been studied but were not applied either because of their
excessive cost or because they required practically unrealizable special
components [SHOR 681.
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The use of static hardware redundancy is based on the assump-

tion that failures of the redundant replicas are independent. For this

reason, use of static redundancy is difficult to justify within inte-

grated circuit packages, in which many failure phenomena are likely to

affect several adjacent components. Other disadvantages include the

cost of massive replication (3, 4 or more times the number of original

system elements), the need to assume independent failures of the repli-

cas, and the absence of a warning when a redundant module finally fails.

Thus, masking is close to fault avoidance: while it may postpone the

time of failure, the module still fails suddenly and irrecoverably when

its internal redundancy is exhausted.

Regardless of these shortcomings, masking still may find

application because of its conceptual simplicity and its instant action,

entirely .ransparent to the user. A promising area of application is in

protecting a small "hard core" of a system for which other approaches

are extremely costly or altogether impractical. Another area is the

application in non-electrical, discrete-component technologies, such as

fluidic logic for high-temperature or extreme radiation environments.

2.2.2	 Fault Detection

The detection function is the starting point of all fault-

tolerance implementations except for these that depend exclusively on

masking. The most sophisticated recovery methods are only as good as

the fault detection scheme which initiates their operation. For the

purpose of this discussion we say that fault detection has taken place

at the time instant at which a fault signal becomes available to be used

by a recovery algorithm. All subsequent fault-location actions are con-

sidered to be part of the recovery algorithm. The existence of a false

fault signal is also possible. This is a false alarm that is due to a

malfunction of the fault detection scheme itself.

Fault detection is implemented by means of all the hardware,

software and repetition ( time) methods that generate the initial fault

signal. All these methods may be conveniently grouped according to the
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time of their application with respect to the normal operation of the

system as follows:

(1) Initialial test_, which takes place prior to normal use

and serves to identify faults hardware elements con-

twining imperfections introduced during the manufac-

turing or assembly processes.

(2) Concurrent (on-line) detection, which takes place

simultaneously with normal operation of the system.

(3) Scheduled (off-line) detection, which takes place when

normal operation is temporarily interrupted.

(4) Redundancy testing, which serves to verify that the

various forms of protective redundancy are themselves

fault-free, and takes place either concurrently or at

scheduled intervals.

Initial testing follows the production of individual cir-

cuits and serves to eliminate the circuits that contain manufacturing

defects [BREU 76). Computer programs for test generation have become

an essential tool to facilitate initial testing [SZYG 761, [CHAN 741.

The great internal complexity and a relatively small number of input/

output points in contemporary LSI circuits (e.g., microprocessors,

memories, etc.) have made exhaustive logic-level testing, in many cases

economically unfeasible. Recent research has emphasized probabilistic

approaches [PARK 761 and combined logic and functional testing [HCPH 761.

Initial testing represents a significant part of the total cost of digi-

tal circuits and is likely to remain a high-priority research problem

for the foreseeable future.

Concurrent (on-line) fault detection during system operation

is implemented by means of special hardware or software that operates

concurrently with the regular programs of the system. An important

advantage or concurrent detection is that recovery can be initiated

before fault-caused errors can cause extensive disruption	 programs or

damage to the data. Hardware methods for concurrent detection have been
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	 used since the first generation of computers. They include error-

detecting codes (parity, etc.) [AVIZ 71a), [DOWN 64), duplication and

comparison, (DOWN 641 disagreement detectors with majority voters,

[ANDS 671 special circuits to monitor certain critical elements (clocks,

power supplies, memory write operation circuits, etc.), [DOWN 641

machine status and completion signals, [AVIZ 71a) self-checking logic

circuits, [CART 741 and checksumming, timers, and built-in test equipment

of various types.

Software methods for concurrent detection either employ the

concurrent execution of two (or more) programs, or they consist of spe-

cial features interwoven with the single program being executed. In

the case of two or more identical programs using separate processors

and/or multiple storage in separate memories, a comparison is accom-

plished by a programmed exchange of results [WENS 761 or checksums,

[SKLA 761 rather than by hardware comparators. An alternative is to

use a dedicated subsystem (e.g., a "maintenance" minicomputer) which

executes monitoring programs to observe the operation of the remaining

parts of the system. Fault detection features that can be interwoven

with a single program include the use of passwords, acknowledgments

("handshakes"), checksumming, reasonableness checks on results, pro-

grammed "watchdog" timers, etc. Compared to hardware methods, fault-

detection by software is less prompt and more susceptible to disruption

by the fault itself. It is used very widely because it ran be super-

imposed relatively easily on an already existing hardware system.

Scheduled (off-line) fault detection is implemented by means

of software and requires the interruption of current programs in order

to test for the presence of faults. The presence of errors caused by

transient faults can be detected by repeating the execution of the same

prugr,,:, (or a program segment) and comparing the results. The detection

of permanent faults which may have occurred since the last test period

requires the running of diagnostic programs or microprograms [BREU 761,

DDOWN 641, [RAMA 72]. In principle they are quite similar to the pro-

grams for initial testing. The main differences are: time for testing

is usually more strictly limited, testing is executed by the system
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itself rather than by another computer= and an interconnected assemblage

of various circuits must be tested, rather than one circuit at a tins.

A "bootstrap" approach is very useful, in which a small part of the

system is tested first, and then the tested part is used to run further

tests on other parts, etc. Microdiagoostice have very good resolution

and are especially suitable for this approach (RAMA 72). Modern systems

also frequently contain special hardware features (e.g., test points)

which facilitate diagnostics (CART 64). Although the present discussion

deals with use of diagnostics and microdiagnostics for initial fault

detection, we must note that they also often serve to locate detected

faults to within a replaceable or discardable module as part of the

recovery algorithm.

Redundancy testing is a function that is specifically needed

by the fault-tolerance features of a system. Its purpose is to verify

that these features will be ready to use when a fault occurs. An

especially important aspect is to test that various fault signals are

ready to act, i.e., that they are not "stuck" in the "no-fault" state.

Self-checking logic [CART 741 and periodic schedule tests of fault sig-

nals [CONN 721 are suitable here. A second aspect is the checkout of

redundant parts of the system (e.g., standby spares, copies used for

masking, etc.). While diagnosis programs are suitable for systems with

standby spares [AVIZ 71a], the systems with masking are much more diffi-

cult to check out, especially those in which masking is at the component

level (COOP 761.

2.2.3	 Recovery

The recovery algorithm comprises all actions that are ini-

tiated by the arrival of a fault signal during normal operation and are

concluded by the resumption of normal operation (possibly in a degraded

mode), by a systematic shutdown of the system, or by system failure.	 I

The most fundamental difference between various recovery

algorithms is whether interaction with a human maintenance operator is

or is not required as part of the recovery algorithm. Recovery

algorithms that do not require human decision making are automatic; all
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other algorithms are _get_ 11d, although they may contain

extensive automatic (programmed) sequences. An automatic recovery

algorithm may make use of off-line manual repair which takes place later,

as long as resumption of normal operation does not depend on manual

intervention. Automatic recovery algorithms are further classifiable

(according to the state of the system after recovery has been completed)

into three classes: full recovery, degraded recovery, and safe shutdown.

Full recovery means the return of the system (within allowed

time limits) to a set of conditions that existed before the fault

occurred [AVIZ 71&1. Both the hardware and software possess the same

computing capacity as before. Failed hardware modules are replaced by

spares. Damaged information (programs and data) are returned to a known

good state that existed prior to the fault.

Degraded recover (often called "graceful degradation," or

"failsoft operation") returns the system to a fault-free state, but with

a reduced computing capacity 1BEUS 69). This means that some hardware

elements have been discarded without replacement, some programs and/or

data have been lost, or some functions have taken longer than the

allowed time. This approach may be called "partial fault-tolerance,"

since recovery is not 1002 successful with respect to the set of pre-

fault conditions. Various "cold start" procedures belong to this

category.

Safe shutdown (also called "fail-safe" operation) is the

limiting case for degraded recovery. It is carried out when the remain-

ing computing capacity (if any) is below the minimum acceptable thresh-

old. The goals of shutdown are: to avoid damage to remaining stored

information and good system elements; to cease interaction with other

systems and/or human users in a specified orderly fashion; and to

deliver shutdown messages and diagnostic information to designated sys-

tems, users, or maintenance specialists.

Full recovery, degraded recovery, and safe shutdown all

require certain subsidiary functions which follow fault detection. They

arc: fault identification and location, error correction in programs

A
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and data, replacement or exclusion of permanently failed elements, and

recording of the observations and actions taken thus far. The fiaaal

r
step is either a restart of normal operations, or the completion of the

s1';c'^+a sequence. Both hardware and software techniques have been

dv!• ied to implement these functions. They are discussed in more detail

in the following section.

2.3	 FAULT-TOLERANT SYSTEMS

The ultimate proof of the effectiveness of fault-tolerance

techniques is found in the performance of existing systems. For the con-

venience of discussion, we make the distinction between fully fault-

tolerant (or self-repairing) and msnually-controlled systemq with fault-

tolerance features. The former complete their recovery actions without

the participation of a maintenance specialist, while the latter depend	 •

on human decision making as part of the recovery sequence. These

decisions may take place at various stages of the sequence, from the

initiation of diagnostics to the operation of the switch which discon-

nects a failed part of the system.

The fully fault-tolerant systems may be further classified 	 g

according to the availability of external ("off-line") repair. In

closed systems repair is not available, and the system inevitably fails

after the redundancy resources have been exhausted. Closed systems are

usually found in space applications [COOP 761, [AV1Z 71aj, [ CONN 72).

In repairable systems, failed parts are automatically identified and

excluded from further participation in computing. They are then

replaced by an off- line repair action. System failures usually occur

either because of imperfect fault detection and recovery algorithms,

or because of catastrophic faults (i.e., faults that cannot be handled

by the recovery procedures that were provided). A leas frequent cause

of system failure is exhaustion of redundancy, which occurs when faults

'

	

	 occur faster than the repair pr, ,cedure can handle them. Very prominent

examples of repairable systems are the several models of the ESS tole-

phone switching systems [DOWN 641. [BEUS 691.
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Finally, fault-tolerance systems may be fixed-capacity or

degradable. The former are'eousidered failed if a single specified

capacity cannot be maintained, while the latter are allowed to go to one

or more configurations of lesser capacity before the system is shut

down.

2.3.1	 Hardware-Controlled Recovery Systems

Another classification of fault-tolerant systems may be based

on the implementation of the recovery algorithm. Hardware-controlled

systems have dedicated hardware which collects fault indications and ini-

tiates recovery, while software-controlled systems depend on special

programs to interpret fault indications and to carry out the automatic

recovery procedures. The hardware-controlled recovery approach depends

on special hardware to carry out fault detection and to initiate the

recovery procedures. After the existence of a properly functioning

software system has been assured, the completion of recovery is usually

transferred to software control. It is evident that further software

systems may be superimposed on the hardware-controlled design, leading

to a multilevel recovery procedure. A special case of hardware-

controlled recovery is found in statically-redundant systems in which

faults are masked by redundant hardware, and thus remain totally invisi-

ble to the software. Two examples of such systems are the OAO data pro-

cessor which used component redundancy and the CPU of the SATURN V

guidance computer, which used TMR protection (COOP 761, [ANDS 671.

Probably the earliest use of THR (triplication and voting) is found in

the SAW computer, designed by A. Svoboda in 1950-53 [OBLO 621. SAPO

also possesses several other fault-tolerance features, including dupli-

cation, parity checking, and retry. A separate software-controlled

recovery system is needed in statically-redundant systems if they are to

continue operating af^er the first fault escapes the masking effect and

affect s the software.

Dynamically redundant systems with hardware control usually

depend on a dedicated hardware module that gathers fault signal-4 and

Initiates recovery. Different urges of duplexing and hardware-controlled
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switchover techniques are found in the msmory, power supply, and peri-

pheral units of the SATURN V guidance computer in combination with a

TMR-protected aerial CPU unit (ANDE 671. Separate fault-detection and

switchover-control units were used for every functional unit. Probably

the first operational computer with fully hardware-controlled dynamic

redundancy was the experimental JPL-STAR computer (AVIZ 71a). Intended

for self-contained multiyear space missions, this computer employs a

special Test-And-Repair-Processor (TARP) module to control recovery and

self-repair. Software assijtance is invoked only to perform memory

copying an4 to resume normal operation after self-repair. The French

HECRA computer is another early experimental design IMAIS 711. A few

other hardware-controlled system designs that have not reached operation

have been described in recent literature (AVIZ 75a1, [CONN 721. An

interesting recent experiment is the C.vmp multiprocessor, which can

operate in a fault-tolerant mode as a TMR confidaration of DEC LSI-11

computers [SIEW 771.

The principal advantage of hardware-controlled recovery sys-

tems lies :n their independence of the operation of any software immedi-

ately after the fault has occurred. The recovery process ie transferred

to software only after its ability to operate has been assured. The

relatively late appearance of such systems may be attributed to the need

to introduce the recovery module into the design at its inception,

thereby requiring an early commitment to the hardware-controlled

approach.

2.3.2	 Software-Controlled Recovery Systems

The software-controlled recovery systers depend on special

programs to initiate the recovery action upon the detection of a fault.

Fault signals are obtained by both hardware and software methods; for

example, parity checkers, comparators, power- level' nonitors, watchdog,

timers. teat programs, reasonableness checks, et,-. The main limitation

of these systems is the need for the recovery s.) , tware to remain "pera-

t ional in the presenc e of faults. since recovery cannot othVrwi -;v hu

initiated. A significant advantage of the softwarv-controlled aj,proach

'-1,)



Is that existing "off-the-shelf" hardware system nodules may be used to

assemble fault-tolerant organisations. These modules contain various

forms of hardware fault detection, which usually are supplemented by

further software methods. For this reason software-controlled systems

appeared earlier and are currently being used in numerous applications

requiring high reliability and availability. While every modern operat-

ing system incorporates soma recovery features, this report is limited

to selected illustrations of historically important and advanced system.

E

	

	 An important early design of the 1950's that had complete

duplication and extensive recovery provisions was the SAGE system

(EVER 571. The IBM System/360 architecture contains very complete

serviceability provisions for multi-system operation in order to attain

hig'a availability, reconfiguration, and failsoft operation (CART 64).

An early example of a multi-system which includes further extensions -it

the System/360 design is the IBM 9020 multiprocessing system fv ► air

traffic control applications (IBM 67). Noteworthy are the operational

error analysis program and the diagnostic monitor of the 9020. An

Interesting illustration of extensive use of backup storage and dynamic

reconfiguration in a general-purpose time-shared system is found in the

HIT Multics System (CORE 721. The Pluribus is a minicomputer/

multiprocessor system (with extensive fault-tolerance provisions).

which serves as a switching node in the ARPA Network (KATS 781. The

TANDEM system is a recently announced commercial multiprocessor system

with software-controlled fault-tolerance (TAND 76).

Another direction of software-controlled system development

Is found in aerospace applications. Representative illustrations of

this approach are the SIFT design, (WENS 781 the C.S. Draper Laboratory

Symmetric Multiprocessor (NOPK 781 and the COPRA system. (MERA 761 aii

of which are in design and development stages. An already operational

four-computer fault-tolerant complex is the U.S. Space Shuttle computer

system (COOP 761. (SKLA 76).

One other area of application which requires fault-tolerant

operation and very high availability for several years of continuous

operation is the control of electronic telephone switching systems.
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These systems usually employ manual repair by replacement of a failed

part as the last (off-line) step of the recovery procedure, while main-

taining normal operation by means of the remaining system modules. A

well-documented illustration is found in the Electronic Switching Sys-

'	 terns (ESS) of Bell Telephone Laboratories. The ESS designs use several

hardware techniques (duplication, matching, error codes, and functional

monitors) and special software (check routines, diagnostics, audits),

as well as software and hardware emergency procedures when normal

recovery action does not succeed [TOYW 78), [BELTS 69). The Plessey Sys-

tem 250 is a fault-tolerant multiprocessor system for switching system

control [NAME 72].

2.3.3	 Fault-Tolerant S::bsystems

Besides the complete systems discussed above, many efforts

have been carried out to provide fault-tolerance for functional subsys-

tems, which then can be assembled to fora a fault-tolerant system. Xhis

is especially true for secondary and mass storage which has been charac-

terized by relatively low reliability in the past. Representative error

coding applications include the use of codes for error control in data

communications, magnetic tape units, disc files, primary random access

storage, and a photo-digital mass store [TANG 69]. Single-error correct-

ing codes are used in the control storage of the No. 1 ESS [DOWN 641,

the main and control storage of IBM System/370 computers, and several

other semiconductor memory systems. Error correcting codes have proven

to be a very effective method for fault-tolerance in the storage medium,

and the remaining problems exist in protection of the memory access and

readout circuitry. These have been investigated in an experimental

design [CART 761.

Recent studies have considered the problem of fault-tolerance

in associative memories and processors [PARR 74]. In general, processor

fault-tolerance has been provided by duplication and reconfiguration at

the system level. Investigations have been conducted on the use of

arithmetic error cods to detect errors caused by processor faults
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[AVIZ 71b] and an experimen tal processor has been designed and con-

structed for the JPL-STAR computer [AVIZ 71a). Continuing reductions in

the cost of processor hardware snake further emphasis on duplication or

triplication JHOPK 781 very likely, although error-detecting codes

remain a convenient method for the identification of the faulty proces-

sor in .& disagreeing pair. An exception is found in large scientific

computers with multiple arithmetic processors, in which replication is

not practical, and graceful degradation procedures must be employed

[AVIZ 77a). A potentially very effective approach to error detection in

integrated circuits of processors is self-checking logic design

[CART 741, [WAKE 741.

2.4	 MODELING AND ANALYSIS

The choice of fault-tolerance functions and redundancy tech-

niques needs to be supported by an assessment whether the system

possesses the expected fault-tolerance. Insufficiencies of the design

may be uncovered, and the design can be refined by changes or additions

of various forms of redundancy. There are two approaches to the evalua-

tion of fault-tolerance:

(1) The analytic approach, in which fault-tolerance mea-

sures of the system are obtained from a mathematical

model of the system.

(2) The experimental approach, in which faults are

inserted either into a simulated model of a system, or

into a prototype of the actual hardware, and fault-

tolerance measures are estimated from statistical

data.

The principal quantitative measures of the effectiveness of

fault-tolerance are reliability (with respect to permanent faults) and

survivability (with respect to transient faults) [AVIZ 75a]. Methods

for the prediction of these measures are discussed in this section.

Fy
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2.4.1	 Analytic Modeling: Permanent Faults

A quantitative reliability prediction for a system requires

the knowledge of numerical failure rates of the components, which are

given in failures/hour and are usually assumed to be constant. If

technologies which are under development are to be used in a new design,

the failure rates need to be extrapolated or predicted analytically.

Different and possibly time-dependent failure rates may apply to some

classes of failures, such as those causing distributed faults. The

reliability RW is a function of the failure rates and is defined as

the probability of the survival of the functional capabilities of a set

of hardware elements up to the time t, given that all hardware was in a

perfect condition at the time t = 0. For a non-redundant system and

constant failure rates, the reliability is NO - e lt , where X is the

sum of the failure rates of all components (system A of Figure 2-1).

In this case, all components have to survive up to the time t. Fault-

tolerance of the system is attained only if correct program execution is

maintained by the surviving hardware; for this reason the survivability

with respect to transient faults must also be considered in a complete

evaluation.

A very common quantitative measure used to compare two or

more different designs has been the MTTF (mean time to failure), defined

as MTTF = 0I- R(t) dt. Given the non-redundant system reliability

fi(t) = 0-`t , we have MTTF = 1/A and the comparison of several MTTF's

directly compares the failure rates (A) of the competing systems. When

redundancy is introduced, the reliability function R(t) becomes a poly-

nomial in a
-

 At (e.g., system B in Figure 2-1) and the R(t) curves of

systems being compared may have crossover points. In this case, the

area under the curve does not indicate which system is better for a

given time interval, and the MTTF may become a misleading measure.

Two more precise measures of comparison are illustrated in Figure 2-1

and are discussed below.

Given a fixed "mission time" T, for which the highest reli-

ability is desired, the comparison of two systems requires only the

values of h'A (T) and RR (T) in order to select the best system. The
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Figure 2-1. System Reliability Predictions.

Reliability Improvement Factor is defined as RIF m ( 1 - RA )"' - RB) at

the specified mission time T, and it serves as a measure of improvement

attained by using the "B" system [ANDE 671. When a fixed mission time

is not specified, the Mission Time Improvement Factor (14TIF) serves as a

convenient comparison measure [ BOUR 691. It is defined as

MTIF = (TB/TA) at RMIN' where RMIN is a specified reliability (e.g., .99

or .90), while TA and TB are times at which the system reliabilities

RAW and RB (t), respectively, fall to the value RAN.

We observe that reliability modeling remains useful even if

specific numerical failure rates and mission times are not given, since

it still permits the relative comparison of many competing designs. The

failure rates are normalized with respect to a reference measure of
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complexity and the MTIF is used as the criterion of quality. The most

fundamental difference in computer reliability modeling is that between

static and dynamic models for the reliability of system which Incorpo-

rate proteotive redundancy. (loth classes of models are considered in

the following discussion.

The class of static reliability models is suitable for the

reliability prediction of systems with static hardware redundancy. The

redundant elements are assumed to be permanently connected and to fail

statistically independently. They have the same failure rate and are

Instantaneously available to perform the masking of a failure with unity

probability of success. Under these assumptions, the reliability of a

redundant system is obtained as the sum of the reliabilities of all

distinct configurations that do not lead to system failure. Reliability

mcdels of static redundancy are found in handbooks and textbooks of

reliability theory and are used for reliability analysis of various

redundant structures, e.g., relay contact networks, aircraft frames,

etc. [BML 65]. The principal limitation of the static model in compu-

ter reliability modeling is the assumption that the fault-masking action

is always successful as long as redundancy is not exhausted. This

assumption cannot be justified in systems which employ various forms

and combinations of dynamic hardware, software, and time redundancy,

and dynamic reliability models have to be created to these systems.

The use of dynamic redundancy requires the success of con-

secutive fault detection and recovery actions in order to utilize

redundant (spare) parts. The use of static reliability models for the

dynamic case is equivalent to assuming unity probability of success of

both actions. For this reason, very high reliabilities are predicted

as the number of spares is increased. Early in the studies of dynamic

redundancy it was recognized that imperfect detection and recovery may

cause system failure before all spares had been used. The effect of

such imperfections was formalized in the dynamic reliability model

through the concept of "coverage," defined as the conditional probability

2-25

f.



of successful recovery, given that a fault has occurred [FOUR 691.

This model has served as the reference point for subsequent investiga-

tions of closed systems, i.e:, of those systems in which off-line repair

of failed parts is not available, and the system is certain to fail after

all redundancy resources have been exhausted.

Recent research.has resulted in a general dynamic reliability

E	 model which employs Markov modeling techniques and subsumes nearly all

models for both static and dynamic redundancy that have been developed

to date [NGYW 76, NGYW 77a). Its principal advantage is that a single

efficient computing procedure serves to perform the reliability predic-

tion for any one of a variety of closed systems, including those in which

degradation is provided. Extensions to repairable systems and to tran-

sient faults also have been made in this model.

A closed fault-tolerant computer system is treated as a set

of homogenous closed subsystems, each of which consists of a set of

identical modules that are either in active or spare status. "Active"

means "participating in the computing process," i.e., a powered spare is

not active, although its failure rate is the same as that of the active

modules. Since every subsystem must survive in order for the system to

survive, the system reliability is the product of the reliability of all

subsystems. The modeling effort therefore deals with a closed homogen-

eous subsystem. The set of modules forming such a subsystem is character-

ized by the following parameters:

N - Initial number of modules in the active configuration

D - Number of degradations allowed in the active configuration

S - Number of spare modules

Ca - Coverage for recovery from active module failures

Cd - Coverage for recovery from spare module failures

X - Failure rate of one active module

u - Failure rate of one spare module

(u - X if spare is powered)

i
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Y - Sequence of allowed degradations of the active

configuration

IM - Coverage vector for degraded configurations

The parameter Y is an integer vector of the form Y • (Y[11, ..., Y(D)),

where Y(1), 060 0 YID) are the numbers of active modules remaining in suc-

cessive degraded active configurations. The coverage vector OL has the

form CY - (CY[l), 66., CYID)), in which CY[ij is the coverage associated

with the transition to the degraded configuration described by YIi).

At any given time each module is in one of three possible

states: it is in the failed state; it is a good spare (all spares are

either powered or unpowered); or it is a member of an active configura-

tion which consists of all those modules currently participating in the

computing process. Once a module has failed and the system recovers

from the failure (either through static fault-masking or dynamic recon-

figuration), it is assumed that the failed module is isolated from the

system and will no longer contribute to system reliability or unrelia-

bility. This implies that the possibility of compensating failures in

voting systems and similar secondary effects are not considered in this

model.

in a dynamically redundant subsystem, an active configuration

of N modules is supported by a bank of S spare modules. When the spares

are exhausted and one more failure of an active module occurs, the sub-

system is usually considered as failed. However, in some applications

it continues to operate in a degraded mode, i.e., it has a smaller set of

active modules (and hence a possible degradation in performance). The

abandonment of active modules upon failure continues until the active

configuration falls below a specified minimum number of modules, at

which time the subsystem fails. The degradation sequence is described

by the vector Y in the reliability model. Statically redundant subsys-

tems and hybrid-redundant subsystems with a static core also have an

active configuration which degrades to some extent before subsystem

failure occurs. (For example, a THR subsystem degrades from 3 to

2 modules upon the first failure). Hence they are treated in the
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reliability model in the same manner as the dynamically degrading

subsystems.

The condition of a closed subsystem is characterized by a

model with a finite number of states, each representing a distinct sub-

system configuration which is either good or is failed.' For closed

subsystems, the goal is to obtain the statistics of the time to first

occurrence of subsystem failure. Hence, all failed states are merged

into one state denoted by F. A transition out of a good state takes

place when a failure occurs in one of the modules. Depending on whether

recovery from this failure is successful, the transition will be to

another good state or to the failed state. When it is assumed that

failure rates are constant and that (with respect to the time scale of

reliability prediction) the recovery from a failure is accomplished

instantaneously, the model is a Markov model.

