NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

JPL PUBLICATION 80-73

e N

STODY Final Report (Jet Propulsion lab,)
238 p HC A11/HMF AO1 CSCL 09B snclas

G3/60 41574

Fault-Tolerant Computer Study
Final Report R |
David A. Rennels

Algirdas A. Avizienis
Milos D. Ercqgovac

February 1, 1981

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

R i S Sy m‘m‘g-.ﬁ.

[T e

msi-cn-masam PAULT-TOLERANT COMPUTER - N81-18675

,A_‘,‘

TR o RN i AL WG Y SIRAL A ¥

s e A

S

NORPRPY

JouO

[Y SOOI

5E .';5" o

AT TR T T TR

JPL PUBLICATION 80-73 g

T T Y T T R T T T T T TR T T T TR O e T TR RN S T« PRERT AT e e TR e TR i e s e s e

Fault-Tolerant Computer Study |

Final Report

David A. Rennels
Algirdas A. Avizienis
Milos D. Ercegovac

February 1. 1981

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
Calitornia Institute of Technology
Pasadena. California

'
v

The research described in this publication was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by the Naval Ocean Systems

Center, San Diego, California, through an agreement with
NASA.

e -

L (R

ABSTRACT

This report describes a set of building-block circuits
which can be used with commercially available microprocessors and
memories to implement fault-tolerant distributed computer systems.

Each building-block circuit is intended for VLSI implementation as

a single chip. Several building blocks and associated processor and
wemory chips form a self-checking computer module with self-contained
input output and interfaces to redundant communications buses. Fault
tolerance is achieved by connecting self-checking computer modules into
a redundant network in which backup buses and computer modules are

provided to circumvent failures.

Included in the report is a discussion of the requirer. uts
and design methodology which led to the definition of the building-
block circuits. This is followed by a se; of logic designs for three
of the building blocks. These are designs which are being used to
construct a laberatory breadboard of a self-checking computer module.
The logic designs will be modified and improved as the breadboard is
debugged and tested. Further refined designs will become available
when the breadboard is completed and tested and again, hopefully, when

the VLSI devices are fabricated.

iii

ARSI AN S PR SN SR - ra el e S SR
*

ACKNOWLEDGMENT

This study was fnitiated by the Naval Ocean Systems Center,
Code 923, ard represents a facet of a block-funded program entitled
Integrated Circuit Technology, sponsored by the Naval Electronics
Systems Command, Technology Division. The work was performed by agree-
ment with NASA under Contract NAS7-100 at the Jet Propulsion Laboratory
of the California Institute of Technology. This program is continuing
under NASA sponsorship, and r¢lated system studies are being conducted
at the University of California, Los Angeles under sponsorship of the

Office of Naval Researcl.

A special acknowledgment is due to Reeve Peterson of NOSC
for his continued support and encouragement of this effort. We are
also indebted to Dick Urban and Ed Holland of NOSC for their guidance

and support.

For the continuing effort, which involves the detailed
design and implementation of an engincering model of this work, an
acknowledgment is owed to Lee Holcomb ot the NASA Office of Aeronautics

and Space Technology for his support.

An additional acknowledgment is due .Jim Bryden of .JPL whose
help was invaluable in carrving out this study and bringing this final

report to parturition.

iv

1.4
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5
1.6
1.7

1.8

2.1

2,1.1

2.1.2
2.2
2.2.1
2.2.2
2.2.3
2.3

2.3.1

o

.3.2

CONTENTS

SUMMARY AND OVERVIRW

SYSTEM REQUIRRMENTS

BUILDING~-BLOCK COMPUTER REQUIREMENTS

DESIGN APPROACH

THE BUILDING-BLOCK CIRCUITS

The Memory-Interface Building Block (MIBB) =—=cemcccwe-

The Core Building Block (Core-BB)

The Bus-Interface Building Block (BIBB)

1/0 Building Block (10BB)

SCCM PROPERTIES

THE DISTRIBUTED COMPUTER (SCCM) ARCHITECTURE —=======--

SUMMARY -

REPORT OUTLINE

THE CONCEPTS OF FAULT-TOLERANT COMPUTING

APPROACHES TO THE FAULT PROBLEM

Tolerance and Avoidance: Complementary Approaches
to the Fault Problem

Classes of Physical Faults

TOLERANCE OF PHYSICAL FAULTS

Fault Masking -

Fault Detection =e--e-voroccceccoacan- —

Recovery -<=-- - - -

FAULT-TOLERANT SYSTEMS —e=--==-moma—en -—

Hardware-Controlled Recovery Systems -—==weeec——cecccccaa- :

Sof tware=Controlled Recovery Systems =—----eeccecaccaaao

Bt e PR

IR A L R ol TR A P S AR OS AE S hal W T e R TVATN TR s R T TREL L T AT T

P Py

2.3.3 Pault-Tolerant Subaystems 2-21+

2.4 MODELLNG AND ANALYSIS 2-22
. 2,4.1 Analytic Modeling: Permanent Faults 2-23
éf : 2.4.2 Analytic Modeling: Transient Faults 2-33
' 2.4.3 Heuristic Approaches: Simulation and Experiments —===- 2-41
"\ 2.5 ' TOLERANCE OF MAN-MADE PAULTS 2-42
| 2.5.1 Design Faults 2-43
2.5.2 Interaction Faults 2-46
2.6 CURRENT PROBLEMS AND PROSPECTS FOR THE FUTURE —===—e=== 247
2.6.1 Reasons for Fault-Tolerance 2-47
2.6.2 A Design Methodology 2-48
2.6.3 Current Roadblocks 2-49
; 2,6.4 Goals and Prospects 2-51
)
| 3 OBJECTIVES AND ARCHITECTURE SELECTION 3-1
3.1 REQUIREMENTS FOR FAULT-TOLERANT BUILDING-BLOCK
COMPUTERS (FTBBC) 3-3
3.2 DISTRIBUTED COMPUTERS 3-5
) : 3.3 THE DISTRIBUTED COMPUTER MODEL : 3-7
3.3.1 The Intercommunication Bus Structure 3-10
3.4 FAULT~TOLERANCE OPTIONS 3-11
3.4.1 The Terminal Modules 3-1
3.4.2 The High-Level Modules 3-12
; 3.4.3 The Intercommunication Bus System Requirements -=----=-- 3-13
?;' 3.4.4 Architecture Selection 3-14
“ 3.5 BUILDING-BLOCK DEFINITION 3-15
3.5.1 The Self-Checking Computer Module (SCCM) 3-15

vi

3.5.2 The Memory Interface Building Block (MIBB) -r-wwvee--- 3-18 ? ‘
3.5.3 The Core Bnilding“ilock (Core=-BB) 3-21 v
3.5.4 The Bus Interface Bt;ildins Block (BIBB) 3-23 |
4 BUILDING-BLOCK DESCRIPTIONS 4-1
4.1 THE MEMORY INTERFACE BUILDING BLOCK 4-1
4.1.1 Memory Interface Building-Block Requirements —--—----- 4-1
4.1.2 Mamory Interface Building-Block Design 4-3
4.1.3 Error Control Capabilities 4-20
4.1.4 Design of Memory Interface Building Block —~--cececaa- 4-24
) 4.1.5 Estimated Complexity of Implementation 4-"1 ;
| 4.2 THE CORE BUILDING BLOCK 4-52 |
k 4.2.1 Core Building Block Requirements 4-52
;, 4.2.2 Core Building Block Implementation - 4-55
’l 4.3 THE BUS INTERFACE BUILDING BLOCK (BIBB) 4-71
} 4.3.1 Bus System Requirements -- 4-71
: 4.3.2 Bus Controller Functions 4-76 :
| 4.3.3 Bus Adaptor Functions -- 4-79 '
4,3.4 BIBB Implementation -- 4-82
| 4.3.5 BIBB Microprograms 4-114
BIBLIOGRAPHY -= 5-1
; APPENDIX ---- A-1
Figures '
1-1 The Self-Checking Computer Module (SCCM) =—cecceceweea 1-5
1-2 Reliability Improvement Using SCCMS ~-=--—ececemeocaaco 1-8
| 0,
| vii . OPR;%%’"L y
2 Q4 8 15
, L
e »

v

i et 2RI i

ST o i iR
, T .

1-3
2-1
2-2
2-3
2-4
2-5
3-1
3-2
3-3
3-4

3-5

4-9
4-10
4-11
4-12
4-13

4-14

s T e TR e R T RS

Distributed Standby Redundant Architecture -~—-<=ec=c==- 1-9

System Reliability Predictions 2-24

Markov Reliability Model for Closed Systems ~=we<ccc=- 2-29

Transient Fault Recovery Process : ~—= 2-36
Transient Recovery in the Markov Model eceewmccccccaae 2-40
Equivalent Form of the Markov Model wm= 2-40

A Non-Dedicated Distributed Computer Architecture ---- 3-6

The Distributed Processing Architecture =--=-c-=cc---e- 3-8
The Self-Checking High-Level Module -= 3-16
MIL-STD 1553A Formats == 3-24
Bus Interfgce Building Block Connections -==~-c-veec-e 3-26
MIBB Subsystems crmcacecmece—e— 4-5
General Flow Diagram ---ecccc-ccccccmcccccccocacancnan 4-12
Address Bus Interface ------ com———— cmmmem—ae i 4-26
Soft Name Checker (SNC) ==-=-eccmcccccccmmcccccmcnacaa 4-27
Address Parity Checker (APC) B i 4-28
5-Input Morphic Comparator (MPCS) 4-28
Data Bus-Storage Array Interface e L LS 4-30
Data/Check Bit Module (DBM, CBM) =-ecce-——cwccccammcccue- 4-131
Memory Data Register - Data Bit Module (2X) --ec-eee-o 4-32
Memory Data Register - Check Bit Module ----cvccccacaa- 4-133
Bit Interface Module (3X) --=ceccemrcccacnccmncccnaca- 4-134
Bit-Plane Interface Module (2X) ---ccecrecccccmcaccaao 4-134

Spare Plane Interface Module (3X for SPq. X for SPh)- 4-135

Replacement Control Section (RCS) ~-c---eccvrmcmccccaao 4-15
Error Control Section (ECS) ~—=ccccmrmmcccvaccccccea 4- 136
Data Parity Checker-Generator (DPCL) -=rmccemcmcccacaao 4-37

viii

S S e T e R R T TR R R T T e R e T e TS i R LR R R s T R e T e AR T TR e AT TR AT AR T T R T T e TR T S

4=17 Syndrome Generators/Checkers (SGC) 6X 4-38

- 4-18 SEC/DRD Analyzer (SDA) 4-40
o 4-19 Error Status Register and Memory Interrupt (RSR/MEI) - &4-4l
f’ ; 4-20a Cont vol Section 4-43
T i 4-20b Control Interface and Clock Generator (Cl&CH) ~——====~ 4-44
\ x 4-20¢ MCS State Diagram 4=-45
; ; 4-20d State Sequencer (ss‘) h-47
| f 4=21 Core-8B Block Diagram - 4=53
l 4-22 The Processor Check Element 4-57
4-23 Processor Check Element Logict (a) Parity Check/
; Generate; (b) Morphic Processor Comparison;
5 (c) 1solator; (d) Command Decoder; (e) Status
Registers ~-ecccrcecccccmcacccccccnnccccrcnncacccnnaea 4-60
§ 4-24 Bus Arbitor Layout B s 4-62
j 4-25 Priority Resolver logic - ———eecccccccccacaan 4-63
; 4-26 Morphic and Currents: (a) Self-Checking Exclusive,
or Reduction Circuit; (b) Reduction Trees --===eeee-=- 4-64
4-27 Core Building Block - Interconnection Diagram -—------ 4-67
4-28 Fault Synchronizer and Recovery Sequencer --e--=-e-c-= 4-68
4-29 Manual and External Module Control -——--—-=--e-ceeee--- 4-72
4-30 Simplified BIBB Block Diagram --=-=wccerer-crcmconaco- 4-83
4-31 External Bus Manager Block Diagram =-=-es-cececccce--- 4-85
4-32 Manchester to NRZ Translator =------eewceccecceecnnc-nx 4-88
% : 4-33 External Bus Interface, BAC - Control -------ccecceo-- 4-91
% 3 4-34 External Bus Interface, BAC - Data Paths --ceccoceceao 4-94
é i 4-135 External Bus Interface, BAC - Fault Detection Logic -- 4-96
%" % 4-36 The Internal Bus Interface —=-e-ecccmmmmccrcemcmcemeea 4-97
| 5 4-137 The 1BI - DMA Controller =---e--emmcmccncm e e e e - 4-100
4-138 IRl - Fault Handliog Circuits ~=e-smmcmemmmoeo e 4V

ix

4=39(a)
4-39(b)
4-40
4-41
4-42

Tables

2-1

4-10

4-11

I T g

-

The Mill
The Mill - PFault Latches for Status Sample ~e-vem=ce-

The Controller - CROM and C8 -

The Control Sequencer
Fault Handler

Characterization of Several Models ¢« Fault-Tolerant
Systems

Algorithm for the Components of Matrix A ~—ceccccw-—a-

Derivation of Transient Reliability Measures —-------

0dd-Weighted SEC/DED Code

Component Count ———
Conditions for Examining Morphic Check Signuals «--e--
Memory Mapped BC Commands =--=ecreceocerccceccccnccnnex
Bus Control Table Formatg --=~vec--ecececccacccacccnaan
1BI Transfer Commands ———
DMA Command Codes (DMAC) -—
Control Sequencer Inputs -
A Control Sequencing Example -=ceecccccccccrccmcecccne
Bus Adaptor Micruproygram -
Bus Controller Microprogram -
x

P e e e s e = e e

P of >~

4-104
4-105
4-107
4-109
4-113

2-30
2-32
2-38
4-22
4-51
4-69
4-76
4-77
4-98
4-99
4-106
4-110
4-116

4-121

P ;S

e i L O L M i R i s S SR R O it £ e B cidile et i anat Sf0 RO S

. e h b Al e i e i anm - st i

SECTION 1
SUMMARY AND OVERVIEW

Over the last decade, the methodology of fault-tolerant
comput ing has been developed to increase the reliability of computer
systems. Fault-tolerant computers have been designed to contein redun-
dant circuits and, when hardware faults occur, they utilize the redun-
dant circuits to continue correct computation. By and large, these
have all been customer-designed computer systems [AVIS 77].

This study was undertaken as part of the NOSC Very-Large-
Scale-Integrated-Circuit Technology Prograe to dﬂfine VLS1 building-
block circuits which can be used with commercially available micro-
processors and memories to implement fault-tolerant computer systems.
This approach is taken with the view that a wide range of governnent
requirements can be satisfied with commercjally developed processors.
Thus, the direction of this study is to define the supporting circuits
necensary to utilize existing processors in fault-tolerant configura-

tions.

The principal result {8 a determination that a small number
of buflding-block circuits can be developed which will allow construc-
tfon of both centralized and distributed (multi-computer) computer con-
figurat fons which are fault toierant. These building blocks consist of
(1) an Ervor Detecting and Correcting Memory Interface Circuit, (2) a
CORE Processor Checker and Fault-Handling Clrcu@t. (3) a Self-Checking
Programmable Bus-Interface Circuit, and (&) nev;rai 1/0 circuits to
perform voting, error checking, and short i{solation. The design of the
firat three building blocks for a feasibility breadboard are described
in this report, along with the rationale behind their selection.

1.1 SYSTEM REQUIREMENTS

Reliability {8 a continuing problem {n complex military
systems., The cost of unexpected failures shows up in many ways, includ-
ing reduced operational readiness, and the lar:< number of personnel

involved in maintenance. Dollar costs are usually difficult to quantify

1-1

because system procuremaent and costs of ownership are usually parcelled
into various areas of responsibility. It can be said, howsver, that

costs of ownership often exceed procurement costs in a large number of
major systems.

By increasing testability, maintainability and, in some
cases, providing automated redundancy management in the early stages of
a system design, it is expected that life-cycle costs can ba reduced.
This viewpoint advocates moderately increasing initial hardware costs to
achieve improved reliability and reduced maintenance during a system's
operational lifetinme.

The computers within a system provide the starting point for
automated maintenance. If computer reliability is assured, the com-
puters can be used for (1) subsystem testing and failure diagnosis,

(2) automatically replacing failed subsystems with spare parts, or

(3) where no backup spares are available, modifying on-board processing
to account for the degraded subsystem state. Stated another way, the
computer becomes an automated repairman.

A second area of requirements for fault-tolerant compu.ing
occurs when the cost of computer failure becomes clearly unacceptable.
Digital flight control of low-flying aircraft is a dramatic example.
Although the number of applications of this type is relatively low,
they may be expected to increase as the computer is relied upon more

heavily.

1.2 BUILDING-BLOCX COMPUTER REQUIREMENTS

The user of a fault-tolerunt building-block computer (FTBBC)
system should be allowed to specify a maintenance interval and the
reliability required over that interval. This has two major implica-
tions. First, the FTBBC configurations must allow the modular addition
of redundant elements so that the same design, with differing numbers of
spares, can vvonomically satisfy both short- and long-life requirements.
Secondly, the fault detection and recovery mechanisms of the FTBBC must
be nearly perfect. Previous modeling studies have shown that “coverage,”
(the conditional probability that the system can implement recovery,

1-2

I I oy

e il

R ST S B A s AR Sl £ Tanch. 1o

given that a fault occurs) must approach 100X fét m:ﬁ_‘)m‘ reliability,
whether or not a fault-tolerant syetem is periodically maintained
{BOUR 69].

In order to be effective, a fault-tolerant computer must be
designed to recover from a comprehemsive set of faults;, i.e., all the
faults that can be reasonably expected to occur. We have attempted to
protect against stuck-at faults on a single chip, most massive failures
in a single chip or module, and most tramsient faults which create
errors but which are of short duration. We do not expect unrelated
hard faults to occur in different modules simuitaneously.

The FTBBC architecture must be amenable to easy maintenance.
Plug~in replacement modules should require a minimum of contaét pims and
should not require conmectors at high-bandwidth, noise-sensitive points
in the computer. Similarly, the computer should be capable of identify-
ing, during routine maintemance, those modules which must be replaced.

The architecture of the building blocks should be capable of
supporting a wide variety of processor and memory chips, i.e., the
building block designs should not depend upon the peculiar I/0 charac-
teristics of any given processor. By initiating all control and 1I/0 i

functions with out-of-range memory addresses (memory-mapped I/0), this

processor independence can be achieved.

For the building-block computers to find wide application
they should be rongistent with military standardization programs. Thus,
external bus interface circuits in the building block architecture use
MIL-STD 1553A.

1.3 DESIGN APPROACH

After a study of alternative approaches to the design of
building-block-implemented, fault-tolerant computing svstems, the !
following architecture was selected. The building-block circuits
being developed are used to assemble commercially available micro-

processors and memories into Self-Checking Computer Modules (SCCM), as

1-3

D T Y. P N e aems . b

shown in Figure 1-1. Bach SCCM is a small computer with the unususl

property that its hardware is capabla of detecting a wide variety of

internal faults concurrent with normal (user) program exacution, e

@;*f' can be connacted (through a redundant external busing system), tosntheit“EA
B with other SCCMs into a redundant network, im which backup SCCMs are

2 provided to take over for a computer (SCCM) which has failed.

A

- As shown in Pigure 1-1, three of the building blocks inter-
face (1) lccal memory, (2) the external busing system, and (3) local 1/0
to the processor. These interface building biocks are responsible for
detecting faults in the circuits that they interface to the SCCM's
processor, and faults in their own internal logic. They send fault
indicator signals to the Core Building Block (Core-BB) if such a fault
is detected.

i' The Core Building Block compares the outputs of two CPUs
performing identical computations to detect (but not isolate) CPU
‘ faults, and it receives the fault signals from the other building
i blocks. It also checks error-detecting codes which are used to detect
) v errors on the internal busses of the SCCM. The Core is responsible for
} : disablirg the SCCM upen detecting a fault anywhere within it. (An

i optional program rollback may be attempted to recover from some transi-

ent faults locally.)

Although the primary means of fault recovery is to use backup
: SCCMs to replace a SCCM which has failed, it is possible to.correct some
’ ; of the most likely faults in a failed SCCM (by an internal reconfigura-
tion) and reuse it. A SCCM can be reconfigured to recover from at

least two local memory faults through use of two spare-bit planes.

Redundant external Bus Interface Building Blocks (BIBB) allow communica-
tion through alternate buses if a bus interface should fail, and redun-
dant I1/0 Building Blocks can be used within a SCCM. (A design augmenta-
tion currently under consideration, allows one of the two CPUs to be

discarded when a disagreement occurs, and computation to continue with

PLICT SR

only one. This is for non-critical applications since CPU fault detec-

tion is no longer available with only one machine.)