The state diagram of Figure 2-2 is the model of the closed

fault-tolerant subsystem which is defined by the set of parameters (N,

D, S, Ca, Cd, A, u, Y. CY) explained previously. The subsystem is self-

repairing and has provisions for degradation of the active configuration

after the spares b.ve been exhausted. The selection of spares occurs in

a linear order, A a spare that fails in an unrecoverable modr blocks

the use of the spares that follow it in the £election sequence. Further-

more, it destroys the ability to degrade, because the subsystem fails at

the time when the unrecoverably failed spare unit is switched into

service. This effect is incorporated in the model by transitions to

the states with an overbar such as (N,S-1), MO), etc. The subsystems

in the state (N,i) and in the state (N,i) have the same configuration,

but the subsystem at state (N,i) has lost its ability to degrade because

of the existence of a non-recoverable failure in one of the (still

unreached) spare modules.

Almost all fault-tolerant system models that have been

studied in the past can be represented by this model. Table 2-1

characterizes several of them in the notation described above..

The reliability equation of one closed fault-tolerant sub-

system has the form:
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Table 2-1. Characterization of Several Models

of Fault-Tolerant Systems

System	 N	 D 8 Ca Cd A u	 Y	 Reference

8	 lex n 0 0 1 1 A A

Sty atic

TMR 3 1 0 1 1 A A	 2 [DOUR 711

TMR/Simplex 3 1 0 1 1 A A	 1 (BOt1R 711

NMR
t

2n+1 a 0 1 1 A A	 2n,...,n+1 [MATH 75a]

NMR/Simplex 2n+1 n 0 1 1 A A	 2n-1,...,3,1 (MATH 75b]

Dynamic

cRs q 0 S C C A U [BOUR 69]

R*(N,S,Aa ,Ad) N	 0 S A  Ad A U	 [RENN 73a]
C c	 c c

K-out-of-N N N-K 0 C C A A	 N-1,...,K (WYLE 671

R(2,S) 2 1 S 1 1 A U	 1 [REM 73b]

hybrid

H(N,S,D) N C S 1 1 A U	 N-1,...,N-D (BRIC 731

R(N,S) 2n+1 n S 1 1 A u	 2n,...,n+1 [MATH 701

R*TMR/Spares 3 2 S 1 1 A u	 2,1 [TAYL 731
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W(t) • (1, Q Ut. .... s -silt )

A0	A0
S, 0	 S, S

A •

AD	 AD
S, 0	 S, S

The coefficients AS 
J 

in the matrix A are functions of the Parameters

and are computed by an algorithm given in Table 2-2 [NGYW 77a].

Based on the model described above, the UCLA Automated

Reliability Interactive Estimation System (ARIES) has been implemented

In APL as a set of interactive programs for the modeling of fault-

tolerant computers [NGYW 77b]. Generality and efficiency are achieved

in ARIES because it is based on the unified solution to the reliability

modeling problem. To achieve flexibility, the user is provided not only

with functions for evaluating the reliability measures of interest, but

also with programs to create, modify ano examine representations of the

systems which are being designed.

The Markov model for closed systems shows that their

reliability equations have the standard form:

RM a E Aie
i

where the o f are simple functions of the modeling parameters and the Ai

can be efficiently computed. By applying Markov modeling techniques to

repairable systems, the same standard form for their reliability equa-

tions is obtained, but now the ai must be computed as eigenvalues of the

transition probability matrix of the Markov model and the Ai need a more

general and less efficient procedure. The reliability analysis of both

A

t
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Table 2-2. Algorithm for the Components of Matrix A

Step (1)	 Start with A0 a 1. Go to Step (2) if D - 0.

For I 1 to D, iterate the following computational

	

r	 OYID - I + 11 MID Ij • A^ 1

	

AJ	
YID - Ij - Y(D - J)	

for J 0, ..., I-1

I-1
}	 At	 1 - Jft0 AJ

Step (2)	
Set A0.0 

• 1

Using results of Step ( 1), set 
A0,0 

ASK, for

For N • 1 to S, iterate the following computational

Step (2a)

M-1

Wax + PlWO Am-1,J + (1 - cd)	 AI J
ICJ '

AN, J •
(M - J)u

for 0<J<N

M-1

AM, M o 1 - 
.7.00I AM, J

Wax + MCdv)AX
Step (2b) 0 < X < Ds AN. J

	 TN-- Y K )A + (M - .1)y	
for o < J < M

K	 0

AM, M •

Step (2c)

M-1

o	
(NCaa + MCDu)A

M-1,J 
+ 0 - Cd)u 

I AI J
K - 0: A J .	 I.1	 '

(M - J)u

for 0<J<M

0	 K
AM,M	

1 - (K,J)	 (0•M) AM,J
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closed and repairable systems has many common properties that have

allowed an extension of ARIES to include repairable fault-tolerant

system as well.

The repairable systems modeled by ARIES are the closed

system in the Markov reliability model which have been made repairable

by the presence of one or more repairmen [NCYW 77a). hence, they are

modeled by the same set of parameters (N, D, S, Ca, rd, As p, Y. ML) as

closed systems,'plus two more parameters (M, 1), where M is the number

of repairmen and Y is the repair rate of each repairman.

2.4.2	 Analytic Modeling: Transient Faults

The next step to be taken in modeling is to address the

problem of transient faults (NCYW 76). These cause system failures by 	 •

damaging the information content 3f the system during their presence.

This damage will be permanent and will event-ally lead to Irrecoverable

errors in the system unless some means of recovery is provided. Recovery

in this case consists of a restoration of the information structure so

that the system can continue to function properly. The hardware remains

intact and the full capability of the machine is retained, in contrast

to permanent fault recovery where the system degrades in performance

unless spares are used to replace faulty modules.

The methods to effect recovery from suspected transient

faults usually consist of a number of successively more difficult

recovery phases. For example, a system may use the sequence of an

initial delay, instruction retry, program rollback, and system restart

as a four-phase recovery procedure. The next phase is entered if the

current phase fails to accomplish a satisfactory recovery.

The processes which generate transient faults are difficult

to characterize. The model adopts the viewpoint that the transient

fault environment can be characterized by two fundamental parameters--

transient arrival rate and transient duration (AVIZ 75a). It is

assumed that transient arrival it; a Poisson process with a constant

arrival crte and that each transient fault has a duration which is

independently distributed according to an exponential law. These
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assumptions appear to be consistent with the limited number of observa-

tions on transients available in current literature and have the advan-

tage of being more readily mathematically tractable than other possible

choices. The two parameters modeling the transient fault environment

under these assumptions are defined as follows:

T a transient fault arrival rate for one module

D - mean duration of each transient

A transient recovery process may fail because of several reasons. The

model deals with four causes of failure: one is excessive duration,

which is a function of t and D, while the other three are characterized

by the parameters recoverability r, effectiveness E, and interference

rate P. All four are discussed below.

The first cause is occurrence of persistent transients. They

are transients that last throughout an entire phase of a recovery action.

causing that phase of the recovery action to fail. A very long transient

will lead to unsuccessful outcome of the entire transient recovery

effort. Then the transient fault will be treated as permanent by the

system and permanent fault recovery actions will be initiated. The

probability of a persistent transient depends on the arrival rate z and

dean duration D of transient faults.

The second cause is a catastrophic fault. Such a fault

occurs when the transient fault damages Ina-ifficiently protected Lritical

information. Also. faults that are not detected soon enough after their

occurrence can lead to so much information damage ("memory mutilation")

as to make recovery impossible. Furthermore, real-time systems have

certain tasks which must be accomplished within strict time limits.

Delay of these tasks by a transient fault also may lead to a system

crash. The probability of these and other possible catastrophic faults

is modeled by the recoverability parameter r which is defined as the

conditional probability:

r	 Prob (fault is not catastrophic ! fault occurs).

Since the effects of butt: permanent and transient faults are similar in

most systems "nif are about as likely to cause cat:.ttrophic failures, one

value of r is used to model both tyl s of catastrophic faults.

i
t
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The third cause of unsuccessful recovery for a given recovery 	 i

phase is the ineffectiveness of the recovQM tecffiians =lgved. For

example, it has been estimated that instruction tatry as a transient

fault recovery technique is effective only in approximately half of all

cases [CART 64). The effectiveness of a particular recovery phase is

modeled by the effectiveness parameter 8 which is defined as the condi-

tional probability:

8 = Prob (recovery action is successful I it is initiated

against a noncatastrophic transient fault).

The fourth cause is interference which occurs when a second

independent fault (transient or permanent) interrupts the function being

performed to effect a recovery. Haw i.he system behaves in the presence

of such interference depends on the recovery capability that is built

into a system. A conservative assumption is that interference, like

catastrophic failures, will always lead to a system crash. The prob-

ability of interference depends on the duration of recovery, and on-the

complexity of the recovery elements that must remain fault-free in order

to carry out the recovery action. The latter is modeled by the

interference rate, defined as:

p = failure rate of the recovery element hardware. This

hardware includes both dedicated recovery hardware elements and those

elements that are used to store, deliver, and execute recovery software.

Given the preceding parameters, transient fault recovery

can be modeled as a part of the general model; that is, it is also

modeled on a subsystem basis, since each subsystem may have different

recovery requirements and a separate recovery strategy may apply for

each.. The recovery strategy is a multiphase recovery process which

executes n successive recovery phases, as shown in Figure 2-3. Transi-

tion to the next phase takes place if the present phase is not effective.

The recovery process is completed and normal processing resumes if a

successful recovery is achieved during the present phase. The system

can crash during the present phase due to interference. ( "crash" is a

failure of the programs to continue correct execution.) If neither a

crash nor a recovery occurs in all n phases, then the transient recovery
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Figure 2-3. Transient Fault Recovery Process

process is considered to have been unsuccessful (because the fault

pe-• ists) and permanent fault recovery is initiated.

The model employs (for 1 a 1, ..., n), the following condi-

:ional probabilities:

PEI = Prob (system enters i-th recovery phase , fault occurs)

PRI W Prob (system recovers in i-th recovery phase fault

occurs)

PF I . Prob (system crashes in 1-th recovery phase fault

occurs).

The sequence of events in a transient fault recovery process is depicted

in Figure 2-3, which shows its three outcomes. They are parameterized
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by the following three conditional probabilities % which apply.to the

transient recovery process:

R
CT 0 Transient Coverage) • E 

"'Ii• 1

• Prob (Transient recovery succeeds I fault occurs)

LT (= Leakage) - P1r

Prob (Fault is treated as permanent I fault occurs)

n
F (= Probability of a crash) _ 0 - r) + E PF
T	

i=1	 i

Prob (System crashes during recovery I fault occurs).

Because a system usually cannot immediately distinguish whether a

detected fault is transient or permanent, it is assumed that the tran-

sient fault recovery is the first process initiated. This assumption.

is reflected in the definition of the above parameters by making them

conditional on the occurrence of any fault, transient or permanent.

The parameters CT , LT , and FT give the relative probabilities of the

three possible outcomes of the transient recovery process and thus

determine the reliability of the system in the presence of transient

faults. To complete the choice of modeling parameters. it is necessary

to define:

Ei = Effectiveness of the i-th recovery action

Ti = Duration of the i-th recovery action

In the general case. T i is a random variable. In order to

limit the complexity of the model, the assumption is made that it is a

constant, which would be an upper bound. It is also postulated that the
i

first stage of any recovery strategy is an intentional delay of duration

TD , in order to allow the transient fault to subside. Then T I	TD and

E l = 0 since there will be nu active recovery action during the delay

(recovery phase 1). The transient reliability measures C T , l.T , and F1,

are computed from the basic parameters of the subsystem by the use of

some simple probability relations, as shown in 'fable 2-3.
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Table 2-3. Derivation of Transient Reliability Measures

e P i - Prob (phase i is entered) x Prob (interference in phase i)

PFi n PBi x 0 - •	 )

e PRi - Prob (phase i is entered) x Prob (fault is a transient)

• Prob (recovery action is effective) x Prob (no interference)

• Prob (no recurrence of fault in phase f)

• Prob (duration of transient does not extend into phase i)

1

PRi 	Pg x Ki x RL x t
	
x e (T+l)T x ll - e 

D (T1 + ... + Ti-1)

J

• 
PBi+1 

a P%. - PFi - PRi; P81 - r

The factor Ki - Prob (fault is a transient I phase i) is a probability conditional on
entry to phase i of the recovery process and decreases as i increases. The reason is

that with increasing knowledge that the fault has not been eliminated by the preceding

recovery mechanisms, there is more likelihood that it is a permanent instead of a trans-

ient. To estimate Ki . define

Ai - Prob (recovery phase i is entered fault is a permanent)

B  - Prob (recovery phase i is entered I fault is a transient)

We assume A l . 9 1 . r. that is, a catastrophic fault will not cause entry to phase 1.

but will enter the system failure state immediately. The following relations also hold:

-pT.
Ai+i - A i x Prob (System does not crash in phase i) - A ie	 L

8i+1 - Bi x Prob (System does not crash, but there is no recovery in phase i)

1	 1
i

	

Bi x e	 s x It- EIc 	t ^t -^, D 

Then

T

Ki -	

r i

aA . + TB.
L	 L

where 1, T are respectively the permanent and transient failure rates of one subsystem

module.
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The reliability model of Figure 2-2 does not include tran-

x	 *Lent fault recovery. This limitation is removed by intagratiag the

transient fault recovery model into the unified model [if`741. Fig-

ure 2-4 shows, on a localized basis, the incorporation of the transient

t fault recovery model into the reliability model of Figure 2'2. lvvo

additional states are introduced between each pair of successive oper-

ational states of the subsystem to represent the existence of 04 tran-
sient and permanent fault recovery processes. In addition to the original

set of parameters, transitions between states are also governed by the

three transient fault recovery parameters: CT, IT and FT. It is

assumed that transients have no effect on the status of spare modules;

hence the transitions between states that are caused by spare module

failures remain the same. Although the system spends a finite amount

of time in these two recovery states, for all practical purposes it can

be assumed that the recovery process is instantaneous, because even in

the worst case the recovery time is several orders of magnitude smaller

than the average time between faults in the hardware. With this assump-

tion, the two recovery states are merged into the operational states and

Figure 2-4 becomes Figure 2-5. The general model of Figure 2-2 is pre-

served when the transient fault recovery model is incorporated. The

main effect of this incorporation is to change the effective failure

rate of each module from A to A' and the effective coverage factor from

Ca to Ca' as given in Figure 2-5. The derivation of A' and Ca' follows

from Figure 2-4.

Because the general model of Figure ,&2-2 is preserved, the

same efficient computational procedure can be applied in those cases

wherc transient fault modeling is desired, with the obvious modification

that A and Ca must now be replaced by A' and Ca'. The programming sys-

tem ARIES has been extended to model transient fault recovery. Based

on a characterization of transient fault recovery in a subsystem by

means of the parameters T, D, p, r, E i , Ti and TD . ARIES estimates the

transient fault recovery parameters CT, 
LT 

and FT from which an efficient

reliability estimation of a subsystem is mixed transient and permanent

fault environments can be made [NGYW 77b).
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Figure 2-4. Transient Recovery in the Markov Model
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2.4.3	 Heuristic Approachess Simulation and Hxperimeete

Simulation and experimentation with a hardware prototype are

two approaches to heuristic prediction of reliability. Although their

use is more costly and time-consuming than that of analytic models, these

methods are essential when the analytic models do not adequately repre-

sent the complex structure of the system or the nature of the expected

faults. Furthermore. the users of systems in various failure-critical

applications often insist on heuristic validation of the initial analytic

results prior to the production and use of a system.

An accurate description of the system and detailed

characterization of faults are the principal prerequisites when simula-

tion is employed to derive the reliability estimates for the'computer.

Modern simulation programs include provisions to model both permanent

and transient faults, and to consider the hardware-software interaction

by representing a variety of recovery algorithms [LEVY 751. An impor-

tant early use of simulation was the reliability prediction of THR logic

in the SATURN V guidance computer [ANDS 671.

Experimental reliability prediction using a hardware

prototype requires a large investment of effort in constructing the

prototype, but avoids the inaccuracies which may occur in postulating

the fault effects in a simulated model of the system. An example is the

experimental fault-tolerant JPL-STAR computer. In this computer an

electronic "black box" was used to inject faults of adjustable duration

and extent at selected points in the hardware of:the system during its

operation [AV1Z 721. Statistical data on the cases in which recovery

did not succeed was automatically collected and processed. The data was

also used to derive estimates of the coverage parameters for analytic

modeling. Several weaknesses in the fault-tolerance implementation of

the original design were identified and eliminated during the experi-

ments. The stability of recovery algorithms was studied under multiple-

fault and repeated-fault conditions, and the performance of system

software was extensively tested.

The current rapid advances in the design of novel and

complex fault-tolerant systems have overtaken the capabilities of

J
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analytic modell", As a oo a^neac- 9 experimental reliability predic-

tion remains a very important area for further develott and

application.

2.5	 TOLZRANCK OF MAN-MM FAULTS

Man-made faults are all non-physical faults that occur

because of human mistakes, i.e., execution of improper actions or absence

of expected actions during the procedures of specification, design,

detailed implementation (construction or programming), modification,

maintenance, and use of information processing systems. They do not

include physical faults that are consequences of human actions. The

manifestations of such physical faults are the same as those caused by

natural phenomena; for this reason they are treated by the same techni-

ques of fault-tolerance and belong in the same category as all other

physical faults. Man-made faults include the non-physical faults caused

by imperfections in various design, programming, and maintenance tools,

such as compilers, assemblers, design automation programs, maintenance

and operation manuals, testing procedures and devices, etc.

For the purpose of systematic discussion, it is convenient

to partition man-made faults into the classes of design faults ar_d inter-

action faults. Design faults are the faults that are introduced into

the system during various phases of implementation: Specification,

design, programming, translation to machine code, detailed logic design

and layout of logic circuits, interconnection of hardware elements, and

later modifications of hardware and software. The causes of design

faults are twofold: incomplete, ambiguous, or erroneous specifications,

and mistakes committed during the various phases of translation of a

specification into the final implementations, i.e., assemblies of inter-

connected hardware elements and arrays of digitally represented symbols.

Interaction faults are faults that are introduced into the

system via man/machine interfaces during operation or maintenance phases

by operator action that is not appropriate to the current state of the

system. They are caused typically either by a misunderstanding of the

operator's manuals or by typographical errors that occur while informa-

tion is entered into the system.
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The problem of man-made faults has remained of consistently

great concern to the designers and users of information processing sys-

tems from the specification of the first system to the present. Some

complex and costly systems have never reached an operating condition

because design faults could not be eliminated or controlled (tolerated)

within the existing time limits and cost constraints. 'Many other systems

have experienced severe delays in delivery and major cost overruns. In

a few cases the question of the possible existence of latent design

faults has spilled over from technological and economic considerations

into politics and public controversy. A very prominent illustration of

such an event is the recent controversy in the U.S. regarding the possi-

bility of unreliable behavior of the ABM (anti-ballistic missile)

defense computer system.

In contrast to physical faults, the problems of man-made

faults have not been suddenly alleviated by a major technological break-

through similar to the invention of semiconductor and magnetic core'

components. Advances in the understanding and ability to handle man-made

faults have come at a slow and steady rate, and they have barely kept

pace with the rapidly growing complexity of systems and the increasing

demands for near perfectly fault-free system behavior in numerous

critical applications, in some of which human lives are endangered by

fault-induced system failures.

2.5.1	 Design Faults

An overview of the approaches used to handle faults from

the origins of machine computing to the present shows that a priori

fault elimination (fault-avoidance) has been the dominant choice for

the handling of design faults that are introduced during specification,

design, construction, programming, and modification of both hardware

and software [ICRS 751, [NELS 75). An all-out effort to eliminate

design faults takes place before the system is first put into regular

service or returned to use after a modification.

The approaches taken to assure design fault elimination have

originated both in theoretical studies and in problem-solving approaches

developed from direct experience. The main theoretical developments in

R

i
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this area are proof-ef-correctness techniques JUM 751 and mathematical
models for software reliability prediction ISIM 791r [	 731. The
Practice-originated "software angiawring" tecmiguas include procedures
for the collection and analysis of fault data, menionent procedures for
software development, tools and techniques for software design, such as
specification languages and the structured programming approach, software

verification and validation techniques [NMS 75,, and digital-logic aimu-

lation techniques for hardware design verification jUYG 761, [BUTL 741.

Despite all of the above techniques for fault elimination,

left-over design faults have been observed in most systems during oper-

ation. For this reason most systems have been provided with emergency

procedures to detect error states that may be due to design faults, to

record them, and to bring the system to a state in which external

assistance may be brought in to complete the analysis of the condition

and to reinitiate operation. While these Emergency procedures are not

unlike some fault-tolerance techniques for physical faults, the function

that is accomplished is only the "shutdown" function with respect to

either a part of the system or the entire system.

More complete fault-tolerance of design faults has not yet

been introduced into existing computer systems, and only very recently

have some research efforts been started to explore this problem in

depth. Because of the existence of much more extensive research and

practical experience with the tolerance of physical faults, it is inter-

eating to look for transferability of concepts and techniques. The

principal difference between physical and design faults is that physical

faults in hardware occur after the start of the computing process, while

design faults in software (and hardware, as well) are present at the

start, but become disruptive only at a later time. However, modifica-

tions or corrections of discovered design faults occasionally lead to

new design faults, and therefore the discoveries of software and hard-

ware design faults may be expected throughout the useful life of any

large system, similar to the occurrence of physical faults. This

practically verified observation establishes a relationship between the

methodologies for dealing with physical faults and design faults: the

methods of protective redundancy that have proven successful in the

i
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tolerance of physical faults nary be transferable to provide tolerance of

design faults as well. Three aspects of relevance of physical fault-

tolerance can be identified (AVU 75bit

(1) The contribution of physical fault-tolerance techniques

In identifying and isolating design faults.

(2) The common aspects of fault-tolerance that are equally

relevant to physical and design faults.

(3) The transfer of physical fault-tolerance techniques

and experience of software design faults, consideringt

(a) the applicability of software,

(b) the potential advantages of software

fault-tolerance,

(c) the cost of its use, compared against the

traditional fault-avoidance techniques.

First, the presence of physical fault-tolerance is directly

useful in handling design faults because it provides the means to identify

those cases of abnormal system behavior that are due to physical faults.

Furthermore, extensions of physical fault-tolerance techniques may be

applicable to provide hardware-controlled protection of software and

the data base against attempts to interfere with its operation and to

access privileged information.

Second, an area in which a common ground exists for physical

and design fault-tolerance efforts is the analytic modeling and quanti-

tative prediction of system reliability. Recent work on software

reliability models [SHOO 73), (MORA 751 indicates the possibility of

mutual reinforcement that would lead to the development of analytical

models for the total system reliability, including both the physical

fault and design fault aspects.

Third, the redundancy techniques that have been successful

in handling physical faults may be transferable to design fault-tolerance.

Both the static and the dynamic hardware redundancy approaches have their

counterparts in software fault-tolerance. In the static cast (.•tilled

N-version programming), two or more programs are generated independently
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and then are operated concurrently on multiple copies of the fault-

tolerant hardware (AdIB 77b). Comparison or majority voting at speci-
fied points is employed to detect or correct the effects of design

faults. Systems such as SIFT (WZNS 761, the Symmetric Multiprocessor

(1iPK 751 9 and the Space Shuttle Computer System (SKLA 76), are especially

suitable.for such N-version programming. The dynamic case user the 	 ^!

equivalent of standby sparing, in which acceptance tuts serve to detect

design faults and to initiate a switchover to an alternate software

module (BAND 75), (!Heal 76). An extension of the above techniques to

bar4ware design fault-tolerance is also feasible: functionally Identi-

cal copies of modules then must be independently designed and manufac-

tured by separate organisations in order to avoid the occurrence of

identical design faults in all copies.

The state of the art in fault-tolerance of design faults

resembles that of physical fault-tolerance in the early 1960's. The

cost and the effectiveness of the design fault-tolerance approaches

remain to be investigated, and the techniques require much further

development and experimentation. The success of fault-tolerance of

physical faults, however. does indicate very strongly that design fault-

tolerance cannot be safely ignored solely because of the past tradition

of fault-avoidance in this field.

2.5.2	 Interaction Faults

The possibility of introducing man-made faults also exists

via man/machine interaction during system operation. The control of

such interaction faults has been implemented primarily by means of

operator training and by providing complete guidelines in operation and

maintenance manuals. This approach corresponds to the fault-avoidance

approach for physical and design faults. The demands on the operator

have been reduced by the development of increasingly more sophisticated

operating systems. However, interaction faults have remained a major

problem area in system operation.

Fault-tolerance approaches to interaction faults have

remained confined to immediate practical solutions to observed problems.

The principal goal here is the implementation of the detection function.
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which allows the system to reject apparently incorrect operator inputs.

The main methods are consistency checks t requirements for appropriate
passwords, and coded data entry. to some very critical cases, two or

more operators are employed whose input commands and data must agree

In order to be accepted by the system.

2.6	 CULT PROBLEMS AND PROSPECTS FOR THE FUTURE

2.6.1	 Reasons for Fault-Tolerance

At the present time, we can identify several reasons for the

acceptance and general use of full fault-tolerance (without manual

intervention) in information processing system of the future. The main

reasons are:

(1) The need to minimize the risks associated with cc-,Iputer

failures in systems in which the failures either

endanger human lives, or threaten to cause heavy

economic losses to the users. Examples of the first

class are systems for patient monitoring in hospitals,

for air traffic control, and for guidance and control

of high-speed vehicles. In the second class are

systems to control power generation and distribution,

to control processes in automated factories, to handle

financial transactions, etc.

(2) The need for reliable computing in environments that

do not allow access for manual maintenance, such as

space and unde%set locations, and other locations in

which access is either impossible or excessively

costly.

(3) The need for almost uninterrupted operation of real-

time systems in which manual intervention creates

unacceptable delays.

(4) The possibility cf lower initial cost (for a given

reliability goal) titan a system that depends on fault-

avoidance. This may occur in those cases In which
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fault-tolerance allows the use of less costly compo-

nents, or reduces the cost of design-fault elWnation

prior to system delivery.

(S) Tha possibility of a lower lift-cycia cost than a

system with newel maintenance requirements. Fault-

tolerance can reduce maintenance to a scheduled off -

line replacement of disconnected elements (or an

exchange by maill), and eliminate the costs associated

with the unavailability of a system between failure

and completion of repair.

(6) The psychological support to system users provided by

the knowledge that fault-tolerance is incorporated into

the system on which they depend for their safety or

economic benefit.

2.6.2	 A Design Methodology

Research results and design experience lead its to suggest

that the introduction of fault-tolerance can be accomplished by following

a systematic procedure:

(1) Performance requirements are established and system

architecture is specified with the initial assumption

that faults will not occur.

(2) Classes of faults that are to be tolerated in the

design are 'Aentified, and the extent of tolerance is

specified for each class of faults.

(3) Cost-effective methods of protective redundancy (time.

hardware, software) are chosen to cover every class of

faults identified above, and system architecture is

modified to incorporate the redundancy.

(4) Analytic or experimental reliability prediction tech-

niques ar.- employed to evaluate the fault-tolerance

that is provided by redundancy.
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(S) Checkout methods are devised to test all redundancy

features. Where applicable, fault-tolerance is extended

to effect automatic maintenance of peripheral systems

that are connected to or controlled by the computer.

Design experience has shown that several iterations of (3)

and (4) may be necessary to arrive at a satisfactory fault-tolerant sys-

tem architecture.

2.6.3	 Current Roadblocks

In view of the potential benefits of full fault-tolerance,

it is inevitable to ask: "Why is there so relatively little fault-

tolerance in the computer systems of the present generation?" The

obstacles to the appearance of full fault-tolerance are rather diverse.	 •

Some of the more obvious problem areas are identified below.

(1) Lack of Continuity. Some fault-tolerance techniques

developed for first-generation computers (for physical

faults) were discarded in the second generation because

of much higher reliability of semiconductor and

magnetic-core components. Later, many ad hoc solutions

were not openly documented because of their trade

secret status, leading to the re-invention of good

solutions as well as the repetition of many mistakes

of the past.

(2) Lack of Cost/Benefit Measures.' Thus far, there are no

general methods for a convenient quantitative assess-

ment of the benefits (in terms of life-cycle cost

reduction) of fault-tolerance. The initial extra cost

which is due to the various redundancy techniques is

much more directly evident and tends to bias a large

class of users (who do not have an absolute requirement)

in favor of systems without fault-tolerance.

(3) Lack of Specifications and Acceptance Tests. The user

community at large still does not have a sufficient
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knowledge of the properties and limitations of fault-

tolerance. As a consequence, specifications of reli-

ability are insufficiently precise and virtually

unverifiable in advance of system use. For example,

most reliability requirements for a given time interval

s	 do not specify the classes of faults and do not state

what constitutes acceptable recovery. For another

°	 example, MTBF specifications do not explicitly deal

with fault classes (e.g., transients, design faults)

and recovery requirements, and also ignore the

differences between redundant and nonredundant designs.

Extremely high reliability and MTBF predictions are

sometimes offered without stating the implicit assump-

tions of a static reliability model and a very limited

class of faults. For contrast, consider speed require-

ments in instructions/second, which can be stated and

tasted for acceptance quite precisely.

(4) Fra&mentation of Efforts. Efforts to increase relia-

bility of computing originate within several disciplines

of theory and practical computer engineering. These

include computer system architecture, software engineer-

ing, testing and design verification, design of data

base management systems, computer networks and communi-

cation systems, component and packaging engineering,

field operation and maintenance, and others. Although

they all have a common end goal, the efforts have

remained largely disjoint. A definite lack of a common

viewpoint and of systematic communciation is evident

at the present time. There is also a real gap between

the results of theoretical investigations and practical

engineering solutions to fault-tolerance problems.

(5) Inertia in the Design Process. Introduction of fault-

tolerance requires an early committment and it signifi-

cant departure from traditional evolutionary design of

computer product lines, in which compatibility of
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software is usually a dominant factor. While the

number of fault-tolerance techniques to serve as

maintenance aids has been increasing, none of the

major manufacturers has yet announced a fully fault-

tolerant line of computers. The only fault-tolerant

systems that were actually delivered were custom-made

products for special requirements.

(6) R^sistance to Potential Impact. Successful introduction

of fault-tolerance may cause some de-emphasis of several

currently flourishing activities. Examples are the

production of ultra-reliable components, the business

of providing manual maintenance and the activities

associated with the a priori verification of software.

It is not unexpected to encounter skepticism about

fault-tolerance from the advocates and suppliers of

those techniques.

In conclusion, we note that while most of the above-enumerated

difficulties are common to many disciplines of computer engineering and

computer science, they reach probably their greatest severity in the

studies and implementation of fault-toleran^e.

2.6.4	 Goals and Prospects

The preceding list of problem areas also serves as a guide

for the selection of goals for research, development and implementation

of systems. Major goals in fault-tolerance for the immediate future are:

(1) The development and acceptance among designers,

analysts, and users of information processing systems

of an integrated viewpoint of fault-tolerance as an

attainable and necessary attribute of a good system.

(2) The development of precise quantitative methods for

the specification, acceptance testing, and cost/benefit

analysis of fault-tolerant systems.
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(3) The design, construction, and testing of wAperimental

fault-tolerant systems. Such systems are absolutely

essential, since they serve as vehicles for the vali-

dation of new ideas, for the development and refinement

of performance specifications and acceptance tests,

and for the education of potential users, proving that

I^

	 such systems can be practically delivered.

(4) Continuing investigations of the new frontiers in

fault-tolerance techniques, especially the tolerance

of design faults in software and hardware, modeling

and analysis of complete systems, advanced degradation

techniques for large systems,'and fault-tolerance for

interaction faults. Another stimulating new idea is

the possible use of artificial intelligence techniques

to implement fault-tolerance [GOLD 75].

The preceding discussion has shown that fault -tolerant

computing is still a young, largely unexplored and undeveloped discipline.

The accelerating progress in both theory and implementation indicates

that the ability to tolerate a large class of physical, design, and

interaction faults will be taken for granted in the computer systems of

the 1990'x, just as the ability to execute a large class of programs is

taken for granted in the computer systems of today.
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SECTION 3

OS.TECTIVBS AND ARMURMU SMACTION

The purpose of this section is to describe the assumpl

and tradeoffs which led to the selected building block-SCCK archil

Key objectives of the study are:

(1) to examine and evaluate architectural technique:

which fault-tolerance can be incorporated in ne:

generation computer systems;

(2) to determine requirements for VLSI circuitry which

will be required; and,

(3) to investigate the feasibility of incorporating fault-

tolerance as an integral part of future USN building-

block computer programs.

The complexity of modern military systems has led to a signi-

ficant problem of maintenance. Equipment failures lead to a reduction

in operational readiness, and maintenance support is a major element in

the life-cycle costs of a number of weapons systems. This study is

directed toward the routine use of automated redundancy techniques to

greatly reduce and simplify system maintenance requirements.

The starting point to achieve this goal is the core elec-

tronics portion of complex systems. A technology of fault-tolerant

computing has been developed which provides correct computer operation

in the presence of internal faults by the use of redundancy and auto-

mated repair. Using these techniques, computers can be developed at

relatively low cost which provide long-term reliability and which can

be utilized to automate system diagnosis and repair by:

(1) diagnosing faults and specifying modular replacement

in external subsystems, or

(2) performing automated system repairs to achieve

maintenance-free missions.
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The scope of this work unit is limited to the digitala	
1

4 computing system and those fault-tolerance techniques which can be

utilized in the context of a computer building-block development pro-

gram using next generation VLSI technology.

E
Although the theoretical groundwork for fault-tolerant

computing has been rather wall developed, the use of such machines has

been limited to a very small number of special applications. 	 The Apollo
,i

guidance computer, OAO spacecraft, and BSS telephone switching systems

are the primary examples which are most often quoted. 	 These are all

custom machines for a specific application.
ti

This study is directed at the question: 	 "What is required

to enable the routine use of fault-tolerant computing in a wide range

of applications?"	 First, the requirement for fault-free computing must

exist, e.g., the system designer must express a need for correct answers

and no unscheduled downtime.	 But in order to levy this requirement, the

designer must be assured of two things:

(1) that the cost of a fault-tolerant design is lower than

the cost of an occasional computer failure.

(2) that the risk is acceptable, i.e., that the fault-

tolerant computer will be delivered in time and work

as specified.

In order to achieve the twin goals of low cost and risk it

is best to avoid custom designed computers, and concentrate on machines

which are already in wide usage. Not only is extensive software avail-

able, but existing chip sets such as the TI 9900, LSI 11, and the 8086

have been characterized and tested through widespread use.

Thus, we have concentrated on the use of existing machines

in fault-tolerant configurations. In order to satisfy the project utter

with regard to risk, the resulting architecture should be straight for-

ward and operate in a fashion that can be readily understood. It should

be compatible, as much as possible, with existing standardized components,

Interconnections, and busing; formats. And, Indeed, the fault-tolerant
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architecture should be capable of a wide swage of applications so that

it can be included in a future standards program, Rftko and often cost,

is lowest when a project can use components and architectures which have

previous operational experience.

In order to achieve acceptable costa, the surrounding cir*

cults (used to combine processors and memories into a fault-tolerant

configuration) most be reduced to a small number of standard elements

and implemented in VLSI packages. At the current state of the art, a

microcomputer may require SO LSI chips, while the surrounding cir-

cuitry for fault-tolerance and interconnecte , may require several hundred

MSI circuits. In order to make fault-tolerance attractive to the user, 	 i

those surrounding circuits must be packaged as a few standard VLSI

components.

The primary objective of this study is to develop and verify

a small set of building block VLSI circuits which can be used to combine

existing processors and memories into fault-tolerant computer

configdrations.

3.1	 REQUIREMENTS FOR FAULT-TOLERANT BUILDING-BLOCK COMPUTERS

(FTBBC)

Fault-tolerance requirements are derived from a set of

assumptions on the applications in which the FTBBC will be used. These

assumptions on applications and the resulting requirements are listed

below:	
ti

(1) The fault-tolerant computer(s) will be used in a wide

range of applications and, in some cases, will perform

vital functions (such as system-level redundancy

management).

(a) Thus, over a user-prescribed maintenance inter-

val the reliability should be quite high--99% or

greater.

(b) Wide variations in the maintenance interval

should be readily accommodated by adding it

deleting redundant elements.
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(2) The system containing the computer(s) will have an

operational life of a number.of years.

(a) The fault-detection and recovery mechanisms of

the IrMC must be thorough and nearly perfect to

attain reliability over a long period of time.

This is independent of bow short a maintenance

Interval is chosen or how many spares are

employed. Reliability modeling studies have

shown that "coverage" (the probability of a

correct recovery, given that a fault occurs)

must approach unity to achieve long-life without

computational errors or down time.

(3) It is assumed that for most systems, regularly

scheduled maintenance is possible. The computer will

"fix itself" by replacing faulty modules with spares;

and the discarded faulty modules will be replaced by a

repairman at the scheduled maintenance time. In this

mode of operation, the scheduled maintenance is best

described as preventive maintenance since the computer

is still running. It is important, however, that the

scheduled maintenance costs be minimized. Therefore:

(a) Redundancy should be applied in an efficient

fashion to minimize the number of parts which

can fail, and to reduce initial procurement

costs.

(b) The fault-tolerant computer(s) should be capable

of diagnosing its own faults to a level which

facilitates off-line repair.

(4)	 For applications where human repair is not possible,

the maintenance interval will be specified to be the

total operational life of the computer(s) and an

appropriate number of spare elements shall De employed

to achieve the desired reliability.
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(S) The functions to be performed by the computer(s) will

be vital to the proper operation of its host system.

(a) The computer(s) should not generate erroneous

outputs between occurrence and correction of a

fault. This implies concurrent fault detection

in all parts of the computer(s).

(6) Systems have a wide range of requirements on the

allowable time-outage while the computer(s) is recover-

ing from a fault.

(a) Capability must be provided to allow for a

recovery time in milliseconds which is assumed

to be a worst-case requirement.

In short, the FTBBC architecture must have concurrent fault

detection to attain high coverage and a rapid recovery time. The struc-

ture must also be modularized to allow an arbitrary number of spare

elements and simplify replacement procedures.

3.2	 DISTRIBUTED COMPUTERS

A distributed computer architecture was selected as the

baseline approach for building block implementation because we feel that

it will have the widest range of applications. (Also, a single computer

architecture is a degenerate case and is thus covered.) Since most

complex systems cGasist of a set of subsystems, and since the availability

of microcomputers is making it possible to place low cost computing where

it is needed within these subsystems, we believe that there will be an

ever-increasing demand for distributed computing in military applications.

It has been shown in previous work (CART 77) that self-checking computers

are feasible and relatively inexpensive. A distributed network of such

computers can be hardware-efficient in that (1) other computers are

available to aid in the repair of a faulty machine, and (2) redundancy

can be provided in a selective fashion. It is felt that the high degree

of modularity inherent in distributed systems best meets the varying

requirements of performance and reliability, and offers the potential
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for simplified fault-tolerance approaches which can be understood and

thus accepted by a potential user.

A superficial view of a distributed system consiets of a

number of interchangeable computers connected to 1/0 devices through a

redundant, shared busing system, as shown in Figure 3-1.

Figure 3-1. A Non-Dedicated Distributed Computer Architecture

To provide fault-tolerance, the computers may be designed

with internal checking logic to detect their internal faults, or pairs

of computers may run the same computations and compare outputs, or the

machines may be run in triplets with output voting. A common set of

backup spares is used to replace failed computers. These approaches

have the advantage of nondedicated redundancy, in that any spare can be

used to back up any of the active computers and a small number of spares

can be used to back up a large number of active computers.

A closer look at the problem indicates that the majority

of computers in such a network will be dedicated to specific subsystems.

An examination of the bus interface and control logic in various sub-

systems shows that, for many, it is cost effective to replace the
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Internal control logic with a microcomputer -- either to save chips or

to osteblish standardization in subsystem logic designs. More Impor-

tantly, by establishing "intelligent" sensors and actuators through the

use of local computers, system levai complexity can be greatly reduced.

This is seen in several wayss

(1) The subsystem-system interface can be greatly simpli-

fied, allowing the subsystem contractor to thoroughly

test his devi%.e before system integration.

(2) Subsystem-peculiar computing (software) can be devel-

oped by the subsystem contractor.

(3) The computing load on central computers can be drasti-

cally reduced, since they are no longer required to

generate detailed timing signals used in the associated

equipment. They are instead generated in the local

computer.

(4) Bus timing and loading are greatly simplified for

reasons mentioned above.

Thus, the structure of distributed control systems falls

rather naturally into a hierarchic structure: a large set of intelligent

sensors and actuators containing their own dedicated computers, and a

smaller set of non-dedicated, high-level computers which coordinate the

lower level processors.

3.3	 THE DISTRIBUTED COMPUTER MODEL

The model used in this report for a distributed processing

architecture is shown in Figure 3-2.

Redundant elements and checking circuits are not shown in

order to focus on the basic computational functions which are performed

in a fault-free environment.

3-7



MP	 yUN MP	 RAM MP	 RAM
HKNI-

••• LEVEL
MODULES

BC	 MIA BA K	 I MM K	 MMM

^rss s BLS
01

03

BA M M
TERMINAL

M M M	 MODWS
1+P - MICROPROCESSOR

... BC -BUS CONTROLLER
I+P	 RAM MP M -BUS ADAPTOR

••. RTI - REAL-TYNE INTEMUPT
PI - PRIORITY CHAIN

VO VO FOR Ith BUS

s s s - IC CONNECTION FOR
•• •• BUS-SHARING

TO SUBSYSTEM

Figure 3-2. The Distributed Processing Architecture

The microcomputer modules which utilize the same micro-

processor and local executive fall into two types: (1) Terminal Modules,

which are configured with I/O circuits to interface with electromechani-

cal subsystems in which they are embedded, and (2) High-Level Modules

which are configured to coordinate the processing in various computers

by control of an intercommunications bus.

Terminal Modules (TM) are located within the various sub-

systems and are responsible for local control and data collection. The

Terminal Module contains a microprocessor, memory, a set of 1/0 modules,

and a passive interface (Bus Adaptor) to each of several intercommuni-

cation buses. Each Bus Adaptor contains a complete DMA controller which

allows the bus system to enter or extract data from the Terminal Module's

memory by cycle stealing techniques. communication is through message

slots In the local memory.



A High-Level Module eaters commands, data,, sad timing iofor-

motion into prearranged memory areas within the Terminal Module. The

Terminal Module delivers information to the system by placing outgoing
messages in predetermined locations of its assmryo which are then

extracted by a High-Level Module over the bus.

The TM memory can be accessed by several buses simultaneously

because the bus adaptors provide conflict resolution. The TH computer

Is normally not notified that data is being entered or taken from its

memory. Pe-iodic processes synchronization is provided by a common

Real-Time Interrupt which trigger& a local executive to check the TH

memory for incoming commands and data at pre-arranged times.

Hiah-Level Modules (HLM) are responsible for coordinating the

processing which is carried out in the remote Terminal Modules or in

High-Level Modules which are lower in the network hierarchy. Each High-

Level Module consists of a microprocessor, memory, Bus Adaptors, and a

Bus Controller.

The Bus Controller, which is unique to High-Level Modules,

can move blocks of data between memories of all modules connected to its

bus. Using the Bus Controller, the High-Level Module can place commands

into the memories of the various computers on its bus and monitor ongoing

processes by reading out selected information.

When activated, the Bus Controller reads a control table

within the memory of the HLM which specifies the transfer. issues these

commands over the bus to the relevant terminals in the source and

acceptor modules, and then monitors bus activity as the selected modules

exchange information.

Using the Bus Controller, the HLM can move a block of data

from within any internal memory area of a specified source module to a

specified set of contiguous locations within one or more acceptor

modules.
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Each active gigh-Leval Mule has a dedicated Ives under its	 i

control which provides a bandwidth of appro..imately one megabit. In	 i

order to provide redundancy, the SIX can relinquish its bus under one of

two conditions: (1) it is not powered, or (2) its processor specifically

releases the bus for a specified time interval. Thus, spare modules can

gain access to a bus wbose processor has failed, or a bus can be multi-

plexed if several buses have failed.

Access to each bus by the various High-Level Modules is based

on a fixed-priority assigniment using a daisy chain structure, as shown

In figure 3-2, to establish this priority. Modules of higher priority,

signal release of the bus via the daisy chain which then activates that

hardware necessary to allow bus control by modules of lower priority.

The individual buses are physically independent and, therefore, no cen-

tral controller exists as a potential catastrophic failure mechanism.

The Bus Controller and Bus Adaptors are highly autonomous

units which contain considerable internal microprogram sequencing to

carry out their functions. For example, the Bus Controller is activated

by an out-of-range store instruction in the HLH, the data "stored" ip

the address of a bus control table. The Controller reads out the table

by DMA and controls a data transfer over its bus without further atten-

tion from the HLM processor. Completion is signalled by an interrupt

with a status word stored in the HLM memory.

A bus control table in the HIM contains the identification

and internal memory address of a source module, and the identification

and internal addresses of one or more acceptor modules, followed by a

word count. Internal addresses can be specified directly or by naming

Indirect pointers contained within the various source and acceptor

modules. This allows accessing data by name.

The Bus Controller reads the control table and sends the

source and acceptor specifications over the bus as 1553A transmit or

receive commands. The source module then outputs sequential words from

memory and the acceptor module ingests this data.
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The Bus Adaptors contains sufficient microprogram control to

recognize transmit (source) and receive (acceptor) gommands directed

toward their host computer. These modules then determine the base

address of data to be transferred -- either a number received over the

bus for direct addresses, or a number read from a mapping table in local

memory for indirect addressing. The adaptors then steal cycles from the

processor to transfer information into or out of its memory.

A non-fault-tolerant version of this architecture has been

developed under NASA sponsorship, and a six computer breadboard has been

constructed and used to verify its software and communications concepts.

The breadboard was used to simulate several command, telemetry, ani sub-

system control functions of a planetary spacecraft. Further.information

can be obtained in the following references: RENN 76, LESH 76, and 	 .

RENN 78b.

3.4	 FAULT-TOLERANCE OPTIONS

In the distributed network, there are three distinct areas in

which fault tolerance must be applied; the dedicated Terminal Modules,

the nondedicated High Level Modules, and the interconnecting bus system.

3.4.1	 The Terminal Modules

Since the Terminal Modules are attached by a number of wires

a specific subsystem, they must have dedicated spares which are also

embedded in the same subsystem. Thus, when redundancy is employed,

dedicated cross-strapped redundant modules are used. This requires

special short-isolated I/O circuits so that (1) a short will not disable

spare modules, and (2) a faulty terminal module can be disabled and a

spare module activated by simply turning off power to one and turning on

Power to the other.

1-he amount of redundant of Terminal Modules is determined

by the criticality and failu-'t rate of an associated subsystem. For

a block-redundant subsystem (i.e. two identical subsystems, primary and

spare) redundant TMs may not be employed in each individual subsystem.

Rut for a subsystem which manages a redundant set of sensors and actu-

ators, the TM should be backed up by one or more redundant spares.
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jAult detection in a TM can consist of

(1) self-checking hardware built into the computer which
detects faults concurrently with normal operation.

(2) or software diagnostics for subsystems which are non-
critical and can tolerate a period of erroneous compu-

tations.

The second option above is only viable if the interconnect-

ing bus system prevents errors generated in a faulty Terminal Module

from propagating through the system and affecting other modules.

Fault Recovery can be handled locally within the terminal

module configuration of a subsystem or can be handled by the High-Level

Modules. If fault recovery is implemented locally, TMs perform "cross

checks" through their I/O logic to allow local fault detection and

reconfiguration [RENN 80b). This is often unnecessary, since the High-

Level Modules provide an available intelligence which can be used for

this purpose [RENN 80a]. Specifically, the Terminal Module hardware (or

software, through a failed diagnostic) provides a fault indication which

can be sampled over the bus by the High-level Modules. The appropriate

High-Level Module then commands reconfiguration to a backup spare via

the bus. This recovery process contains a delay of a few milliseconds

but is acceptable for many applications.

3.4.2	 The High-Level Modules

The Nigh-Level Modules have two salient reliability charac-

teristics. First, they cannot be allowed to make errors, since they

perform high-level control functions and can, by use of a bus, propagate

damaged data throughout the network. Second, they are nondedicated and

can be backed ur with a common pool of spares. Two approaches were

investigated for employing redundancy in High-level Modules, voted

functions and standby redundancy.

11`

The voted functi ons approach consists of creating a mechanism

to configure groups of three High-Level Nodules to perform each separate

computer function. Each tiiplet is voted and when a fault occurs, the
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remaining two modules or an affected triplet iconmoad its replacement with

a spare from the common pool (Hem 95). The advantage of this approach

is that ongoing computations are not interrupted by a failure since the

two remaining computers can continue with the ongoing computation until

a convenient time to reconfigure. It has the disadvantage that it is

expensive and complex. Three computers are required for each computation

and the triad reconfiguration mechanism is complex, and bus bandwidth

is tripled by redundant message transmissions [RENN 80b].

The stan dby redundancy approach uses computers which are

self-checking.	 _a HLM contains an error code protected memory, com-

pared duplex pru, sore, and fault-detecting bus circuitry. With a high

degree of confidence, the HLM will detect its own faults when they occur.

Redundant circuits are employed to disable the HLM's ability to control

an intercommunication bus when a fault is detected. If the function

being performed is time-critical, a backup (self-checked) module runs

concurrently with the active HLM. If the primary HLM disables itself,

the "hot" backup HLM springs into action, taking up the ongoing compu-

tation. For non-critical, high-level functions that can be cold-started

after being lost for a second or so, no "hot" backup spare is provided.

A critical function module effects its reconfiguration by activatint a

spare, loading it from mass storage, initializing its parameters and

then restarting the non-critical process.

The standby approach is more efficient than the voted func-

tions approach in the use of hardware, especially if some of the high-

level functions do not require "hot" backup spares. The disadvantages

are (1) lower "coverage" than voted approaches, and (2) time delays in

recovery.

3.4.3	 The intercommunication Bus System Requirements

the intercommunication bus system should be redundant and 	 4

provide restricted access so that faults are not allowed to propagate

indiscriminately. Equally important, the structure and functions of the

bus system directly influence the complexity and verifiability of soft-

ware. Bus attributes and options that we have chosen for fault-tolerance

are discussed below.
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(1) Redundant buses are required with no common failure

mechanism in their assignment logic so that only one

bus will fail due to any single fault. This can be

achieved with a separate mechanism for each bus which

assigns buses to high-level modules on the basis of

fixed hardware priority. When a high-level module is

disabled, its bus priority should be relinquished.

(2) High Level Modules should be capable of initiating bus

transmissions, but Terminal Modules should be passive

and not have this capability. This allows structured

control and prevents a failed Terminal Module from

directly upsetting the whole system. (It is expected

that in many systems, some Terminal Modules will not

be self-checking.)

(3) Each high-level module should have control of only one

bus for any ongoing system configuration. Centralized

control is easier to verify and eliminates the indeter-

minate timing inherent in a multiply controlled bus.

(4) The bus structure should minimize the software complex-

ity required for its control, and it should be used in

a way that a minimum of transmissions are time-critical.

(S) The bus system should provide automatic verification

of proper message transmission so that the High-Level

Modules can detect faults and utilize alternate redun-

dant buses in case of failure.

3.4.4	 Architecture Selection

In order to be able to implement all of the various redundancy

options (described above) we concluded that self-checking computers

should be employed throughout the FTBBC architecture. Recent publica-

tions have shown that self-checking computers are feasible and can be

built relatively inexpensively in VLSI logic [CART 77]. Using

hardware-implemented fault detection, the self-checking computer can

detect internal faults concurrent with normal operation. This property
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is essential to implement standby redundancy, which is expected to be

used in the majority of computers in many distributed systems. It also

augments the effectiveness of voting configurations which may be employed

In smaller, more critical portions of complex systems.

The Self-Checking Computer Module, and its communications

interfaces are described below. This basic computer module was chosen

to best meet the fault-tolerance requi.ement., cf a wide variety of

potential applications.

3.5	 BUILDING-BLOCK DEFINITION

The basic component of this fault-tolerant distributed com-

puter architecture is a Self-Checking Computer Module (SCCM). The SCCM

can be assembled from microprocessors and memory chips, connected by a

small number of standard building block circuits described in the

remainder of this chapter. Each building block is small enough to be

implemented as a single VLSI chip, and provide the memory, I/O, and

intercommunications functions necessary to interface the SCCM within a

redundant network. The SCCMs are then used as larger building blocks

in a network, in which redundant SCCMs are included to achieve fault-

tolerance.