(WDDS) aInpoW asandwo) BulydaYyp-3(as 8yl ‘(-1 dandry

S T T R T e T R AR T R T

r— —-
1 N
INVED YW J 1SN
FMOOW VAELNI vwa
- E@TIOUNOD - WD #w-oN : N— :
,_m BAIDWEBANG - VO ; [}
m. STYNOIS ALNOIN
: INGWNOISSY SNE - d 1wva k1.1,
,w aBnouNcosM - A , Jy
| wouvavsH - W 0-0/1 , 3 1
1 4
, e —
» (40%83 NO) LI8IHNI 1N4IN0 _ > =
| e , : 28 WD
3
9
“. b \\
m ¢ sl nd> ndd
: svorvoiant | 4 Y _
W nvd | & ok ._
,, wNaiN | T 45 -
)))
; A
JAVIWOD X, DY O W OO0 v e B\O
405535044
AIVETION oLy
/13534 sne T
N23HD sne Ay A
i) 2018 } A4
, ONIGING B e 5 o
L4NWALNI 0> 3
v NOILDIROD 17 X -7
w \ﬁN z
' .
X L
NO01-ONIQUNE NN N N\ e BN DN ve — va
1NV3 INI IOVINAINI ASOWIW cne
m AUVIS-INL oy
b o
w , ON u(&%w sie s UK
, ABOWIW (vess1) sasme
INVONNG3Y SNOLLYDINNWWODILNI TVNEDG

S TR e e e T T T T

-

1.4 THR BUILDING-BLOCK CIRCUITS

The buud!.ug-block circuits are briefly deaérmd in the
following pmuapht. : : -

1.4.1 The Memory-Interface Building Block (MIBB)

This circuic interfaces a set of commercial memory chips to

4{ the local bus within a SCOM. It is capable of detecting single faults
within the memory, effecting replacement of up to two faulty bi% planes
with spares, and correcting single bit errors using a (SBEC/DED) Hamming

1 code. It generates and checks p&rity codes to protect informatiom
transfer on the SCLN internal bus. Special checking circuits are employed
in the MIBB to detect feults in the memory and within the MIBB, and
fault signals are sent to the Core.

1.4.2 The Core Building Block (Core-BB)

This circuit provides a continuous comparison between two
processors that run.synchromously to detect processor faults. It also
includes parity generation and checking circuits to interface the proc-
essor with the SCCM local bus and to detect faults on that bus., Inter-

-nal bus allocation (arbitration) is provided between the CPU and compet-
ing DMA channels in the other building blocks. Also, the Core is respon-
sible for disabling its host SCCM in the presence cf faults and, option-
ally, attempting rollback/restart procedures. The Core, like all other
building blocks, contains internal checking circuitry to detect faults
within its own internal logic.

1.4.3 The Bus-Interface Building Block (BIBB)

This circuit can be microprogrammed to perform the functions
: of either a controller or terminal (adaptor) to an external 1553A bus.
3 Several BIBBs can be used within an SCCM to provide communications over

23 several redundant external buses.

The BIBB provides the hardware interface between an external
bus and the internal bus of its host SCCM. Internal fault-detecting
! circuitry is provided within the BIBB, and the parity and status

1-6

P . L S A

PRI

P e

messages employed in 1553A are used to verify proper message transmissiom |

and reception.

1.4.4 1/0 Building Block (IOBB)

A discussion is included later in this report on the various
circuits required to provide fault-detection and redundancy in the
interfaces between an SCCM and its associated peripheral devices.

1.5 SCCM PROPERTIES

A "typical® SCCM would consist of the following integrated
circuits: 32 commercial RAM chips, 2 commercial microprocessors,
1 MIBB, 1 Core, 3 BIBBa, two IOBBs, and several additional MSI cir-
cuits. A previous report has indicated that its characteristics would
approximate those listed below if the building blocks were implemented
as VLSI devices. (RENN 78a)

Power 8w
Weight 1.4 1b*
Volume 23 in.3#
Cost $13,600%

*Not including power supply.

The cost represents high reliability production, (e.g.,
MIL-SID 883B) and could be greatly reduced in large quantities. Fig-
ure 1-2 is an estimate of the reliability of a single SCCM, a SCCM
backed up by a standby spare, and, for comparison purposes, a non-
redundant computer made with similar techmology. A simple combinational
model was used (see RENN 78a) and it was assumed that a 10,000-gate
VLSI device has a failure rate of one failure per million hours. An
SCCM costs approximately 50% more in power, weight, volume, and dollars
than an equivalent non-redundant machine; but since it can tolerate
internal memory faults, its inherent reliability is 2-3 times greater
(over the period being modeled). A pair of SCCMs can provide fully

fault-tolerant operation with very much improved reliability.

. Fhee

B = ot

Figure 1-2. Reliability Improvement Using SCCMs

1.6 THE DISTRIBUTED COMPUTER (SCCM) ARCHITECTURE

An architecture has been selected for implementing fault-
tolerant distributed computing networks made up of SCCMs. The selected
architecture consists of a number of computers (SCCMs) performing
separate tasks, and which are connected by a redundant multiple bus

structure, as shown in Figure 1-3.

There are two classes of SCCMs used within this network,
designated Terminal Modules and High-level modules. Each Terminal
Module is embedded within a particular subsystem and performs local
control and data gathering tasks. The High-Level computer modules con-
trol the functioning of various terminal modules by controlling an
intercommunications bus. Using the bus, a High-Level SCCM can move data
directly into or out of memories of other computers and thus broudcast

commands or gather data for its various processing functious.

In this configuration, several techniques are employed to
achieve fault tolerance. First, all of the computers are self-checking
(SCCMs) and are designed to detect their own internal faults.

o HIGH-LEVEL
2 CPU COMPUTER
ory ! 3 MODULES (HLM)
- -cru —
. SPARE
2 COMPUTER
HLM MODULES
I T !
BUS .
SYSTEM K)
1
5
TERMINAL ™ ™
2 l MODULES
™
I i
MEM |1
1. MIBB
. 2. BIBBS
. 3. CORE-BB
[/O INTERFACE 4 4. 1088

REEEER

TO SUBSYSTEM

Figure 1-3. Distributed Standby Redundant Architecture

Secondly, backup spares are employed to replace faulty
computer modules. In the case of High-=Level modules, spares are non-
dedicated. A faulty module disables its own bus control function.

Spare modules are programmed to detect the resulting lack of activity
and take over the ongoing computations. For a Terminal Module, a failure
is indicated through the bus system (by polling), and a High-Level Moduie

effects its replacement by activating a dedicated backup spare module.

hirdly, a highly redundant bus system is employed so that a
faulty bus may be replaced by a spare. 1In the case of single faulty
terminals, individual messages may be rerouted over different buses.
Automatic status messages are employed in the bus format to verify

proper transmission and reception of messages.

A more detailed description of this architecture can be

found in RENN 78b.

iadlec o St —ebaraactas ML SRR A i LS A £t A SR & TR LTS fadie MO is. Skt bl etinat LRl A S A
il gt bR e EE SO SN, . U Y

1.7 SUMMARY

a This phase of the building-block, Fault-Tolerant Computing
~ Study has two intended results. The first is the design of three
building block circuits: (1) the MIBB, (2) the Core, and (3) the BIBB.
The second is the verification of the building-block designs by con-
strecting a breadboard, consisting of two SCCMs employed as high-level
modules. . This can be done by injecting simulated faults into one SCCM
\ and verifying that the fault is detected, and the other SCCM recovers
correct computations.

e

This report describes the design of the building-block

-

circuits. The designs presented herein have been used for the initial

breadboard layout, and will be modified as debugging progresses.

1.8 REPORT OUTLINE

The following two sections (2 and 3) provide background
material on the methodology of fault tolerance, and the specific assump-
tions on technology and application requirements which led to the
selection of the building-block SCCM architecture described in this

* report. The reader who is interested primarily in design details can
skip to Section 4, which provides more detailed descriptions of the
individual building-block circuits.

1-10

e e dnidi

. | SECTION 2
THE CONCEPTS OF FAULT-TOLERANT COMPUTING

The purpose of this section is twofold:

; (1) to provide the overall context of fault-tolerant
computing as a discipline of computer science and
engineering within which the specific raesults of this
study are to be interpreted; and

(2) to supply a self-contained complete introduction to
fault-tolerant computer systems for readers who have

not encountered this aspect of computer system design
in the past. '

A fault is an abnormal condition that appears during the
operation of an information processing system. Its manifestation may
cause a departure from the expected behavior and force the system into
an undesirable (error) state or sequence of states. The arrival at an
error state, in turn, leads to a partial or complete failure of the
system to execute the specified function, unless provisions exist to
cause a return to the expected behavior. Causes of faults are either
adverse natural phenomena or human mistakes. Because of their disrup-
tive effect on system operation, the avoidance and/or tolerance of
faults are major problem areas in contemporary information-processing
activities, including the design, analysis, management, and use of

information systems

The word "fault" in the subsequent discussion means "an
abnormal condition of hardware, programs, or data that may cause a
deviation of the information-processing behavior of some part of the

given system from the expected sequence,"

and "system" comprises all
hardware elements, programs and microprograms, input signals, stored
information, inter-system communication, and man-machine interaction

functions. All these parts of the system have to b: considered because

B - MRS - 1l S di
LA

in practice they all are affected by faults. As a consequence, the

ot - P e a s

fault problem transcends the traditional "hardware-software' applica-

tions boundaries and becomes a global problem of {nformation processing.

2-1

The word “expected" is preferred to the word “correct" in
] the description of fault-free behavior because the guestion of correct
5 % behavior, as it has been specified by the originator or user of the
- system, exceeds the scope of fault-tolerance considerations. For example,
the choice of an unsuitable algoritim by the user will lead to expected
behavior that 1s not correct with respect to the user's ultimate goal.

The various types of faults that are encountered during sys-
\ tem operation fall into two fundamentally distinct classes: physical
| faults and man-made faults. Physical faults are faults caused by
adverse natural phenomena, such as failures of hardware components, and
physical interference originating in the enviroument. Man-made faults
are faults that result from human mistakes, including less than perfect
specification, design, production (assembly), and man/machine
interaction.

Fault-tolerance is a property of the entire system that
allows it to continue the expected behavior regardless of the appearance
of certain (explicitly specifiad) classes of faults (physical, man-made
or both) that would otherwise force the system into an error state. The
most commonly accepted notion of fault-tolerance refers to phycical
faults only. The inclusion of man-made faults is a recent generaliza-
tion that offers a major challenge to investigators and designers of

information processing systems.

A complete discussion of fault-tolerance must deal with {ts

three fundamental aspects:

(1) The pathology of faults, including study of their
causes, classification according to their immediate
manifestations, and characterization according to the

symptoms (errors) observable in system behavior,

(2) The implementation of tolerance, encompassing the

three basic functions of masking, detection, and

recovery.

2-2

3
4
b
'

ik gl

e .

?
L

(3) The modeling, analysis, and evaluation (measurement)

of fault-tolerance by means of mathematical techniques,

simulation, and experimentation with implemented
systems.

The goals of this section are: (a) to present a unified
view of the many aspects of fault-tolerance; (b) to identify some
obstacles that remain to be overcome; and (c) to discuss the prospects
for future advances in this field. Fault-tolerance with respect to
both physical and man-made faults is considered, with emphasis on the
more developed field of tolerating physical faults. The current state-
of-the~art in the design and application of fault-tolerant systems is
illustrated by examples of existing systems and innovative proposals.

The viewpoint presented here is that the purpose of fault-
tolerance {8 to provide the means for the idealized (fault-frea)
abstract logical structure of a computing system to function success-
fully while embodied in its fault-susceptible implementation. Consé-
quently, fault-tolerance attains full significance only when it is
incorporated and utilized as an integral function of an information
processing system, Outside of this system context, it remains, at best,
a potentially applicable exercise for a researcher, and at worst, a
tool to support naive or irresponsible promises of near-perfect

operation.

2.1 APPROACHES TO THE FAULT PROBLEM

While conceptually the digital computer is a logical system
for the storage and manipulation of symbols, in practice it is imple-
mented using physical components and exists in an environment in which
it 18 affected by various natural phenomena. Some phenomena, such as
physical changes in the components and adverse effects of the environ-
ment, disrupt the operation as it is specified by the designers and
programmers and lead to deviations from the expected behavior. These
deviations have variously been called fajlures, faults, errors, inter-

mittents, glitches, crashes, etc. They occur because we attempt to

A b ot e

!
-

carry out abstract symbol manipulation operations in a physical world
vhich offers less than perfect components and less than completely
benign environments.

The probleme of avoiding these phenomena, and of recovering
from their effects after they have occurred, hive been of interest to the
entire cbnmmnlty of computer thsorists, designers, builders, analysts,
and users ever since the first calculating devices were devised. The
first pioneers who attempted to implement their ideas were simply over-
vhelmed by the adversity of the physical world, such as in the case of
Babbage's Calculating Engine.

The ianvention and refinement of electromagnetic relays,
vacuum tubes, delay-line and cathode-ray tube storage, paper tape, and
punched cards finally made machine computing feasible in the 1940°'s.
However, the history of the early d.ys of machine computing is filled
vith accounts of the continuing stiuggle against the imperfections of
components and hostility of environments. Ingenious defenses against
faults, such as duplicate units, error-detecting codes, etc., are found
in most early digital computers. ([IRE 53], [EJCC 53].

The advent of the transistor and the magnetic-core storage
element in the 1950's brought about a major increase in component reli-
ability and at least temporarily relegated the concern with system
reliability into the hands of component experts, and away from the main

concerns of system designers and users.

The problem of reliability reappeared as a major issue
again in the early 1960's when the applications of computers expanded
into the areas of space exploration, real-time system control, and
especially manned space-flight, in which the lives of the crew literally

depended on successful computer operation.

The reliability of components has continued to improve
since that time. However, the expanding range of applications and the
growing complexity of systems has képt the reliability problem in the
foreground and has led to the evolution of the concept of fault-tolerant
computing, which is the designer's and the programmer's method to pro-

vide reliable computer operation while using less than perfect components

2=4

Lt G T —————e

in less than ideal environmeats [AVIZ 75a). The mujor part of this
section considers the tolerance of physical faults; the 1issue of nan-
made faults is sddresaed in Section 2.5

2.1.1 Tolerance and Avoidance: Complementary Approaches to the
Fault Problem

A look at computers of the present and of the immediate past
shows that many systems have either very few fault-tolevance features,
or none at nll. In these cases, reliability with respect to physical
faults is sougnt by means of the fault-avoidance approach (also called
"fault-intolerance” in some papers) in which the reliability of comput-
ing is assured by g priori elimination of the causes of faults. The
elimination takes place befoure regular use begins, and the resources
that are allocated to attain reliability are spent on perfecting the
system prior to its field use. Redundancy is not employed, and all
parts of the system must function correctly at all times. Since in.
practice it has not beea pussible to assure the complete a priori
elimination of all causes of faults, the goal of fault-avoidance is to
reduce the unreliabflity (expressed as the probability of system failure
before the end of a specified time interval) cf the system to an accept-
ably low value. To supplement this approach, manual maintenance proce-
dures are devised which return the system to an operating condition
after a failure. The cost of providing maintenance personnel and the
cost of the disruption and delay of computing also are parts of the
overall cost of using the fault-avoidance approach. The procedures
which have led ro the attainment of reliable systems using this approach

are:

(1) Acquisition of the most rel)iable components and their
testing under vaiijus cenditions within the given cost

and performance constraints.

(2) Use of thoroughly refined techniques for the intercon-

nection of components and assembly of subsystems.

(3) Packaging and shielding of the hardware to screen out

expected forms of external {ntecference,

i %

1

R P ———— YT W A R T T

(4) Carrying out of comprehensive testing of the complete
system prior to its use.

Once the design has been ~ompleted, a quantitative predic-
tion of system reliability is made using known or predicted failure
rates for the components and interconnections. In a "purely" fault-
avoiding (i.e., nonredundant) design, the probability of fault-free
hardwvare operation is equated to the probability of correct program
execution. Such a design is characterized by the decision to invest all
the reliability resources into high-reliability com, -~ iente and refine-
aent of assembly, packaging, and testing techniques. Occasional system
failures are accepted as a necessary evil, and manual maintenance is
provided for their correction. To facilitate maintenance, some dbuilt-in
error detection, diagnosis, and retry techniques are provided. This is
the most common current practice in computer system design; the trend is
towvard an {ncreasing numbar ¢! built-in aids for the maintenance

engineer.

The traditional fault-avoidance approcch of diagnosis-aided
wmanual repair, however. ha: proved to be an insufficient solution in
many cases because of at least three reasons: the unacceptability of
the delays and interruptions of real-time programs (air traffic control,
process control, etc.) caused by manual repair action; the inaccesai-
bility of some systems (space, undersea, etc.) to manual repair; and
the unacceptably high cost of lost time due to manual maintenance in
many installations. The direct dependence of human lives on some
computer-controlled operations (air traffic control, manned spaceflight,
etc.) has added a psychological reason to cbject to the fault-avoidance
approach: although only one system in a million is expected to fail in
a given time {nterval, all users of the entire million systems are sub-

ject to the anticipation that they may be involved in this failure.

An alternate approach which alleviates mosc of the above
shortcomings of the traditional fault-avoidance approach is offered by
fault-tolerance. In this approach the reliability of computing s
assured by the use of protective redundancy. Faults are expected to be
present and to cause errors during the computing process, but their

effects are automatically counteracted by the redundancy. Relfable

]
|
'
l
1
1
]

computing is made possible despite certain classes of hardware failures,
external interface with computer operation, and parhaps even some man~-
made faults in hardware and software. Part of the resources allocated
to attain reliability are spent on protective redundancy. The redundant
parts of the system (both hardware and software) either take part in the
computing process or are present in a standby condition, ready to act
automatically to preserve its undisrupted continuation. This contrasts
with the manual maintenance procedures which are invoked after the
computing process has been disrupted, and the system remains "down" for
the duration of the maintenance period.

It is evident that the two approaches are complementary and
that the resources allocated to attain the required reliability of com-
puting may be divided between fault-tolerance and fault-avoidance.
Experience and analysis both 1ndicaté that 2 balanced allocation of
resources between the two approaches is most likely to yield the highest
reliability of computing. Fault-tolerance does not entirely eliminate
the need for reliable components; instead, it offers the option to
allocate part of the reliability resources to the inclusion of redun-
dancy. One reason for the use of a fault-tolerant design is to achieve
a reliability or availability prediction that cannot be attained by the
purely fault-avoiding design. A second reason may be the attainment of
a reiiability (or availability) prediction that matches the purely
fault-avoiding design at a lower overall implementation cost. A third
reason is the psychological support to the users who know that provisi-
ons have been made to handle faults automatically as a regular part of
the computing process. The fault-avoidance approach clearly was the
dominant choice in the 1950's and 1960's. 1In recent years, the fault-
tolerance approach has been making significant inroads with respect to
physical faults. Its application with respect to man-made faults has

remained very limited.

2.1,2 Classes of Physical Faults

Physical faults are caused by three classes of phenomena
that affect the hardware of the system during execution of programs.

They are permanent failures of hardware components, temporary

2-7

o P

A

A
4
X
:
2
4

o ki griad, g PR ML PR TRy S TR - ke aie ncnuian SR at bt o Sl ade) o et Bhiacihe it

malfunctions of components, and external interference with system opera-
tion. There are three useful dimensions for the ciassification of
physical faults:

(1) Duration: transient ve. permanent
(2) Extent: local vs. distributed
(3) Value: determinate va. indeterminate

Iransjent faults are faults of limited duration, caused
either by temporary malfunctions of components or by external interfer-
ence. The characterization of a transient fault must include a
"maximum duration" parameter; faults that last longer will be inter-
preted as permanent by recovery algorithms. Other characteristices are
the arrival model and the duration of transients [AVIZ 75a). Permanent
faults are caused by irreversible failures of components. They are
characterized by the failure rate parameter; often two or more failure
rates are used for the same components under different condit. ‘~ such
as power-on and power-off states. The following classifications
according to extent and according to value are applicable to both tran-

sient and permanent faults.

The extent of a fault describes how many logic variables in
the hardware are simultaneously affected by the fault which is due to
one failure phenomenon. Local (single) faults are those that affect
only single logic variables, while distributed (related multiple) faults
are those that affect two or more variables, one module, or an entire
system. The physical proximity of logic elements in contemporary MSI
and LSI circuitry has made distributed faults much more likely than in
the discrete component designs of the past. Distributed faults are
also caused by external interference and by single failures of some
critical elements in a computer system, i.e., clocks, power supplies,

switches used for reconfiguration, etc.

The value of a fault is determinate when the logic values
affected by the fault assume a constant value ("stuck on 0" or "stuck
on 1") throughout its entire duration. The fault is indeterminate when
it varies between "0" and "1" throughout the duration of the fault,

but not in accord with design specifications., The determinacy of a

2-8

¥

fault depends on the failure mechanism. For example, drift of component

values or “"shorting together" of two signals arellikely to cause indetér-

minate faults.

It is important to note that the description of famlt extent
and fault value applies at the origin of the fault; that is, at the point
at vhich the failure phenomenon has actually taken place. The fault-
caused introduction of one or more incorrect logic values into the com-
puting process often leads to more extensive fault symptoms farther away
(in space and/or in time) from the point of failure. At other times, the
presence of incorrect logic value is masked by other (correct) Jogic
variables and no symptoms at all'appear at more remote points.. Confu-
sion and ambiguity are avoided when the term."fault" is restricted to
the change in logic Qatiable(s) at the point of the physical hardware
failure. The fault-caused changes of logic variables which Qre observed
farther away on the outputs of correctly functioning logic elements will
be called "errors." This choice of terms describes the following cause-

effect sequence:

(1) The failure, which is a physical phenomenon, causes a
fault, which is a change of logic varigile(s) at the
point of failure.

(2) The fault supplies incorrect input(s) to the computing
process and may cause an error to be produced by sub-

sequent operations of fallure-free logic circuits.