3.5.1	 The Self-Checking Computer Module (SCCM)

The SCCM contains commercially availa:.Ie microprocessors and

memories, connected by four types of building blocks, as shown in

Figure 3-3. The building blocks are (1) an error detecting (and correct-

ing) Memory Interface Building Blocl_ (MIBB), (2) a programmable Bus

Interface Building Block (BIBB), (3) a Core Building Block (Core-BB),

and (4) an I/O Building Block (IO-BB). A typical SCCM consists of

2 microprocessors, 24 RAMS, 1 MIBB, 3 BIBBs 2 I0-BBs, and a single

Core-BB. A Nigh Level Module is an SCCM containing an additional BIBB

microprogrammed to be a Bus Controller, while a Terminal nodule is a

SCCM with all of its BIBBs programmed as Bus Adaptors (terminals).

The building block circuits control and interface the various

processor, intercommunication, memory, and I/O functions to the SCCM's

internal bus. Each building block is responsible for detecting; faults

kx. .
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in its associated circuitry and then signaling the fault condition to

the Core-BB by means of an internal fault indicator. The MIBB ample-

;	 ments fault detection and correction in the memory, as well as providing

detection of faults in its own internal circuitry. Similarly, the BI-BB
t

and I0-BB provide intercommunications and I/O functions, along with

detecting faults within themselves and their associated communications

circuitry. The Core-BB checks the processing function by running two

CPU's in synchronism and comparing their outputs. It is also responsible

for fault collection and fault handling within the SCCM.

The Core-BB receives fault indicators from the other

building-block circuits and also checks internal bus information for

proper coding. Upon detecting an error, the Core-BB disables the

external bus interface and I/O functions, isolating the SCCM from its

surrounding environment. The Core-BB can either: (1) halt further

processing until external intervention, or (2) attempt a rollback or

restart of the processor. Repeated errors result in the disabling of

the faulty SCCM by its Core-BB. Recovery can be affected by an external

SCCM which is programmed to recognize the lack of activity from a faulty

SCCM.

An important attribute of the building blocks is that they

are interconnected via the internal processor-memory bus. They are all

designed to perform specified functions in response to read or write

commands to reserved addresses appearing on the internal bus. The

majority of addresses are used for conventional access to RAM; however,

the upper 4096 addresses are reserved for I/O functions, external bus

transmission requests, the readout of error-status information, and

reconfiguration commands to the building blocks. For a fetch request to

a specific reserved address, the building-block circuit which recognizes

the address performs the specified function and delivers a word of infor-

mation to Lite internal data bus. Store requests to reserved addresses

deliver information over the internal data bus to the selected building

block. This is the commonly used technique of "memory-mapped I/0" and

it has two major advantages in the building-block SCCM design. First,

this app roach avoids processor-specific I/O operations and thus allows
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the use of a number of different off-the-shelf microprocessors in the

SCCM. Second, this approach allows access to the building blocks by

both software in the SCCM and from other SCCK's via the external bus

system. Using the external bus an external SCCM can command DMA READ

and WRITE operations into and out of the memory of the local SCCM. By

directing DMA, READ, and WRITE cycles to reserved addresses, the external

SCCM also has access to the building blocks in the local SCCM. The

external SCCM can load and read out memory via the bus, and can also

sample error status information, command internal reconfiguration, and

can even remotely control I/O in a faulty local SCCM.

The following is a brief description of the building-block

circuits.

3.5.2	 The Memory Interface Building Block (MIBB)

The MIBB interfaces a set of RAM chips to the internal bus

of the SCCM to form a Memory Module. An SCCM can contain one or more

Memory Modules. A Memory Module consists of:

(1) A 24-bit memory with each bit separately packaged so

that circuit failures will damage only one bit in any

word. Sixteen bits are utilized for storage of com-

puter data, six bits are employed for a SEC/DED

Hamming code. The remaining two bits are used as

spares to replace any of the other bits in case

one fails.

(2) A Memory Interface Building Block which connects the

redundant memory elements to the internal bus. The

MIBB provides control, Hamming encoding and correction,

spare bit replacement, parity encoding and checking

for the local bus, internal checking, and error

message generation.

The MIBB is connected to the SCCM internal bus and receives

address, data, and two control signals: A Read/Write level, and Memory

Start. Upon receiving a start command, the SCCM checks a parity coded

incominti aeAress from the bus, and for a write operation also checks
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Incoming data for proper coding. If no error is detected, a read or

write operation is initiated and a completion signal is generated. If

a single bit error is detected upon reading, it is corrected using the

Hamming code.

Two fault-detection signals are generated-an internal fault

indicator and a code-correction indicator. Each is sent on duplex lines

so that a single fault cannot disable an indicator and go undetected.

The code-correction indicator is sent to the processors as

an interrupt, and indicates that a single memory-bit error is being

corrected using the Hamming Code. The processor can inspect the damaged

location and, if necessary, command that the faulty bit be replaced at

a convenient time.

The internal fault indicator signals all faults which cannot

be corrected within the memory system. This signal is activated when:

(1) a ;cult is detected within the MIN itself

(2) improperly cooed information is received over the

internal bus

(3) a data error occurs within the memory elements that

cannot be corrected using the Hamming code.

This signal is sent to the Core building block. If the

error was caused by a transient fault, correct computation can some-

times he resumed with a rollback or reset/restart sequence, initiated

from the Core-BB.

The MIBB can receive several commands to read out status,

test faulty locations, and perform internal reconfiguration. These

commands are implemented as out-of-range memory addresses and can thus

be issued by the processor or through the bus system. Specifically,

certain out-of-range read or store instructions are recognized as com-

mands to the building block and data is absorbed or disgorged for write

and read operations, respectively.

MIBB commands are listed below:

(1)	 READ STATUS - internal fault latches are read out to

the internal bus.

1i
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(2) READ ERROR POSITION - The bit position of the most

recent error is read out.	 I

(3) READ ADDRESS OF LAST ERROR - The address where the

last error occurred is read out to the internal bus

(along with an indication if more than one bit has

	

	 {
i

been corrected).

(4) RESET - Disables spare-bit replacement, returns to

original 16-bits of data.

(S) DISABLE CORRECTION - Disables Hamming correction so

that the memory can be externally diagnosed through

the bus system under control of a different computer

module. Correction is re-enabled by a reset command.

(6) READ REDUNDANT BITS - Used in conjunction with disable

correction, reads out the Hamming protection bits and

spare bit from the last address accessed in the

memory.

(7) REPLACE Ith BIT - Causes spare-bit to replace the

specified bit position. (Two commands are provided -

one for each spare bit plane.)

Several optional Memory Module configurations can he sup-

ported by the MIBB. The user can select the number of memory words

included in the Module (8K, 16K, 32K). It is also possible to implement

a Memory Module which does not use Hamming single-error correction.

Using this option, each memory word consists of 16 data bits, 2 parity

bits for error detection (the same code as is used on the internal bus),

and 0 to 2 spare hits. Upon detection of a fault, it is necessary to

diagnose the memory and command reconfiguration using an external SCCM.

This option is provided for applications which require very low power,

weight, and volume. Options are selected using external pins on the

MIBB.
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An internal error indication is generated upon receipt of

improperly coded data or upon read-out of improperly coded information

In the memory. The same error detecting code is employed for the

Internal bus and the memory plane.

3.5.3	 The Core Building Block (Core-BB)

The Core Building Block provides three functions: (1) inter-

nal bus arbitration, (2) processor comparison with parity code generation

and checking, and (3) fault-handling. This building block uses self-

checking design, such that a fault in the Core element will result in

disabling the Bus Controller and removing the module from the system.

3.5.3.1	 Bus Arbitration. A Bus Arbitor in the Core-BB accepts inter-

nal Bus Request signals from the Bus Adaptors, Bus Controller and, in

the case of terminal modules (to be discussed), from DMA I/O channels.

Upon receiving Bus Requests, the Bus Arbitor signals the CPUs to release

the bus. When the CPUs acknowledge release, the Bus Arbitor returns a

Bus Acknowledge signal to the requesting element on the basis of fixed

priority. Both Bus Request and Bus Release signals are duplicated with

values 01, and 10 representing valid states. The Bus Arbitor is also

duplicated and is compared with self-checking internal logic to detect

its internal faults.

3.5.3.2	 Processor Comparison, Code Generation and Checking. In order

to detect processor faults, two processors are tun in synchronism. Both

receive the same data and execute the same programs in lock step. One

processor is designated primary and the other serves as a check processor.

All outputs of the two processors to the internal bus are

compared by the Core-BB and the 16-bit outputs to the address and data

buses are parity encoded. Incoming data on the internal bus is checked

for proper parity coding.

If the processors disagree, if incoming data is incorrectly

coded, or if an internal error is detected by self-checking logic within

the building block circuitry, an error message is sent to the fault-

handling section of the Core-BB.
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3.5.3.3	 Fault-Handling. The fault-handling section of the Core

building block receives internal fault signals from the various building

blocks and from within the other sections of the Core. When a fault is

signalled, the fault handler sends an output inhibit signal ,, Lhe Bus

Controller and/or IO-BBs and stops the processors. As an optional

feature, the fault-handler can effect a program rollback by causing the

processors to transfer to a restart location. The processors attempt to

re-initialize computations. The processors can command that the module

be re-enabled (release output inhibit) if no additional faults are

detected in the intervening period.

	

3.5.3.4	 Core Building Block Connections and Commands. Core Building

Block Connections include:

(1) 32 address and data lines to the check processor.

(2) Control lines to and from each processor-reset/

restart, bus request for DMA, and bus released

(3) 42 connections to internal bus for address data and

control

(4) Clock and Real-Time Interrupt

(5) Bus Request pairs from up to 5 DMA elements and

corresponding Bus Acknowledge signals (24 lines)

(6) Internn.l Error inputs from up to 8 other Building

Blocks (12)

(7) Output Inhibit to Bus Controller (1)

The Core-BB accepts the following commands which are decoded

as out-of-range read instructions on the internal bus. Both the local

CPUs and external modules can issue these commands, the latter via an

external intercommunications bus.

(1)	 Disable Nodule--Computers are halted and an output

inhibit is sent to the Bus Controller and/or IO-BBs.
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(2) RRSTART — CPUs are reset and computation begins at

the rollback/restart location.

(3) amble Module — Release output inhibit to the Bus

Controller, and 10-BBs.

3.5.4	 The Bus Interface Building Block (BIBB)

The BIBB can be microprogrammed as a Bus Controller (BC) or

as a Bus Adaptor (BA). The bus system uses MIL-STD-1553A formats as

shown in Figure 3-4, and the BC and BA provide controller and terminal

functions of that standard. The capabilities of the BC and BA are

augmented to provide the following additional functions:

(1) Moving data directly between memories of their host

SCCMs using direct memory access (DMA).

(2) Specification of data to be moved by "name" (using

automatic table look-up in the local SCCM), or by-its

Internal memory address.

(3) Concurrent detection of message errors and faults

within the BIBB. Communication of fault conditions

to the host SCCM, and disabling the host SCCM under

some fault conditions. Signalling SCCM shutdown via

1553A status messages.

(4) Providing redundant communications paths through the

use of redundant bases.

Since a primary requirement is fault-tolerance, the BIBB is

designed to detect its own internal faults. Upon detecting such an

internal fault, the BC and BA behave differently. Bus Controller faults

are signalled to the Core-BB which disables the host SCCM in order to

prevent damaged information from propagating throughout the system.

(A faulty BC can potentially move data to or f.om the wrong place.)

The bus Adaptors are redundant. since several buses are

connected to a given SCCM (each through a separate BA). If a BA failure

does not prevent its host SCAN from performing correct computations. it

Is possible to re-route messages through a different BA and continue
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normal operation. Therefore, upon detecting an internal fault, the
hardware of a BA disables its ability to	 to +truer the external
bus and into the host SM. It does not disabla the W= and other Us

can be used to continue communications.

3.5.4.1	 BIBB Connections I" k'Wtioas. BIBB connections fall into
several groups as shown in Figure 3-5.

The BIBB-SCCM Interface consists of connection to (a) the

SCCMs internal address bus (AB), (b) the internal data bus (DB), (c) DMA

request and acknowledge (R, AK), (d) an interrupt to the processor

(RUPT), and (e) an internal fault indicator (IF). This interface allows

the BIBB to enter or extract words from the local memory by cycle

stealing; to alert the processor of an error or completion using the

interrupt, and to signal an internal fault.

The Direct Command Interface consists of a set of output
1

lines (DC) and a strobe ¢ignal (ST). In response to a special "direct"

command, a strobe signal is delivered and the output lines can be
r

divided to activate discrete events.

A set of Configuration Pins are hard-wired to Vcc or ground

to specify the hard names of the BIBB on the 1553A external bus and on

the internal bus (for memory-mapped control).

The External Bus Interface connects with discrete driver and

receiver circuits for the 1553A bus. These connections include data

output lines (HILO, OUTEN), data input lines (INBUS HI, INBUS LO), and

alternate bus selection signals (BSEL, BBSY). A Bus Adaptor is only

connected to a single bus. Therefore, in a BA the bus selection signals

are unused. The data input and output lines are connected to a single

driver/receiver package.

The Bus Controller can communicate over any of several buses.

Therefore, it interfaces with a Controller Interface Module (CIM) which

contains several sets of driver/receiver electronics. We have decided

to place the bus assignment (allocation) logic in the CIM as well. When

the BC starts to initiate a bus communication, it specifies which of
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several buses it wishes to. use (SM). If that bus* to in . vise. by a SC
of higher priority a busy signal is returned °(SMST)

	

3.5.4.2	 Bus Controller. The SCCM :requests its Bus Controller to

execute ra external bus transfer by "storingl^ to one of several out-of-

range ,aejresses. Four bits of this address specify which of several

buses to use for the transmission. The data being "stored" specifies

the address of a Bus Control Table (BCT) in memory which specifies the

transmission to be carried out.

The BCT contains a control word.and:

(1) One or two 1553A commands -- One for Terminal-to-

Controller or Controller-to-Terminal, or two for

Terminal-to-Terminal transmissions.

(2) The local address ( in the BCs host SCCM) from which

data is to be extracted or stored.

The BC initiates and monitors the specified transmission

and moves data into or out of local memory as required. It places a BC

status word in a fixed memory location and delivers an interrupt upon

completion. The BC-status word indicates:

(1) Transmission Aborted, bus not available.

(2) Transmission Unsuccessful due to coding error or

unreturned status.

(3) Transmission Successful but BAs SCCM has failed.

(4) Transmission OK.

(5) Activity or Requested Bus.

The status words embedded in the 1553A transmission are also

stored in memory and are available for software reference.

	

3.5.4.3	 The Bus Adaptor. The Bus Adaptor operates as an " intelli-

gent" 1553A terminal. It is controlled via the intercommunication bus,

and executes 1553A transmit and receive commands. For most commands

r
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received over the bus, the adaptor obtains a data address corresponding

to the 3-bit Subehasnnel/Mode (S/M) field of the command. The adaptor	 tt	 I

they deposits or withdraws aotde from sequential merry locations by

direct memory access (1%) to carry out the receipt or transmission of

the specified number of words.

Most values of the S/M field are used as data names. These

values are used as an index into a look-up table in the local memory

which specifies the physical address of the named data. Several values

of the S/M field are reserved for special functions. Tress include:

(1) Concatenate - continue extracting or depositing data

from internal address used in last transmission.

(2) Designate silent acceptor - directs module to assume

soft name and "listen-in" on subsequent transmission. a

(3) Execute direct command - strobe data out on direct

command lines.

(4) Direct addressing - specify absolute local memory

address for next data to be transmitted.

The BIBB, whether programmed as a BC or a BA also recognises

several out-of-range addresses as commands to: (1) read out internal

status flip flops and (2) reset itself.
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i	 The following section pressato detailed deadriptitft of-the
major building blocks. Aa implementatio® Is described 

fat the,
	 xp

Interface, Bus Interface, and Core building blocks.- E.aah bulldlag black
is broken into its component internal functions for which prallaiasry
logic descriptions are provided. This set of descriptions was used to

generate breadboard logic designs.

4.1	 T11E MEMORY INTERFACE B11ILDaNG BLOCK

The fault-detecting and correcting Memory Interface Building

Block (MIBB) interfaces a redundant set of memory chips to the internal

bus within computer modules. It provides single bit error correction to

damaged memory data, replacement of up to two faulty bit planes with
of-ires, parity encoding and decoding to the internal bus, and detection

of internal faults.

4.1.1	 Memory Interface Building -Block Requirements

Memory is typically among the most significant sources of

failure in computer systems. Due to the simplicity of operation and

a high degree of modularity in organization, the memory system benefits

most from the error-correction techniques. In particular, the applica-

tion of the error correction becomes very effective in the case of semi-
.

conductor memories, organized with each bit on separate LSI chips.

The basic goal in the specification and the design of the

memory building block is to provide for a highly reliable and maintain-

able memory system by incorporating redundancy in data representation

and logic which allows thorough error detection, and correction of a

majority of single-chip faults.
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The fault-tolerance objective is quite simple. Since the

memory represents a preponderance of failure rate within a computer

i	 module (SCCM), single fault correction in memory will greatly improve

the reliability of the SCCM. Sven though the SCCM is treated as a

replaceable (throw-away) item with backup spares,ry reli-improving memo

ability greatly increases the reliability of each SCCM and of networks

made of these modules.

Specific memory interface requirements are listed bald:

(1) The memory system should have the capability to

correct single errors and to detect double errors in

data words. This can be effectively achieved by

single-error correcting, double-error detecting codes

(SEC/DED codes) for the storage arrays organised

using one-bit-wide memory chips (i.e., each bit of

the word is located on the physically independent

chip which makes all single faults affect but a single

bit in a word). In order to enhance the applicabil-

ity of the memory-interface building blocks, a mode

with parity checking only should be provided.

(2) The memory system should be able to tolerate two

faulty bic-planes in the storage array. A i :onfig-

uration system should be provided which, upon the

system command, replaces a faulty-bit plane by the

spare one.

(3) Parity encode data outputs for internal (data) bus

transmission.

(4) Check parity of incoming address and data off of the

internal bus.

(5) Recognize Memory Interface Building Block commands as

out -of- range read or write instructions. These
include:

(a)	 Set Soft Name

(h)	 Read Error Status Register
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(c) Read Error Word Address

(d) Read Error Bit Position

(e) Read Check Bits

(f) Enable/Disable Read Retry

(g) Replace i-th Bit with Spare a/b

(h) Reset i-th Bit Replacement a/b

(i) Enable/Disable Single Error Correction

(6) Data and addresses internal to the building block

shall be maintained and checked with redundant parity

bits to allow internal fault detection.

(7) The coding and control circuits should be self-testing,

fault-secure, or duplicated so that no single circuit

failure will produce an undetected output error.

(8) A self-checked internal fault si?nal shall be generated

(and sent to the Core building block) when a fault is

detected within the Memory Interface building Block,

or when an uncorrectable error is found In memory data.

(9) The information about detected errors in the memory

subsystem should be collected and transmitted to the

system upon request, in response to the READ STATUS

command.

4.1.2	 Memory Interface Building-Block Design

The memory system is organized as a random-access memory

(RAM). It consists of up to 16K words of 16 data bits per word. The

basic storage element is a 4K x 1 MOS static-cell chip. This chip also

contains the necessary address decoding circuits, a feature essential

for the error isolation and effectiveness of the error coding. The

memory system operates in the conventional manner. The primary func-

tions of the memory are to accept data, address and control information,

to store that data iu the location as specified by the address, and

retrieve unaltered data information upon demand. The elemory System
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consists of two sections; the Storage Array (1A) composed of a set of

commercially available memory chips, and the Memory Interface Building

Block. The Memory Interface Building Block consists of five sub-

elements, designated the Address Bus Interface (ABI), the Error Control

Section (ECS), the Data Bus-Storage Array Interface (DBI), and the

Memory Control Section (MCS), as shown in Figure 4-1. The interface

requirements, commands, structure, operation, and fault-tolerance char-

acteristics of the storage array and the building block elements are

described in the following paragraphs.

The MIN is designed to operate in two basic modes. In HAM

mode, the interface provides full error detection and correction capa-

bilities. In HAM mode only detection via two parity bits is used. The

error detection, correction and bit-plane replacement in this case are

performed under the system control. The address and internal error

checking remains the same in both modes. In the prototype version these

modes are selected manually.

The memory size can be specified to be N - 4K, 8K or 16K

words. The size is also selected manually.

Since two spare bit-modules are always provided, the storage

array appears in the following configurations.

(1) In HAM mode:

16 + 6 + 2 - 24 RAM bit-planes of N bits, providing

storage for 16 data bits, 6 check bits and two spare

bits per storage array word.

(2) In HAM mode:

16 + 2 + 2 - 20 RAM bit-planes of IJ bits, providing

storage for 16 data bits, two parity bits and two

spare bits.

4.1.2.1	 Memory-System Interface Specification. As indicated in the

general diagram (Figure 4-1), the interface between the storage array

and the system is achieved via the address bus, data bus and a set of

control signals. These buses and control signals are specified in
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detail in this section. The address bus and data bus fields are

indicated ad follows:

AB 0 111 2 1 3 4 15 16 17 819110111112113114115 16117 1

1	 ORF	 I	 MHN	 COC	 ^Parity
or	 (Bits
MSN	 1	 i

I	 MA	 I

(a)	 Address Bus Fietds (for N - 4K)

iX

^' 1

(	 I i SNP _ parity
1	 I	 IB1ts

I

I	 I	 BRP	 II	 I
I	 I
I	 Data Bytes (2)	 I

(b)	 Data Bus Field (for N - 4K)

Address Bus

AB - (ABD, AB
i' " '' AB 17)

where AB  is the most significant bit and

AB 16 ' AB  Q AB  Q . . . +O AB 14

AB 17 = AB  (+ AB  ® .	 (+ AB 15

are even and odd byte parity bits.
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The address bus fields aces

Out-of-Range Fields

ORF - (ABO , AB 
1' 

AB2 , A83 )	 if N 4K

+(ABO , AB 
19 

AB2 )	 if N SK

(ABO , AB 
1
)if N	 16K

Memory Hard Name:

- defined only if ORF - (1, ..., 1) = ORC

MHN - (AB 4 , AB S ,.A1 . , AB A )	 if N - 4K

J(AB4 , A85 9 AB6)	 if N - SK

J(AB4 , AB5 )	 if N - 16K

Memory Soft Name:

- defined only if ORF f (1, ..., 1)

MSN - (ABO , AB 1 , AB2 , AB3 )	 if N - 4K

((ABO , AB 1 , AB 2 )	 if N - 8K

(ABO , AB 1)if N - 16K

Command Operation Code:

- defined if ORF - (1, ..., 1)

C(Y: - (AB 12' "" 
AB 15)

Memory (Word) Address:

- defined if ORF 0 (1,	 1)

MA - (AB
V

 ..., AB t5 )	 if N - U

J OB 3 ,	 AB15)	 if N - SK

(AB 2 , ..., AB 15 )	 if N - 16K
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In other woVda, if ORF bits are all onus then the

COC bits specify a special command which is executed

only by the MISS with a physical (hard) name matching

the Ml1N field. If ORF bits are not all ones, the MA

field is used by the MISS with a logical (soft) name

matching the MSN field.

Data Bus

DB - (D80, DB 1 , ..., DB 17
)

where DB is the most significant bit.

Parity Bits:

DB 16 a DB0 (j) DB2 +Q ... DB 14

DB 17 0 DB 1 + DB 3 (+ ... DB 15

Data bytes:	 (DB 11 , ..., DB15)

Soft Name Field:

SNF	 - (D13 12 , DB 
13'

DB 
14'

DB 15 )	 if	 N w 4K

j(DB 12 , D8 
139 

DB 14 , 0)	 if N - 8K

I(I)B 12 , DB 139 0, 0)	 if N • 16K

This field specifies the logical name to be assigned

to a memory by executing an SSN (Set Soft Name)

command.

Bit Replacement Position Field:

BRP - (OB11,
	

DB 15

This t ield spe, ifies the position of the hit-plane to
be rt• placed by .+	 , arL-.

'• - K
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Control Signals

Memory Start:

MSTART (a 1-0 transition activates MIBB)

Storage Array Interface Signals

Mowry Address:

A!) - (MAR 
49 

... t MAR15)

I(MAR3 , ..., MARiS)

I(MAR2 , ..., 
MARIS)

Memory Word (Bit plane 1/0)

BP - (BP 
d* 

BP c)

Memory Data Bit&:

BPd - (BPO , ..., BP 15

Memory Check Bits:

BPI, -	 (BP 16, ...,
 SP 21

)

Spare Bit Plane Data:

SP
a

SP 

Read/Write:

NWRITF

if N-4K

if N - 8K

if N - 16K

Memory Completion:

MCOMP L
	

(a 1-0 transition indicates

completion of an NIBB operation)
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Read/Write:

RW = (WRITE, NIWRITE)

_ 0,0) if write

= (0,1) if read

= (0,0) if no read/write or error

= (1,1) if error

System Reset:

RESET

Memory Error Interrupt:

(0,1) v (1,0) = 1 M - no uncorrectable
memory -rror

MINT =
(0,0) v (1,1) = OM - uncorrectable

memory error or
MINT circuit
error

Single Error Correction Indicator:

1 M - no single errors corrected

SECI =
OM - single error corrected or

SECI circuit error

Clock Inputs: (optional)

0 19 02 - standard system clocks

4.1.2.2	 Specification of MIBB Operations and Commands. The commands

interpreted by the MIBB are specified here as control sequences at the

register-transfer (microprogramming) level in the context of the MIBB

design described later in detail.
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A general view of the MIBB operational states and the flow

of control is indicated in Figure 4-2.

In describing commands, the following notation is used:

(1) All statements are labeled; simultaneous

register transfers are separated by ";"

(2) "t" indicates register-transfer (assignment);

(3) "F" label indicates unconditional branch in

control sequence;

(4) (A,B) denotes concatenation of registers A and

B;

(S)	 All functions are implemented with combinational

networks; the arguments, enclosed in ( ), are

bit-vectors;

(6) For greater readability, all conditional con-

structs are in the form if ... then ... else ...,

or if ... then.

(7) Braces "{,)" are used to enclose clauses in

conditional statements.

The operations of the MIBB are specified by the following

algorithms:

C Initialization

INIT: if POWER ON or RESET then

{ESR f 0; C Clear error status register

E + 1
M

; c Clear internal error flags

MINT + 1M ; C Clear MIBB interrupt flag

SECI t- 1M ; C Clear SEC flag

EBAR + l; C Set error bit-position to out-of-

range value
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Figure 4-2. General Flow Diagram
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c P is 2-bit parity register; ORCR is out-of-range command

register.

WAIT: if FORME-READ-MSTART then

{MAR -- AB; -* READ1I

if FORME-WRITE-MSTART then

{MAR f- AB;	 MDR DB ;

P + (DB16' DB17 ). -► WRITED

if. ORC-MSTART then

{ORCR f CDC; - DECODE}

c Out-of-range command decoding

DECODE: -+ (decoded command)

READ Operation

c APC is address parity check; DPC is data parity check; SNC is

soft name check;

c EWAR is error word address register which is continuously loaded

with current address until first error; it is cleared on readout;

c EBAR is error bit position register;

4-13



REAM s if HAM then (0* (d,j); P 
:+ 

PAR(j) };

If HAM then (MR w d; P + (co,cl0i

ESRO ^ 5 ^6 + APCO APC1, SNCO SNCl, WRITE l^a1RIT8

C save Address Parity Check, Soft Name Check and Read/

Write Check status

El + RED(APC, SNC, RV)

C reduce and save for internal use

if F'RSTEW then { EWAR + MAR)

C store address for diagnosis

-► READ2

RF.AD2: ESR	 + DPC DPC , SE ®SE ,	 Q DE -IM-E-0-OW—F, 1, 2, 3, 4	 0	 1	 0	 DE
1 	0	 1   

C save Data Parity Check, Single Error, Double Error and

No Circuit Error

E2 + DPC;

E4 + RED (SE, DE, NCE);

C reduce and save

OUTEN + 1; C Enable MIBB data output;

Disable on + MSTART

- REAM

RF.AD3:	 if ZRR then

{MCOMPL + 1; -► WAIT) C No memory error; completion OK

if HAM SECEN • SER • NCER • RTRY then

-► READ4	 C Single Error correction

if HAM • SECEN • SER • NCER • RTRY • RTRONF. then

4-14



r	 ,

^:	 1

^	 J(IV + (00 1) s MR ♦ Ca (W) s

C read retry

If R MOM OS	 + NMHE2R + RTRY*	 R tl t

(KINT + O • 	L 4. 1 • 	+ 1M N'	 + ^ .	 1

-o-WAIT 	 C uncorrectable memory error

RUN:	 MDR + COR(w);	 C Single error correction

EBAR + ESA;	 C Save bit position

SECI + OM;	 C Set SEC flag

-► READ S

READS:	 P + PAR(y) ;	 C Compute parities

MCOMPL + 1;	 C Data sent out

♦ WAIT

READ6;	 RTRONE	 1;	 C one read retry

BP *- W. ;	 C write back to memory

RW 4- (1,0);	 C switch back to read

E + 1M;	 C reset flags

ESR + 0;

SECI + 1M;

MINT + 1M;

-* READI

WRITE O!eration

C SYN is the syndrome generation function

C w - (MDRO , ..., MDR 15
)

C No checking of single and double errors performed

WRITEI:	 if HAM then {MCR 4- SYN(w)};

C generate syndromes

FSR	 - APCO + APC I , DPCO + DPC 1 , SNC0 + SNC19
0,1,5,6	 ___

NWRITE. + WRTTE;
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if ERR then

(MINT a OM; t no correction attempted

ESR2.3.4 
4- SE  + SE19 DEO + DEl , NCEO +-N 1;

FRSTEW •- 1) ;

MCOMPL 4- 1;

-► WAIT

It is assumed that the relevant control signals, generated

by duplicated controllers, are compared in each step using a morphic

comparator. If an error is detected, the memory operation is termi-

nated after setting control error status bit ESR 7 and memory interrupt

indicator MINT.
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.7717,11 -W7

TTT -an -tke' . 1meft-OfrraRw IUMEMONOMM I
I

!1

Bet Soft MN ism ; DuAieat" soft now

§ 	 3

.y

i
s SSN9=	 --b + 11 set. me register to all

I

F

I 108  to Cheek led e

SM2:	 SM + SWI Load soft ame I
1

' --b	 8PF

SSN3:	 Owl	 ^ 1 d Soft nome ckeck error

88Rg +- 1; d Set stag bit
•	 I

MINT <- 0x;^ d Interrupt

MCOMPL 4- 1 Terminate

-^ WAIT

Read Error Status Register (RES)

REM	 OUTEN - 1; d Set connect flag

(reset on MSTART going low)

MCOMPL - 1;
	

E Connect ESR to DB

{transmit error status)
+ WAIT

Read Error Word Address (REA)

REA1:	 OUTEN *- 1; L^ Set connect flag

(reset on WART going low)

KA
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RIC ;.

4^.T.

{{ y. ^,

-.T-Fr

At k ,_

t.
RZP1 s	 Gn'1= ♦ 1#

`' , . ♦ 1; C Connect NCR to DD

♦ WAIT

Read Check Sits (RCB)

RCB 1:	 OUTEN 4- 1;

MCR 4- C ;

MCOMPL •- 1;	 C Connect MCR to DB

-+ WAIT

Enable /Disable Read Retry (EDR)

EDR1:	 RTRY - AB 11;	 C AB 11 . 1 to enable

l n

MCOMPL + 1;	 AB 11 , 0 to disable

retry

+ WAIT

I
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f77

NOOBPt. * 1 i
i

-► BAIT

Beset 1-th Bit Replacement a/b (MR)

RBR1: if AB11 then

;POSARa 4. 1 ;^	 All 1's indicate a non-

existent bit plane.

if AB 11then

MCOMPL t 1;

•+ WAIT

Enable/Disable Single Error Correction (SEC)

SEC1:	 SECEN AB 11 ;	 E AB II " 1 to enable.

MCOMPL ♦ 1;	 AB 11 a 0 to disable

-► WAIT	 single error correction

4-19
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4.1.3	 Error Control Capabilities

The addressq data and commids are systematically checked

against single and double errors using appropriate encoding schemes

(byte-parity, osrpbic and an SEC/DW code) and self-checklag checkers.

The Information about code errors and cireuf.t faults is collected during

each memory operation cycle and saved in the error status register ESR

as follows:

ESRO - Address Parity Error

ESR1 - Data Parity Error

ESR2 - Single Error

ESR3 - Double Error

E$R4 - Circuit Error

ESR5 - Soft Name Decoding Error

ES% - Read/Write Command Error

ESR
7
 - Control Error

The error checking capabilities of the MIBB are specified in more detail

next.

Address Parity Checki

APC - (APCO . APC1)

((0 1 1) V0.0) . 1M if no parity errors

in MAR

APC a

((000)v ( 1 9 1) = 0M if parity incorrect

or checker fault

Action:

If (APC - OM) A (MCOMPL 0) A CS1	ig

MINT f- OM; ESR0 - 1; MCOMPI, - 1

- no operation on the storage array performed

- CS  is a control state.
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U (WC	 A (DI00l L 0 0) jM
VRM A CS, gm

MW + %; BSA + 1; MCOM « 1

else if RUD A 
CS  90

4I11T + OA; BSA, ♦ 1

- write operation not performed on the storage

array.

Data SEC/DED Checking

An odd-aright separable single error correcting and double

error detecting (SEC/DBD) code is used to encode 16-bit

data words on 22-bit memory words (CART 761. The SEC/DBD

code is specified in Table 6-1.

A memory word consists of 16 data bits followed by six check

bits.

The check bits CO, ..., C S are defined as

C 1	 ® / ((t1DR5g6,...,12)	 DG1)
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C2
'	 / (0=09

2,4,5969 109 149 15) 	' 062)

C3
'	 / (00,3 96,S,11 9 12 9 139 15) no3)

C4 '	 / ((1 9 394 9 7 99 9 11 9 139 14) DC4)

C5 -	 / (owl 9 2 9 99 10o 129 13049 15  ^5)

i.e.,	 (al , QCi) bas odd parity.

The check bit C1 is is 1M16+1

The syndromes 809 00. 9 8S are defined as

81	 Q / (CI , DGi)

so that

1 if there is no side error in (CI, IDGi)

3
i

0 otherwise

The analysis of syndromes is implarAsted with morphic logic

In the following casess

(1) Single error:

If	 Q/ (S0, ..., 8 S)	 1	 thanw

SE - 1^	 •

i.e., an odd (actually, 3 or 1) number of syndromes

with the value 1 indicates the single error case.

(2) Double error:

. f	 (Q! (S0, ..., S S) 0 0) n (SO - 8 1 ... SS - 0)

then DE - 1^

(i.e.. a double error is ladieated by an even number

(< 6) of syndromes having the value 1).

4-13
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control and Cold

The rod/write pond Is allcked by morphic logic and arm

causes RSR6 <- 1, HIR <- 0. and no action an the storage array.

The oust-of-range commands are implemented using two micro-

'programmed control snits, checked with morphic comparators

[[
	 at the control signal outputs. In case of discrepancy,

f	 BSR7 <- 1, MIIiT 4- ON at the operation is terminated. The

Ei	
memory name decoding is checked by duplication and morphic

comparators. All checker circuits are checked using morphic

logic against single errors.

4.1.4	 Design of Memory Interface Building Block

As indicated in Section 4.1.2, the memory system consists of

two sections: the Storage Array (SA) composed of a set of commercially

available memory chips, and the Memory Interface Building Block,.

The Storage Array consists of up to 22 active bit-planes,

denoted BPi, i - 0 9 1 9 .9.,21, which are used for storing 16 data bits

and six check bits. The check bits are defined by a modified Hamming

SEUDED code for which relatively efficient implementation with good

coverage can be specified. There are two spare bit-planes, SP  and

SPb.

All bit-planes are identical and contain up to 4 (4K x 1)

basic memory chips with on-chip decoding. The reconfiguration is per-

_

	

	 formed by replacing a faulty-bit plane using a direct spare demultiplex-

ing replacement scheme, as described later.
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The dory tatetrfaoe Building Block is partitioned is fear

	

y i	 sections (sea Figure 4-1). which are deseribed ft detail ip the folleaieg

	

". i	
psragtsphs.

4.1.4.1	 ,Address ees Interface. The Addsass Bas interface (AU)
section, which provides the address parity checking and decoding rsgait*6

i to select a memory module, is sbows is"Figure 4-3. Specifically, it
receives a 16-bit memory address encoded with two byte-parity bits f".

the Address Due and stores it into the Newry Addtaes foster OW

	

a	 The self-checking parity chocker circuit (APC) is used to validate the

	

I	 address before a read or write operation is performed. If no errors are
detected, the low-order 12 bits are sent to , the,Atorage Array Block

where the i	 t, on-chip decoding is vWtotmed. A fault in one

ow-chip decoder say cause access to a wrong location to occur, but this
will be detected and corrected by the data-word SBiC/DRD code. Similarly,

two decoding errors will be detected by the SECA D1 scheme. No distinc-

tion is made between errors caused by faults in o—chip decoderb or
storage cells.

The decoding of the high-order (0-2) address bits, which are
used to select a module within the Storage Artay, are checked by a self-

testing decoder. Alternately, a separate decoder can be associated with

each bit-plane, thus making it possible to use the data-word error code

for correction of single bit errors and detection of double bit errors

in the address decoding. The high-order, module select bits are used

as "soft" names and must be mapped into the physical module address.

The design of the Soft Same Checker (SNC) is given in

Figure 4-4. The Address Parity Checker and the 5-input morphic compara-

tor are shown in Figures 4-5 and 4-6. The Error Word Address Register

(EWAR) is used to store the address currently being referenced. If a

fault should occur the EWAR can be read out for subsequent diagnosis.

The block labeled ORC detects out of range commands to the MIBB. It is

shown in Figure 4-6.
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1	 ^

I

I s^	
(	 C sE UMM c nn

APB APCi 	 EQV GATES: — loo

Figure 4-5. Address Parity Checker (APQ

d0

^0

d 
Cl

d 
C2

d3

C3

SNC0

SNCI

ORC.

^
	 REPEAT FOR OBCb	 EOV GATES: —40Ll

Figure 4-6. 5-Input Morphic Comparator (MPCS)
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i

__.	 _.--.-c-•.--.xwu?Erx.;..`-rT'^.gsr°'^.''m;s	 4R:•^•a d`	
--+: ^..+:.. `4w>rS	 4	 . 	 I& i?

DatsM - $te:.aa a	 fur 8a ew. ,

An" Interlace MBU eaftiats of tie	 Bit
CUO and the Uplaceamat C ntrak Sestla n ) at 4boo _ 4-7.

A Data Bit Module (MO is $-bit. W141B. it consists of a pwtjm of the
factory Data Register (MM and se lp A for interfaCiMS !®R Vitt
and spars bit-planes. The designs of svbbin ts. .an indicated Is

Figures 4-8 to 4-13. The replaceeat of a faulty bit-plow is dam by

decoding replacement registers POSARa (POSARb) (ngare 4-14). Tuns

decision which bit-plate to replace is made by Qw systeo. On the basis

of . error Information (location of last faulty bit ) . the sys m sends dw
corresponding RSP command and loads POSH $ (FOSARb) with the bit-plane

position code. A correction input is used to allow tb s.. arm correction

subsystem to complement an erroneous bit. The cOnCilrrence of POSa and

I% ca^reso the specified bit to be replaced by spare- g is the 1th DIN

or UBM. Similarly 10bi enables replacement of the internal bit speci-

fied by POSb using spare plane 8b . The signal 4W enables correctiop

(inversion) of the bit specified by 
80,1,2 within the selected DBM (or

CNN). The signals 
S0785 are the Hamming code syndromes to be inserted

in the check bits during store operations.

4.1.4.3	 Error Control Section. The Error Control Section (ICS),

shown in Figure 4-15 is responsible for generating Hamming code check

bits and syndromes (SGC) (see Figure 4-17), byte-parity generation and

checking (DPCG) (see Figure 4-16), end error analysis (SDA). The cir-

cuits used in ECS block are also self-testing. The single bit error is

corrected by a decoding syndrome generated from the word contained in

the Memory Data Register (MDR) in order to localise the faulty bit I.

The correction is performed by reloading MDR i with the faulty bit com-

plemented. The correction mechanism can be disabled on system request

to preserve the data information for systems diagnostics. The byte-

parity checking provides for detection of most frequent errors in the

bus and interface circuits.
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Figure 4-11. Bit Interface Module OX)

`P16

i	 I

N WRITE

	

	 I
I
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1	 1
1	 ^

1	 ^
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716 'F16 16 x"16	 p 1

N WRITE :::F),

MAIN

Figure 4-12. Bit-Plane Interface Module (2X)
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Figure 4-13. Spare Plane Interface Module
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T01	 VSi

'a0t inA' POSe 	t

DECODER I	 I	 I DECODER

	

2	 1► 3	 12
	

3

IOADA	 Dell, ..., 15	 LOADS

K?V GATESa - 75

Figure 4-14. Replacement Control Section (RCS)
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'OR16
N WRIT

I

REPEAT FOR i NFUT

(510,511) AADR (5,6,7,8,9,10,11,12,17)
(SM,S21 ) MDR 01,2,4,5,8,10,14,15,18)
(S3031 ) MDR (0,3,6,8,11,12,13,15,19)

(S40,S41 ) MDR (1,3,4,7,9,11,13,14,20)
(S50,S51 ) MDR (1,2,9,10,12,13,14,15,21) 	 EQV GATES: -x-150 (TOTAL)

Figure 4-17. Syndrome Generators/Checkers (SGC) 6X

The error analyzer receives the inputs from the following

functions: data-word error coding; data-word byte-parity checking;

address-word byte-parity checking; all self-testing circuits and check-

ers of duplicated units. The output signals indicate the conditions,

such as NE (no-error), SE (single error), DE (double error), CE (circuit

error), and they are recorded in the Error Status Register (ESR) which

can be transmitted over the Data Bus on system demand. The specifica-

tion of the fields and information to be recorded in ESR should enhance

the systems diagnostics and maintainability of the memory system.

The design of ECS follows that of Carter et al.
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The morphic ROR trees are used in checking and generating
check bits as follows:

In RRAD operation, the output 3 i represents the i-th
syndrome

a  -Is /(C i , Ix 1)

where c  is in NOR 
16+1 and DG  represents 8 MDR posi-

tions as defined on the diagram. The signals 
Si0'

Sit are morphic outputs for the i-th syndrome. By

definition, S i = 1 if there are no single errors in

the positions corresponding to C  and DGi.

The Carter SEC/DED analyzer, shown in Figure 4-18, performs

the checking of syndrome generation by morphic signal SGC, which is 1M

If there is no error in any of the syndrome ggnerators and O M otherwise.

This is so because odd parity is used in the encoding. Two parity trees

i .	 are used to produce a morphic syndrome parity check (SPC). Since there

t	 is an even number of syndromes and parity bits and the syndrome "no

{

	

	 error" condition is I M, there should be an even number of 1's in total

under no error condition. Therefore, both parity trees should have like

t	
parity and SDC is OM under a no error condition and 1 M otherwise.

From morphic signals SGC and SPC it can be decided when

there is a no syndrome error (NE), a double error (DE) or a single error

i	 (SE). These conditions are mutually exclusive-and that fact can be used

to provide for checking analyzer circuits as indicated by the No Circuit

r	 Error (NCE) network.

The morphic error indication signals are systematically

collected in an 8-bit error status register (ESR) (see Figure 4-19).

On the basis of address and data parity checking, SES/DED analyzer out-

puts and command/control checking, two outgoing signals, are formed.

Whenever a single error has been corrected, a morphic interrupt signal

SECI is generated. If an uncorrectable condition exists, the memory

error interrupt (MINT) is generated. If MINT condition exists, a write

operation is prevented.

i
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4.1.4.4	 Memory Control Section. The Memory Control Section (MCS)

provides control signals required to implement operation and command

algorithms. As indicated in Figure 4-20a, the MCS consists of the

following subsections: the Control Interface (CO. the Clock Generator

(CPC), two Condition Generators•(KG a , KGb), two State Sequences (SS as

SSb), two Control Signal Generators (CSGa , CSGb) and a Control Signal

Comparater . (CSR). These subsections are described in more detail in

the following paragraphs.

(a) Control Interface CI) and Clock Generator CPG)

The Control Interface (CI) is shown in Figure 4-20b. It

consists of SCCM-MIBB handshaking circuits (MSTART-MCOMPLETE

circuits), and several flags at the out-of-range command

register with the command decoder. The Clock Generator,

also shown in Figure 4-20b, consists of the basic 8MHz

clock oscillator, a synchronizing divider which produces a

4MHz clock train in automatic mode when MSTART-1. In the

manual mode, a single edge is produced. (It is assumed

that all flip-flops are edge-triggered.)

(h) Condition Generator (K(:)

The conditions generated by KG are defined below:

K1 = HAM-SER-SECEN-NCER-RTRY

K2 = HAM-SER-SECEN-LACER-RTRY-RTRONE

K 3 = NAM-ERR-SER+HAM-E2R+RTRY- RTRONE -ERR

K4 = RES+REA+REP+EDR+RSP+RBR+SEC

K5 = ORCa-MSTART

K6 = NWRITE+SSN

K
7
 - NWRITF.-K1+SSN

K8 = FORME-MSTAR'r(WRITE+NWRITE)

Ky = WRI'T'E-NWRITE,SSN-RCA

K 10m (ERR+K3+K2)NWRITE

K 11 = NWRI'rE+WRITE

The implementation is straightforward and is not shown here.
(c) State tiequencer (SS)
State Sequencer (SS) implements the control state diagram
shown in Figure 4-20r. The t states correspond to the steps
of the operation and command algorithms given before, as
toIlows:
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to WAIT

t 
	 DSCODB

t2* RUD1, RCB1

t3 READ2, 88N1, R981, RBA1, REP1, RM1, RSP1, RBR1, 88C1

t4 RB03, SSN2

t 	 RBAD4, SSN3

t6* R8AD5, WRITEI

t7 R8AD6, WRIT32

The states t2 and t6 take two (2) clock periods in order to

accommodate the access to the storage array. The implemen-

tation for the breadboard uses a standard synchronous con-

nector plus multiplexer approach. In a VLSI implementation

it is likely that an asynchronous sequencer would be more

appropriate. The state transitions of the counter T.

shown in Figure 4-20d, are controlled by the following

functions:

TCOUNT-tO•K5+t1•RCB+t2*IIWRITE+t3•K6+t4.K7+t5•NWRITE+t6*WRITE

TLOAD -tO•K8+t2*•RCB+t3•K9+t4*K10+t5 • SSN+t6*NWRITE+t7'K11

TCLEAR-PR+TQ3 (i.e. for all t i , i>8).

The parallel load inputs are defined as follows:

Next State

Present State	 I3 I2 I 1 1 0	 Condition

0 0 1 0	 NWRITE

t 0	 0 1 1 0	 WRITE

t 	 0 0 1 1	 RCB

t 2	 0 0 0 0

t 3	 0 0 0 0

0 0 0 0	 K+
t 4	 0 1 1 1	 K2

t 5	 0 0 0 0

t 6	 0 0 0 0

0 0 1 0	 NWRITE
t 7	 0 0 0 0	 WRITE

Therefore, the parallel inputs arcs:

1 3	 0

I "	 t0•WRI 'rE+t4'KL
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I  a tO+tlao+t4•Ket7•NWRITR

10 a tiRCB+t4K2

The sequencer is shown in Figure 4-20d. For additional

flexibility In the breadboarding phase, we use Rod-16

counter and 16-t4-1 multiplexers even though Mod-8 counter
and 8-to-1 multiplexers would be sufficient.

(d) Control Signal Generator (CSG)

The control signals for register and selection networks are

defined below. Again, the implementation is simple and W

Is not shown here. Since there is a large number of control

signals (approx. 60), direct morphic reduction would be too

costly. However, it is possible to group together (by ORing)

mutually exclusive signals before reduction. For bread-

boarding phase, a direct signal-to-signal comparison on

equivalence is preferred. A control error is indicated if

not all comparisons are the same.

EBAR	 register

SETEB-PR+t7•NWRITE+MSTART•MCOMPL

LOADEB-t5•NWKITE

EWAR	 register

LOADEW-(t2*•NWRITE+th*•WRITE)FRSTEW

FRSTEW	 flap,

CLEARFRSTEW-PR+t3•RLA

SETFRSTEW=t4•NWRITE-K3+t7'WRITE*ERR

1	 register (morphic)

S E'T'E- PR+t 7 • NWRI TE

I.oAUEI-t`*•NWRITE+t6*-WRITE

I.UADF2=t3•NWRITE+t6* -WRITE

I.oADE 3-t*+ t' `t' 6

I.OADE4-t3•NWRITE
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SSR register

CLBARLSR	 - PR+t
7

• NWRITE+NSTART •	L

LOAM% - t2*•NWRITS+t6*•WRITE

LOAMR1 - t3•NWRITE+t6*WRITE

LOADESR2 	- t3•NWRITZ+t7•WRITE

LOADBSR3 	- LOADESR2

LOADRSR4	- LOADBSR2

LOAD$SR5	- LOADESROttg•SSN

LOADES% - LOADESRO

LOADESR^	 - t*+t'2•to6

MCOMPL flag

SETMCOMPL - PR+t 4•NWRITE•K3+t6*-NWRITS+t'•

WRITE+ts•SSN+t3•K4+t2*•RCB

CLEARCOMPL- +MSTART(FORME+ORCa)

MAR register

LOADMAR	 - t0(FORME+ORC, . RCB)+MSTART

MDR register

LOADMDR	 - t0•FORME •MSTART •WRITE+(t2*+ts+

t4•K2) • NWRITE

MCR register

LOADMCR	 - t6*•WRITE•HAM+t2*•RCB

OUTEN flag

CLEAROUTEN- PR+MSTART • MCOMPL

SETOUTEN	 - t3(NWRITE+K4)+t2*RCB

RTRONE flag

CLEARRTRONE- PR+MSTART • MCOMPL

SETRTRONE - t7•NWRITE

i

.
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RTRY f lag

CLBARRTRY • PR

LOADRTRY • t
3
 *in

Oka register

LOADORCR . y oa% MBTART

POSAR SETPOSa a PR+t3•RBR•AB 11
SETPOSb ' PR+t3•RBR•A811

LOADA '
t3•R5P•AB11

LOADB '
t3•RSP•jN11

P register

LOADP a t0 •FORME•MSTART•WRITE+(t2*+t6*)•

NWRITE

RW register

SETRW a t7•NWRITE

LOADRW a t0•FORME•MSTART

CLEARRW - MSTART•MCOMPL
RESETRW - t4•K2

SECI register

SETS u PR+t7•NWRITE+MSTART•MCOMYL

LOADS w t5•NWRITE

MINT register

SETM = PR+t7+MSTART•MCOMPL

LOADM • t4•K3+t7+t5•SSN

SECEN flag

SETSECEN - PR

LOADSECEN n t3•SEC

SNR	 register

SETSNR6	 a t3•SSN

I.()ADSNR	 = t4•SSN
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DBOUT	 Signals

OUTBA a OUM-RBA-1 CCNPL

OUTBSR a OUM-R$S -MOMOL

OUTNCR a OUTBN-RCB-1L

OUT= • OUTIM-WAITS-HOOMPL

OUTE8A a OUTEN01MG11COM

SELDN	 Selection

SSLDM a Y-MMITS

HEM	 (Memory Enable)

Now a ERR

ERR

ERR a NMERRA"MRR

SER a SEOOSE1

LACER a NCE00NCEI

4.1.5	 Estimated Complexity of Implementation

The design of the MIBB was directed toward partitioning

into LSI modules of 500-750 gates per mod-ile. This has been largely

achieved, as summarized in Table 4-2. It is also small enough to be

implemented on a single VLSI circuit.

The breadboard realization using, SSI/MSI modules requires

about 200 chips.

Table 4-2. Component Count

Module Equivalent Cates 1/0 Pins LSI Chips

AB1 465 •	 64 1

ECS 650 .100 1

DBSA ti 775 - 64 1

MCS % 500 64 1

(Duplicat-)

,A000 5 +
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4.2	 THE CORE BUILDING BLOCK

The Core Building Block (Core-BB) is responsible for

(1) detecting CPU and bus faults, (2) collecting fault indications from

the other building blocks, and (3) disabling its computer module upon

the detection of a permanent fault. Two fault-handling options are

provided by the Core-BB:

(1) Stop at the first fault indication;

(2) Rollback at first fault indication, stop if fault

recurs

4.2.1	 Core Building Block Requirements

Specific requirements of the Core Building Block are listed

below:

(1) Compare two CPU's for disagreement;

(2) Parity encode CPU output for internal bus transmission;

(3) Check parity on internal bus;

(4) Recognize Core-BB commands: Halt and Inhibit, Restart,

and Enable, as out-of-range addresses;

(5) Allocate the internal bus amongst several DMA modules;

(6) Detect internal faults within the Core-BB;

(7) Collect internal fault indications from all building

blocks within the computer module;

(8) Disable SCCM output (or set error message) under fault

conditions;

(9) Provide reset/halt, or reset/rollback, capability for

optional transient fault recovery;

(10) Halt computation on recurring faults.