The number of points that can be obsetved for the purpose of
fault detection is limited because integrated circuits are internally
complex, and have relatively few outputs. Digital-logic simulation pro-
grams which analyze the behavior of faulty logic circuits and predict
the errors that will appear on the outputs (for a given class of faults)
are essential tools for the generation of fault-detection tests
{SZYG 76]. An illustration of a simulation and analysis program to
analyze the behavior of faulty circuits is the Logic Analyzer for Main-
tenance Planning (LAMP) system [CHAN 74]. 1In addition, LAMP also per-
forms logic design verification, generates fault-detection tests, evalu-

ates diagnostics, and produces data for trouble-location manuals. LAMP

2-9

’ E
. E
e P T T T T S P P I S-S P P T S T ST STy

DT R L T TPPT LI T

T]

exemplifies the current tremd toward'mnltipurpoae gimulation systems in
digital system design. .

2.2 TOLERANCE OF PHYSICAL FAULTS

Fault-tolerance functions in computer systems are not

necessary (redundant’ as long as faults do not occur, and they can be
deleted from a perfectly fault-free system without affecting its per-

formance. In fault-susceptible systems they are implemented by the
means of protective redundancy, which becomes effective when faults

occur.

The implementation of fault-tolerance may be discussed from
two viewﬁoints: according to the functions being performed, and accord-
ing to the forms of redundancy that are used to provide these functioms.
From the functional viewpoint we distinguish three classes of fault-
tolerance functions: masking, detection and recovery. Each class con-
tains several distinct approaches to implementation which will be dis-
cussed in this section. The other viewpoint distinguishes different
forms of protective redundancy. The redundancy techniques have been
developed to enable three different forms: hardware (additional compo-

neats), software (special programs), and time (repetition of operatioms).

In this discussion, the functiomal classification is con-
sidered to be most suitable for the exposition of implementation tech-
niques. Each function is discussed separately, outlining the redundancy

techniques that are available for its implementation.

2,2.1 Fault Mas!’ing

The masking function employs redundancy to assure that the
effect of a fault is completely contained within a system module., As
long as the redundancy is not exhausted, the fault is concealed within
the module and no symptoms whatsoever appear on its outputs. When the
redundancy is exhausted or overwhelmed by a fault, module failure

results. Separate detection and recovery functions are not identifiable

 when the module Is viewed from outside. Because of this, masking has

e

T A A L N T A R AR L, TR R Tt T R T T ARl i = T T A T DT iR m e TR e e e

been called a static redundancy technique [SHOR 68) and has been used in
the design of various structures, e.g., airplane frames, bridges, etc.,
prior to the appearance of digital systems. Masking is also thought to
be the form of fault-tolerance used by the nervous systems of living
organisms [VONN 56].

A key question in masking i: choice of the size of the
module within which the masking occurs. The smallest module is a set of
individual hardware components (e.g., diodes, relay contacts, connec-
tions, etc.). On the other extreme, a module may be as large as an
entire computing system, in which case the module terminals are the out-
put devices. Theoretical analyses of masking usually do not specify the
module size; it depends on the feasibility of implementation.

In digital systems, masking is usually accomplished by hard-
ware redundancy, i.e., by the 1eplication of hardware elements. The
fundamental theoretical analysis of masking is due to von Neumann
[VONN 56], and Moore and Shannon [MOOR 56). 1Its early appearance can be
attributed to the previous use of masking in other disciplines of engi-
neering. The techniques of introducing hardware redundancy have been
classified into two categories: static and dynamic [SHOR 68}. The
static method implements the masking function, since the redundant
components contain the effect of hardware failures within a given hard-
ware module, and the outputs of the module remain unaffected as long as
the redundancy is effective. The static technique is applicable against
both transient and permanent faults. The redundant replicas of an
element are permanently connected and powered; therefore, they provide
fault masking instantaneously and automatically. However, if the redun-
dancy is exhausted, or if the fault is not susceptible to masking and
causes-an error, a delayed recovery is not provided. 1In practice, we
find that two forms of static redundancy have been applied in U.S. space
program computers: replication of individual electronic cowponents, and
triple modular redundancy (TMR) with voting [CCOP 76]. Several other
forms have been studied but were not applied either because of their
excessive cost or because they required practically unrealizable special

components [SHOR 68].

2-11

ST PTLIREREARIT T T T

e e e e o

Lo o o

g‘ The use of static hardware redundancy is based on the assump-
! tion that failures of the redundant replices are independent. For thie

‘ reason, use of static redundancy is difficult to justify within inte-
grated circuit packages, in which many failure phenomena are likely to
affect several adjacent components. Other disadvantages include the 5
cost of massive replication (3, 4 or more times the number of original 4
system elements), the need to assume independent failures of the repli-
cas, and the absence of a warning when a redundant mgdule finally fails.
Thus, masking is close to fault avoidance: while it may postpone the
time of failure, the module still fails suddenly and irrecoverably when
its internal redundancy is exhausted.

SR

- ————

Regardless of these shortcomings, masking still may find
application because of its conceptual simplicity and its instant actionm,

W T T S

entirely .ransparent to the user. A promising area of application is in

protecting a small "hard core" of a system for which other approaches :
are extremely costly or altogether impractical. Another area is the ;i
application in non-electrical, discrete-component technologies, such as ‘

fluidic logic for high-temperature or extreme radiation environments.

2.2.2 Fault Detection

The detection function is the starting point of all fault-
tolerance implementations except for these that depend exclusively on
masking. The most sophisticated recovery methods are only as good as
the fault detection scheme which initiates their operation. For the
purpose of this discussion we say that fault detection has taken place
at the time instant at which a fault signal becomes available to be used

by a recovery algorithm. All subsequent fault-location actions are con-

; sidered to be part of the recovery algorithm. The existence of a false

3
C
3
.E
i

fault signal is also possible. This is a false alarm that is due to a

malfunction of the fault detection scheme itself.

Fault detection is implemented by means of all the hardware,
software and repetition (time) methods that generate the initial fault

signal. All these methods may be conveniently grouped according to the

.~

b = cerane =

i o

time of their application with respect to the normal operation of the
system as follows:

(1) Initial testing, which takes place prior to normal use
and serves to identify faults hardware elemants con-
taining imperfections introduced during the manufac-
turing or assembly processes.

(2) Concurrent (on-line) detection, which takes place
simultaneously with normal operation of the system.

(3) Scheduled (off-line) detection, which takes place when
normal operation is temporarily interrupted.

(4) Redundancy testing, which serves to verify that the

various forms of protective redundancy are themselves
fault-free, and takes place either concurrently or at

scheduled intervals.

Initial testing follows the production of individual cir-

cuits and serves to eliminate the circuits that contain manufacturing
defects [BREU 76]. Computer programs for test generation have become

an essential tool to facilitate initial testing [SZYG 76], [CHAN 74].

The great internal complexity and a relatively small number of input/
output points in contemporary LSI circuits (e.g., microprocessors,
memories, etc.) have made exhaustive logic-level testing, in many cases
economically unfeasible. Recent research has emphasized probabilistic
approaches [PARK 76] and combined logic and functional testing [MCPH 76].
Initial testing represents a significant part of the total cost of digi-
tal circuits and is likely to remain a high-priority research problem

for the foreseeable future.

Concurrent (on-line) fault detection during system operation
is implemented by means of special hardware or software that operates
concurrently with the regular programs of the system. An important
advantage or concurrent detection is that recovery can be initiated

before fault-caused errors can cause extensive disruption 7 programs or

damage to the data. Hardware methods for concurrent detection have been

2-13

SR S P

\
\

e Trte

TR e T

used since the first generation of computers. They includs error-
detecting codes (parity, etc.) [AVIZ 71a], [DOWN 64), duplication and
comparison, [DOWN 64] disagreement detectors with majority voters,

[ANDE 67] speciel circuits to monitor certain critical elements (clocks,
power supplies, memory write operation circuits, etc.), [DOWN 64)

machine status and completion signals, [AVIZ 71a) self-checking logic
circuits, [CART 74]) and checksumming, timers, and built-in test equipment
of various types.

Sof tware methods for concurrent detection either employ the

concurrent execution of two (or more) programs, or they consist of spe-
cial features interwoven with the single program being executed. 1In
the case of two or more identical programs using separate processors
and/or multiple storage in separate memories, a comparison is accom-
plished by a programmed exchange of vresults [WENS 76) or checksums,
[SKLA 76]) rather than by hardware comparators. An alternative is to
use a dedicated subsystem (e.g., a "maintenance" minicomputer) which
executes monitoring programs to observe the operation of the remaining
parts of the system. Fault detection features that can be interwoven
wvith a single program include the use of passwords, acknowledgments
("handshakes"), checksumming, reasonableness checks on results, pro-
grammed "watchdog" timers, etc. Compared to hardware methods, fault-
detection by software is less prompt and more susceptible to disruption
by the fault itself. 1t is used very widely because it can be super-

impused relatively easily on an already existing hardware system,

Scheduled (off-line) fault detection is implemented by means
of software and requires the interruption of current programs in order
to test for the presence of faults, The presence of errors caused by
transicent faults can be detected by repeating the execution of the same
progra» (or a program segment) and comparing the results, The detection
of permanent faults which may have occurred since the last test period
requires the running of diagnostic programs or microprograms [BREU 76],
[DOWN 64], [RAMA 72]. In principle they are quite similar to the pro-
grams for initial testing. The main differences are: time for testing

is usually more strictly limited; testing is executed by the system

itself rather than by another computer; and an interconnected assemblage
of various circuits must be tested, rather than one circuit at a time.

A "bootstrap" approach is very useful, in which a small part of the
system is tested first, and then the tested part is used to run further
tests on other parts, etc. Microdiagnostics have very good resolution
and are especially suitable for this approach [RAMA 72]. Modern systems
also frequently contain special hardware features (e.g., test points)
which facilitate diagnostics [CART 64). Although the present discussion
deals with use of diagnostics and microdiagnostics for initial fault
detection, we must note that they also often serve to locate detected
faults to within a replaceable or discardable module as part of the
recovery algorithm.

Redundancy testing is a function that is specifically needed

by the fault-tolerance features of a system. Its purpose is to verify
that these features will be ready to use when a fault occurs. An
especially important aspect is to test that various fault signals are
ready to act, i.e., that they are not "stuck" in the "no-fault" state.
Self-checking logic [CART 74] and periodic schedule tests of fault sig-
nals [CONN 72] are suitable here. A second aspect is the checkout of
redundant parts of the system (e.g., standby spares, copies used for
masking, etc.). While diagnosis programs are suitable for systems with
standby spares [AVIZ 71a], the systems with masking are much more diffi-
cult to check out, especially those in which masking is at the component
level [COOP 76].

2.2.3 Recovery

The recovery algorithm comprises all actions that are ini-
tiated by the arrival of a fault signal during normal operation and are
concluded by the resumption of normal operation (possibly in a degraded

mode), by a systematic shutdown of the system, or by system failure.

The most fundamental difference between varfous recovery
algorithms is whether interaction with a human maintenance operator is
or i{s not required as part of the recovery algorithm, Recovery

algorithms that do not require human decision making are automatic; all

g e gl e

O Ty B RATR TR R T e e o

s L aiada ot Sl Jaakc

other algorithms are manually controlled, although they may contain
extensive automatic (programmed) sequences. An automatic recovery
algorithm may make use of off-line menual repair which takes place later,
as long as raesumption of normal operation does not depend on manual
intervention. Automatic recovery algorithms are further classifiable
(according to the state of the system after recovery has been comﬁletcd)
into threg classes: full recovery, degraded recovery, and safe shutdowm.

Full recovery means the return of the system (within allowed
time limits) to a set of conditions that existed before the fault
occurred [AVIZ 71a)., Both the hardware and software possess the same
computing capacity as before. Failed hardware modules are replaced by
spares, Damaged information (programs and data) are returned to a known
good state that existed prior to the fault.

Degraded recovery (often called "graceful degradation,” or

"failsoft operaticn') returns the system to a fault-free state, but with
a reduced computing capacity [BEUS 69]). This means that some hardware
elements have been discarded without replacement, some programs and/or
data have been lost, or some functions have taken longer than the
allowed time. This approach may be called "partial fault-tolerance,"
since recovery is not 1001 successful with respect to the set of pre-
fault conditions. Various "cold start" procedures belong to this

category.

Safe shutdown (also called "fail-safe" operation) is the
limiting case for degraded recovery. It is carried out when the remain-
ing computing capacity (if any) is below the minimum acceptable thresh-
old. The goals of shutdown are: to avoid damage to remaining stored
information and good system elements; to cease interaction with other
systems and/or human users in a specified orderly fashion; and to
deliver shutdown messages and diagnostic information to designated sys-

tems, users, or maintenance specialists,

Full recovery, degraded recovery, and safe shutdown all
require certain subsidiary functions which follow fault detection. They

arce: fault identification and location, error correction {n programs

(2]

-16

bl 2 o g el o - Rt i e R 2 e K ~ g o 9 Y hakd il Gl 4 fe - L b e o

and data, replacement or exclusion of permanently failed elements, and
recording of the observations and actions taken thus far. The fimal
step is either a restart of normal operations, or the complation of the
skt m sequence. Both hardware and software techniques have been
d¢ried to implement these functions. They are discussed in more detail
in the following section.

\ 2.3 PAULT-TOLERANT SYSTEMS

The ultimate proof of the effactiveness of fault-tolerance
; techniques is found in the performance of existing systems. For the com-
venience of discussion, we make the distinction between fully fault-
tolerant (or self-repairing) and manually-controlled systemg with fault-
tolerance features. The former complete their recovery actions without

b the participation of a maintenance specialist, while the latter depend
| on human decision making as part of the recovery sequence. These
| decisions may take place at various stages of the sequence, from the

initiation of diagnostics to the operation of the switch which discon-

nec*s a failed part of the systen.

The fully fault-tolerant systems may be further classified
according to the availability of external ("off-line") repair. In
closed systems repair is not available, and the system inevitably fails
| after the redundancy resources have been exhausted. Closed systems are
usually found in space applications [COOP 76], [AVIZ 71a], [CONN 72).
| In regairable systems, failed parts are automatically identified and
excluded from further participation in computing. They are then
replaced by an off-line repair action. System failures usually occur
el{ther because of imperfect fault detection and recovery algorithms,
or because of catastrophic faults ({.e., faults that cannot be handled
by the recovery procedures that were provided). A less frequent cause
of system failure is exhaustion of redundancy, which occurs when faults
occur faster than the repair pr.cedure can handle them. Very prominent
examples of repairable systems are the several models of the ESS tele-
phone switching systcms [DOWN 64, [BEUS 69].

U U T U D S NN U Ty ' e

ot T LN A et e e
pa— R e < . T

it A0 csdhonie: it APNE

Finally, fault-tolerance systems may be fixed-capacity or
degradable. The former are’ considered failed if a single specified
capacity cannot be maintained, while the latter are allowed to go to one
or more configurations of lesser capacity before the system is shut
dowm,

2.3.1 - Hardware-~Controlled Recovery Systems

Another classification of fault-tolerant systems may be based
on the implementation of the recovery algorithm. Hardware-controlled
systems have dedicated hardware which collects fault indications and ini-
tiates recovery, while software-controlled systems depend on special
programs to interpret fault indications and to carry out the automatic
recovery procedures. The hardware-controlled recovery approach depends
on special hardware to carry out fault detection and to initiate the
recovery procedures. After the existence of a properly functioning
software system has been assured, the completion of recovery is usually
transferred to software control, It is evident that further software
systems may be superimposed on the hardware-controlled design, leading
to a multilevel recovery procedure. A special case of hardware-
controlled recovery is found in statically-redundant syatems in which
faults are masked by redundant hardware, and thus remain totally invisi-
ble to the sofiware. Two examples of such systems are the 0AO data pro-
cessor which used component redundancy and the CPU of the SATURN V
guidance computer, which used TMR protection [COOP 76], IANDE 67}.
Probably the earliest use of TMR (triplication and voting) is found in
the SAPO computer, designed by A. Svoboda fn 1950-53 [OBLO 62]). SAPO
also possesses several other fault-tolerance features, including dupli-
catfon, parity checking, and retry. A separate software-controlled
recovery system is needed in statically-redundant systems if they are to
continue operating afier the first fault escapes the masking effect and

affects the software.

Dynamically redundant systems with hardware control usually
depend on a dedicated hardware module that gathers fault sipnals and

inftiates recovery., Different uses of duplexing and hardware-controlled

switchover techniques are found in the memory, power supply, and peri-
pheral units of the SATURN V guidance computer in combination with a
TMR-protected serial CPU unit [ANDE 67]. Separate fault-detection and
switchover-control units were used for every functionasl unit. Probably
the first operational computer with fully hardware-controlled dynamic
redundancy was the experimental JPL-STAR computer [AV1Z 71a). Intended
for self-contained multiyear space missions, this computer employs a
special Test-And-Repair-Processor (TARP) module to control recovery and
self-repair. Software assistance is invoked only to perform memory
copying and to resume normal operation after self-repair. The French
MECRA computer is another early experimental design [MAIS 71]., A few
other hardware-controlled system designs that have not reached operation
have been described in recent literature (AVIZ 75a), [CONN 72}. An
interesting recent experiment is the C.vmp multiprocessor, which can
operate i{n a fault-tolerant mode as a8 TMR confijuration of DEC LSI-11
computers [SIEW 77].

The principal advantage of hardware-controlled recovery sys-
tems lies in their independence of the operation of any softwarc immedi-
ately after the fault has occurred. The recovery process is transferred
to software only after {ts ability to operate has been assured. The
relatively late appearance of such systems may be attributed to the need
to introduce the recovery module into the design at its inception,
thereby requiring an early commirment to the hardware-controlled

approach,

2.3.2 Software-Controlled Recovery Systems

The software-controlled recovery systers depend on special
programs to initiate the recovery action upon the detection of a fault.
Fault eignals are obtained by both hardware and scftware methods; for
example, parity checkers, comparators, power=-leve’! monitors, watchdog,
timers, test programs, reasonableness checks, eto, The main limitation
of these systems is the need for the recovery software to remain opera-
tional in the presence of faults, since recovery cannot otherwise be

initfated. A significant advantage of the software=controlied approach

e i Y 1

3
T T B S P e ST |

T T T B S " TR A EEEEL e T e el R A i o e

e e —— e - . e e - ————— =

is that existing "off-the-shelf" hardware system modules may be used to
assemble fault-tolerant organizations. These modules contain various
forms of hardware fault detection, which ususlly are supplemented by
further software methods. For this reason software-controlled systems
appeared earlier and are currently being used in numerous applications
requiring high reliability and availability. While every modern operat-
ing system incorporates some recovery features, this report is limited
to selected illustrations of historically important and advenced systems,

An {important early design of the 1950's that had complete
duplication and extensive recovery provisions was the SAGE system i
[EVER 57]. The IBM System/360 architecture contains very complete
serviceability provisions for mu'ti-system operatiou in order to attain
high availability, reconfiguration, and failsoft operation [CART 64).

Anlcarly example of a multi-system which includes further extensions o«
the System/360 design i{s the IBM 9020 multiprocessing system foi air
traffic control applications [IBM 67). Noteworthy are th.: operational
error analysis program and the diagnostic monitor of the 9020. An
interesting {llustration of extensive use of backup storage and dynamic
reconfiguration in a general-purpose time-shared system is found in the
MIT Multics System [CORB 72]. The Pluribus is a minicomputer/
multiprocessor system (with extensive fault-tolerance provisions),
which serves as a switching node in the ARPA Network [KATS 78]). The
TANDEM system is a recently announced commercial multiprocessor system
with software-controlled fault-tolerance [TAND 76]).

Another direction of software-controlled system development
is found in aerospace applications. Representative {llustrations of
this approach are the SIFT design, [WENS 78] the C.S. Draper Laboratory
Symmetric Multiprocessor [HOPK 78) and the COPRA system, [MERA 76) aii
of which are in design and development stages. An already operational
four-computer fault-tolerant complex is the U.S. Space Shuttle computer
system [COOP 76], [SKLA 76].

One other area oy application which requires fault-tolerant
operation and very high avaflab{lity for several ycars of continuous

operation is the control of electronic telephone switching systems.

2-20

T mv-_‘.w Y ————

"

e by N b g il (onis St 2 E ST VIRSIERTRER S T R e e T e e T

These systems usually employ manual repair by replacement of a failed
part as the last (off-line) step of the recovery procedure, while main-
taining normal operation by means of the remaining system modules. A
well-documented illustration is found in the Electronic Switching Sys-
tems (ESS) of Bell Telephone Laboratories. The ESS designs use several
hardware techniques (duplication, matching, error codes, and functional
monitors) and apecial software (check routines, diagnostics, audits),
as well as software and hardware emergency procedures when normal
recovery action does not succeed [TOYW 78}, [BEUS 69). The Plessey Sys-
tem 250 is a fault-tolerant multiprocessor system for switching system
control {HAME 72].