A block diagram of the Core-BB is shown in Figure 4-21.
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4.2.1.1	 Core Building Block Connections. The following is a listing

of Core-BB connections and a brief description of their function:

(1) Internal Data Bus (DB) 18 lines (16 + 2 parity)

(2) Internal Address Bus (AB) 18 lines (16 + 2 parity) -

All building blocks and the Master CPU are connected

to these buses which tie together to the SCCM. The

Core-BB checks parity on outputs from other modules

and generates parity when the Master CPU outputs on

either bus.

(3) Local Data Bus (LDB) 16 lines - Special data bus to

the check CPU. The Core-BB passes data directly from

the Internal.Data Bus to the Local Data Bus when

inputs are required by both CPU's. When both CPU's

output, the Core-BB compares the two processors by

comparing the two data buses.

(4) Local Address Bus (LAB) 16 lines - Carries address

outputs by the Check CPU which are compared with

address outputs of the Master CPU (by comparing the

Internal Address Bus with Local Address Bus).

(5) R1-R5 (5) - Bus Request signals from DMA controllers

in other building blocks.

R1-R5	 (5) Complement of R1-R5

These signals form morphic pairs (R 1 , R 1 , ..., R5 , R5),

which are sent from up to five SCCM building blocks.

They are checked for proper coding (i.e., being com-

plementary). The true values (R1-R5) and the comple-

ment requests (R 1_R5 ) are processed by two redundant

circuits within the Core -BB, which in turn generate a

true and complementary set of acknowledge signals

(Akl-A5). (Akl-W).
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f

(6) Ak1-AkS (S) - Bus Grant (Acknowledge) signals to DMA

channels. Aki-7Ak5 (S) - complement of Ak/-AkS forming
morphic pairs.

(7) HOLD HOLD (2) - Bus Release request to Master and

Check CPU's.

(8) HOLDA, HOLDA (2) - Bus Release acknowledge from Master

and Check CPU's.

(9) IF1-IF8, IF1-IF8 (16) - Eight morphic Internal fault

indicators from other building block circuits.

(10) RESET, RESET (2) - Morphic reset signals to all SCCM

modules from duplicated logic in the Core-BB.

(11) INHOUT, INHOUT (2) - Inhibit outputs to Bus Controller

and I/O BB's, from duplicated logic in Core-BB.

(12) RESTART, RESTART (2) - Mdrphic restart signals to

Master and Check CPU from duplicated logic in Core-BB.

(13) S1 Clock In (1) - 1 Mhz square wave clock in to

Core-BB.

(14) 1 (1) System Clock - Clock to all circuitry in SCCM,

sent from and controlled by Core-BB.

(15) WRITE, NWRITE (2) - Memory read/write control level of

the SCCM Internal Bus.

(16) MSTART (1) - Memory Start SignAl of SCCM Internal Bus.

(17) COMPL (1) - Completion level of SCCM Internal Bus.

Counting Vcc and ground, this circuit will require a 128 pin

package.

4.2.2	 Core Building Block Implementation	 '

The Core Building Block consists of three sub-elements: A

Processor Check Element, A Bus Arbitration Element, and a Fault Handler

Element, which are described below.
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4.2.2.1	 The Processor Check Bigot (PCB .- The Processor Check
Blement serves three functions (1) to compare the outputs of two
synchronous processors; (2) to encode and check internal bus parity;

and (3) to recognize and decode coaomands sent to the Core through the

internal SCCM bus.

The PCE is shown in Figure 4-22. It is connected to the two

18-bit internal address and data buses within the SCCM. The Master CPU

and other building blocks in the SCCM also reside on the,:S buses. The

PCE provides a local address and data bus for a Check CPU, which is 	 i

operated synchronously with the Master CPU, and its outputs are compared

for checking.

Internal circuits in the PCE consist of:

(a) Morphic Comparators MCMP - Each of these circuits com-

pares two pairs of 16-bit inputs, and generates a two-

wire output. The output takes on values 0,1 or 1,0 if

the 16-bit inputs agree, and they take on valises 1,1

or 0,0 if the inputs disagree or if an internal fault

occurs in the comparator circuit. These circuits are

said to be self-checking in that nearly all internal

faults will eventually result in an error indication.

One MCMP circuit compares the address output of the

two processors. The second compares their outputs to

the data bus. An isolation circuit is provided so

that input data to the Master CPU can also be passed

to the check CPU.

(b) Morphic Parity Check/Generator - Two circuits are pro-

vided to check and generate parity on the address and

data muses respectively. Coding on each bus consists

of two odd parity bits; one over all even bits and one

over all odd bits. Since the Master CPU generates

16 bit address and data outputs without parity, the

parity generators add the extra two parity bits to
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their associated bus during CPU outputs. Other data

on the internal buses is expected to be coded (e.g..

memory data) and the parity checkers check for proper

coding.

Bach self-checking (morphic) parity check generates a	
1
j

two-wire output with values 1,0 and 0.1, which repre-

sent a correct check, and 1 9 1 and 0 9 0. which represent

either uncoded data on the associated bub or a fault

in the checker.

(c) Command Decoders. Two command decoders are provided

which have identical outputs. When an out-of-range

address appears on the address bus (with AB
O AB3

1111) and the Core-BB is addressed (AB d-ABA - 0001),

the three least significant bits of the address bus

are decoded to generate six commands. These are

designated CMD1-CMD6 (*CMD1-*CMD6 from the duplicate

decoder). If any of these commands are received, the

level FORME is raised. The outputs of the command

decoder are compared in the Fault Handler to detect

faults in this circuitry.

Core-BB Commands are:

CMD1 - START Clock

CMD2 - STOP Clock

CMD3 - Initiate Rollback

CMD4 - Clear Faults, Enable Outputs

CMD5 - Output Error Status Word 1

CM6 - Output Error Status Word 2

(d)	 Status Registers. Two status registers are used to

sample various fault Indicators and make this informs-

tion available to external computer modules. When a

fault is detected (F 1 +F2 ) by a fault synchronizer,

this data is sampled (i.e., clocked into the status

registers). Two Core-BB commands are reserved to read

out the status registers. When the level OUTS goes

4-5N
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low, tri-state drivers are enabled in the respective

status register and its data is output to the data bus.

Figure 4-23 shows a preliminary logic design of the circuits

which make up the Processor Check Element. Specific interface signals

are:

Input to DCE:

Poa Pod	- Generate and output parity on address or

data bus, respectively.

011TS1	 - Output Status Register 1 to SCCM data bus.

OUTM	 - Output Status Register 2 to SCCM data bus.

F1+F2	- Load status registers (a fault is detected).

PASS 	 - Connect Local Data Bus with Internal SCCM

data bus.

Outputs from DCE

MPC .1 9 MPCd	- Two-wire morphic parity check results for

address and data bus, respectively.

CMPa , CMPb	- Two-wire morphic comparison results for

address and data bus, respectively.

CMD1-6	 - Command lines for decoded commands to the

Core-BB.

FORME	 - Indicates Core-BB has been commanded by an

out of range address.

*CMD1-6, *FORME	 - Duplicate of command decoder signals above.

4.2.2.2	 The Bus Arbitor Element. The bus arbitor accepts internal

bus requests (R,R) from up to five DMA channels in other building block

circuits. It accepts multiple requests on the basis of priority, requests

release of the internal bus by the two processors (HOLD), and upon com-

pliance by the processors (HOLDA) it grants access to the selected DMA

controller (Ak). Incoming bus requests are morphic signal pairs which

take on values of 0,1 when access is requested and values 1.0 when no
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request is made. Values 1,1 and 0,0 represent fault conditions.

Similarly, the acknowledge signals are morphic with 01 9 and 1 10 repre-

senting not-acknowledge and acknowledge (grant). As before, the values

00, and 11 represent fault conditions. One variable of each morphic

pair is associated with one priority resolver circuit and the other is

associated with the second resolver.

The two priority resolvers are duplicated circuits, each of

which provide the bus arbitration function — one in "true" logic and

the other in "complement" logic. They are compared using morphic-and

circuits to detect faults in either unit by their disagreement. Each

priority resolver is a simple sequential circuit which Accepts bus

request inputs, obtains release of the internal bus by the CPU, and

grants bus access to the requesting DMA channel with highest priority.

A functional block diagram of the Bus Arbitor Element is shown in

Figure 4-24, and a logic description of the Priority Resolver is pre-

sented in Figure 4-25. The morphic-and circuits are shown in Figure 4-26.

Synchronization of the two priority resolvers is described below:

(a) Timing. A square wave clock is sent to all building

blocks in the SCCM and is used for synchronization.

In the first half of the cycle, the clock is high and

this signal is designated ^ 1 . The inverse of the

clock is 0 2 . Thus, the rise of I is the beginning of

a clock cycle and the rise of Q is the middle.

All bus request, interrupt, and fault indicators are

constrained to change only at the beginning of S 1 and

it is assumed that they are generated by a D or j/k

flip-flop clocked with p 1 . If these incoming signals

are examined instantaneously at the rise of either 12

or 1 , they are assumed stable. Transmission delays

prevent change at the rise of 
;1 

and the circuits

have settled by the rise of *2.
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Incoming bus request pairs and outgoing acknowledge

pairs are reduced with 5-pair morphic AND circuits to

generate two 2-wire morphic check signals. Mil

verifies that the inputs are correct and 1D0 checks

that the duplex arbitors agree. These cheek signals

are examined precisely on the rise of ®1 in the Fault

Handling Logic.

(b) Implementation. Two priority resolver implementations

are given; one with a PLA and the other is built

around a priority encoder chip (74278). The PLA is

better for VLSI layout, and the other approach is

easier for breadboarding (see Figure 4-25).

The resolver Implementation is straightforward and the	 •

logic is largely self-explanatory. One additional

feature is an added flip-flop which has a subtle but

important purpose. When the system is RESET upon

error, the CPU will not necessarily release itself

from the bus. Thus we force isolation of the processor

with tri-state transceivers and must also generate a

hold acknowledge HOLDA signal. Upon detecting a

permanent fault, a latch is set in the resolver which

generates a continuous HOLDA signal. It is only

released upon a command to restart the CPUs in a

program rollback (RESTART).

4.2.2.3 Combining Fault dicaturs and Other Synchrnnited Morphic

Check Signals. There can be up to eight mmorphic internal fault indi-

cators from external building blocks. These signed pairs make transi-

tions between values 0,1 and 1,0 if their associated building block is

working properly. Values 00 or 11 indicate an internal fault.

These signals are reduced by an 8-pair morphic-and circuit

to produce a single morphic internal fault indicator MIF. Since the

Internal fault and bus arbitor check signals are all synchronized with

the m1 clock, they can be combined into a single 2-wire merphic fault

Indicator. Thus, MIF. MDIN. and MW at- combined with a 4-input
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morphic-and circuit to produce a single CSMF fault indicator which ,s

a combination of all Clock-Synchronised Norphic Fault indicators. (An

additional synchronous morphic indicator IRS Le included which is the

result of comparing the outputs of two duplex Recovery Sequencers in the

Fault Handling Logic.)

4.2.2.4	 The Fault Handler Element. The Fault Handler Element is

responsible for overall fault detection in the SCCM and is also capable

of taking limited recovery action. It consists of two major parts;

duplex Fault Synchronisers, and duplex Recovery Sequencers. Both parts

are duplicated and compared to provide fault detection, as shown in

Figure 4-27.

Each Fault Synchronizer examines morphic fault indicators

and check signals from the other building blocks and from within the

Core-BB itself. Its primary function is to examine these signals only

when they are stable and valid to detect faults, and to deliver a Master

Fault Indicator to the Recovery Sequencer pair.

The Recovery Sequencer (upon receiving a Master Fault Iudi-

cator), disables outputs from the SCCM and resets the CPU's. Optionally,

a restart can be attempted, and if successful, the software can re-enable

outputs and clear the fault indications in the Fault Handler.

Either of the Fault Synchronizer-Recovery Sequencer pairs

can disable outputs from the SCCM. Also Recovery Sequencer outputs are

compared and a disagreement is signalled to both Fault Synchronizers.

A logic diagram for a Fault Synchronizer and Recovery

Sequencer is given in Figure 4-28 and is described below:

(a) The Fault Synchronizer. This circuit examines the

various morphic fault indicators (CMP, MPC, CSMF) at

times when (1) their checks are relevant, and (2) when

the morphic signals are stable (not changing). The

clock-synchronized morphic fault indicator CSMF is

examined at the rise of every 0 1 . The comparison and

parity check pairs are examined when a bus completion

signal (COMPL) is observed. The five morphic check

4-66



N

►

Ir I^,Ar

a^

3

3c i

M

^a

Nr

N
M

oil,

I

o °aI

t -N

J/
II

//	 e

\^	 z
^\ e

N \\

`!^
WZJ

l	
C

00

0

c
0

u
u
v0c0
U
w

L
H

2	 1
Y

"4

Qa

G
M

oa

w
C
:J

N
1

S+

7

.:C



u
C

O

C

GI

O

u
va
b

z	 °^
O	 N

S	 O

u	 uc

r̂
	 u

O
4.

CCN
1

0!

H

00

rl
44

I;u

0

0

1

^J

Y

0U;13

^u

gO"
w1b

oil
I^

r

ooeo.-

YOIC-^OO M
^.al oo-^-o

4
.1^9	
^Q

oil
"fu I§,.	 r

4-68



signals (CMPd, CMPa, MPCd , MPCa , CSMF) are input to a

not exclusive-or function which yields a logic 1 out-

put whenever these signals indicate a fault by taking

on values 11 or 00. These signals are "ended" with a

set of signals which indicate the times at which each

specific check is relevant, and the result is fed to

a flip-flop which is clocked at a time when the results

are stable. Conditions for examining the morphic check

signals are given below in Table 4-3.

Table 4-3. Conditions for Examining Morphic Check Signals

Signals Function Enabling Function Strobe F.F.

MPCa -	 Address bus HOLDA - procesoor COMPL - bus f2

parity check off the bus completion

MPCd -	 Data bus parity HOLDA + READ COMPL f1

check

CMPa -	 Compare check HOLDA COMPL f3

CPU & master

CPU outputs to

address bus

CHIP d -	 Compare CPU's HOLDA-WRITE COMPL f4

outputs to data

bus

CSMF -	 All clock at all times Q2 f5

synchronized

morphic fault

indicators

A flip-flop is associated with each fault indicator

which is set if a fault is observed. An additional

fault flip-flop (f 6 ) is included, which is set if

(1) the bus signals MSTART and COMPL occur in improper

order, (2) too much time elapses between memory com-

plete signals (COMPL), or (3) a program rollback is

4-69



externally commanded (CFSET). All six fault flip-flops

are synchronised with m1 (by f7
) and combined to pro-

duce a Master Fault Indicator F which can only be set

at the rise of f1.

(b) The Recovery Sequencer (RS). Upon detecting a fault

(F), the RS (1) inhibits outputs, (2) generates a four

clock pulse reset.signal, and (3) for the first fault,

commands a program rollback/restart (see Fa , F 

sequence in Figure 4-28).

When a "first" fault occurs, the RS inhibits outputs

and issues a five pulse sequence. For four clock

periods, a RESET signal is generated, followed by a

RESTART to the CPUs to attempt a program rollback.

For subsequent faults, the outputs remain inhibited

and a reset is generated, but no additional RESTART

is generated. (This effectively halts the CPU upon a

second fault committed while trying to roll back.)

If the rollback is successful, a program command can

be issued (CMD4) which clears all fault latches

(CLEARSEQ), re-enables outputs, and thus provides

complete absolution for the remission of faulty.

(c) Control Signal Generation. One of the two Fault

Handler Elements contains a small circuit for control

signal generation. Internal Control Signals are

generated in the following fashion.

PASS  (Pass data to check CPU) - HOLDA + READ

don't care

PO  (Generate address parity) - HOLDA

PO  (Generate data parity) - HOLDA-WRITE

+ READ•FORME•MSTART
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OUTS, M READ-FORMS-MSTART-CMD5

OUTS  o READ-FORMS-MSTART-CMD6

COMPL (generate completion) - FORME-MSTART (delayed)

(d) Manual and External Module Control - This small circuit

provide: for clearing of fault latches in the Fault

Handler and for initiating program restart. These can

be carrie,i out by front panel switches or under program

control through out-of-range commands. Also included

is a master reset switch and a facility for single-

stepping the SCCM clock for test and debugging. The

logic diagram is shown in Figure 4-29.

4.3	 THE BITS INTERFACE BUILDING BLOCK (BIBB)

The Bus Interface Building B1ook provides the mechanism by

which information is transferred between computer modules via the inter-

communications bus system. The BIBB can be programmed as a Bus Adaptor

or as a Bus Controller, as previously described in Section 3.5.4. The

following sections provide a more detailed description of the require-

ments, functions, and implementation of this building block.

4.3.1	 Bus System Requirements

The choice of a bus system for the fault-tolerant building-

block computers requires careful consideration of functional character-

istii.a so as to meet a wide range of applications, which is to say that,

it must be useful as well as fault-tolerant. Therefore, the following

general characteristics have been provided in the bus system.

(1)

	

	 Formats. The Building Block Bus System (BBBS)

utilizes 1553A formats to maximize compatibility with

planned and existing equipments. This also defines

speed and electrical characteristics. The 1553 for-

mat contains status messages required for fault-

tolerant implementation.
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(2) Memory-to-4mory Transmission. The bus system is

capable of moving data blocks directly between

memories of the connected computers, using cycle-

stealing techniques to minimise software support

requirements.

(3) Indirect Addressing. Within each SCCM of a network,

various areas of memory are reserved for incoming or

outgoing information blocks. These data blocks can be

reached through the bus system by absolute memory

address or by "name" through indirect addressing.

In the first case, a typical bus command is "Move a

5-word block from source SCCM 5 location 200, to

acceptor SCCM 3 location 3000." In the second case, 	 •

the bus command would be, "Move 5 words from source

SCCM 5, pointer 1 to acceptor SCCM 3, pointer 2."

In the indirect addressing case, the computers main-

tain a pointer table within their own memory which

contains the addresses of the relevant data (and which

is referenced by the BIBB). In our example the first

pointer table entry in module 5 would contain the

address 200 and the second pointer in module 3 would

contain 3000.

Indirect addressing is important because it allows

decoupling of the specification of global data blocks

from the detailed assembly listings in the host SCCMs.

Thus, software can be changed in one computer without

affecting the data references in the other machines.

(4) Multiple Acceptors. The data bus is capable of trans-

mitting information blocks from the memory of any

source SCCM to the memories of one or more acceptor

SCCMs. Since multiple acceptors are not directly

provided in the 1553 format, additional modules must

be commanded to "listen in" on a 1553-term1nal-to-

terminal transmission. This preserves the 1553A
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k	 format while allowing a "broadcast" mode for distri-

i
	 buting time and engineering measurements of general

#	 interest.	 !

i	 (5) Block Length. The maximum length of memory blocks

transmitted between computers should be at least

several hundred words in order to transfer files of

collected data (for a number of information collection

systems). This is implemented by allowing the concat-

enation of 32-word transfers (the maximum number

allowed in the 1553A format). Long block transfers

are implemented as a sequence of 32-word transmissions

in sequence followed by a final block of less than

32 words. This chopping up of long blocks into

32-word segments is carried out by the bus system in

order to preserve 1553 compatibility.

(6) Universal Hardware Interface. The bus system inter-

face with the host processors should be sufficiently

general to be applied to any of a large number of dif-

ferent host CPUs which may be employed. The most

standard interface that we could find is memory-mapped

I/0. The BIBB communicates with the SCCM through the

18-bit internal address and data buses, using direct

memory access (DMA). Control of the bus system by the

host CPU, occurs using out-of -range addresses (memory-
mapped I/0) as commands.

(7) The Bus Controller. The Bus Controller performs the

Bus Control functions associated with the 1553A for-

mat, along with the augmentations described above.

The Bus Controller is given a pointer to a bus control

table in the host SCCM's memory by an out-of-range

store instruction. The Bus Controller extracts the

control table from the memory of the host module,

interprets the bus table, issues bus commands to effect
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the requested block transfer, carries out data block

transactions involving its own memory, and monitors

status signals. The host SCCM is notified of correct

or erroneous transmissions through a status massage

left in memory and receipt of an interrupt upon

completion of the transmission.

(S) The Bus Adaptor. Each Bus Adaptor moves data into and

out of its associated SCCMS memory as requested by the

controller of its associated bus.

(9) Requirements for Fault Tolerance. General requirements

of the bus system to ensure fault tolerance are:

(a) Protection against "party line damage" of bus

shorts or a bus interface talking out of turn.

(b) Detection of errors in transmission and (i) noti-

fication of the SCCM by the Bus Controller-

through status messages, and (ii) providing a

mechanism to allow the acceptor module to deter-

mine that it has received an incomplete or

erroneous message.

(c) Detection of internal faults in the Bus Control-

ler and notification of its host SCCM. The

Core-BB disables the SCCM under this condition.

(d) Detection of internal faults in a Bus Adaptor

and disabling its subsequent function. (This

does not disable the SCCM since other redundant

Bus Adaptors may still be functioning.)

(e) The use of redundant buses and host computers

so that messages can be rerouted in case of bus

failures, and computations can be relocated in

case of computer failures.
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4.3.2	 Bus Controller Functions

The Bus Controller (BC) is activated by a store instruction

to one of a set of out-of-range addresses. It uses the value of the

word being stored as a pointer to a Bus Control Table in the host memory.

The BC reads the Bus Control Table from memory by cycle stealing and

carries out the requested transfer. The BC issues those 1553A commands

necessary to execute the requested data transfer over an external bus,

and monitors the associated status words to verify that the transfer was

properly completed. Two additional out-of-range references can be used

to reset the BC or read out status. The specific memory-mapped commands

to the BC are shown in Table 4-4.

Table 4-4. Memory Mapped BC Commands

Command R/W - Address (ADO-AD15) — Comments

(1) Execute Bus	 Write to:

Control Table	 1111 0010 dddO ZZZZ

AD12 - Odd Parity over (AD13-AD15)

(AD13-AD15) Specifies which

external bus to use for

transmission

DB contains address of Bus

Control Table

(2) Read BC	 Read from:

Internal Status	 1111 0010 dddl 0001

DB f- Status Register (value of

internal flip-flops)

(3) Reset BC	 Write to:

1111 0010 dddl 0010

DB ignored - BC is reset

NOTES: ABO-AB3 - 0000 -- Out of Range Address

AB4-AB1 - 0010 -- Identifies BC

AB11-AB15 -- Specifies BC command

d -- don't care
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4.3.2.1	 The Bus Control Table OCT). Bus Control Tables are three

or four words long and have one of two formats which are decodable from

the first word in the table, as shown in Table 4-5.

Table 4-5. Bus Control Table Formats

Controller/Terminal Transmission

I

- 0 Do this table and stop

Word 1

1 Execute next table after completing this table

Word 2 Data Address for block in BC host SCCMs memory

Word 3 A 1553A transmit or receive command

Terminal/Terminal Transmission

1 - -32768 Do this table and stop (1000 ... 00)

Word 1

-1 Execute next table after this one (111 ... 11)

Word 2 Data Address for block in BC host SCCMs memory

(to "listen in")

Word 3 A 1553A Receive Cowhand

Word 4 A 1553A Transmit Command

Word 1 of the control table specifies a Controller/Terminal

or Terminal/Controller transmission if its most significant bit is zero,

and a Terminal/Terminal transmission if its MSB is one. For a sequence

of short transmissions, it is useful to place their control tables in

consecutive memory locations and direct the BC to execute them all auto-

matically. This option is provided in the following fashion: If the

least significant bit of word 1 equals one. the BC will automatically

execute the next Bus Control Table after successfully executing the

current one.
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The first word of a BCT is inspected to determine which of

the two formats is employed, the remaining words are interpreted in the

following fashion:

(1) Transmissions Between Controller and a Terminal

The second word specifies the address within the

controller's host memory where information is to be

extracted or stored. If this address is positive

(i.e. less than 32765), it is treated as an absolute

address. If it is negative, it is complemented by

the BC and used as an indirect address, i.e. the

specified location is used as a pointer to the speci-

fied data. The third word is a 1533A command to be

issued to the participating terminal on the bus to

which information is to be sent or received.

(2) Transmission Between Terminals

For a terminal/terminal transmission the second bus

table word specifies an address to store data in memory

of the BCs host SCCM. The word is interpreted as in

(1) above. The BC "listens in" on the transmission

between terminals and stores the information in its

local memory where it may or may not be used by its

host processor. The third and fourth words are the

1553A receive and transmit commands necessary to set-

up the specified communication.

4.3.2.2	 Status on Completion or Term ination. Upon completion or

error termination of a communication, the BC writes a Completion Status

Word (CSW) into a fixed location in memory and generates an interrupt.

The CSW specifies one of five conditions:

(1) Communication OK (COM OK)

(2) Communication complete but terminals host SCCM has

shutdown (M'DOWN)

(3) Requested bus not available (BNA)

7
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(4) Error in transmission — iupropm wing detected ar
status message not returned (CMM)

(5) Improper activity on requested bus (BACT)

In the locations immediately following the CSW, the BC

stores the address of the Bus Control Table which was executed, and any

(one or two) 1553A statue messages that were received. Thus up to four

words of status are:

N	 CSW

11+1 Bus Control Table Address

11+2 1553A Status Word*

N+2 Second 1533A Status Word* (Terminal/terminal

transmission)

*Only stored if recaUed properly

4.3.2.3	 Redundant Bus Utilisation. The BC can be connected to

several Intercommunication Buses. Its access is granted on the basis of

a priority assignment established by "daisy chain" connections for each

bus. The bus access control hardware is implemented in the driver/

receiver logic external to the BC. The BC passes-on the bus specifica-

tion in the memory mapped command (AD12-AD1S) that caused its activation.

The interface electronics either connects the BC with that bus or, if it

is not available returns a busy indicator (BBUSY). The bus request is

latched so that, if the bus is granted, the BC maintains control over

the bus subsequent to the initial transmission. (Buses can be released

by specifying a transmission over bus "zero", which is non existent.)

4.3.3	 Bus Adaptor Functions

The Bus Adaptor responds to 1553 transmit and re. •eive com-

mands directed toward its host module. It accepts or delivers the number

of words specified in the Word Count field of the bus command. The func-

tions performed internal to the bus adaptor are determined by the 5-bit

sub-address/mode (S/M) field of the associated command. These functions

fall into two categories: transfer functions and set-up functions.
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4.3.3.1	 Transfer Functions. Twenty-eight S/M values are interpreted

{	 as Indirect Transfer instructions, and one S/M value is reserved for the

Continue function, respectively, as described below:

(1) Indirect Transfer - The S/M field specifies one of

28 pointers maintained at fixed locations within the

host computer memory. When a transmit or receive

command is received, the bus adaptor accesses the

appropriate pointer to determine the starting address

for the incoming or outgoing data. By modifying

pointers the host computer programs can change the

physical locations accessed through each pointer.

Sequential data words are accessed for output to the

bus, or input to the host memory from the bus, using

DMA-cycle-stealing techniques.

Several bus adaptors may be moving data out of or into

the host memory 1r. a time-multiplexed fashion so long

as none is forced to wait beyond 20 p seconds. (The

maximum word rate of the 1553A bus.)

(2) Continue - The continue function is specified by one

value of the S/M field (00011) and is used for trans-

mission of messages longer than 32 words as well as

for direct addressing. The continue function in a bus

command specifies that the specified transfer should

continue from where the last transfer left off in the

host computer memory. Thus a long message can be

broken into a series of shorter transmissions from and

into concatenated memory locations.

Direct memory addressing is achieved by loading an

internal address register in the bus adaptor with a

special setup instruction (described below). A

"(-Pntinue" transfer then moves data into or out of

locations beginning at the specified physical address.
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4.3.3.2	 Setup Instructions. Three special Setup instructions are

specified by individual S/M field values. They are (1) Direct Command,

(2) Direct Address, and (3) Silent Acceptor. These are all "receive"

commands with a one word data transmission (WC - 1) which contains the

parameters of the specified function.

(1) Direct Command (00000) - The data word sent to the

adaptor (terminal) is decoded as a discrete command.

If there is no error the least significant 8-bits of

the received word is output (DC) and a stroke is gener-

ated by the bus adaptor. Direct commands are used to

generate interrupts, to effect power switching within

the host module, and other direct control-functions as

required.

(2) Direct Address (00010) - The data word sent to the

adaptor is loaded into an internal address register

and is used as a physical address from which a subse-

quent transfer can enter or extract data into the host

memory. This setup instruction is followed by a

"Continue" transfer command to move data into or out

of specified locations.

(3) Silent Acceptor (00001) - The data word sent to the

adaptor specifies a "soft" name. If a subsequent

receive command is sent to a module with the same

identification as the temporazy soft name, the adaptor

"listens in" on the transmission and stores the trans-

mitted data in its own SCCM's memory. It, in effect,

becomes a covert acceptor, and does not generate a

status message.

The silent acceptor mode :a cancelled by any subsequent

Direct Command, Direct Address, or Silent Acceptor

command to the module. A silent acceptor module does

net return status messages, since this is done by the

module which is overtly addressed.
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4.3.4	 BIBB Implementation

The BIBB consists of five subelementst (1) the Mill,

(2) the External Bus Interface (RBI), (3) the Internal Bus Interface

(IBI), (4) the Controller (CONT), and (S) the Fault Handler (FH), as

shown in Figure 4-30.

The BIBB is centered around the Mill, a small processor

which includes ROM, RAM, internal registers, and an ALU. Data words in

i	 transit between the external bus and the SCCM are buffered in the Mill.

It is also responsible for generating addresses for DMA, word counting,

to :n+- control words, and other processing functions required of the

B,

The EBI provides the interface between the Mill and the

external bus. It accepts parallel command and data words from the mill

and encodes them for serial transmission over the bus. It also samples

incoming manchester coded data words, performs seiial to parallel

conversion, makes these words available to the Mill and signals the

Controller of their arrival.

The IBI provides a DMA interface through which information

cap be transferred between the Mill and the SCCMs memory. It contains

data and address registers for buffering incoming and outgoing data and

DMA request and acknowledge control logic. The IBI also contains a

command decoder, used to recognize and decode memory-mapped commands to

the BIBB (from the host SCCM).

The Controller generates control signals for the other

subelements as a function of commands received from the external or

internal (SCCM) bus and conditions sampled within the BIBB. It is

iricroprogrammed using both a ROM and a PLA.

The various circuits within the BIBB use either error

detecting codes or are duplicated and compared with self-checking

checkers to provide fault detection. The Fault Handler combines these

fault lgnals inro a single morphic Internal Fault Indicator (IF).

Upon detection of an internal fault, the FH terminates any ongoing

transmission.
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I

	

	 In order to explain the workings of the BIBB we first

examine the external and internal interface logic (981, and IBI). These

circuits supply data and commands and largely define the environment of

the Mill and the Controller. The latter two subelements are then

explained as a fairly conventional processor.

4.3.4.1	 The External Bus Interface. The external bus interface has

two operating modes. In the input mo_'e It decodes words appearing on

the 1553A external bus, and converts these incoming serial words to

parallel NRZ form. It alerts the Controller when a 1553A Command Word

or Data Word has arrived, and is available for transfer to the Mill over

the BIBB internal bus (BIBIB). A one-word buffer (CDR) holds an incoming

command or data word while the next word may be arriving over the bus.

This allows a period of 20 usec for a word to be moved to the Mill before

it is overwritten by a subsequent word arriving over the external bus.

A newly arrived word in the CDR may be output to the BIBIB in three ways.

The sixteen bit word may be moved directly, or if the word is a command,

the word count, or S/M fields can be right justified and individually

moved to the Mill.

In the output mode, words are transferred from the Hill to

the EBI. Each word is designated as a command or data. A command sync

or data sync is appended and the word is converted to serial biphase

Manchester and output to the external bus. A one word buffer is pro-

vided in the EMI so that a new output wore can be moved from the Mill

to the EBI while the current word is being (serially) output. This

allows up to 20 usec to elapse between loading data words for output

(before the message is intetrupted for lack of data). The Controller

is notified when the EBI is capable of accepting a new word, and output

terminates when no words arrive from the Mill to continue the

transmission.

The External Bus Interface block diagram is shown in

Figure 4-31, and consists of a Manchester/NRZ Translator (MNT), and

Buffer and Control Logic (BAC). The EBI is fully duplexed, i.e. three

are two complete EBI circuits (A, and B) whose outputs are compared
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1	 0001 RNWRD 91616 — CDR
2	 0010 RNWC 1188 (11-1S) — CDR	 1-I5)
9	 1011 RNSM 1188 00-15) -- CDR 6-10)
4	 0100 OUTCMD CDR-688, OUTPUT COMMAND TO EXTERNAL*
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*AS SOON AS CURRENT CONTENTS Of XFR REG SENT OUT, DATA ON CDR
IS TRANSFERRED TO XFR AND OUTPUT WJPRECEEDING CMD SYNC OR DATA SYNC

'OUTPUT MODE ESTABLISHED BY RECEIPT Of OUT CMD OR OUT DATA IT IS CLEARED
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0 0 X	 NO W"
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EeMIF - INTERNAL ERROR DETECTED IN EeM

Figure 4-31. External Bus Manager Block Diagram
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to detect internal faults. A transfer register (XFR) provides serial/

parallel conversion, and the Command Data Register (CDR) serves as a

single word buffer through which incoming and outgoing words are passed.

Both copies of the EB 21 receive data from the external bus

(TIN=, TASM), and the BIBB internal bus (BIBIB). However, only

copy A outputs data over these buses. Copy B contains morphic compare-

tors and compares the values being output with values it is generating

to defect faults.

The BIBIB is bi-directional (3-state) and consists of 18

lines. Sixteen are for data (BIBIBO-BIBIB 15) and two represent parity,

using the same code as is employed in the SCCM internal bus. That is:

BIBIB 16 - +, / (BIBIB 0, 2, 4, ... 14)

BIBIB 17 - ^/ (BIBIB 1, 3, 5, 7, ... 15)

Both the A and B copies of the EBI generate two control

levels (R1, R2) to notify the Controller of its state. Assignments of

R1, R2 are shown in Figure 4-31. In the input mode, they indicate that

a command or data is available in the CDR register. In the output mode,

they indicate that the CDR is free to accept new data.

Coded control inputs (CCI) to the EBI are also shown in

Figure 4-31. In the input mode, they allow outputting the contents of

the CDR (or only the S/M or WC) fields to the BIBIB. In the output mode

they are used to load command or data words from the BIBIB into the CPR

for subsequent transmission over the external bus.

The output mode is established by executing an OUTCMD or

OUTDATA command. The EBI remains in the output mode until no new words

are loaded into the CDR for output. It then returns to the input mode.

The following paragraphs describe a preliminary logic design

of the EBM.

t

i
44

a

L
9.

4-86



f.

4.3.4 . 1.1 The Manchester/NRZ Translator (NNT_). The MNT synchronises

with incoming bus data and delivers serial NRZ data. It also detects

and signals data sync and command sync headers of the 1553A messages.

The circuit, shown in Figure 4-32, has the following inputs and outputst

INPUTS:	 8 mhz clock

INBUSHI 	 'detect high and low

B^0	 'levels of the 1553A bus

RESET	 sets MNT to HALT State (So)

OUTM	 (NOT) OUTPUT MODE

OUTPUTS:	 DATA IN	 Serial bds data and 1 mhz

DATA IN	 clock synchronized to

DATA CLOCK bus data

DATA SYNC Data Sync being received

COMMAND SYNC	 Command Sync being received

7	 Not in State 4

A transition and Zero Detector samples the external bus at

an 8 mhz rate. If the bus has value zero during any two samples (i.e.

for 125 usec), it is assumed to be quiescent (BZRO). If the bus changes

value between any two samples a transition is signalled (XTN). These

signals control a simple sequencer (shown in Figure 4-32), which runs

at 8 mhz.

The sequencer state is determined by 6 flip flops. The

first three specify by one of six receive states ( So - S5) which deter-

mine the sequencer ' s view of what is occurring on the external bus as

indicated below:

S 0 - HALT	 Bus is quiescent

S1- WAIT SYNCYCI	 First Microsecond of Sync Signal

I(No Transitions Expected)

S2- RESYNC	 ' Second Microsecond of Sync Signal

(Transition Expected middle of

(period)
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ĉo

I



S WAIT SYNCYC3	 Third Microsecond of Sync Signal

(No Transitions Expected)

S4- RUN	 Data Bit Being Received

(Transition Expected in middle of

period)

SS- Error

	

	 jError Detected - Stop decoding until

bus becomes quiescent

The other state flip flops form a time counter which is

synchronized with the incoming data. The incoming data is being

received at i mhz, while the time counter operates at 8 mhz - counting

from to t 	 When the sync signal arrives, the time counter , is set to

to , and it is periodically resyncronized during bus transitions so that

to t
7
 define one bit time on the external bus.

A state diagram for the MT is also shown in Figure 4-32.

If transitions occur on the external bus at the proper times for a

"correct" transmission the states (So S 4 ) reflect whether sync or data

is being received. If an improper transition occurs, or an expected

transition fails to occur in the external bus the sequencer enters the

error state (S 5 ) and ceases operation until the current external bus

transmission completes and the bus returns to zero.

The Data Clock, Data Sync, and Command Sync are derived from

the sequencer and are generated during the states for which they are

valid. (as shown in the state equations in Figure 4-32). A special flip

flop Ft is included to "remember" if a transition has occurred on the

external bus during the current bus period (t Usecond) and is used to

detect unexpected (error) transitions or lack of expected transitions

on the external bus. XC1 indicates that a transition occurred, XCO is

Its compliment. A special strobe pulse is generated to insure that the

3:8 decoder is only enabled when its input signals are stable. Three

conditions as ynchronously reset the MT. they are external RESET, BZRO

(the bus returns to zero), and OUTM. When the BIBB is outputting to

the external bus (OUTM), the MT is disabled since it is only used for

input.
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4.3.4.1.2 The Buffer and Control Logic (BAC). The BAC logic consists

of three parts: (1) BAC Control, (2) BAC Data Paths, and (3) BAC Fault

Detection Logic. The BAC is unusual in that it uses the SCCM clock (^2)

In the output erode (OUTM), and it uses an external-bus derived data

clock for internal control in the input mode (INN).

BAC Control

Figure 4-33 shows the BAC Control logic. These circuits

decode incoming commands (CCI) to the EBI, control the EBI input or

output mode (INM, OUTM), and provide a counter synchronized to incoming

or outgoing serial data (M1-M20). The following paragraphs describe

various component parts of this logic.
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c
i

(a) Command Decoder - Decodes CCI commands or detects

Improperly coded commands.

(b) State Coutrol - Receipt of an OUTDATA or OUTCMD

command establishes the output mode (OUTM) and causes

the BAC to use the SCCM clock ®2. The OUTM mode is

terminated when the 8BM ready to output the next word

and no new words have been sent for output, i.e.,

OUTCMD or OUTDATA has not been received. The three

pairs of flip flops provide a means of recording the

next OUTCMD or OUTDATA command (fp2) while the current

such command is !*Ing executed. If no new commands

have been recorded by fp2 when it is time to send out

a new word (M1), fp3 is reset and OUTM is terminated.

(c) M Counter - The M Counter is synchronized with

incoming or outgoing data words. In the input mode

(INM) it is started at M1, when the first data bit

arrives from the external bus, and reaches count M17

when the final parity bit arrives on the incoming

word. During INM, the M counter is reset to M1 by an

Incoming Command Sync, Data Sync or no activity on the

external bus. It is advanced by the incoming Data

Clock which generates seventeen pulses as the data and

parity bits arrive. An 18th pulse is generated (M18)

to allow follow-up logic functions such as transfer-

ring the newly arrived word from the XFR register to

the CDR register and alerting the BIBB Controller.

In the output mode (OUTM), the first three counts

(M1-M3) designar^ the time when a data sync or command

sync iR outpo.t to the external bus. M4-M20 corresn,.-n,4

to transmission of data bits and parity of the out-

going word. The M counter is reset by the initial

011TCMD or OUTDATA command which initiates the output

mode (NF.WOUT	 (The M counter is a 20-count

counter.)

4-92

l



(d) Controller Alert - This logic gsterates the
signals R1 9R2 wbieb alert the Bin Controller to the
arrival of an input data word or the ased for an
additional output data word. This logic is straight-
forward witb the exception of the Simplex Syaebroniser.

During the input mode, an available data word is
signalled by HIS and correct parity on the arrived

word (INH - PTY - MIS). However, the A A B copies of
the hZBI may be out of step by 123 nose since they each
use their own bus-derived clock CL. The Simplex
Synchroniser waits until both copies agree that the
word has arrived, and then synchronizes the generation
of the R1,R: signals with the SCCM clock 42 (which is
the clock used by the BIBB Controller).

BAC Data Paths

Figure 4-34 shows the BAC Data Paths. The Transfer Register

(XFR) provides serial-parallel conversion for incoming and outgoing data.

A serial parity checker is used to check incoming external bus words,

and to encode outgoing words. The Command-Data Register (CDR) serves as
a one-word buffer between the BIBB internal bus and the XFR register.

During the input mode, each incoming data word is automatically trans-

ferred to the CDR register immediately after it is assembled in XFR

(at MIS), and the BIBB Controller is alerted (R2 -R1, or R2-R1). The

controller has approximately 19 useconds to remove the word in CDR

before the next word arrives. The output driver logic allows contents

of the CDR or selected fields to be output to the BIBIB.

When the output mode is established (by OUTCMD or t7} UrI'A)

a command or data word is moved from the BIBIB to the XFR register.

Subsequent OUTCMD or OUTDATA commands move data from the BIBIB to the

CDR register. As each word is shipped out of the XFR (at 420) a new

word is Laken from the CDR register. Transmission steps when no new

wore i3 available. (It is important that the first output word not

disturb the CDR. At one point in the 1553A transmission sequence, a

sta'us word is output before n 1553A command in the CDR is fully

processed.)
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The Parity Check/Generate Circuit checks that incoming

words from the BIBIB are properly coded and encodes outgoing words to

the SIBIB.

The Manchester Encoder is a combinational circuit which

generates a two-wire output to the 1553A bus driver, with the following

interpretation:

OUTPUT ENABLE	 HILO	 B2Cr ana BUS

0	 d	 0

1	 1	 +1

1	 0	 -1

It generates a command sync (CMDS) or data sync (DATS)

duri-Z M1 -M3, and then Manchester-encodes the data bits which arrive

during M4 M20'

BAC Fault Detection Logic

BAC Fault Detection Logic is shown in Figure 4-35. Each

copy of the BAC compares its outputs with the other copy and, after

careful strobing to assure that the signals are stable, sets a latch F1

(A,B) if they disagree. Similar latches record parity errors detected

on the BIBIB (F2) and improperly coded commands (F3). In each copy of

the BAC, a master fault indicator (EBMIF) is generated and sent to the

BIBB Fault Handler.

Four of the fault indications (F1A, F2A, F3A, EBMIF(B)) can

be sampled for diagnostic purposes by (DUMPSTAT).. This function is

activated by a Read Internal Status Command from the SCCM to the BIBB.

4.3.4.2	 The Internal Bus Interface (IBI). The IBI provides the

mechanism by which the BIBB can perform Direct Memory Access into the

memory of its host SCCM. Being connected to the SCCM's internal buses,

the IBI is a convenient place to place the decoding circuitry for

memory-mapped commands to the BIBB.

As shown in Figure 4-36, the IBI contains three 18-bit

registers to support DMA: an address register (ADROUT), and two data

registers for incoming and outgoing words (DRIN, DOUT). When the BIBB

sends data to the SCCM memory, it transfers an address via the BIBIB to

l

i
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Figure 4-35. External Bus Interface, BAC - Fault Detection Logic
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progress.

The three address and data registers are independently cam;
trolled by the BIBB Controller and the DMA Controller. A four-bit
Transfer Code (TC) is sent from the BIBB microprogrammed Controller arA
decoded to control transfer of data into and out of the registers fro '<

the BIBIB, as shown in Table 4-6.

An independent set of controls (D3SO, DIN, AM) are gen-

erated by the DMA Controller to gate data words onto or off of the SCCK
local bus. Fault detection in the ADROUT, DRIN. and DOUT registers is

implemented using the error detection code (with two parity bits) which

is common to both the SCCM internal bus and the BIBB internal bus. In

order to detect the failure mode of a disabled load signal, the regis-

ters can be perio4ically reset to zero (which is uncoded) by the BIBB

microprogram (CLEAR).

The Direct Command Register is also included in the IBI.

One form of bus transfer (DC) causes eight bits from the BIBIB to be

loaded into the DC-Reg. Another command gates out this byte along with

a strobe level.

Table 4-6. IBI Transfer Commands

Code	 Source	 Destination

0001	 DRIN	 BIBIB

0010	 DRIN	 ADROUT and BIBIB

1011	 BIBIB	 ADROUT

0100	 BIBIB	 ROUT

1101	 BIBIB ( 8-15)	 DC REG

1110	 - - - - - STROBE - - - - -

S
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Two duplicated command decoders are employed to detect the

three memory-mapped commands to the B,IBB. Either decoder can issue a

RESET or Read Internal Status (D	 t),couvand. Each Execute Bus

Table Command is sent to one of two duplicated control sequssmer

circuits. If they disagree a massive disruption of control will occur

and be detected in the Controller. The Bus Assignment Latch stores the

number of the external bus being requested for a transmission. It is

parity checked and a fault latch is set when the parity signal is stable

(BSELF). figure 4-37 shoves the DMA Control Logic. Its input command

codes (DMAC) are listed in Table 4-7.

The DMA Controller is an asynchronous circuit. Upon

receiving a (DMAC) command, the corresponding flip flop (READ, WRITE,

HOLD) is set. The SCCM internal bus is requested (R), and upon receiv-

ing an acknowledgement (AK), the following occurs:

(a) For a READ command

(1) The address is gated out (AM); NWRITE is

raised, and a memory start (MSTART) is issued.

(2) Upon receipt of a completion signal from memory

(COMPL), data is gated into the DRIN register

(DIN) and the READ flip flop is reset.

(b) For a WRITE command

(1) The Address is gated out (A3SO), DOUT is gated

to the Data Bus (D3SO), WRITE is raised, and a

MSTART is issued.

Table 4-7. DMA Command Codes (DMAC)

DMAC (0 - 2)	 COMMAND

1 0 0	 NO DMA -- Drop DMAHOLD
i	

0 0 1	 DMA READ -- DRIN <- M(ADROUT)r

0 1 0	 DMA WRITE -- M(ADROUT) - DOUT

i	 1 1 1	 HOLD -- Hold SCCM Internal Bus

4-99

4

7

0

.w



Figure 4-37. The IBI - DMA Controller
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(2) Upon completion (COWL) the WRITE flip flop is

roast.

(e) The Hold state only requests (R) and holds the SCCM

Internal bus. Since it takes at least 3 clock periods

to gain bus access, HOLD can be issued early to

overlap setting up of ADROUT, DOUT, and the gaining of

bus access.

The check circuit contains two flip flops which are set by

READ and WRITE commands. They are reset only if they "see" that the

DMA cycle actually occurred (i.e., the appropriate command level (RD,

WT), a bus acknowledge (Ak) and a completion signal COMPL). Two

conditions result in the fault indication DMA ER:

(1) The check circuit "saw" a DMA command but none was

performed. (The check flip flops do not get reset,

resulting in the Z - BUSY fault condition.)

(2) A DMA was performed but the check circuits did not

receive a command (MST - COMPL - Z).

Figure 4-38 shows the fault-handling circuitry for the IBI.

There are four error checks. Boch control inputs, (TO and (DMAC) are

parity encoded, and they are checked with morphic parity checkers which

generate morphic signals PERR and DMACMP. These signals are synchronous

with the BIBB internal clock and can be combined and sent to the Fault

Handler. The other two fault signals (B811.F) and DMAER are not synchro-

nous with the BIBB check and are latched locall y within the IBI.

To generate a single "morphic" IBI fault indicator (IBIF),

we reduce the two incoming morphic fault signals (PERK, DMACMP) to a

single morphic pair and then logical - or the other two simplex fault

signals to both lines of the morphic pair. This results in forcing the

morphic pair (IBIF) to the error state (1,1), if one of the simplex

fault signals is activated.

i
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Fault conditions are latched and can be read out with a

s.2

	

	 read internal status command. The (MM EM) signal, generated by that

command, causes the fault latches to be output and transferred to the

SCCM data bus (see Figure 4-36).

4.3.4.3	 Th_r Mill. The Mill provides limited processing capability

In the BIBB and is shown in Figure 4-39. Its two main components are a

memory and ALU. The Mill memory contains 48 eighteen-bit words of RAM,

h

	

	
and 16 eighteen-bit words of ROM. The parity encoding used to protect

the BIBIB (i.e.. 2 odd parity bits aver even and odd bit positions') is

also used to provide detection of Mill memory faults. A Mill memory

word can be output to the BIBIB from an address specified by either

(1) the BIBB microprogram, or (2) a local memory address register

(LMAbR).	 •

Also included in the Mill are a pair of sixteen-bit

A registers and ALUs. These circuits are duplicated and compared with

a morphic comparator (MCALU) to implement fault detection. Words on

the BIBIB can he stored in the A register and are also sent to the

port of the ALU. ALU outputs can be loaded back into memory or into

the LMAbR register. Control codes and condition codes are shown in

Figure 4-39. It is possible to read modify and write a single Mill

memory word in a single clock cycle (e.g., increment a location).

Four fault checks are provided which are all morphic and

synchronous with the BIBB clock (mi, Y.

The address sent to Mill memory, and the BIBIB are checked

for the (2 parit y bit) internal bus code (MPC1, MPC2). The morphic

comparison of ALU outputs produces the morphic disagreement indicator

(MCALU). The control codes and memory address from the microprogram

(MILL) are encoded with a single parity bit. A morphic parity check is

performed producing (MILCK).
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t

TM fault indicators are combined into a single awrpbic

fault detection pair (MILLCUK) whieb Is sent to the BIBB Fault handler.

Figure 4-39(b) shows that the individual swrpbie fault indicators are

decoded, latched, and made available for read out with a read internal

status command to the BIBB as previously described.

4.3.4.4	 The Controller. The Controller con-late of a Control

Sequencer (GS) and a Control ROM (CROM) which contains the microprogram
1

for the BIBB. Figure 4-40 shows the Control Sequencer, and CROM. The

CS samples various conditions from the other logic circuits within the

BIBB. On the basis of these conditions it outputs a sequence of

addresses to the control ROM. The CROM, it turn, maps these addressee

into the control signals necessary to operate the BIBB.

Inputs to the CS are listed in Table 4-8 along with their

associated control Information:

Table 4-8. Control Sequencer Inputs

Input	 Associated Control Information

BIBIB	 -	 1553A commands - Terminal I/D, S/M, and

word count fields are available to CS

along with T/R (transmit receive b:t)

BBUSY	 -	 From external logic - indicates that

requested bus is not available

BZRO	 From EBI - indicates that external 1553A

bus is idle

R1,R2,	 -	 From EBI - indicates incoming commands or

data have arrived or a new word can be

accepted for output (see Figure 4-31)

OUTMODE	 -	 From EBI - indicates EBI is in the output

mode and is sending data over an external

1553A bus

COND	 -	 Conditions from ALU - indicate that current

arithmetic result is PLUS, MINUS, or ZERO
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EX	 -	 Execute Bus Table Command received from

the IBI

DM`BUSY	 From IBI - MA in progress

EXBN	 -	 From input pins - indicates "hard" name

The CSO1 generates a set of control levels (STATE, CSEL,
i	

CNCC, TOCN01, TOCNO2) which are used in the CS as will be described
`l

	

	 below. Most of the other CRON outputs are the signals (previously

described) which control the MILL (MILC), IBI (TC, MC), and EBI (CCI).

Three additional signals are generated which require explanation. One

(RUPT) is a programmed interrupt to the SCCM. It is pseudomorphic in

that its complement is directly generated as shown. All CROM outputs

are encoded in the error detecting code shown in Figure 4-40, are pro-

tected with two parity bits (P1,P2), and are checked with a morphic

parity checker. One odd control is included (DISAMILLE) - disable Mill

Fault Indicator. The Mill fault indicator (MILLCHK) is only valid when

there is properly coded data on BIBIB, which is most of the time. For a

fe— microinstructions, BIBIB is not coded, and the programmer commands

the Fault Handler to ignore MILLCHK during these instructions.