2.3.3 Fault-Tolerunt S.:bsystems

Besides the complete systems discussed above, many efforts
have been carried out to provide fault-tolerance for functional subsys-
tems, which then can be assembled to form a fault-tolerant system. JThis
is especially true for secondary and mass storage which has been charac-
terized by relatively low reliability in the past. Representative error
coding applications include the use of codes for error control in data
communications, magnetic tape units, disc files, primary random access
storage, and a photo-digital mass store [TANG 69). Single-error correct-
ing codes are used in the control storage of the No. 1 ESS [DOWN 64],
the main and control storage of IBM System/370 computers, and several
other semiconductor memory systems. Error correcting codes have proven
to be a very effective method for fault-tolerance in the storage medium,
and the remaining problems exist in protection of the memory access and
readout circuitry. These have been investigated in an experimental
design [CART 76].

Recent studies have considered the problem of fault-tolerance
in associative memories and processors [PARH 74]. In general, processor
fault-tolerance has been provided by duplication and reconfiguration at
the system level. Investigations have been conducted on the use of

arithmetic error codes to detect errors caused by processor faults

2-21

T - -

P

Y

e e

{AVIZ 71b] and an experimental processor has been designed and con-
structed for the JPL-STAR computer [AVIZ 71a]. Continuing reductions in
the cost of processor hardware make further emphasis on duplication or
triplication [HOPK 78] very likely, although error-detecting codes
remain a convenient method for the identification of the faulty proces-
sor in a disagreeing pair. An exception is found in large scientific
computers with multiple arithmetic processors, in which replication is
not practical, and graceful degradation procedures must be employed

) [AVIZ 77a]. A potentially very effective approach to error detection in

integrated circuits of processors is self-checking logic design
[CART 74), [WAKE 74].

2.4 MODELING AND ANALYSIS

The choice of fault-tolerance functions and redundancy tech-
niques needs to be supported by an assessment whether the system
possesses the expected fault-tolerance. Insufficiencies of the design
may be uncovered, and the design can be refined by changes or additions

of various forms of redundancy. There are two approaches to the evalua-

tion of fault-tolerance:

(1) The analytic approach, in which fault-tolerance mea-
sures of the system are obtained from a mathematical

model of the system.

(2) The experimental approach, in which faults are
inserted either into a simulated model of a system, or
into a prototype of the actual hardware, and fault-
tolerance measures are estimated from statistical

data.

b The principal quantitative measures of the effectiveness of

L 2al

fault-tolerance are reliability (with respect to permanent faults) and

A

survivability (with respect to transient faults) [AVIZ 75a]. Methods

P

for the prediction of these measures are discussed in this section.

b4

2-22

M A M R A A S e A i iR S SR AU

2.4.1 Analytic Modeling: Permanent Faults

A quantitative reliability prediction for a system requires
the knowledge of numerical failure rates of the components, which are
given in failures/hour and are usually assumed to be constant. If
technologies which are under development are to be used in a new design,
the failure rates need to be extrapolated or predicted analytically.
Different and possibly time-dependent failure rates may apply to some
classes of failures, such as those causing distributed faults. The
reliability R(t) is a function of the failure rates and is defined as
the probabiliiy of the survival of the functional capabilities of a set
of hardware elements up to the time ¢, given that all hardware was in a
perfect condition at the time £ = 0. For a non-redundant system and
constant failure rates, the reliability is R(t) = e-xt, where A is the
sum of the failure rates of all components (system A of Figure 2-1).

In this case, all components have to survive up to the time ¢. Fault-
tolerance of the system is attained only if correct program execution is
maintained by the surviving hardware; for this reason the survivability
with respect to transient faults must also be considered in a complete

evaluation.

A very common quantitative measure used to compare two or
more different designs has been the MITF (mean time to failure), defined
as MTTF = ofcn R(t) dt. Given the non-redundant system reliability
R(t) = ¢ t, we have MTTF = 1/A and the comparison of several MITF's
directly compares the failure rates (A) of the competing systenms. When
redundancy is introduced, the reliability function R(t) becomes a poly-
nomial in e-Xt (e.g., system B in Figure 2~1) and the R(t) curves of
systems being compared may have crossover points. In this case, the
area under the curve does not indicate which system is better for a
given time interval, and the MITF may become a misleading measure.

Two more precise measures of comparison are illustrated in Figure 2-1

and are discussed below.

Given a fixed "mission time" T, for which the highest reli-
ability is desired, the comparison of two systems requires only the

values of H1(T) and RB(T) in order to select the best system. The
¢

2-23

ot e et

e -

)

0.00 H
0 T

'

Ta s TIME ¢

Figure 2-1. System Reliability Predictions.

Reliability Improvement Factor is defined as RIF = (1 - RA)I(1 - RB) at
the specified mission time T, and it serves as a measure of improvement
attained by using the "B" system [ANDE 67]. When a fixed mission time
is not specified, the Mission Time Improvement Factor (MTIF) serves as a
convenient comparison measure [BOUR 69]. It is defined as

MIIF = (TB/IA) at RMIN’ where RMIN is a gpecified reliability (e.g., .99

or .90), while ZA and TB are times at which the system reliabilities

RA(t) and RB(t), respectively, fall to the value RMIN'

We observe that reliability modeling remains useful even if
specific numerical failure rates and mission times are not given, since
it still permits the relative comparison of many competing designs. The

failure rates are normalized with respect to a reference measure of

2-24

Hhaiailie £ ORSLACC A IR - e i e e o R IR il R Rt

complexity and the MTIF is used as the criterion of quality. The most
fundamental difference in computer reliability modeling is that between
static and dynamic models for the reliability of systems which incorpo-
rate protective redundancy. Both classes of models are considered in
the following discussion.

The class of static reliability models is suitable for the
reliability prediction of systems with static hardware redundancy. The
redundant elements are assumed to be permanently connected and to fail
statistically independently. They have the same failure rate and are
instantancously available to perform the masking of a failure with unity
probability of success. Under these assumptions, the reliability of a
redundant system is obtained as the sum of.the reliabilities of all
distinct configurations that do not lead to system failure. Reliability
mcdels of static redundancy are found in handbooks and textbooks of
reliability theory and are used for reliability analysis of various
redundant structures, e.g., relay contact‘netWOtks, aircraft frames,
etc. [BARL 65]. The principal limitation of the static model in compu-
ter reliability modeling is the assumption that the fault-masking action
is always successful as long as redundancy is not exhausted. This
assumption cannot be justified in systems which employ various forms
and combinations of dynamic hardware, software, and time redundancy,

and dynamic reliability models have to be created to these systems.

The use of dynamic redundancy requires the success of con-
secutive fault detection and recovery actions in order to utilize
redundant (spare) parts. The use of static reliﬁbllity models for the
dynamic case is equivalent to assuming unity probability of success of
both actions. For this reason, very high reliabilities are predicted
as the number of spares is increased. Early in the studies of dynamic
redundancy it was recognized that imperfect detection and recovery may
cause system failure before all spares had been used. The effect of
such imperfections was formalized in the dynamic reliability model

through the concept of "coverage," defined as the conditional probability

T e e e A T R L A R T T TN

. - B o . v B - - T T b el S —T————— -
AR e e e e e)) e e o O Ak ANSE-iciin) o

of successful recovery, givea that a fault has occurred [BOUR 69].

This model has served as the reference point for subsequent investiga-
tions of closed systems, i.e., of those systems in which off-line repair
of failed parts is not available, and the system is certain to fail after
\ all redundancy resources have been exhausted.

Recent research has resulted in a general dynamic reliabilicy
model which employs Markov modeling techniques and subsumes nearly all
i models for both static and dynamic redundancy that have been developed
% to date [NGYW 76, NGYW 77a). Its principal advantage is that a single
; efficient computing procedure serves to perform the reliability predic-
tion for any one of a variety of closed systems, including those in which
degradation is provided. Extensions to repairable systems and to tran-
sient faults also have been made in this model.

A closed fault-tolerant computer system is treated as a set
of homogenous closed subsystems, each of which consists of a set of
identical modules that are either in active or spare status. "Active"
means "participating in the computing process," i.e., a powered spare is
not active, although its failure rate is the same as that of the active
modules. Since every subsystem must survive in order for the system to
survive, the system reliability is the product of the reliability of all
subsystems. The modeling effort therefore deals with a closed homogen-
eous subsystem, The set of modules forming such a subsystem is character-

ized by the following parameters:
N = Initial number of modules in the active coﬁfiguration ‘
D = Number of degradations allowed in the active configuration
S = Number of spare modules
Ca = Coverage for recovery from active module failures
Cd = Coverage for recovery from spare module failures
A = Failure rate of one active module

u = Failure rate of one spare module

(u =) {f spare {is powered)

A AP Ry e 1 2y e v

B e A i s e e 1 iy . oM Bt i Eh e LT T

Y = Sequence of allowed degradations of the active
configuration

€Y = Coverage vector for degraded configurations

The parameter Y is an integer vactor of the form Y = (Y(1], ..., Y[D]),
where Y[1], ..., Y[D] are the numbers of active modules remaining in suc-
cessive degraded active configurations. The coverage vector CY has the
form CY = (CY[1), ..., CY[D]), in which CY[1i] is the coverage associated
with the transition to the degraded configuration described by Y([i].

At any given time each module is in one of three poasible
states: it is in the failed state; it is a good spare (all spares are
either powered or unpowered); or it is a member of an active configura-
tion which consists of all those modules currently participating in the
computing process. Once a module has failed and the system recovers
from the failure (either through static fault-masking or dynamic recon-
figuration), it is assumed that the failed module is isolated from the
system and will no longer contribute to system reliability or unrelia-
bility. This {mplies that the possibility of compensating failures in
voting systems and similar secondary effects are not considered in this

model.

In a dynamically redundant subsystem, an active configuration
of N modules is supported by a bank of S spare modules. When the spares
are exhausted and one more failure of an active module occurs, the sub-

system is usually considered as failed. However, in some applications

it continues to operate in a degraded mode, i.e., it has a smaller set of
active modules (and hence a possible degradation in performance). The i
abandonment of active modules upon failure continues until the active
configuration falls below a specified minimum number of modules, at
which time the subsystem fails. The degradation sequence is described
by the vector Y in the reliability model. Statically redundant subsys-
tems and hybrid-redundant subsystems with a static core also have an
active configuration which degrades to some extent before subsystem
failure occurs. (For example, a TMR subsystem degrades from 3 to

2 modules upon the first failure). Hence they are treated in the

2-27

g o e e o i e L L ae s e e o o o adi

YT T TR MR 1

a T TR A TR Y
B e U LA NN

reliability model in the same manner as the dynamically degrading
subsystens.

The condition of a closed subsystem is characterized by a
wmodel with a finite number of states, each representing a distinct sub-
systen configuration which is either good or is failed. For closed
subsystems, the goal is to obtain the statistics of the time to first
occurrence of subsystem failure. Hence, all failed states are merged
into one state denoted by F. A tramsition out of a good state takes
place when a failure occurs in one of the modules. Depending on whether
recovery from this failure is successful, the transition will be to
another good state or to the failed state. When it is assumed that
failure rates are constant and that (with respect to the time scale of
reliability prediction) the recovery from a failure is accomplished
instantaneously, the model is a Markov model.

The state diagram of Figure 2-2 is the model of the closed
fault-tolerant subsystem which is defined by the set of parameters (N,
D, s, Ca, Cd, A, u, Y, CY) explained previously. The subsystem is self-
repairing and has provisions for degradation of the active configuration
after the spares b.ve been exhausted. The selection of sparesoccurs in
a linear order, ' .4 a spare that fails in an unrecoverable mode blocks
the use of the spares thac follow it in the celection sequence. Further-
more, it destroys the ability to degrade, because the subsystem fails at
the time when the unrecoverably failed spare unit is switched into
service. This effect {s incorporated in the model by transitions to
the states with an overbar such as ﬁfﬁiﬁ), (N,0), etc. The subsystems
in the state (N,i) and in the state (ﬁ:?) have the same configuration,
but the subsystem at state (ﬁj?3 has lost its ability to degrade because
of the existence of a non-recoverable failure in one of the (still

unreached) spare modules.

Almost all fault-tolerant system models that have been
studied in the past can be represented by this model. Table 2-1

characterizes several of them in the notation described above.

The reliability equation of one closed fault-tolerant sub-

system has the form:

58331845 Paso[) 103 [3poW AIV[IQEI[3Y AojIBN °Z-Z 2an3djy

e J_.LA

N
)
r4

NY =b
Q) AY =d
{al AD [1-G} AY =
(1€) AD-1) [Z) AX = &
1) AD 2] AY =
AZIAD-D) (1) AY = ! 2
(21 AD (1] AY = ! o
(1) AO-UNY = 4 o
(1] ADNY =

PR
Yt E
1 S o i A M o+ 1 g e TR S ———- .

i s | B I 4 . 2 P« - e o e

o SRR

Tt

i SR Rttt B S0l aniFE S i o Aottt e et A A

Table 2-1., Characterization of Several Models
of Fault-Tclerant Systems

System N D 8 Ca Cd A u Y _ Reference
Simplex n o 0 1 1 X 2
Static
™R 3 1 0 1 1 A A 2 {BOUR 71]
TMR/Simplex 3 1 o 1 1 X A 1 {BOUR 71]
KMR 21 n 0 1 1 2 N,.. mtl [MATH 75a]
NMR/Simplex 2n+1 @n O 1 1t A A 2n-1,...,3,1 (MATH 75b]

namic

Rq
cs q 0 S € C A y [BOUR 69]
R*(N,5,4%,48) N o0 s A® ada [RENN 73a)

e e c ¢
K-out-of-N N NK 0 C C 2 A N=-1,...,K {WYLE 67]
R(2,8) 2 1 S 1 i A 1 [RENN 73b])
hybrid
H(N,S,D) N b S 1 1 2 u N=1,,..,N=D {BRIC 73]
R(N,S) 2nét n S 1 1T X v 2n,...,nHl [MATH 70]
R*TMR/Sparea 3 2] 1 1 X wu 2,1 (TAYL 73]
2-30

s, A ioantelhd

e e . R Saerd

R(t) = X(t) » A « W(t)

wvhere:
Xie) = (YO YORE, ien r0) - A
Wie) = (1, &V, .., &)
- -
‘g,o "g,s
A= |- .
5 _"g.o ‘g,s)

The coefficients Ag J in the matrix 4 are functions of the parameters
L
and are computed by an algorithm given in Table 2-2 [NGYW 77a].

i

; Based on the model described above, the UCLA Automated

? Reliability Interactive Estimation System ¢ARIES) has been implemented

| in APL as a set of interactive programs for the modeling of fault=-
tolerant computers [NGYW 77b]. Generality and efficiency are achieved
in ARIFS because it 1s based on the unified solution to the reliability
modeling problem. To achieve flexibility, the user is provided not only
with functions for evaluating the reliability measures of interest, but
also with programs ro create, modify ana examine representations of the

systems which are being designed.

The Markov model for closed systems shows that their
reliability equations have the standard form:

-ait
R(t) = L Ae

1
where the o, are ilmple functions of the modeling parameters and the Ai
can be efficiently computed. By applying Markov modeling techniques to
repairable systems, the same standard form for their reliability equa-
tions is obtained, but now the o, must be computed as eigenvalues of the
transition probability matrix of the Markov model and the Ai need a more
general and less efficient procedure. The reliability analyais of both

2-31

et e B

s

Table 2-2, Algorithm for the Components uf Matrix A

Step (1) Start with A0 = 1. Go to Step (2) 1f D = 0,
For I = 1 to D, iterate the following computations:

D -141) - y0 1)+ &7

I
AJ ® ,lD - Il - ’(D- Jl fOI' J 0. ey I-‘
I-1
I I
A; = 1- § &4
d =0 Y

Step (2) Set Ao.o =1

Using results of Step (1), set Ag‘o = Ag_x.‘t‘or

K - 0, seey Do

For M = 1 to S, iterate the following computations:

Step (2a)
N-1
(NCa) + MCdy) Au_h., + (1 -cd) IZJ AI’J
g *
! M=
for 0 <J < N
M-1
A 1- A
MM ° ./Zo M,J
X .
X (NCax + MCdu)Ay_,
Step (2b) 0 < X < D: AM,J * WS DT W = for 0 < J < N
4
Ay = °
Step (2¢)
N-1
. (NCa) + MCDA, (4 (1 = Cd) 12.; AL g
K = 0: 4 =
M,J M-)
for 0 </ < M
0 ¢
A - 1 A
.M (K,) g 0 M
2-32

e i e

closed and repairable gystems has many common properties that have
allowed an extension of ARIES to include repairable fault-tolerant
systems as well.

The repairable systems wodeled by ARIES aire the closed
systems in the Markov reliability model which have been made repairadble
by the presence of one or more repairmen [NCYW 77a). Hence, they are
modeled by the same set of parameters (N, D, S, Ca, €d, A, u, Y, &)) as
closed systems, plus two more parameters (M, ¥), where M is the number
of repairmen and ¥ is the repair rate of each repairman.

2.4.2 Analytic Modeling: Transient Paults

The next step to be taken in modeling is to address the
problem of tiansient faults [NGYW 76). These cause system failures by
damaging the information content >f the system during their presence.
This damage will be permanent and will event..ally lead to irrecoverable
errors in the system unless some means of recovery is provided. Recovery
in this case consists of a restoration of the information structure so
that the system can continue to function properly. The hardware remains
intact and the full capability of the machine is retained, in contrast
to permanent fault recovery where the system degrades in performance

unless spares arc used to replace faulty modules.

The methods to effect recovery from suspected transient
faults usually consist of a number of successively more difficult
recovery phases, For example, a system may use the sequence of an
initial delay, instruction retry, program rollback, and system restart
as a four-phase recovery procedure. The next phase is entered {f the

current phase fails to accomplish a satisfactory recovery.

The processes which generate transient faults are difficult
to characterize. The model adopts the viewpoint that the transient
fault environment can be characterized by two fundamental parameters--
transient arrival rate and transient duration [AVIZ 75a]. 1t {s=
assumed that transfent arrival i{s a Poisson process with a constant
arrival rate and that each transfent fault has a duratfon which is

independently distributed according to an exponential law. These

e 18 s b b

e R

. e gr—_ e

——y ——

e v T

assunmptious appear to be consistent with the limited number of observa-
tions on transients available in current literature and have the advan-
tage of being more readily mathematically tractable than other possible
choices. The two parameters modeling the transient fault environment
under these assumptions are defined as follows:

t = transient fault arrival rate for one module
D = mean duration of each transient

A transient recovery process may fail because of several reasons. The
model deals with four causes of failure: one is excessive duration,
which is a function of t and D, while the other three are characterized
by the parameters recoverability r, effectiveness E, and interference
rate p. All four are discussed below,

The first cause is occurrence of persistent transients. They

are transients that last throughout an entire phase of a recovery action,
causing that phase of the recovery action to fail. A very long transient
will lead to unsuccessful outcome of the entire transient recovery
effort. Then the transient fault will be treated as permanent by the
system and permanent fault recovery actions will be initiated. The
probability of a persistent transient depends on the arrival rate t and

mean duration D of transient faults.

The second ceuse is a catastrophic fault. Such a fault

occurs when the transient fault damages insufficiently protected critical
information. Also, faults that are not detected soon enough after their
occurrence can lead to sc much information damage ("memory mutilation")
as to make recovery impossible. Furthermore, real-time systems have
certain tasks which must be accomplished within strict time limits.

Delay of these tasks by a transient fault also may lead to a system
crash., The probability of these and other possible catastrophic faults
is modeled by the recoverability pavameter r which is defined as the

conditional probability:

r Prob (fault is not catastrophic | fault occurs).

Since the effects of both permanent and transient faults are similar {in
most systems cnd are about as likely to cause catistrophic faflures, one

vialue of r 18 used to model both tyyes of catastrophic faults,

2~134

e e p——— b ———— <4 e imeis

L
[SV C NIV ISP PP SRV S EPET

I

<SR e T AT < T

b
E&_’Z’ A
r” A H
(3.

y

example, it has been estimated that instruction retry as a transient
fault recovery technique is effective only in approximately half of all
cases [CART 64). The effectiveness of a particular recovery phase is
modeled by the effectiveness parameter B which is defined as the condi-
tional probability:

E = Prob (recovery action is successful | it is initiated
against a noncatastrophic transieat fault).

The fourth cause is interference which occurs when a second
independent fault (transient or permament) interrupts the function being
performed to effect a recovery. How che system behaves in the presence
of such interference depends on the recovery capability that is built
into a system. A conservative assumption is that interference, like
catastrophic failures, will always lead to a systeam crash. The prob-
ability of interference depends on the duration of recovery, and on.the
complexity of the recovery elements that must remain fault-free in order
to carry out the recovery action. The latter is modeled by the

interference rate, defined as:

p £ failure rate of the recovery element hardware. This
hardware includes both dedicated recovery hardware elements and those

elements that are used to store, deliver, and execute recovery software.

Given the preceding parameters, transient fault recovery
can be modeled as a part of the general model; that is, it is also
modeled on a subsystem basis, since each subsystem may have different
recovery requirements and a separate recovery strategy may apply for
each. . The recovery strategy is a multiphase recovery process which
executes n successive recovery phases, as shown in Figure 2-3., Transi-
tion to the next phase takes place if the present phase is not effective.
The recovery process is completed and normal processing resumes if a
successful recovery is achieved during the present phase. The system
can crash during the present phase due to interference. (. 'crash" is a
failure of the programs to continue correct execution.) If neither a

crash nor a recovery occurs in all n phases, then the transient recovery

2-35

r TS RO TR TRET EUEE NIRRT

B d
[TR O

Figure 2-3, Transient Fault Recovery Process

process is considered to have been unsuccessful (because the fault

pe ists) and permanent fault recovery is initiated.

The model employs (for { = 1, ..., n), the following condi-
+ional probabilities:

PE1 = Prcb (system enters i-th recovery phase | fault occurs)

PR1 = Prob (system recovers in i-th recovery phase l fault

occurs)

PFi = Prob (system crashes {n i-th recovery phase | fault

occurs).

The sequence of events in a transient fault recovery process is depicted

in Figure 2-3, which shows its three outcomes. They are parameterized

2-36

T TGRSR LY ST L AT TR

. by the following three conditional probabilities, which apply to the
3 transient recovery process:

n
cT (z Transient Coverage) = [PR

fey 1

\ = Prob (Transient recovery succeads | fault occurs)

L? (Z Leakage) = l’Bm_1

. = Prob (Fault is treated as permanent | fault occurs)
n
FT (= Probability of a crash) = (1 -1r) + [PFi
i=1

= Prob (System crashes during recovery | fault occurs).

Because a system usually cannot immediately distinguish whether a

detected fault is transient or permanent, it is assumed that the tran-
sient fault recovery is the first process initiated. This assumption,
is reflected in the definition of the above parameters by making them

conditfonal on the occurrence of any fault, transient or permanent.

The parameters CT' LT’ and FT give the relative probabilities of the :
s three possible outcomes of the transient recovery process and thus 3
determine the reliability of the system in the‘presence of transient i
faults. To complete the choice of modeling parameters. it 1s necessary

to define: 5

, Ei = Effectiveness of the i~-th recovery action

T1 = Duration of the i-th recovery action

In the general case, T, is a random va;iable. In order to

i
limit the complexity of the model, the assumption is made that it is a

constant, which would be an upper bound. It is also postulated that the
first stage of any recovery strategy i{s an intentional delay of duration

T fn order to allow the transient fault to subside. Then T, = T_. and

D* ! D

E‘ = 0 since there will be no active recovery action during the delay

(recovery phase 1). The transient reliability measures CT‘ LT' and F

are computed from the basic parameters of the subsystem by the use of

T

some simple probability relations, as shown in Table 2-3,

Table 2-3. Derivation of Transient Reliability Measures

e PFi ~ Prob (phase i is entered) * Prob (interference in phase f)

-th
PFi - PTi x (1 -e)

® Pﬂi - frob (phase £ is entered) » Prod (fsult i{s a transient)

x Prob (recovery action is effective) x Prodb (no interference)
x Prob (no recurvence of fault in phase t)
x Prob (duration of transiemt does not extend into phase t)

1
-oT, THE@, b+ T,)
PR, = PB, x K. xE, xe L, g (TIT [l e 2 -1]

® PEi+l - Psi - PPi - Pﬂi; PE‘ - r

The factor Ki « Prob (fault is a transient | phase t) is a probability conditional on
entry to phase i of the recovery process and decreases as i increases. The reason is
that with increasing knowledge that the fault has not been eliminated by the preceding
recovery mechanisms, there is more likelihood that it is a permanent instead of a trans-
ient. To estimate Ki' define

A, = Prob (recovery phase { is entered | fault is a permanent)

1

Bi = Prob (recovery phase 7 is entered ! fault is a transient)

We assume A‘ - B' = p, that is, a catastrophic fault will not cause entry to phase 1,

but will enter the system failure state immediately. The following relations also hold:

-oT,
Ai+1 . A x Prob (System does not crash in phase {) = Ase t ~.
Bi+l - Bi x Prob (System does not crash, but there is no recovery in phase ?)
-pTi ‘ ~(t+A)T, -_;7_(7" + ... + T, ‘) '
- B, xe x ,! - B¢ Vil -e t= ‘
t 7
Then
T,
Ki M. + 18,
{ 7

where A, 1 are respectively the permanent and transient failure rates of cne subsystem

module.

e e e e m— e L i dnstenied A

S | The reliability model of Figure 2-2 does not include tran- ’;
,% sient fault recovery. This limitation is removed by integrating the
transient fault recovery model into the unified model [NGYW 76]. Pig-
, ure 2-4 shows, on a localized basis, the incorporation of the transient
| fault recovery mudel into the reliability model of Figure 2-2. Two
| additional states are introduced between each pair of successive oper-
ational states of the subsystem to represent the existence of . he tran=-
sient and permanent fault recovery processes. In addition to the original
| set of parameters, transitions between states are also governed by the
! i three transient fault recovery parameters: CT, LT and F&. It is
assumed that transients have no effect on the status of spare modules;

hence the transitions between states that are caused by spare module
failures remain the same. Although the system spends a finite amount

of time in these two recovery states, for all practical purposes it can
be assumed that the recovery process is instantaneous, because even in
the worst case the recovery time is several orders of magnitude smaller
: . than the average time between faults in the hardware. With this assump-
tion, the two recovery states are merged into the operational states and
Figure 2-4 becomes Figure 2-5. The general model of Figure 2-2 is pre-
) ‘ served when the transient fault recovery model is incorporated. The
main effect of this incorporation is to change the effective failure
rate of each module from A to A' and the effective coverage factor from
Ca to Ca' as given in Figure 2-5. The derivation of A' and Ca' follows
from Figure 2-4.

Because the general model of Figure i2-2 is preserved, the
same efficient computational procedure can be applied in those cases
wher¢ transient fault modeling is desired, with the obvious modification

that A and Ca must now be replaced by A' and Ca'., The programming sys-

tem ARIES has been extended to model transient fault recovery. Based
on a characterization of transient fault recovery in a subsystem by '

means of the parameters t, D, p, T, E;» T, and T). ARIES estimates the

i

transient fault recovery parameters C_, LT and FT from which an efficient

reliability estimatiuon of a subsystem is mixed transient and permanent

fault environments can be made [NGYW 77b].

2-39

#{1-Cd)
»5Cd
(A¢T)N .)
a . Ly(A+T)NCo ‘
LanN
FALY —— FAULY
RECOVERY

Fr(lﬂ‘r)N LTN(AH')(!-CQ)

Figure 2-4. Transient Recovery in the Markov Model

a(l1-Cd)

pSCd' A'NCo* N, s-1
NMN{1-CoY)

A = (x‘T)(F"L')

.. G
Cu-"

Figure 2-5. Equivalent Form of the Marko. Model

2-40

2.4.) Heuristic Approaches: Simulation and Rxperimsute

Simulation and experimentation with a hardware prototype are
two approaches to heuristic prediction of reliability. Although their
use is more costly and time~consuming than that of analytic models, these
methods are essential when the analytic models do not adequately repre~
sent the complex structure of the system or the nature of the expected
faults. Furthermore, the users of systems in various failure-critical
applications often insist on heuristic validation of the initial analytic

results prior to the production and use of a system.

An accurate description of the system and detailed
characterization of faults are the principal prerequisites when simula-
tion is employed to derive the reliability estimates for the computer.
Modern simulation programs include provisions to model both permanent
and transient faults, and tc consider the hardware-software interaction
by representing a variety of recovery algorithms [LEVY 75]. An impor-
tant early use of simulation was the reliability prediction of ™R logic
in the SATURN V guidance computer [ANDE 67].

Experimental reliability prediction using a hardware
prorotype requires a large investment of effort in constructing the
prototype, but avoids the inaccuracies which may occur in postulating
the fault effects in a simulated model of the system. An example is the
experimental fault-tolerant JPL-STAR computer. In this computer an
electronic "black box" was used to inject faults of adjustable duration
and extent at selected points in the hardware of the system durlng its
operation [AV1Z 72]. Statistical data on the cases in which recovery
did not succeed was automatically collected and processed, The data was
also used to derive estimates of the coverage parameters for analytic
modeling. Several weaknesses in the fault-tolerance implementation of
the original design were identified and eliminated during the experi-
ments. The stability of recovery algorithms was studied under multiple-
fault and repeated-tault conditions, and the performance of system

goftware was extensively tested.

The current rapid advances in the design of novel and

complex fault-tolerant systems have overtaken the capabilities of

2=41

A R Ty ey TR e e

oo T VTR AR S T mm e e

i

analytic modeling. As a consequence, experimental reliabdbility predic-
tion remains a very important area for further development and
application, '

2.5 TOLERANCE OF MAN-MADR FAULTS

Man-made faults are all mon-physical faults that occur
because of human mistakes, i.e., execution of improper actions or absence
of expected actions during the procedures of spacification, design,
detailed implementation (construction or programming), modification,
maintenance, and use of information processing systems. They do not
include physical faults that are consequences of human actions. The
manifestations of such physical faults are the same as those caused by
natural phenomena; for this reason they are treated by the same techni-
ques of fault-tolerance and belong in the same category as all other
physical faults., Man-made faults include the non-physical faults caused
by imperfections in various design, programming, and maintenance tools,
such as compilers, assemblers, design automation programs, maintenance

and operation manuals, testing procedures and devices, etc.

For the purpose of systematic discussion, it is convenient
to partition man-made faults into the classes of design faults ard inter-
action faults. Design faults are the faulis that are introduced into
the system during various phases of implementation: Specificationm,
design, programming, translation to machine code, detailed logic design
and layout of logic circuits, intercomnection of hardware Elements, and
later modifications of hardware and software. The causes of design
faults are twofold: incomplete, ambiguous, or erroneous specifications,
and mistakes committed during the various phases of translation of a
specification into the final implementations, i.e., assemblies of inter-

connected hardware elements and arrays of digitally represeunted symbols.

Interaction faults are faults that are introduced into the

system via man/machine interfaces during operation or maintenance phases
by operator action that is not appropriate te the current state of the
system. They are caused typically either by a misunderstanding of the
operator's manuals or by typographical errors that occur while informa-

tion is entered into the system,

2-42

T DT

el et il Al

e TR, T

R e Ch i sl e e o R it

The problem of man-mede faults has vemained of consisteantly
great concern to the designers and users of informatioa processing sys-
tems from the specification of the first system to the present. Some
complax and costly systems have never reached an operating condition
because design faults could not be eliminated or controlled (tolerated)
within the existing time limits and cost constraints. Many other systems
have experienced severe delays in delivery and major cost overruns. In
a few cases the question of the possible existence of latent design
faults has spilled over from technological and economic comsiderations
into politics and public controvarsy. A very prominent illustration of
such an event is the recent controversy in the U.S, regarding the possi-
bility of unreliable behavior of the ABM (anti-ballistic missile)
defense computer system.

In contrast to physical faults, the problems of man-made
faults have not been suddenly alleviated by a major cechnological break-
through similar to the invention of semiconductor and magnetic core’
components. Advances in the understanding and ability to handle man-made
faults have come at a slow and steady rate, and they have barely kept
pace with the rapidly growing complexity of systems and the increasing
demands for near perfectly fault-free system behavior in numerous
critical applications, in some of which human lives are endangered by
fault-inducgd aystem failures.

2.5.1 Design Faults

An overview of the approaches used to handle faults from
the origins of machine computing to the present shows that a priori
fault elimination (fault-avoidance) has been the dominant choice for
the handling of design faults that are introduced during specification,
design, construction, programming, and modification of both hardware
and software [ICRS 75], [NELS 75]. An all-out effort to eliminate
design faults takes place before the system is first put into regular

service or returned to use after a modification.

The approaches taken to assure design fault elimination have
originated both in theoretical studies and in problem-golving approaches

developed from direct experience. The main theoretical developments in

2-43

B e e el e P A A A L IRMEAE A A A N - A A

this area are proof-ef-gorrectness techniques [LOND 73] and mathematical
models for software reliability prediction {8800 73], [MORA 75). The
practice-originated "software engineering" techniques include procedures
for the collection and analyeis of fault data, menagement procedures for
software development, tools and techniques for software design, esuch as
specification languages and the structured programming approach, software
verification and validation techniques [MELS 75), and digital-logic simu-
lation techniques for hardware design verification [S8ZYG 76), [BUTL 74].

Daspite all of the above techniques for fault elimination,
left-over design faults have been observed ia most syetems during oper-
ation. For this reason most systems have been provided with emergency
procedures to detect error states that may be due to design faults, to
record them, and to bring the system to a state in which external
assistance may be brought in to complete the analysis of the coanditiom
and to reinitiate operation. While these emergency procedures are not
unlike some fault-tolerance techniques for physical faults, the function
that is accomplished is only the “shutdown" function with respect to
either a part of the system or the entire system.

More complete fault-tolerance of design faults has not yet
been introduced into existing computer systems, and only very recently
have some research efforts been started to explore this problem in

e

depth. Because of the existence of much more extensive research and
practical experience with the tolerance of physical faults, it is inter-
esting to look for transferability of concepts and techniques. The
principal difference between physical and design faults is that physical
faulte in hardware occur after the start of the computing process, while
design faults in software (and hardware, as well) are present at the
start, but become disruptive only at a later time. However, modifica-
tions or corrections of discovered design faults occasionally lead to

new design faults, and therefore the discoveries of software and hard-

; ware design faults may be expected throughout the useful life of any
a large system, similar to the occurrence of physical faults. This
g practically verified observation establishes a relationship between the

methodologies for dealing with physical faults and design faults: the

methods of protective redundancy that have proven successful in the

2-44

D e gl sl 00 L T

tolerance of physical faults may be transferable to provide tolerance of
design faults as well. Three aspects of relavance of physical fault-
tolerance can be identified [AVIZ 75b]):

(1) The contribution of physical fault-tolerance techniques
in identifying and isolating design faults.

(2) The common aspects of fault-tolerance that are equally
relevant to physical and design faults.

(3) 1he transfer of physical fault-tolerance techniques
and experience of software design faults, considering:

(a) the applicability of software,

(b) the potential advantages of software
fault-tolerance,

(c) the cost of its use, compared against the
traditional fault-avoidance techniques.

First, the presence of physical fault-tolerance is directly
useful in handling design faults because it provides the means to identify
those cases of abnormal system behavior that are due to physical faults.
Furthermore, extensions of physical fault-tolerance techniques may be
applicable to provide hardware-controlled protection of software and
the data base against attempts to interfere with its operation and to
access privileged information.

Second, an area in which a common ground exists for physical
and design fault-tolerance efforts is the analytic modeling and quanti-
tative prediction of system reliability. Recent work on software
reliability models [SHOO 73}, [MORA 75] indicates the possibility of
mutual reinforcement that would lead to the development of analytical
models for the total system reliability, including both the physical
fault and design fault aspects.

Third, the redundancy techniques that have been successful
in handling physical faults may be transferable to design fault-tolerance.
Both the static and the dynamic hardware redundancy approaches have their

counterparts in software fault-tolevance. In the static case (called

N~-version programming), two or more programs are generated independently

2=45

i
1
19
;
i
!

e e

and then are opsrated concurrently on multiple copies of the fault~
tolerant havdware [AVIZ 77b]. Comparison or amajority voting at speci-
fied points is employed to detect or correct the effects of design
faults, Systems such as SIFT [WENS 76), the Symmetric Multiprocessor
[HOPK 73], and the Space Shuttle Computer System [SKLA 76), are especially
suitable for such N-version programming. The dynamic case uses the
equivalent of standby sparing, in which acceptance tests serve to detect
daesign faults and to initiate a switchover to an alternate software
module [RAND 75}, [HBCH 76]. An extension of the above techniques to
hardware design fault-tolerance is also feasible: functionally {identi-
cal copies of modules then must be independently designed and manufac-
tured by separate organizations in order to avoid the occurrence of
identical design faults in all copiles.

The state of the art in fault-tolerance of design faults
resembles that of physical fault-tolerance in the early 1960's. The
cost and the effectiveness of the design fault-tolerance approaches
remain to be investigated, and the techniques require much further
development and experimentation. The success of fault-tolerance of
physical faults, however, does indicate very strongly that design fault-
tolerance cannot be safely ignored solely because of the past tradition
of fault-avoidance in this field.

2.5.2 Interaction Faults

The possibility of introducing man-made faults also exists
via man/machine interaction during system operation. The control of
such interaction faults has been implemented primar!{ly by means of
operator training and by providing complete guidelines in operation and
maintenance manuals. This approach corresponds to the fault-avoidance
approach for physical and design faults. The demands on the operator
have been reduced by the development of increasingly more sophisticated
operating systems. However, interaction faults have remained a major

problem area in syster operation.

Fault-tolerance approaches to interaction faults have
rematned confined to immediate practical solutions to observed problems.

The principal goal here is the implementation of the detection function,

2-46

\

- e

g Tvve e S e

I PPy s S ¥ s Lin o —

T

oy !

e

SIS T T R T L TR AT AT R ST e T e s o B SRS - T

which alluws the system to reject apparently incorrect operator inmputs.
The main methods are consistency checks, requirements for appropriate
passwords, and coded data entry. In some very critical cases, two or
more operators are employed whose input commands and data must agree
in order to be accepted by the system.

2.6 CURRENT PROBLEMS AND PROSPECTS FOR THE FUTURE
2.6.1 Reasons ror Fault-Tolerance

At the present time, we can identify several reasons for the
acceptance and general use of full fault-tolerance (without manual
fatervention) i{n information processing system of the future. The main
reasons are: '

(1) The need to minimize the risks associated with crwputer
failures in systems in which the failures either
endanger human lives, or lhrcaten to cause heavy
economic losses to the users. Examples of the first
clagss are systems for patient monitoring in hospitals,
for air traffic control, and for guidance and control
of high-speed vehicles. In the second class are
systems to control power generation and distribution,
to control processes in automated factories, to handle

financial transactfions, etc.

(2) The need for reliable computing in environments that
do not allow access for manual'maintenance, such as
space and unde:ser locations, and other locations in
which access is either impossible or excessively

costly.,

(3) The need for almost uninterrupted operation of real-
time systems in which manual {ntervention creates

unacceptable delays.

(4) The pussibility of lower initial cost (for a given
reliabflity goal) than a system that depends on fault-

avoidance., This may occur in those cases in which

2=-47

R T T S S et s e i

e RS . e e i o it e e o+t o e e

fault=tolerance allows the use of less costly compo-
nents, or reduces the cost of design-fault elimination
| prior to system delivery.

(5) The possibility of a lower life-cycle cost than a
system with manual maintenance requirements. Fault~
tolerance can reduce maintenance to a scheduled off-

line replacement of disconnected elements (or an

exchange by maill), and eliminate the costs associated
with the unavailability of a system between failure
and completion of repair.

(6) The psychological support to system users provided by
the knowledge that fault-tolerance is incorporated into

|
é
i
{

the system on which they depend for their safety or

economic benefit.

2,6,2 A Design Methodology

Research results and design experience lead us to suggest
that the introduction of fault-tolerance can be accomplished by following

a systematic procedure:

(1) Performance requirements are established and system
architecture is specified with the initial assumption

that faults will not occur.

(2) Classes of faults that are to be tolerated in the
design are 'dentified, and the extent of tolerance is

specified for each class of faults.

3) Cost-effective methods of protective redundancy (time,
hardware, software) are chosen to cover every class of
faults identifled above, and system architecture is

modified to incorporate the redundancy.

(4) Analytic or experimental rellability prediction tech-
niques ar. employed to evaluate the fault-tolerance

that §s provided by redundancy,

2-48

I LSl o il salint Stk At s Lotk AR i Mt o SISOk S ks oot otn i e bt

(5) Checkout methods are devised to test all redundancy
features. Where applicable, fault-tolerance is extended
to cffect automatic maintenance of peripheral aystaems
that are connected to or controlled by the computer.

Design experience has shown that several iterations of (3)
and (4) may be necessary to arrive at a satisfactory fault-tolerant sys-

tem architecture,

2.6.3 Current Roadblocks

In view of the potential benefits of full fault-tolerance,
it is inevitable to ask: "Why is there so relatively little fault-
tolerance in the computer systems of the present generation?" The
obstacles to the appearance of full fault-tolerance are rather diverse.

Some of the more obvious problem areas are identified below.

(1) Lack of Continuity. Some fault-tolerance techaniques

developed for first-generation computers (for physical
faults) were discarded in the second generation because
of much higher reliability of semiconductor and

magnet ic-core components. Later, many ad hoc solutions
were not openly documented because of their trade
secret status, leading to the re-invention of good
solutions as well as the repetition of many mistakes

of the past.

(2) Lack of Cost/Benefit Measures.* Thus far, there are no

general methods for a convenient quantitative assess-
ment of the benefits (in terms of life-cycle cost
reduction) of fault-tolerance. The initial extra cost
which is due to the various redundancy techniques is
much more directly evident and tends to bias a large
class of users (who do not have an absolute requirement)

in favor of systems without fault-tolerance.

(3) Lack of Specifications and Acceptance Tests. The user

community at large still does not have a sufficient

2-49

SR TR T

A= N

(4)

(5)

© s e A ottt . A 1 < o+ ad e s e i gt

knowledge of the proparties and limitations of fault-
tolerance. As a congequence, specifications of reli-
ability are insufficiently precise and virtually
unverifiable in advance of system use. For example,
most relfability requirements for a given time !nterval
do not specify the classes of faults and do not state
what constitutes acceptable recovery. For another
example, MTBF specifications do not explicitly deal
with fault classes (e.g., transients, design faults)
and recovery requirements, and also ignore the
differences between redundant and nonredundant designs.
Extremely high reliability and MIBF predictions are
sometimes offered without stating the implicit assump-
tions of a static reliability model and a very limited
class of faults. For contrast, consider speed require-
ments in instructions/second, which can be stated and

tasted for acceptance quite precisely.