4.3.4.4.1 The Control Sequencer (CS). The CS is built around a PLA and

a Microprogram Location Counter (MLC) as shown in Figure 4-41. The MLC

generates a sequence of addresses to the CROM. It is reset to zero and

counts in the following fashion:

(1) If the PLA outputs a non-zero number, which is not

28-1 (all ones), that number will be loaded into the

MLC as a branch address (executed at the next clock

period).

(2) If the PLA outputs zeros, the MLC will continue to

the next sequential count (address).

(3) If the PIA outputs (2 8-1) all ones, the current value

of the MLC will be reloaded - holding it at its current

value.
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1

PIA operation is controlled by the 6-bit STATE input from

the microprogram. Each defined STATE input value (with the , exception of

state zero, SO a Od0000) activates a set of AND terms in the PLA which

determine various branch addresses as a function of the PLA inputs. For

State SO, no and-tafte are decoded, so the microprogram proceeds,

sequenti*lly.

An example of the branching technique, taken from the BUS

Adaptor Microprogram is shown below in Table 4-9:

Table 4-9. A Control Sequencing Example

CROM
Location	 State	 PLA and Terms	 Control Outputs

1	 S1	 R1 *MINE -> HOLD	 BIBIB t- COMMAND

R1-MINE-T + 26

RI -MIME-7- (OP - OOOOd) -> 18

R1-MINE -Y- (OP - 00010) 18

Rl -MINE -T- (OP - 00011)	 7

R1-MINE and all other OP-codes fall through as

sequential code

When the microprogram gets to location one, we wish to do a

five-way branch on the basis of a 1553A command received in the BIBB.

We display the command on the BIBIB, which includes a T bit, and a 5-bit

S/M field which is interpreted as a command OP-code. These six bits are

sent directly to the PLA, along-with a condition signal R1-MINE which

indicates that a command has been received which was addressed to this

BIBB. The state S-1 activates the five and-terms shown above.

	

If no command arrives (i.e., R1-MINE), the PLA outputs all 	
a

ones and generates a one-instruction wait loop. When the command

arrives (R1-MINE), the PLA generates a transfer address corresponding to

the command being decoded.	
j

Inputs to the PLA are listed below:

(1)	 T00 - A time out counter to verify expeditious

completion of DMA in the SCCM
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(2) MINE - When a com. 'and is placed on the BIBIB. MINE

Indicates that its modular ID matches the hard name or

soft name of the BIBS.

(3) T - BIBIB (5) is the Transmit/Receiver bit of a 1353A

`	 command displayed on BIBIB
,i

(4) S/M Field - BIBIB (6-10) the S/M field of a 1553A

command displayed on BIBIB. It is also designated OP
i
i	 (for op-code to microprograms)

(5) STATE - from CROM. Activates group of PLA-AND terms

to define branch(s) associated with a given micro-

program location.

(6) CC - Condition signal - selected as one out of sixteen
t	 by Condition Select (CSEL) control from microprogram.
{

Multiplexed condition signals are shown in Figure 4-41.

Only one can be used at a time for a given branching

instruction.

Other circuitry in the CS is explained below:

(1) Status Register (SR) - contains the 155„A status word
1

to be output during transmissions. SR (0-4) contains

the external bus name determined from the external

pins. SR(5) - 1, indicates an internal fault has shut

down the host SCCM, and is generated from the Output

Disable levels from the Core-BB,One CS outputs data,

and the other outputs the parity bits for fault

detection.

(2) ID Compare - The terminal ID field of an incoming

command (displayed in BIBIB) is compared with the hard

name and 4oft name of the BIBB. If the hard name

matches in a transmit command, or if either hard or

soft names match in a receive command, the level MINE

is raised. A soft name register can be loaded or

cleared under microprogrammer control, from BIBIB

(11-15). The terminal ID of zero (00000) is reserved

for broadcast commands since all BIBIs with their soft



nese register hilt.* will recogaias it.. A latch is
Provided to "remember" that a soft oesm metcb occurred
until the and of a transmissioa.(BOFT). It can be
reset under program control.

(3) A loop counter is provided which can be loaded from

BIBIB, and decremented under microprogram control.

Its underfloor is signalled to the condition multiplexor

LZRO.

(4) TOM - This time out counter counts eight pulses, and

its overflow is an input to the PLA. It can be reset 	 j

under program control.	
II

(5) TOC2 - This time-out-counter is used to detect when an

expected incoming or outgoing word did not arrive. It

is reset by R1,R2 or both under microprogram control.

TOCN01 and TOCNO2 inhibit resetting of the counter by

R1 and R2 respectively. The counter counts 26 clock

times, which is longer than the time for a single t;ord

transmission. Thus if the expected words arrive, it

will not overflow because it will be reset by the next

arrival of a command or data sync (R1,R2) at time 20.

If the expected command or data word does not arrive,

the counter overflows, and delivers the signal TOC2 to

the condition multiplexor.

(6) F1,F2 - These flip flops can be set, reset and tested

under microprogram control.

4.3.4.5	 The Fault Handler. The Fault Handler (FH) is shown in

Figure 4-42. It is responsible for collecting fault signals from the

BIBB and, if a fault occurs, signalling an internal fault IF. As shown

ir. the figure, the morphic fault indicators are combined to a single

morphic pair which is decoded by duplex exclusive nor circuits and

combined with the EBI iault indicators (ERMIF) to set a pair of dupli-

cated fault latches (f,,f 2). These latches generate the IF, IF signals.

These fault signals are fed to a two pairs of clocked flip flops.

a.
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The first pair (f 3, f4) provide the option to stop the clock to the BIN

before a reset occurs. This is useful in breadboarding for fault isola-

tion. The second pair guarantee a full cycle reset pulse to return the

BIBB to an initial state.

The reset command from the SCCM generates RRS(A) and RBS(B)

from duplex command decoders in the IBI. These simulate an internal

fault which results in a reset.

Additional circuits are provided to stop, start, and single

step the clock to simplify breadboarding.

4.3.5	 BIBB Microprograms

The following are preliminary register-transfer descriptions

of microprograms which cause the BIBB to perform as a Bus Adaptor or Bus

Controller. The mnemonics refer to signals and registers previously

described in this text. The notation M(XXX) refers to a Mill memory

register containing the variable or constant named XXX. These variables

are listed below:

(a)	 Bus Adaptor

BASEADR - Address in SCCM memory where the mapping

table resides which maps command pointers

(SM) to data addresses

PTR	 - A pointer used to read out or store data

words in sequential locations in the SCCMS

memory

WC	 - Word count, counts words transmitted and

is taken from 1553A command field

COMND	 - Memory location used to store incoming

command

BUSERADD - Address in SCCM where BA can store error	 4

message

ERRMESS - Error message word from the BA
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(b)	 his Controller

BCTADR	 - Address of Bus Control Table in SCCM

PNT	 - Pointer Used to access BCT words

BCT1, BCT2, BCT3

- First three words of BCT

PTR	 - Pointer to data words in SCCM memory

WC	 - Word count

STAT1	 - Status word returned in a controller-

terminal 1553A transmission

STAT2	 - Second status word returned in a

1553A terminal-terminal transmission

STATLOC	 - Location where Controller Status Word is

stored in SCCM memory

STATLOC+1, STATLOC+2, STATLOC+3

- Sequential locations from STATLOC

MDOWN, COMOK, COMERR, BNA, BACT

- CSW status words stored in STATLOC which

indicate the results of the transmission

The Bus Adaptor and Bus Controller Microprograms are shown

in Tables 4-10 and 4-11.
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Table 4-10. Bus Adaptor Microprogram

71

CROM LOCATION STAT&	 PLA-,AND TERMS
	

CONTROL OUTPUTS

WAITNEXT 7

SO	 ---	 A+-M (BASEADR )

C Load A Reg. with SCCM address of pointer table
C Then wait for incoming command

R	 -►HOLD	 BIBIB+CDR, CKSOFT

RI-MINE-T-►TRMIT	 C Transmit Command

S1 R1-MINE-T'-(OP-0000d)+SP C Special Command

R1-MINE-T*- (OP-00010)+SP C Special Command

R1-MINE-T-(OP-00011)4	C Continue Command
WAITNEXT

C Branch on incoming T/R and S/M bits to processing
C routine.

SO	 ---	 DMA HOLD, M(PTR)4CDR(SM)+A

SO	 ---	 DMA READ, ADROUT-M(PTR)

SO	 ---	 START TOC 1, M (WC) *-CDR (WC )

G RID - Read Indirect Command -- Move WC to RAM in MILL
C and start DMA cycle to get data address specified by

C S/M.

DMA BUSY-*HOLD
S2

TOC1-DMAB SUSU -TIMEOUT

SO	 ---	 M(PTR)-DRIN, NO DMA

C We now have absolute SCCH address for incoming data
C Now we wait for the data, or a KNIT command if this
C is the first command of a terminal to terminal
C transmission.

TOC2-R1-R2-*HOLD	 BIB1B*CDR,

Sl RI-MAYBE	 C maybe T/T Transmission

lTOC2-R1.OLTIMEOUT

0

CMD
	

1

RID
	

2

3

4

5

6
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F	 Table 4-10. Due Adaptor Microprogram (Continuation 1)

k

CROM LOCATION STATE	 PLA-AND TERM8	 CONTROL WPM

	

7	 C If comand go to Maybe, If data interrupt continue.

	

8	 S4 +DATAIN+ 1	 A first data word in CDR

RY-TOC2-0110LD	 C wait for next data word

	

DATA IN 9	 SS I	 in
T0C2 -R2-VfIMEOUT TOCN01

10 S6 PLUS + SOFT-4+2 M(WC)-M(WC)-1

C If soft name or not and of message skip status output.

11 SO --- BIBIB•-SR, OUTCMD

DMA WRITE ADROUT-M(PTR)
12 SO ---

M(PTR)-M(PTR)+1

13 SO --- DOUTf-CDR

c Write Received Ward into SCCM's memory.

14 57 ZERO-►CMD-1 M (W(:)+()

C	 If word is not zero. end message. wait for next command

15 S8 ►DATA IN c vIst , wait	 for next data

MAYBE	 16 S9 MINE +ERROR K 1 li 1 R• COR

C It is a terminal / terminal	 tran smission	 if not mine.

71-TOC2 +HOLD TOCNO2

17 S10 R14DATA IN C When status arrives.

_ C then wait	 for first

TOC2-RI-+TIMEOUT c data word.

SP	 18 SO --- M(COMND)• CUR. CITAR SN

R2-TOC2--ML1)
'

TOCNOI
19 SS ^	 _

TOC2-R2+TIM.EOUT C	 If	 nu	 data.	 t im.-. g ut .

C Walt above for data to arrive	 (R2)
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Table 4-10. Bus Adaptor Microprogram (Continuation 2)

CROM LOCATION STARB	 PLA-AND TEMB

20 SO	 --- C Unit for time Status Out

21 SO	 --- BIBIBwSR, OUTCMD

OP- (00000)-+DC
as s11

OP- (00001)-►SETSN

23 S12	 -KM-1 M(PTR)+CDR

C This is the direct address command (00010) which loads
C a value into the pointer register.	 Command is com-
C pleted, return to zero.

DC	 24 S12	 4CMD-1 D('. CDR, STROBE

C Output Dir---t Command completed, return to zero,
C do not col:ect $200.

SETSN	 25 S12	 -CMD-1 BIBIB-CDR, LOADSN

C Set soft name completed

XMIT	 27 SO	 --- DMA HOLD, M(PTR)--CDR(5M)+A

C Establish ptr to address of data.

26 SO	 --- ADROUT--M(PTR), DMA READ

29 50	 --- M(WC)•CDR(WC),START TOC1

DMA BUSY-HOLD C Wait for DMA to complete
30 S2

TOC1•DMA BUSY-+TIMEOUT

31	 SO	 M(PTR)- DR1N, ADROUT- DRIN

C Now we have the address of the data, next get the data.

' DMA READ, M(PTR)-:11(111'R+1)
CE1'E'W	 32	 Su

START TOC1

I DMA BUSY ►HOLD

TOC 1 • DMA BUSY ►T l MEOUT
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Table 4-10. Bus Adaptor Microprogram (Continuation 3)

'	 CRON LOCATION 8TAT9	 PIA-AND TSR1fS	 CONTROL OUTPU

34 So	 CDR+MIN, OUTDATA, NO DMA
r
i	 C First data word sent out.

36 S7 Z	 1	 M(WQHt(WW_1, START TOC 1

C Exit if only one word else go into output loop.

M-Z C14HOLD	 C Wait for SBI ready for
LOOP	 37 813	 C next word.

Ri-TOC2-*TI4®DUT

DMA READ, ADROUT+M(PTR)
38 SO

M(PTR)+M(PTR)+1

DMA BUSY-►HOLD
39 S2

TOC1•DMA BUSY+TIMEOUT

40 50	 --- CDR-DRIN. OUTDATA

C Send next word for transmission.

41 S7	 ZER0+CMD-1 M(WO"(:1C)-1

c If word count - 0, transmission is Coomlete

42 S14	 -LOOP

C Else wait to deliver next word.

TIMEOUT	 43 SO	 --- NOP

ERROR	 44 SO ADROUI-M (BUSER ADD)

45 SO ROUT--M (ERRMESS)

4b SO DMAWRITE

47 S15	 DMA BUSY-HOLD

48 S13	 -CMD-1

C Optional - Wri to error flag in SCCM nwotory upon
C detecting a bus error.

.
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Table 4-10. Bus Adaptor 1licroprescm (CootimatiAon 4)

CAM LOCATIM STATE 	 PIA-M TOM	 COQ. oiTPtfTS

TmaT	 49 $16 011-(00011)4&+2	 BIBIB*=

50 817 *)OUT	 BIBIB♦SR. 011TOH1

l	 C If not continue lead status and So to X1IT.

CORTX	 51 SO	 ---	 BIBIB♦SR. OU70m, OM HOLp

52 SO	 M(WC)+=(WC)

52 816 -vCBTFW	 ADROUT**(PTR)
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CROM LOCATION STATE	 PLA—AND TMW CONTROL OFFS

0 SO	 --- RESET F1

START	 1 S1	 EX-'-HOLD C Wait for command from
C SCCM

2 S2	 BBUSY-*ABENDI M (BCTADR)«DRIN, ADROUT4-
DRIN

3 S3	 BZRO- ABEND2 M(PNT)E-DRIN+1

4 SO	 --- DMA READ

^GETBCT	 5 S4	 DMA BUSY-►HOLD C Wait for first BCT word

6 SO	 --- M(BCT1)FDRIN

DMA READ, ADROUT+M(PNT)
7 SO	 ---

M(PNT)+M(PNT)+1

8 S4	 DMA BUSY-HOLD C Wait in 2d BCT word.

LADR	 9 S26	 MINUS-;INDIRECT M(BCT2 )*-DRIN

10 SO M (PTR)FDRIN

DMA READ, ADROUT<-M(PNT)
11 SO

M(PNT )--M(PNT+1)

12 S4	 DMA BUSY-►HOLD C Wait for 3d BCT word.

13 SO	 --- CDRE-DRIN, M(BCT3 )<-DRIN

C First 3 words of Bus Control Table moved to Mill memory
C M(PTR) contains address of data message in SCCM
C 1553A command in CDR to allow getting word count.

14 SO	 --- M(WC)+CDR(WC)

C Get the word count into M(WC)

C Next decode terminal -terminal or controller-terminal.

15	 S5	 MINUS-TT	 M(BCT1)E-M (BCT1)

j
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Table 4-11. Bus Controller Microprogram (Continuation 1)

CROM LOCATION STATE	 PIA-AND TRW	 (COL OUTPUTS

i

C Branch if terminal to terminal, else controller/
0 terminal.

16 S6 T-►Mff	 BIBIB+M(BCT3)

C Branch if terminal is to transmit to controller.

17 S7 ->REC

C Transmission from controller to terminal.

DMA READ, ADROUT+M(PTR)
REC	 18 SO

M(PTR)-M(PTR)+1

19 S4 DMA BUSY-HOLD	 C Wait for DMA of 1st data
C word.

20 SO	 ---	 CDR-M(BCT 3), OUTCMD

C OUTPUT 1553A Receive Command.

21	 SO	 ---	 CDRf-DRIN, OUTDATA

C Output first data word.

SYNCOUT	 22 S8 R1-►21 C Wait until Data is going
C out.

23 S9 ZERO->GETST M(WC)+M(WC) -1

C If this is the last word wait for status.

24 SO --- DMA READ, ADROUTt-M(PTR)
M(PTR)FM(PTR) +1

25 S4 DMA BUSY-►HOLD C Wait for DMA.

26 S 10 -*SYNCOUT CDR-DRIN, OUTDATA

' R1-TOC2-HOLD TOCNO2
CETST	 27 S11

i
R1 •TOC2-►ABEND3

A 28 S12 -;CTOUT M(STAT1)-CDR

C ABEND3 - no status received.
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Table 4-11. We Controller Microprogram (Continuation 2)

v
r

CROM LOCATION STATE	 PLA-AND TERMS CONTROL OUTPUTS

XMIT	 29 SO	 --- CDR,+M(BCT3) , AUTCMD

C lutput 1553 Transmit Command.

30 S13	 R1-+HOLD C Wait for last output
C cycle.

C Now we drop back into the input mode.

TOCNO2	 C Wait for status.
WAITSTAT	 31

10-4002-1-30
S11 _

T0C2-R1-►ABEND3 C No status.

32 SO	 --- M (STAT1)4-CDR
C Save status 1.

'R2-TOC2-*HOLD TOCN01	 C Wait for data.
NXTDAT	 33 S14 _

1TOC2-R2 -+ABEND3 Data missing

ADROUT<-H (PTR)
34 SO

I M(PTR )*-M(PTR)+l

35 SO	 --- DMA WRITE, DOUT^CDR

36 S15	 ZERO-POUT M(WC)*+I(WC)-1

37 S16 -►NXTDAT

C Above, Input Data Word, if WC-0, end
C else wait for next word.

	

'38 SO	 ---
DMA READ, ADROUT-M (PNT )

lM(PNT)4{N(PNT)+1

	

39 ' S4	 DMA BUSY-HOLD	 C Wait for DMA of second
C command.

	

40 SO	 ---	 CDR41(BCT3), OUTCMD

41	 SO	 ---	 CDR-DRIN, OUTCMD

C Output Receive CM followed by VT command.

42	 SO	 ---	 C Wait one period.

i
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Table 4-11. Bus Controller Microprogram (Continuation 3)

CROM LOCATION STATE	 PIA-AND TBRMS	 CONTROL OUTPUTS

43 S17 7 ►WAITSTAT-1	 SET F1

H

OUT	 44 S18 F14MUT

` R1- TOC2-+HOLD

45	 Sit
l TOC2-RI-►ABEND3

46 SO	 ---

47 S19 -►TTOUT

TOCNO2 c Wait for second
c status message.

M(STAT2)*-CDR
C Save Status 2

TTOUT

CTOUT

ABENDI

ABEND2

ABEND3

48 SO --- ADROUT*-M(STATLOC+3)

49 SO --- ROUT+M (STAT2), DMA WRITE

50 S4 1)MA BUSY-HOLD

C Write second status word for t-to-t transmission.

51 SO ADROUT-M(STATLOC+2)

52 SO DOUT*-M(STAT1) , DMA WRITE

53 S4 DMA BUSY-HOLD

i^ Write first status word for t-to-t transmission.

54 S20 R-+*+3 BIBI" (STATI )

55 S21 R-►*+2 BIBI" ( STAT2)

56 S22 -+WRCSW DOUT<-M(MDOWN)

57 S22 -►WRC SW DOUT!-M (COMOK )

C If status indicates SCCM OK, skip MDOWN.

58 S22 -►WRCSW DOUT4-M(BNA)

59 S22 - ►WRCSW DOUT+M(BACT)

60 SO --- DOUT-COMERR
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Table 4-11. Bus Controller Microprogram (Continuation 4)

. CRON LOCATION STATE	 PLA-M TERMS CONTROL OUTPUTS

f
' ADROUT*M(STATLOC)

t	 WRCSW	 61 SO ---

DNA WRITE

62 S4 DNA BUSY-►BOLL

63 SO --- DOUT*M(BCTADR)

ADROUT+M(STATLOC+1)
64 SO

DMA WRITE. OUTPUT RUPT

65 S23 DNA BUSY+HOLD

DONEXT	 66 SO --- A4-M(ONE)

67 S24 ZERO+START-1 M(BCT1)-A

ADROUT+M(PNT),
68 SO ---

DMA READ

69 S25 DMA BUSY-)MOLD

DMA BUSY-1-START+1

C if first word of BCT is odd, do next table

INDIRECT	 70 SO --- M(BCT2)+--M(BCT2)

I ADROUT+M(BCT2)
71 SO ---

IDMA READ

72 S4 DMA BUSY-*HOLD ---

73 S27 +LADR+1 M(BCT2)+DRIN

C if 2d word of BCT is negative,

C get indirectly specified address

Q
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I/O BUILDING BLACKS
i

Input-output requirements of host systems vary widely in

voltage ranges, currents, and timing parameters. The approach !hest

suited to building-block development is to provide a standard set of

functions which serve a majority of general applications. The user is

required to supply any additional special functions unique to his

applications.

To be consistent with the FTBBC computer modules, all building

blocks must provide memory-mapped I/0. This is, each I/O building block

r '

	

	 must recogni.o ita identification and the function being requested from

an out-of-ra! ,e address appearing on the host computer's address bus.

Data for output or input is transferred over the data bus in response to

a write or read to the specified I/O address.

A second set of requirements is related to fault-tolerance.

The I/O building block must check incoming addresses and data for proper

coding, and utilize duplication or coding checks to verify proper func-

tioning of its internal logic. Either an error in incoming data or

detection of an internal fault must signal an error indication to the

CORE Building Block. This internal error indicator should be a morphic

(one-out-of-two) coded signal to prevent a single point failure.

Finally, the building block must encode incoming data for presentation

on the host computer's bus.

Typical I/O Functions

The following is a listing of I/O functions which should be

supplied by building-block modules. One special feature is important in

achieving synchronization in voting configurations, as well as

decoupling I/O timing from detailed instruction timing in the Terminal

module. This is a feature which creates a granularity in I/O timing by

synchronizing outputs and ii-.puts with the Real-time interrupt which

P drives the computer system. Specifically, a Real Time Interrupt (RTI)

input is provided with each building block, and which typically provides

a pulse every few milliseconds. All output commands are held within the

building lock and are executed atg	 precisely the next RTI. Similarly,

inputs are sampled and held through an RTI period.

k
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V Wa a synchronous emotive is espUqed,. In .tbe torplual

Module, this I technique alms . softwers to bt'. clued st out abMU% .

the I/O tieing of unmodified programs (UM 78b].  It also prevents

MU activity from the lntercommunications bus from changing I/6 timing

due to slight variations in processor speed due to stolen memory cycles.

Finally a restricted interaction with the host system coupled with

synchronous software operation is expected to simplify verification and

validation.

j	 (1) I/O Function $1 Parallel Data Out. Outputs a 16-bit

i	 data word taken from the host computers data bus at the

next RTI pulse.

(2) I/O Function #2 Parallel Data Input. Sample and hold a

'	 16-bit data word at the next RTI pulse. A separate Read

Command transfers the sampled data into the host computer.

(3) I/O Function f3 Serial Data Out. Shifts out a 16-bit

data word at the next RTI pulse. Provides word gate and

shift clock signals.

(4) I./0 Function f4 Serial Data In. Accepts up to 16 bits

of serial digital data from a data source.

(5) I/O Function f5 Pulse and Bilevel Input. This function

Is used to sense the logical state of up to 8 lines, and

to sense the occurrence of a pulse event within a software

determined measurement period. The pulse sensing logic

is reset on RTI (or multiples of 1) time centers while

the level sense logic is allowed to change state on

1 usec intervals.

(6) I/O Function f6 Pulse Counter. This function totals

the number of pulse events over a predetermined time

interval.
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(^) t/0 fMtU* 07 1ldineteble Fr+esn= tsasrator
aladulo it Coueter). Used to 80rate toles streams
which are integral snhmultiples of a'Master Clock.

(U) I/O Function #8 Pulse Output. Generates pulses with

delay and width program-specified and derived from a

Master Clock. Pulses are generated periodically on RTI

time centers and are typically of 10u sec or 100u sec

duration.

(9) I/O Function 09 Analog Multiplexor. Up to 16 lines of
analog data can be collected, in a two-part operation.

First the desired analog line is selected and the data is

quantized at the next RTI time. The resulting digital

data is held in an output register until it is retrieved

by software with a subsequent read operation.

(10) I/O Function 8`10 High Rate DMA. This function is

designed to minimize handling of high rate data. A

starting address and word count is loaded into the

building block along with an output or receive request.

Data is transferred to or from the host computer memory

under the control of a peripheral device.

These functions were selected to provide a general 1/0 capa-

bility. The Functions are made sufficiently powerful so that the burden

of high rate timing can be removed from software. In general, the soft-

ware only has to provide outputs with a resolution of a few milliseconds

(determined by the RTI) and the hardware takes care of the finer details.

In order to proceed with 1 /0 building block design, a detailed

analysis of NAVY systems and procedures is required. However, the

following general comments can be made regarding building block

implementation.

Implementation Strategy

The circuitry for each I /O function is not complex and the

implementation of fault-detection is straightforward. Where information

structure is preserved (such as data in and out) parity checking can be

employed. Control functions can be duplicated with morphic comparison.
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The density of VLSI technology is sufficiently high that a
4

number of I/O functions can be placed on a single chip. The specific

function which is required can be activated by connecting plus. This

technique can reduce the inventory of building blocks to two or three.

Most of the functions described above can be implemented on a single

chip.

One additional requirement is for the redundant use of I/O

elements. To achieve redundancy in Terminal Modules, two or more

modules are cross-strapped, i.e., their inputs and outputs are hooked

together. One module is powered and the others are used as unpowered

standby spares. When cross-strapped I/O is used, it is important that

sr►ort-protection be provided at all output connections. Otherwise a

shorted I/O connection could inactivate all -f the spares. Typical

techniques for protection are to isolate outPdLd with series diodes

and inputs with series resistors. Thus, hybrid isolator packages will

be required as an integral part or as an adjunct to the building blocks.

1/0 Building Block definition is an area recommended for

further study in the areas of (1) a detailed definition of NAVY func-

tional requirements and (2) chip development.
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