Fragmentation of Efforts., Efforts to increase relia-

bility of computing originate within several disciplines
of theory and practical computer engineering. These
include computer system architecture, software engineer-
ing, testing and design verification, design of data
base management systems, computer networks znd communi-
cation systems, component and packaging engineering,
field operation and maintenance, and others. Although
they all have a common end goal, the efforts have
remained largely disjoint., A definite lack of a common
viewpoint and of systematic communciation is evident

at the present time. There is also a real gap between
the results of theoretical investigations and practical

engineering solutions to fault-tolerance problems.

Irertia in the Design Process. Introduction of fault-

tolerance requires an early committment and o signifi-
cant departure from traditional evolutionary design of

computer product lines, in which compatibility of

2-50

S T T - darvori oy it gttt

software is usually a dominant factor. While the
number of fault-tolerance techniques to serve as

maintenance aids has been increasing, none of the

major manufacturers has yet announced a fully fault~-

tolerant line of computers. The only fault-tolerant

systems that were actually delivered were custom-made
S products for special requirements.

"\ (6) Rosistance to Potential Impact. Successful introduction

of fault-tolerance may cause some de-emphasis of several
currently flourishing activities. Examples are the
production of ultra-reliable components, the business

of providing manual maintenance and the activities
associated with the a priori verification of software.
It is not unexpected to encounter skepticism about
fault-tolerance from the advocates and suppliers cf

those techniques.

In conclusion, we note that while most of the above-enumerated
difficulties are common to many disciplines of computer engineering and
\ E computer science, they reach probably their greatest severity in the

studies and implementation of fault-tolerance.

2.6.4 Goals and Prospects

The preceding list of problem areas also serves as a guide
for the selection of goals for research, development and implementation

of systems. Major goals in fault-tolerance for the immediate future are:

j (1) The development and acceptance among designers,
analysts, and users of information processing systems
of an integrated viewpoint of fault-tolerance as an

attainable and necessary attribute of a good system.

2) The development of precise quantitative methods for
the specification, acceptance testing, and cost/benefit

analysis of fault-tolerant systems.

2-51

g s

TR

T T L Ty T T T R AT AT T R TR T T T A T T R TR s e e e s A

(3) The design, construction, and testing of experimental
fault-tolerant systems. Such systems are absolutely
essential, since they serve as vehicles for the vali-
dation of new ideas, for the development and refinement
of performance specifications and acceptance tests,

i ’ and for the education of potential users, proving that

such systems can be practically delivered.

)

(4) Continuing investigations of the new frontiers in
fault-tolerance techniques, especially the tolerance
of design faults in software and hardware, modeling
and analysis of complete systems, advanced degradation
techniques for large systems, and fault-tolerance for
interaction faults. Another stimulating new idea is
the possible use of artificial intelligence techniques
to implement fault-tolerance [GOLD 75].

The preceding discussion has shown that fault-tolerant
computing is still a young, largely unexplored and undeveloped discipline.
The accelerating progress in both theory and implementation indicates
that the ability to tolerate a large class of physical, design, and
L interaction faults will be taken for granted in the computer systems of
the 1990's, just as the ability to execute a large class of programs is

taken for granted in the computer systems of today.

PR

1
i

2-52

I A S - s o ol

M
o

SECTION 3
OBJECTIVES AND ARCHITECTURE SELECTION

The purpose of this section is to describe the assumptions

and tradeoffs which led to the selected building block-SCCM architecture.

Key objectives of the study are:

(1) to examine and evaluate architectural techniques by
which fault-tolerance can be incorporated in next-
generation computer systems;

(2) to determine requirements for VLSI circuitry which
will be required; and,

(3) to investigate the feasibility of incorporating fault-

tolerance as an integral part of future USN building-
block computer programs.

The complexity of modern military systems has led to a signi-

ficant problem of maintenance. Equipment failures lead to a reduction
in operational readiness, and maintenance support is a major element in
the life-cycle costs of a number of weapons systems. This study is
directed toward the routine use of automated redundancy techniques to

greatly reduce and simplify system waintenance requirements.

The starting point to achieve this goal is the core elec-
tronics portion of complex systems. A technology of fault-tolerant
computing has been developed which provides correct computer operation
in the presence of internal faults by the use of redundancy and auto-
mated repair. Using these techniques, computers can be developed at
relatively low cost which provide long-term reliability and which can

be utilized to automate system diagnosis and repair by:

) diagnosing faults and specifying modular replacement

in external subsystems, or

(2) performing automated system repairs to achieve

maintenance-free missions.

T P PR R 3

O T T

YT

A Y T S S T e T T T T TR e ST ST e e T Lo RRGLER T AT B e

The scope of this work unit is limited to the digital
computing system and those fault-tolerance techniques which can be
utiliged in the context of a computer building-block development pro-
gram using next generation VLSI technology.

Although the theoretical groundwork for fault-tolerant
computing has been rather well developed, the use of such machines has
been limited to a very small number of special applications. The Apollo
guidance computer, OAO spacecraft, and ESS telephone switching systems
are the primary examples which are most often quoted. These are all
custom machines for a specific application.

This study is directed at the question: "What is required
to enable the routine use of fault-tolerant computing in a wide range
of applications?" First, the requirement for fault-free computing must
exist, e.g., the system designer must express a need for correct answers
and no unscheduled downtime. But in order to levy this regquirement, the

designer must be assured of two things:

1 that the cost of a fault-tolerant design is lower than

the cost of an occasional computer failure.

(2) that the risk is acceptable, i.e., that the fault-
tolerant computer will be delivered in time and work
as specified.

In order to achieve the twin goals of low cost and risk it
is best to avoid custom designed computers, and concentrate on machines
which are already in wide usage. Not only is extensive software avail-
able, but existing chip sets such as the TI 9900, LSI 11, and the 8086

have been characterized and tested through widespread use.

Thus, we have concentrated on the use of existing machines
in fault-tolerant configurations., In order to satisfy the project user
with regard to risk, the resulting architecture should be straight for-
ward and operate in a fashion that can be readily understood. It should
be compatible, as much as possible, with existing standardized components,

interconnectfons, and busing formats. And, indeed, the fault-tolerant

3-2

TR N wﬂ.‘r"‘*"—v-—vvh
% '3

1
5
t

architecture should be capable of a wide range of applications so that
it can be included in a future standards program. Risk, and oftem cost,

is lowaest when a project can use components and architectures which have
previous operational experience. n

In order to achieve accaptable costs, the surroundiang cirw
cuites (used to combine processors and memories imto a fault-tolerant
configuration) must be reduced to a small number of standard elements
and implemented in VLSI packages. At the curremt state of the art, a
microcomputer may require 50 LSI chips, while the enrroﬁndiug cir-
cuitry for fault-tolerance and interconnects'may require several hundred
MSI circuits. In order to meke fault-tolerance attractive to the user,
those surrounding circuits must be packageé as a few standard VLSI
components.

The primary objective of this study is to develop and verify
a small set of building block VLSI circuite which can be used to combine

existing processors and memories into fault-tolerant computer

configurations.
3.1 REQUIREMENTS FOR FAULT-TOLERANT BUILDING-BLOCK COMPUTERS
(FTBBC)

Fault-tolerance requirements are derived from a set of
assumptions on the applications in which the FTBBC will be used. These

assumptions on applications and the resulting requirements are listed

below: N

(1 The fault-tolerant computer(s) will be used in a wide
raage of applications and, in some cases, will perform

vital functions (such as system-level redundancy
management).

(a) Thus, over a user-prescribed maintenance inter-
val the reliability should be quite high--99% or
greater.

(b) Wide variations in the maintenance interval

should be readily accommodated by adding or

deleting redundant elements.

o

o ests i bl o atie i ek bk hiah. i b~ ot e Y e o R e i

e e e R A B s I iy s T e T R T N R R Ty T TN T L R TR A Y s S TR TR T

(2) The eystem containing the computer(e) will have an
operational 1ife of a number of years.

(a) The fault-detection and recovery mechanisms of
the FTBBC must be thorough and nearly perfect éﬁ
attain reliability over a long period of time.
This is independent of how short a maintenance
interval is chosen or how many spares are '
employed. Reliability modeling studies have
shown that “coverage" (the probability of a
correct recovery, given that a fault occurs)

must approach unity to achieve long-life without

computational errors or down time.

(3) It is assumed that for most systems, regularly i
scheduled maintenance is possible. The computer will '
"fix itself" by replacing faulty modules with spares;
and the discarded fauity modules will be replaced by a
repairman at the scheduled maintenance time. In this
mode of operation, the scheduled maintenance is best

described as preventive maintenance since the computer

S LS ML A o Ban < ey et ot s« o <

is still running. It is important, however, that the

scheduled maintenance costs be minimized. Therefore:

(a) Redundancy should be applied in an efficient
fashion to minimize the number of parts which
can fail, and to reduce initial procurement

costs.

(b) The fault-tolerant computer(s) should be capable

of diagnosing its own faults to a level which
facilitates off-line repair.

(4) For applications where human repair is not possible,
the maintenance interval will be specified to be the
total operational life of the computer(s) and an
appropriate number ofi spare elements shal. pe employed

to achieve the desired reliability.

B

(3)

(6)

B R b e N

The functions to be performed by the computer(s) will
be vital to the proper operation of its host system.

(a) The computer(s) should not generate erroneocus
outputs between occurrence and correction of a
fault. This implies concurrent fault detection
in all parts of the computer(s).

Systems have a wide range of requirements on the
allowable time-outage while the computer(s) is recover-
ing from a fault.

(a) Capability must be provided to allow for a

recovery time in milliseconds which is assumed H

to be a worst-case requirement.

In short, the FTBBC architecture must have concurrent fault

detection to attain high coverage and a rapid recovery time. The struc-

ture must also be modularized to allow an arbitrary number of spare

elements and simplify replacement procedures.

3.2 DISTRIBUTED COMPUTERS

A distributed computer architecture was selected as the

baseline approach for building block implementation because we feel that

it will have the widest range of applications. (Also, a single computer

architecture is a degenerate case and is thus covered.) Since most

complex systems ccusist of a set of subsystems, and since the availability

of microcomputers is making it possible to place low cost computing where

it is needed within these subsystems, we believe that there will be an

ever~increasing demand for distributed computing in military applications.

It has been shown in previous work (CART 77) that self-checking computers

i are feasible and relatively inexpensive. A distributed network of such

computers can be hardware-efficient in that (1) other computers are

available to aid in the repair of a faulty machine, and (2) redundancy

of modularity inherent in distributed systems best meets the varying

:
]
3
i can be provided in a selective fashion. 1t is felt that the high degree
o
3
r

requirements of performance and reliability, and offers the potential

—————— 'YT\"——-NWW"'W P S

o T ATO yg 0e

for simplified fault-tolerance approaches which can be understood and
thus accepted by a poteatial user.

A superficial view of a distributed system consiots of a
number of interchangeable computers connected to I/0 devices through a ?
redundant, shured busing system, as shown in Figure 3-1.

l B E— s v

[1T 1

00 Vo Vo vo o
71N 7T% 7T} 71X 7Tx

Figure 3-1. A Non-Dedicated Distributed Computer Architecture

To provide fault-tolerance, the computers may be designed
with internal checking logic to detect their internal faults, or pairs
of computers may run the same computations and compare outputs, or the
machines may be run in triplets with output voting. A common set of
backup spares is used to replace failed computers., These approaches
have the advantage of nondedicated redundancy, in that any spare can be
used to back up any of the active computers and a small number of spares

can be used to back up a large number of active computers.

A closer look at the problem indicates that the majority
of computers in such a network will be dedicated to specific subsystems.
An examination of the bus interface and control logic in various sub-

systems shows that, for many, it is cost effective to replace the

3-6

kgl e indied

internal control logic with a microcomputer =- either to save chips or
to establish standardization in subaystem logic designs. More impor-
tantly, by establishing "intelligent" sensors and actuators through the

use of local computers, system level complexity can be greatly reduced.
This is seen in several ways:

(1) The subsystem-system interface caen be greatly eimpli-
fied, allowing the subsystem contractor to thoroughly
tast his deviLe before system integration.

(2) Subsystem-paculiar computing (software) can be devel-
oped by the subsystem comntractor.

(3) The computing load on central computers can be drasti-
cally reduced, since they are no longer required to
generate detailed timing eigoals used in the associated
equipment. They are instead generated in the local
computer.

(4) Bus timing and loading are greatly simpliffed for
reasona mentioned above,

Thus, the structure of distributed control systems falls
rather naturally {nto a hierarchic structure: a large set of intelligent
sensors and actuators containing their own dedicated computers, and a
smaller set of non-dedicated, high-level computers which coordinate the

lower level processors.

3.3 THE DISTRIBUTED COMPUTER MODEL

The model used in this report for a distributed processing
architecture is8 shown in Figure 3-2,

Redundant elements and checking circuits are not shown in
order to focus on the basic computational functions which are performed

in a fault-free environment.

#P - MICROPROCESSOR
| 8C - 8US CONTROLLER

8A - BUS ADAPTOR
RT) - REAL-TIME INTERRUPT

Pt - PRIORTY CHAIN
vo FOR ith BUS |
""" "u' ."'.CC?”NMC;:ONFOR

TO SUBSYSTEM

Figure 3-2. The Distributed Processing Architecture

The microcomputer modules which utilize the same micro-
processor and local executive fail into two types: (1) Terminal Modules,
which are configured with I/0 circuits to interface with electromechani~
cal subsystems in which they are embedded, and (2) High-Level Modules
which are configured to coordinate the processing in varfous computers

by control of an intercommunications bus.

Terminal Modules (TM) are located within the various sub-

systems and are responsible for local control and data collection. The

Terminal Module contains a microprocessor, memory, a set of 1/0 modules, '
and a passive interface (Bus Adaptor) to each of several intercommuni-

cation buses. Each Bus Adaptcr contains a complete DMA controller which

allows the bus system to enter or extract data from the Terminal Module's

memory by cycle stealing techniques. Communication is through message

slots in the local memory.

A High-Level Module enters commands, data, and timing infor-
mation into prearranged memory areas within the Terminal Module. The
Terminal Module delivers information to the system by placing outgoing
messages in predetermined locations of ite memory, which are then
extracted by a High-Level Module over the bus.

The TM memory can be accessed by several buses simultanecusly
because the bus adaptors provide conflict resolution. The TM computer
is normally not notified that data is being entered or taken from its
memory., Periodic processes synchronization {s provided by a common
Real-Time Interrupt which triggera a local executive to check the T™™M
memory for incoming commands and data at pre-arranged times.

High-Level Modules (HLM) are vesponsible for coordinating the
processing which is carried out in the remote Terminal Modules or in
High-Level Modules which are lower in the network hierarchy. Each High-
Level Module consists of a microprocessor, memory, Bus Adaptors, and a
Bus Controller. y

The Bus Controller, which is unique to High-Level Modules,
can move blocks of data between memories of all modules connected to its
bus. Using the Bus Controller, the High-Level Module can place commands
into the memories of the various computers on its bus and monitor ongoing

processes by reading out selected information.

When activated, the Bus Controller reads a control table
within the memory of the HLM which specifies the transfer, issues these
commands over the bus to the relevant terminals in the source and
acceptor modules, and then monitors bus activity as the selected modules

exchange information.

Using the Bus Controller, the HLM can move a block of data
from within any internal memory area of a specified source module to a
specified set of contiguous locations within one or more acceptor

modules.

3-9

P T

i
1

3.3.1% The Intercommunication Bus Structure

Bach active Righ-lavel Module has a dedicated bus under its
contrul which provides a bandwidth of appro.imately one magabit. In
order to provide redundancy, the HIM can relinquish its bus under one of
two conditions: (1) it is not powered, or (2) its processor specifically
releases the dus for a specified time interval. Thus, spare modules can
gain access to a bus whose processor has failed, or a bus can be multi-
plexed if several buses have failed.

Access to each bus by the various High-Level Modules is based
on a fixed-priority assignment using a daisy chain structure, as shown
in FPigure 3-2, to establish this priority. Modules of higher priority,
signal release of the bus via the daisy chain which then activates that
hardware necessary tc allow bus control by modules of lower priority.

The individual buses are physically independent and, therefore, no cen~
tral controller exists as a potential catastrophic failure mechanism.

The Bus Controller and Bus Adaptors are highly autonomous
units which contain considerable internal microprogram s:quencing to
carry out their functions. For example, the Bus Controller is activated
by an out-of-range store instruction in the HLM, the data "stored" is
the address of a bus control tahle. The Controller reads out the table
by DMA and controls a data transfer over its bus without further atten-
tion from the HIM processor. Completion is signalled by an interrupt
with a status word stored in the HLM memory.

A bug control table in the HLM contains the identification
and internal memory address of a source module, and the identification
and internal addresses of one or more acceptor modules, followed by a
word count. Internal addresses can be specified directly or by naming
indirect pointers contained vithin the various source and acceptor

modules. This allows accessing data by name,

The Bus Controller reads the control table and sends the
source and acceptor specifications over the bus as 1553A transmit or
receive commands. The source module then outputs sequential words from

memory «nd the acceptor module ingests this data.

3-10

=3 S

The Bus Adaptors contains sufficient microprogram control to
recognize transmit (source) and receive (acceptor) commands directed
toward their host computer. These modules then determine the base
address of data to be transferred -- either a number received over the
bus for direct addresses, or a number read from a mapping table in local
memory for indirect addressing. The adaptors then steal cycles from the
processor to transfer information into or out of its memory.

A non-fault-tolerant version of this architecture has been
developed under NASA sponsorship, and a six computer bre&dboatd has been
constructed and used to verify its software and communications concepts.
The breadboard was used to simulate several command, telemetry, and sub-
system control functions of a planetary spaéecraft. Further information
can be obtained in the following references: RENN 76, LESH 76, and
RENN 78b.

3.4 FAULT-TOLERANCE OPTIONS

In the distributed network, there are three distinct areas in
which fault tolerance must be applied; the dedicated Terminal Modules,
the nondedicated High Level Modules, and the interconnecting bus system.

3.4.1 The Terminal Modules

Since the Terminal Modules are attached by a number of wires
a specific subsystem, they must have dedicated spares which are also
embedded in the same subgystem. Thus, when redundancy is employed,
dedicated cross-strapped redundant modules are used. This requires
special short-isolated 1/0 circuits so that (1) a short will not disable
spare modules, and (2) a faulty terminal module can be disabled and a
spare module activated by simply turning off power to one and turning on

power to the other.

The amount of redundancy of Terminal Modules is determined

by the criticality and failuve rate cf an associated subsys .em. For

a block-redundant subsystem (i.e. two identical subsystems, primary and
spare) redundant T™Ms may not be employed in each individual subsystem.

Rut for a subsystem which manages a redundant set of sensors and actu-

ators, the TM should be backed up by one cor more redundant spares.

3-11

el s

Cdisesmaad

PR

¥
3
&
¢
X
1
i
i
t

hinaalbadb il

Fault detection in a TM can consist of

(1) self-checking hardware built into the computer which
detects faults concurrently with normal operation.

(2) or software diagnostics for subsystems which are non-
critical and can tolerate a period of erroneous compu-

tations.

The second option above is only viable if the interconnect-
ing bus system prevents errors generated in a faulty Terminal Module

from propagating through the system and affecting other modules.

Fault Recovery can be handled locally within the terminal

module configuration of a subsystem or can be handled by the High-Level
Modules. If fault recovery is implemented locally, TMs perform "cross
checks" through their I/0 logic to allow local fault detection and
reconfiguration [RENN 80b]. This is often unnecessary, since the High-
Level Modules provide an available intelligence which can be used for
this purpose [RENN 80a]. Specifically, the Terminal Module hardware (or
software, through a failed diagnostic) provides a fault indication which
can be sampled over the bus by the High-Level Modules. The appropriate
High-Level Module then commands reconfiguration to a backup spare via
the bus. This recovery process contains a delay of a few milliseconds

but is acceptable for many applications.

3.4.2 The High-Level Modules

The liigh-Level Modules have two salient reliability charac-
teristics. First, they cannot be allowed to make errors, since they
perform high-level controi functions and can, by use of a bus, propagate
damaged data throughout the network. Second, they are nondedicated and
can be backed un with a common pool of spares. Two approaches were
investigated for employing redundancy in High-lLevel Modules, voted

functions and standby redundancy.

The voted functions approach consists of creating a mechanism

to configure groups ot three High-Level Modules to perform each separate

computer function. Each tiiplet is voted and when a fault occurs, the

3-12

!
jJ
I ST ORTOy S

T T

T T T e

L T B i A

A . i Shl RS AL e e e

:
g

remaining two modules of an affected triplet command its replacement with
a epare from the common pool [HOPK 75). The advantage of this approacﬁ
is that ongoing computations are not interrupted by a failure since the
two remaining computers can continue with the ongoing computation until

a convenient time to reconfigure. It has the disadvantage that it is
expensive and complex. Three computers are required for each computation
and the triad reconfiguiation mechanism is complex, and bus bandwidth

is tripled by redundant message transmissions [RENN 80b).

The standby redundancy approach uses computers which are

self-checking. ~..a HLM contains an error code protected memory, com-
pared duplex pru. sors, and fault-detecting bus circuitry. With a high
degree of confidence, the HIM will detect its own faults when they occur.
Redundant circuits are employed to disable the HLM's ability to control
an intercommunication bus when a fault is detected. If the function
being performed is time-critical, a backup (self-checked) module runs
concurrently with the active HIM. 1f the primary HLM disables itself,
the "hot" backup HLM springs into actionm, taking up the ongoing compu-
tation. For non-critical, high~level functions that can be cold-started
after being lost for a second or so, no "hot" backup spare is provided.
A critical function module effects its reconfiguration by activating a
spare, loading it from mass storage, initializing its parameters and

then restarting the non-critical process.

The standby approach is more efficient than the voted func-
tions approach in the use of hardware, especially if some of the high-
level functions do not require "hot" backup spaées. The disadvantages
are (1) lower "coverage" than voted approaches, and (2) time delays in

recovery.

3.4.3 The intercommunication Bus System Requirements

The intercommunication bus system should be redundant and
provide restricted access so that faults are not allowed to propagate
indiscriminately. Equally important, the structure and functions of the
bus system directly influence the complexity and verifiability of soft-
ware. Bus attributes and options that we have chosen for fault-tolerance

are discussed below.

1-13

DR St SSRCE RIS 2t ok A Threat, Sandiate 4 e i e -4 POV AT AL R Rt AR AT D ol sespbraiballs ilcitttl st

(1) Redundant buses are required with no common failure
mechanism in their assignment logic so that only one
bus will fail due to any single fault. This can be
achieved with a separate mechanism for each bus which
assigns buses to high-level modules on the basis of
fixed hardware priority. When a high-level module is
disabled, its bus priority should be relinquished.

(2) High Level Modules should be capable of initiating bus
transmissions, but Terminal Modules should be passive
and not have this capability. This allows structured
control and prevents a failed Terminal Module from
directly upsetting the whole system. (It is expected
that in many systems, some Terminal Modules will not
be self-checking.)

(3) Each high-level module should have control of only one
bus for any ongoing system configuration. Centralized
control is easier to verify and eliminates the indeter-

minate timing inherent in a multiply controlled bus.

(4) The bus structure should minimize the software complex-
ity required for its control, and it should be used in

a way that a minimum of transmissions are time-critical.

(5) The bus system should provide automatic veritication
of proper message transmission so that the High-Level
Modules can detect faults and utilize alternate redun-

dant buses in case of failure,

3.4.4 Architecture Selection

In order to be able to implement all of the various redundancy
options (described above) we concluded that self-checking computers
should be employed throughout the FTBBC architecture. Recent publica-
tions have shown that self-checking computers are feasible and can be
built relatively inexpensively in VLSI logic [CART 77]. Using
hardware-implemented fault detection, the self-checking computer ~can

detect internal faults concurrent with normal operation. This property

3-14

is essential to implement standby redundancy, which is expected to be
uged in the majority of computers in many distributed systems. It also
augments the effectiveness of voting configurations which may be employed
in smaller, more critical portions of complex systems.

The Self-Checking Computer Module, and its communications
interfaces are described below. This basic computer module was chosen
to best meet the fault-tolerance requi.ement: cf a wide variety of
potential applications.

3.5 BUILDING-BLOCK DEFINITION

The basic component of this fault-tolerant distributed com=-
puter architecture is a Self-Checking Computer Module (SCCM). The SCCM
can be assembled from microprocessors and memory chips, connected by a
small number of standard building block circuits described in the
remainder of this chapter. Each building block is small enough to ?e
implemented as a single VLSI chip, and provide the memory, 1/0, and
intercommunications functions necessary to interface the SCCM within a
redundant network. The SCCMs are then used as larger building blocks
in a network, in which redundant SCCMs are included to achieve fault-

tolerance.

3.5.1 The Self-Checking Computer Module (SCCM)

The SCCM contains commercially availa.le microprocessors and
memories, connected by four types of building blocks, as shown in
Figure 3-3. The building blocks are (1) an error detecting (and correct-
ing) Memory Interface Building Blocl. (MIBB), (2) a programmable Bus
Interface Building Block (BIBB), (3) a Core Building Block (Core-BB),
and (4) an 1/0 Building Block (I0-BB). A typical SCCM consists of
2 microprocessors, 24 RAMs, 1 MIBB, 3 BIBBs 2 10-BBs, and a siugle
Core-BB. A High Level Module is an SCCM containing an additional BIBB
microprogrammed to be a Bus Controller, while a Terminal lNodule is a

SCCM with all of its BIBBs programmed as Bus Adaptors (terminals).

The building block circuits control and interface the various
processor, intercommunication, memory, and I/0 functions to the SCCM's

internal bus. Each building block is responsible for detecting faults

3-15

SINPOH T2A9T-Yy3TH BuTYO9YD-3Tas @yl °¢-¢ 2ianB1j

SRR T e g RS RTR EETET R TRT TRRINEA T ST T e
mer e e bt . e

SO¥3 TYNUIINI
NMOHS 10N > *
SYIAIIDIY/SUIANG DVINIINI. va—S .M_
W .M
¢ :
] s i
P
= SNIVHD ALISOISd SNE - d _|1 > iIvFEu z~ L8IHNI | 1NdINO o 2
- BTIOUNOD $nd - D8 —
_W, _ ¥0idvav sne - ve -~ Ud
_ s
m ., (ve) v8
e _ WNOIS =7 M
- g
m @O sisanozy | e bl xu\“s._uog - JO0W3 - , ©
w she 883\33} 83 YNNI v T 4
w D078 ONIGUNE 30D v)
: s _
i TOUNOD ¥ N] 4
M 4z + V1va 91
| 42 + $5330aV 9| _ ove 75
: AAVIS-1il SNY TYNYILNI ——o .
ﬁ_ or ve i
W LINSKALNI . 7
,_ zozumﬁoui %2018 ONIGUNG ®<1
m.. BOWII TYNYILN| =< - FOVILNI AYOWIW - ! .
- z e 9 ““
v. m _
| SIe VIS Z | suse 119 91
i ONIWWYH S118 9 §358 vesst ,_
w, AYOWIW INVANNQAIFY TINGOW ASOWIW NNQ3Y m
|
_ M
|
: A_J
i ;

RSV RS TR R e e R T R T TR R T S W T ety - N = 4 S s T T e ST TR .

S

in its associated circuitry and then signaling the fault condition to

ik m e e e a

the Core-BB by means of an internal fault indicator. The MIBB imple-
ments fault detection and correction in the memory, as well as providing
detection of faults in its own internal circuitry. 8imilarly, the BI-BB

:
i
|
|
t
t

v and 10-BB provide intercommunications and I/0 functions, along with

detecting faults within themselves and their associated commmications
: circuitry. The Core-BB checks the processing function by running two
v CPU's in synchronism and comparing their outputs., It is also responsible
| for fault collection and fault handling within the SCCM.

The Core-BB receives fault indicators from the other
building-block circuits and also checks internal bus information for
proper coding. Upon detecting an error, the Core-BB disables the
external bus interface and I/0 functions, isolating the SCCM from its

surrounding environment. The Core-BB can either: (1) halt further

processing until external intervention, or (2) attempt a rollback or v
restart of the processor. Repeated errors result in the disabling of ?
the faulty SCCM by its Core-BB., Recovery can be affected by an external A
SCCM which is programmed to recognize the lack of activity from a faulty

SCCM.

An important attribute of the building blocks is that they
are interconnected via the internal processor-memory bus. They are all
designed to perform specified functions in response to read or write

, commands to reserved addresses appearing on the internal bus. The
majority of addresses are used for conventional access to RAM; however,
the upper 4096 addresses are reserved for I/0 functions, external bus
transmission requests, the readout of error-status information, and
reconfiguration commands to the building blocks., For a fetch request to
‘ a specific reserved address, the building-block circuit which recognizes
the address performs the specified function and delivers a word ot infor-
mation to the internal data bus. Store requests to reserved addresses
deliver intformation over the internal data bus to the selected building
block. This is the commonly used technique of "memory-mapped I1/0" and
it has two major advantages in the building-block SCCM desipn. First,

this aprroach avoids processor=specific 1/0 operations and thus allows

3-17

peERR L TR A RER m) P T ok 4SS T WU TR - s AT e R~ Claaliindle o 4Rk FARSCEEA AR

the use of a number of different off-the-shelf microprocessors in the
SCCM. Second, this approach allows access to tha building blocks by
both software in the SCCM and from other SCCM's via the extarnal bus
system. Using the external bus an external SCCM can command DMA READ
and WRITE operations into and out of the memory of the local SCCM. By
directing DMA, READ, and WRITE cycles to reserved addresses, the external
SCCM also has access to the building blocks in the local SCCM. The
external SCCM can load and read out memory via the bus, and can also
sample error status information, command internal reconfiguration, and

can even remotely control 1/0 in a faulty local SCCM.

The following is a brief description of the building-biock

circuits.,

3.5.2 The Memory Interface Building Block (MIBB)

The MIBB interfaces a set of RAM chips to the internal bus
of the SCCM to form a Memory Module. An SCCM can cortain one or more

Memory Modules. A Memory Module consists of:

(1) A 24-bit memory with each bit separately packaged so
that circuit failures will damage only one bit in any
word., Sixteen bits are utilized for storage of com-
puter data, six bits are employed for a SEC/DED
Hamming code, The remaining two bits are used as
spares to replace any of the other bits in case

one fails.

(2) A Memory Interface Building Block which connects the
redundant memory elements to the internal bus. The
MIBB provides control, Hamming encoding and correction,
spare bit replacement, parity encoding and checking
for the local bus, internal checking, and error

message generat ion.

The MIBB is connected to the SCCM internal bus and receives
address, data, and two control signals: A Read/Write level, and Memory
Start. Upon receiving a start command, the SCCM checks a parity coded

incoming ad-dress from the bus, and for a write operation also checks

3-18

L T Y S vy PR et e

Ty, et e D e e
e e e e T S——— — T T

T T

incoming data for proper coding. If no error is detected, a read or
write operation is initiated and a completion signal is generated. If

a single bit error is detected upon reading, it is corrected using the
Hamming code.

Two fault-detection signals are generated—an internal fault

indicator and a code-correction indicator. Each {s sent on duplex lines

so that a single fault cannot disable an indicator and go undetected.

The code~correction indicator is sent to the processors as

an interrupt, and indicates that a single memory-bit error is being
corrected using the Hamming Code. The processor can inspect the damaged
location and, if necessary, command that the faulty bit be replaced at

a convenient time.

The internal fault indicator signals all faults which cannot
be corrected within the memory system. This signal is activated when:

(1) a fault is detected within the MIBB itself

(2) {improperly coded information is received over the

internal bus

(3) a data error occurs within the memory elements that

cannot be corrected using the Hamming code.

This signal is sent to the Core building block., If the
error was caused by a transient fault, correct computation can some-

times be resumed with a rollback or reset/restart sequence, initiated
from the Core-BB, *

The MIBB can receive several commands to read out status,
test faulty locations, and perform internal reconfiguration. These
commands are implemented as out-of-range memory addresses and can thus
be issued by the processor or through the bus system. Specifically,
certain out-of-range read or store (nstructions are recognized as com-
mands to the buflding block and data is absorbed or disgorged for write

and read operations, respectively.
MIBB commands are listed below:

(n READ STATUS - internal fault latches are read out to

the internal bus.

P S Sl i e pr.

U VU TGP ST

e o

A A L A L Lt s R A A S LR S S e

(2) READ ERROR MOSITION - The bit position of the most
recent error is read out,

(3) READ ADDRRSS OF LAST ERROR - The address where the
last error occurred is read out to the internal bus
(along with an indication if more than one bit has
been corrected).

(4) RESET - Disables spare-bit replacement, returns to
original 16-bits of data.

(5) DISABLE CORRECTION - Disables Hamming correction so
that the memory can be externally diagnosed through

the bus system under control of a different computer !
module. Correction is re-enabled by a reset command. i

(6) READ REDUNDANT BITS ~ Used in conjunction with disable é
correction, reads out the Hamming protection bits and
spare bit from the last address accessed in the

memory.

(7) REPLACE Ith BIT - Causes spare-bit to replace the
specified bit position. (Two commands are provided -

one for each spare bit plane.)

Several optional Memory Module configurations can be sup-
ported by the MIBB, The user can select the number of memory words
included in the Module (8K, 16K, 32K). It is also possible to implement
a Memory Module which does not use Hamming single-error correction.,
Using this option, each memory word consists of 16 data bits, 2 parity
bits for error detection (the same code as is used on the internal bus),
and 0 to 2 spare bits., Upon detection of a fault, it is necessary to
diagnose the memory and command reconfiguration using an external SCCM,
This option is provided for applications which require very low power,
weight, and volume., Options are selected using external pins on the

MIBB.

3-20

RPEE 2t A o R A e A e S D ks et ' ST S . &
pfﬁ < s b s i+ . A CAR ‘el e anisivii S A A e ik $-55 I -
g i
F '
'
e
»

An internal error indication is generated upon receipt of
improperly coded data or upon read-out of improperly coded information
in the memory. The same error detecting code is employed for the
interna: bus and the memory plane.

3.5.3 The Core Building Block (Core-BB)

The Core Building Block provides three functions: (1) inter-

1 nal bus arbitration, (2) processor comparison with parity code generation
and checking, and (3) fault-handling. This building block uses self-
checking design, such that a fault in the Core element will result in
disabling the Bus Controller and removing the module from the system.

3.5.3.1 Bus Arbitration. A Bus Arbitor in the Core-BB accepts inter-

nal Bus Request signals from the Bus Adaptors, Bus Controller amd, in
the case of terminal modules (to be discussed), from DMA 1/0 channels.
Upon receiving Bus Requests, the Bus Arbitor signals the CPUs to release
the bus. When the CPUs acknowledge release, the Bus Arbitor returns a
Bus Acknowledge signal to the requesting element on the basis of fixed
priority. Both Bus Request and Bus Release signals are duplicated with
values 01, and 10 representing valid states. The Bus Arbitor is also
duplicated and is compared with self-checking internal logic to detect

its internal faults,

3.5.3.2 Processor Comparison, Code Generation and Checking. In order

to detect processor faults, two processors are Pun in synchronism. Both
receive the same data and execute the same programs in lock step. One

processor is designated primary and the other serves as a check processor.

All outputs of the two processors to the internal bus are
compared by the Core-BB and the 16-bit outputs to the address and data
buses are parity encoded. Incoming data on the internal bus is checked

@ for proper parity coding.

If the processors disagree, if incoming data is incorrectly
coded, or {f an {nternal c¢rror is detected by self-checking logic within
the building block circuftry, an error message is sent to the fault-

handling section of the Core-BB.

3-21 " -

3.5.3.3 Fault-Handling. The fault-handling section of the Core

: building block receives internal fault signals from the various building :
; blocks and from within the other sections of the Core. When a fault is |
signalled, the fault handler sends an output inhibit signal *) ihe Bus
Controller and/or 10-BBs and stops the processors. As an optional
feature, the fault-handler can effect a program rolltack by causing the
processors to transfer to a restart location. The processors attempt to
re-initialize computations. The processors can command that the module
be re-enabled (release output inhibit) if no additional faults are
detected in the intervening period.

3.5.3.4 Core Building Block Connections and Commands. Core Building
Block Connections include:

(1) 32 address and data 1lines to the check processor.

(2) Control lines to and from each processor—reset/

restart, bus request for DMA, and bus released

3) 42 connections to internal bus for address data and

control
(4) Clock and Real-Time Interrupt

(5) Bus Request pairs from up to 5 DMA elements and

corresponding Bus Acknowledge signals (24 lines)

(6) Internal Error inputs from up to 8 other Building
Blocks (12)

(7) Output Inhibit to Bus Controller (2)

The Core-BB accepts the following commands which are decoded
as out-of-range read instructions on the internal bus. Both the local
CPUs and external modules can issue these commands, the latter via an

external intercommunications bus.

(1) Disable Module-Computers are halted and an output

inhibit is sent to the Bus Controller and/or 10-BBs.

3-22 -

| R AT At e~

- Te oy T 7T O eeEEEE T e R Theese T T e e

e

(2)

RESTART — CPUs are reset and computation beg’'ns at
the rollback/restart locaciom.

(3) Enable Module — Release output inhibit to the Bus
Controller, and 10-BBs.
3.5.4 The Bus Interface Building Block (BIBB)

The BIBB can be microprogrammed as a Bus Controller (BC) or
as a Bus Adaptor (BA). The bus system uses MIL-8TD-1553A formats as
shown in Figure 3-4, and the BC and BA provide controller and terminal
functions of that standard. The capabilities of the BC and BA are
augmented to provide the following additional functions:

)

(2)

3)

(4)

connected to a given SCCM (each through a separate BA).

Moving data directly between memories of their host
SCCMs using direct memory access (DMA).

Specification of data to be moved by "name" (using
automatic table look-up in the local SCCM), or by.its
internal memory address.

Concurrent detection of message errors and faults
within the BIBB. Communication of fault conditions
to the host SCCM, and disabling the host SCCM under
some fault conditions. Signalling SCCM shutdown via
1553A status messages.

Providing redundant communications paths through the

use of redundant bases.

Since a primary requirement is fault-tolerance, the BIBB is
designed to detect its own internal faults. Upon detecting such an
internal fault, the BC and BA behave differently.
are signalled to the Core-BB which disables the host SCCM in order to
prevent damaged information from propaga.ing throughout the system.

(A faulty BC can potentially move data to or f.om the wrong place.)

The Bus Adaptors are redundant, since several busc¢s are
If a BA faflure
does not prevent its host SCCM from performing correct computations, ft

is possible to re-route messages throuvh a different BA and cont{nue

3-23

Bus Controller faults

T T e

T ST T P

(o) WORD PORMATS
0T TIves:
rfalalelslelzlololwlnlnnlulwlislwvwivin]w
COMMAND WORD:
' 5 ' s 5
‘ SYNC | TERMINAL ADDRESS |m| SURBADORESS/MODE l DATA WORD COUNT |
DATA WORD;
L .
I SYNC | DATA !
STATUS WORD:
L)] 9 1
SYNC TERMINAL ADDRESS 'ml STATUS CCDES | 1/‘"
{b) MESSAGE FORMATS
CONTROLLER .
10 TERMINAL RE-CEIVE DATA DATA DATA STATUS
TRANSFER COMMAND WORD worRp |[= = = =| woro WORD
R
TERMINAL 10 .
CONTROLLER TRANSMIT STATUS DATA DATA {_ _ __| oala
TRANSFER COMMAND WORD word | wom “YORD
T
m“m.‘ ‘r . » -
TERMINAL © RECEIVE TRANSMIT STATUS OATA |_ _ _ _| oara STATL |
TRANSFER COMMAND | COMMAND wORD wOoRrp wORD wWORC !
J
T t

®2-5p SEC WORD GAP
T - FROM IRANSMITTER
k - FROM RECEIVER TERMINAL

Figure 3=4. MIL-STD 1553A Formats for (a) Words and (b) Messages

3-24

% 25 B

normal operation. Therefore, upon detecting an iaterpal fault, the
hardware of a BA disables its ability to communicate over the external
bus and into the host SCCM. It does mot disable the BCCM and other BAs
can be used to continue communications. ‘

3.5.4.1 BIBB Comnections #zud Fymgtions. BIBB connections fall into
gseveral groups as shown in Figure 3-5. :

The BIBB-SCCM Interface consists of commections to (a) the
SCCMs internal address bus (AB), (b) the internal data bus (DB), (c) DMA
request and acknowledge (R, AK), (d) an interrupt to the processor
(RUPT), and (e) an internal fault indicator (IF). This interface allows
the BIBB to enter or extract words from the local memory by cycle

stealing; to alert the processor of an error or completion using the
interrupt, and to signal an internal fault.

The Direct Command Interface consists of a set of output

lines (DC) and a strobe signal (ST). In response to a special "direct"
command, a strobe signal is delivered and the output lines can be

divided to activate discrete events.

A set of Configuration Pins are hard-wired to Vcc or ground

to specify the hard names of the BIBB on the 1553A external bus and on

the internal bus (for memory-mapped control).

‘The External Bus Interface connects with discrete driver and

receiver circuits for the 1553A bus. These connections include data
output lines (HILO, OUTEN), data input lines (INBUS HI, INBUS LO), and
alternate bus selection signals (BSEL, BBSY). A Bus Adaptor is only
connected to a single bus. Therefore, in a BA the bus selection signals
are unused. The data input and output lines are connected to a single

driver/receiver package.

The Bus Controller can communicate over any of several buses.
Therefore, it interfaces with a Controller Interface Module (CIM) which
contains several sets of driver/receiver electronics. We have decided
to place the bus assignment (allocation) logic in the CIM as well. When
the BC starts to initiate a bus communication, it specifies which of

3-25 (/ /’Z

R et T

_ suopioeuuo) }oorg SuypTing 2983123ul Sng G-t 2an8t14
g 133
WD —‘ SNId slwsou wWOdd
| _ — 7 INOHNI)
| _ NOLVINOINOD . NOHN)
g s
INVN SNE VOO 2
9, IWVN SNe
TvN¥1X3
v, -
39 1O sne
(@ “5) 1V TVNEINI >—vl— L m——- L
3 7(Asna @) Asns sne
(LN “14M0) LIMPEUN] o—rpl—T
—e 3INAOW ©
Qv V) INVED S VI ¢ uumnawzg_m:__m:- Al FOVARINI —D—zsm
(4 ‘¥ 1SINOF SN VWG =—vF— 01 SNeNI ‘IH SNENI) ¥ITIOUNOD
S1NNI VIVa
2000 — ._0228
A VN3 INdINO — c g
9q) sNY Viva (NALNO)
@v) sn9 SSIAAV . o) 1NO VIVa
TVEEIN NoI5-90N ~ ¢ 8 IOVIRINI
~ sng TYNWIX3
. us “19) >a
3oVAEINI SNIvi ASiva. ASIVG.

GNYWWO)D 10380
E-O.-s mbn

(8, s A T A . A R T S

183

~ several buses it wishes to use (BSEL). (itrgha: bus is ;n_“.,‘b,‘g BC
of higher priority a busy signal is returned '(BEYSY). o , | S

3.5.4.2 Bus Controller. The SCCM requests its Bus Controller to
o execute ru external bus transfer by “storing™ to one of several out-of-
range acéresses. Four bits of this address specify which of several
buses to use for the tramsmission. The data being “stored" specifies
the address of a Bus Control Table (BCT) in memory which specifies the

) transmission to be carried out.

g The BCT contains a control word. and:

(1) One or two 1553A commands -- One for Terminal-to-
Controller or Controller-to-Terninal, or two for
Terminal-to-Terminal transmissions.

e aaeERE A e

! : (2) The local address (in the BCs host SCCM) from which i

data is to be extracted or stored.

The BC initiates and monitors the specified transmission
and moves data into or out of local memory as required. It places a BC

status word in a fixed memory location and delivers an interrupt upon

completion. The BC-status word indicates:
(1) Transmission Aborted, bus not available.

(2) Transmission Unsuccessful due to codirg error or

unreturned status,
(3) Transmission Successful but BAs SCCM has failed.
(4) Transmission OK,
(5) Activity or Requested Bus.

The status words embedded in the 1553A transmission are also U

stored in memory and are available for software reference. !

3.5.4.3 The Bus Adaptor. The Bus Adaptor operates as an "intelli-

gent" 1553A terminal. It is controlled via the intercommunication bus,

and executes 1553A transmit and receive commands. For most commands

3-27

e, ot b b R il wik Are A B e i At V- .

received over the bus, ‘he adaptor obtains a data address corresponding
to the 5-bit Subchannel/Mode (8/M) field of the command. The adaptor
then daposits or withdrawe words from saquential memtory locations by
direct memory access (DMA) to carry out the receipt or transmission of
the specified number of words.

Most values of the S/M field are used as data names. These
values are used as an index into a look-up table in the local memory
which specifies the physical address of the named data. Several values
of the S/M field are reserved for special functions. These include:

(1) Concatenate - continue extracting or depositing data
from internal address used in last transmission.

(2) Designate silent acceptor - directs module to assume
soft name and "listen-in" on subsequent transmission.

(3) Execute direct command - strobe data out on direct

command lines.

(4) Direct addressing - specify absolute local memory

address for next Jata to be transmitted.

The BIBB, whether programmed as a BC or a BA also recognizes

several out-of-range addresses as commands to: (1) read out internal
status flip flops and (2) reset itself.

3-28

s sy

T P T T TR T S N T O T,

| SBCTION & ;
BUILDING-BLOCK DESCRIPTIONS =

major building blocks. An implementation is described for the Memory

Interface, Bus Interface, and Core building blocks. Each building block:

is broken into its component internal functions for which preliminary
logic descriptions axre provided. This set of descriptions was used to
Renerate bdreadboard logic designs.

4.1 THE MEMORY INTERFACE BUILDiNG BLOCK

The fault-detecting and correctins Memory Interface Building
Block (MIBB) interfaces a redundant set of memory chips to the internmal
bus within computer modules. It provides single bit error correction to
damaged memory data, replacement of up to two faulty bit planes with
spres, parity encoding and decoding to the imternal bus, and detection
of internal faults.

4.1.1 Memory Intcrface Building-Block Requirements

Memory is typically among the most significant sources of
failure in computer systems. Due to the simplicity of operation and
a high degree of modularity in organization, the memory system benefits
most from the error-correction techniques. In particular, the applica-
tion of the error correction becomes very effective in the case of semi-
conductor memories, organized with each bit on séparate LSI chips.

The basic goal in the specification and the design of the
memory building block is to provide for a highly reliable and maintain-
ab)e memory system by incorporating redundancy in data representation
and logic which allows thorough error detection, and correction of a

majority of single-chip faults.

e et e e ahr 2 2B e and

The following sectionrptne-aeé'dcﬁailod dcoértptioaé of - the -

s e R

T

e e e S g

The fault-tolerance objective is quite simple. Since the

memory represents a preponderance of failure rate within a computer
module (SCCM), single fault correction in memory will greatly improve
the reliability of the SCCM. Even though the SCCM is treated as a
replaceable (throw-away) item with backup spares, improving memory reli-
ability greatly increases the reliability of each SCCM and of networks
made of these modules.

Specific memory interface requirements are listed delow:

)

(3)

(4)

The memory system should have the capability to
correct single errors and to detect double errors in
data words. This can be effectively achieved by
single-error correcting, double-error detecting codes
(SEC/DED codes) for the storage arrays organized
using one-bit-wide wmemory chips (i.e., each bit of

the word is located on the physically independent

chip which makes all single faults affect but a single
bit in a word). In order to enhance the applicabil-
ity of the memory-intcerface building blocks, a mode

with parity checking only should be provided.

The memory system should be able to tolerate two
faulty bic-planes in the storage array. A 1 config-
uration system should be provided which, upon the
system command, replaces a faulty-bit plane by the

spare one.

Parity encode data outputs for internal (data) bus

transmission.

Check parity of incoming address and data off of the

internal bus.

Recognize Memory Interface Building Block commands as
out-of-range read or write instructions. These

include:

(a) Set Soft Name

(b) Read Error Status Register

A Y et e M SR A A EEE T LA 4 T R A R AL e 2 e e

(¢c) Read Error Word Address |
(d) Read Error Bit Positiom

(e) Read Check Bits

(f) Enable/Disable Read Retry

(g) Replace i-th Bit with Spare a/b
(h) Reset i-th Bit Replacement a/b

(1) Enable/Disable Single Error Correction

(6) Data and addresses internal to the building block
shall be maintained and checked with redundant parity
bits to allow internal fault detection.

(7) The coding and control circuits should be self-testing,
fault-secure, or duplicated so that no single circuit

failure will produce an undetected output error.

(8) A self-checked internal fault sieonal shall be generated
{and sent to the Core building block) when a fault is
detected within the Memory Interface Building Block,

or when an uncorrectable error is found in memory data.

(9) The information about detected errors in the memory
subsystem should be collected and transmitted to the
system upon request, in response to the READ STATUS

command.

4.1.2 Memory lInterface Building-Block Design

The memory system is organized as a random-access memory
(RAM). It consists of up to 16K words of 16 data bits per word. The
basic storage element is a 4K x 1 MOS static-cell chip. This chip also
contains the necessary address decoding circuits, a feature essential
for the error isolation and effectiveness of the error coding. The
memory system operates in the conventional manner. The primary func-
tions of the memory are to accept data, address and control information,
to store that data iy the location as specified by the address, and

retrieve unaltered data information upon demand. The Memory Svstem

sy o o o . . . Lotk

I Y

.

consists of two sections; the Storage Array (S8A) composed of a set of
commercially available memory chips, and the Memory Interface Building
Block. The Memory Interface Building Block congists of five sub-
elements, designated the Address Bus Interface (ABI), the Error Control
Section (ECS), the Data Bus-Storage Array Interface (DBI), and the
Memory Control Section (MCS), as shown in Figure 4-1. The interface
requirements, commands, structure, operation, and fault-tolerance char-
acteristics of the storage array and the building block elements are
described in the following paragraphs.

The MIBB is designed to operate in two basic modes. In HAM
mode, the interface provides full error detection and correction capa-
bilities. In HAM mode only detection via two parity bits ia used. The
error detection, correction and bit-plane replacement in this case are
performed under the system control. The address and internal error
checking remains the same in both modes. In the prototype version these

modes are selected manually.

The memory size can be specified to be N = 4K, 8K or 16K

words. The size is also selected manually.

Since two spare bit-modules are always provided, the storage

array appears in the following configurations.
(1) In HAM mode:

16 + 6 + 2 = 24 RAM bit-planes of N bits, providing
storage for 16 data bits, 6 check bits and two spare
bits per storage array word.

(2) In HAM mode:

16 + 2 + 2 = 20 RAM bit-planes of R bits, providing
storage for 16 data bits, two parity bits and two

spare bits.

4.1.2.1 Memory-System Interface Specification. As indicated in the

peneral diagram (Figure 4-1), the interface between the storage array
and the system is achieved via the address bus, data bus and a set of

control signals. These buses and control signals are specified in

4-4

E

Iy
!

a4t s Mo b, .

SYSTEM e STORAGE
msizg, ARAY
| . |
18 - 1 0219)
Ab Lt > ADORESS |
I | INTERFACE
: EwAR (ABI) :
' e 2 |
| FoRMe |oRc, |org A
: smr SNC £2 |
| L]
M START ,
MEMORY
M COMPL
I o -
aessrl - (MCS) _ |
| 1 |
4
4 | 2)2 !
| RW CONTR |
|, :
MINT et
SECI a4 ERROR %'
| Est 8 CONTROL -~ |
wisl BN e
| ” .
l ? I |
l y "6 r2 4»"6 |
| N S 1 P12 d |
2
l "3,,?2 ﬂi "S“‘Pl'z ‘/WR l
| ! : I
I DATA BUS- |
18 18-22
el 418 S v,
INTERFACE Py
| | 5P,

* LOCAL SWITCHES

Figure 4-1,

4-5

MIBB Subsystems

o,

detail in this section. The address bus and data bus fields are

indicated as follows:

ABJO|112]3]4]S5]6]7]8]9[10|11]12]13]14]15]16]17

e ———————

| G N— N—
ORF ! MHN coc |Parity i
or |Bits

(a) Address Bus Fields (for N = 4K)

DBl|OJt|2]3f&4|5]{6]7]8]9|t0]t1]12{13]14]15]|16 l?j

1

Data Bytes (2)
(b) Data Bus Field (for N = 4K)

Address Bus

AB = (ABj, AB,, ..., AB)

17

where ABO is the most significant bit and

AB, = AB @A82 ® ... @ABM

AB,, = AB ® AB, ® ... ® AB,

are cven and odd byte parity bits.

The address bus fields are:
Out-of-Range Field:

ORF = (ABy, AB,, AB,, AB,) if N = 4K
| (ABy, AB,, AB,) if N e 8K
| (ABy, AB,) if N = 16K

Memory Hard Name:

- defined only if ORF = (1, ..., 1) = ORC

MHN = (AB,, ABg, AL , AB,) if g = 4K
I(An‘. AB., AB() 1f N = 8K
I(Ana. ABS). if N = 16K

Memory Soft Name:

- defined only if ORF ¢ (1, ..., 1)

MSN = (ABy, AB,, AB,, A83) if N = 4K
| (ABg, AB,, AB,) 1€ N = 8K
| (AB, AB,) if N = 16K

Command Operation Code:
- defined if ORF = (1, ..., 1)
Co: = (ABIZ' sensy An‘s)
Memory (Word) Address:
- defined if ORF ¢ (1, ..., 1)
MA = (AB,, ..., AB‘S) if N = 4K
I(ABj. ooy ABLO) if N = BK
I(ABZ. cees AB‘S) if N = 16K

s ———————

In other wogds, if ORF bits are all ones then the
COC bits specify a special command which is executed
only by the MIBB with a physical (hurd) name matching
the MHN field. If ORF bits are not all ones, the MA
fisld is used by the MIBB with a logical (soft) name
matching the MSN field.

Data Bus

DB = (DBy, DB,, ..., DB,,)

where DB is the most significant bit.

Parity Bits:
DB,, = DB, @ DB, ® ... DB, ,
DB,, = DB, ® DB, @ ... DB,

Data byies: (DBU, e DBI)

5

Soft Name Field:

SNF = (DB,,, DB ,, DB, , DB,) ff N = 4K
| (DB, ,, DB,,, DB, , 0) if N = BK
i(uu‘z. DB, ., O, 0) if N = 16K

This field specifies the logical name to be assigned
to a memory by executing an $SSN (Set Soft Nae)

command.

Bit Replacement Position Fleld:

BRP = (DB“. e DBIS)

This tield specifies the position of the bit-plane to

be replaced by o - are.

Y-8

L SR

]
\

i

Storage Array Interface Signals

Memory Address:

AN = (MAR‘, coey HAR'S) if N = 4K
l(mr ooy MAR () if N = 8K
l(mnz. vees MAR () {f N = 16K

Mewmory Word (Bit plane 1/0)
BP = (BPd. ch)
Memory Data Bita:
BPd = (BPps ..., BPIS) .
Memory Check Bits:
ch = (BP'b. sens BP21)
Spare Bit Plane Data:
SPa
SPb
Read/Write:
NWRITE .
Control Signals
Memory Start:
MSTART (a 1-0 transition activates M1BB)
Memory Completion:
MCOMPL (a 1-0 transition indicates

completfon of an MIBB operation)

4-9

e

bt L

R

B e

g

e

A oo

—

T Y TR T

Read/Write:

RW = (WRITE, NWRITE)
= (1,0) if write
= (0,1) if read
= (0,0) if no read/write or error

= (1,1) if error
System Reset:
RESET
Memory Error Interrupt:

(0,1) v (1,0) = 1M - no uncorrectable
memory °rror
MINT =

(0,0) v (1,1) = OM - uncorrectable
memory error or
MINT circuit
error

Single Error Correction Indicator:
IM - no single errors corrected

SECI =

OM - single error corrected or
SECI circuit error

Clock Inputs: (optional)

1’ 02 - standard system clocks

4.1.2.2 Specification of MIBB Operations and Commands. The commands

interpreted by the MIBB are specified here as contrcl sequences at the

register-transfer (microprogramming) level in the context of the MIBB
design described later in detail.

ol v e L

i —— A e A im0 o ETTY TR T B AR

A general view of the MIBB operational states and the flow

of control is indicated in Figure 4-2.

algorithms:

¢ Initialization

INIT:

In describing commands, the following notation is used:

(1)

(2)
3)

(4)

(5

(6)

(@)

All statements are labeled; simultaneous

register transfers are separated by ";"
"«" indicates register-transfer (assignment);

"«" label indicates unconditional branch in

control sequence;

(A,B) denotes concatenation of registers A and
B;
All functions are implemented with combinational

networks; the arguments, enclosed in (), are

bit-vectors;

For greater readability, all conditional con-
structs are in the form if ... then ... else ...,

or if ... then.

Braces "{,}" are used to enclose clauses in

conditional statements.

The operations of the MIBB are specified by the following

if

POWER ON or RESET then

{ESR « 0; ¢ Clear error status register

E « lM; ¢ Clear internal error flags

MINT « IM; ¢ Clear MIBB interrupt flag

SECI « IH; ¢ Clear SEC flag

EBAR + 1; ¢ Set error bit-position to out-of-

range value

4-11

INITIALIZATION

!

WAIT -

‘ MSTART

CHECK
PARITIES AND
COMMANDS

READ AND
CHECK

SINGLE
RETRY

CORRECT

FATAL
ERROR

FATAL
ERROR

OUT-OF-
RANGE

Y

WRITE

GENERATE
CHECK BITS
AND WRITE

RETRY

MEMORY ERROR
(INTERRUPT) wd

O-R COMMAND

Figure 4-2.

M COMPL

4-12

General Flow Diagram

) ¥ il L
L R o
. . -

g 2 "

Rm * 0t ¢ Chat read ntty nag

' BTRONE « O ¢ Clear retry mt Co T

BLFiad

PRETEW « O3 ¢ clear fitat u'mr flag
OUTEN « O3 ¢ nisablc mna ou:pute to nn

SECEN « 13 | ¢ Inable SEC sehamn

R « Oy ¢ Clear READ/WRITE command later

POSARa'b «1; ¢ Set bit replacement address out of
range

MCOMPL « 13 ¢ Memory ready

+ WAIT}

¢ P is 2-bit parity register; ORCR is out-of-range command
register.
WAIT: if FORME*READ*MSTART then
{MAR « AB; ~» READ1}
if FORME*WRITE*MSTART then
{MAR « AB; MDR « DB;
; = WRITEl1}

16* PBy7)s
{f ORC'MSTART then

P « (DB

{ORCR + CDC; + DECODE!}
¢ Out-of-range command decoding
DECODE: -+ (decoded command)

READ Operation

¢ APC is address parity check; DPC is data parity check: SNC is

soft name check;

¢ EWAR is error word address register which is continuously loaded

with current address until first error; it is cleared on readout:

¢ EBAR {s error bit position register:

4-13

R S

¢ PAR, m and m are chc puuy. nducueu oad ctuglo oi‘rorv
correction functiena; ' :

c [} aud c ;re dcta aad ehacﬁ bite from mennry blt plancc

READI:

READ2:

READ3:

1f m then {m « (d,8); P + mud)};
A€ HAM then (WR cdp P+ “’o"‘x”‘
Py
E5%0,5,6
¢ save Address Parity Check, Soft Name Check and Read/
Write Check status '

APC, D AFC,, B @snc mtn§m1rn

El « RED(APC, SNC, RW)

¢ reduce and save for internal use
if TFRSTEW then {EWAR « MAR}

¢ store gddress for diagnosis

<+ READ2

+ DPC

SRy 5 5.4 * DPC,@DDPC, SE @DSE,, DE @DDE,, NCE,®NCE)

¢ save Data Parity Cﬁeck. Single Error, Double Error and
No Circuit Error

E2 « DPC;

E4 « RED(SE, DE, NCE);

¢ reduce and save

OUTEN <« 1; ¢ Enable MIBB data output;

Disable on ¢+ MSTART
+ READ3
if IRR then
{MCOMPL « 1; -+ VAIT} ¢ No memory error; completion OK
if HAM ¢ SECEN ¢ SEI; * NCER ¢ RTRY then
-+ READA ¢ Single Error correction

if HAM ¢ SECEN ¢ SER ¢ NCER ¢ RTRY * RTRONE then

4-14

READS:

READ6;

.

{my « (0,1): NDR <« COR (!): SRR BCLN

¢ read retry
if WANCERR-BER + HANOE2R + nma'mom EER then
(MINT « O; MCOMPL + 1; PRSTEW « 1;

+ WAIT ¢ uncorrectable mmryf error
MDR + COR(w); ¢ Single error correc-t‘ion

EBAR « EBA; ¢ Save bit position

SECI + OH; ¢ Set SEC flag

+ READ 5

P « PAR(w); ¢ Compute parities
MCOMPL « 1; ¢ Data sent out

* WAIT

RTRONE « 13 ¢ one read retry

BP < w; ¢ write back to memory
RW <« (1,0): ¢ switch back to read
E + lM; ¢ reset flags

ESR « 0;

SECI +« IM;

MINT « IM; ‘

-+ READ1

WRITE Operation

¢ w= (MDR

WRITEL:

¢ SYN is the syndrome generation function

s +eoy MDR

0 15)

¢ No checking of single and double errors performed

if HAM then {MCR « SYN(w)};

¢ generate syndromes
« APCO + APCl, DPCO + DPCl, SNC0 + SNCI.
NWRITE + WRITE;

SR0,1,5,6

4-15

T S L PRS- L o Ctag

‘camerroraum

EL « RED(ARC: SNC m;',
n - m;

*m . M,A.Rl ,, "

-+ WRITE2:
WRITE2: if ERR them

{BP « w};

¢ write oaly if no memory error
Af ERR then
{MINT « 0y ¢ mo correction attempted

WCE, ¥ WCE;
ESR2’3‘a - SEO + SEI’ DE, + DBI. NCEO + N 13

0
FRSTEW « 1};
MCOMPL + 1;
+ WAIT

It is assumed that the relevant control signals, generated
by duplicated controllers, are compared in each step using a morphic
comparator. If an error is detected, the memory operation is termi-
nated after setting control error status bit ESR7 and memory interrupt
indicator MINT.

4-16

o<
et

Set Soft Mame (S8):

mmmmm"mbmom:

s8Nt aunb « 13

8S8N2: sunh -~ SNF;

SR, + SKF

S8N3: if EEE;; &hll;

fsay < 13
MINT +-0h;}
MCOMPL « 13

+ WAIT

Read Error Status Register (RES)

d Mtum ooﬂ: name

RES1: OUTEN « 1;

MCOMPL « 1;

+ WAIT

Read Brror Word Address (REA)

REA1: OUTEN « 1;

4-17

ushuum.m, "

‘ 4 Set ome :estltur to all

1's to check load signals

"4 Load soft naeme

_ £ 8oft name check error

¢ Set status bit

. 6 Interrupt

¢ Terminate

¢ Set comnect flag
(reset on MSTART going low)

¢ Conmnect ESR to DB
{transmit error status)

¢ Set comnect flag
(reset on MSTART going low)

t
f
i

3 e = - kaAi<hL‘ﬂ_‘L N S T T Ty T S T VT T I o Ty
Py L

¢ Connect MCR to DB

Read Check Bits (RCB)

RCBl: OUTEN « 1;
MCR « C3;
‘ MCOMPL « 1; ¢ Connect MCR to DB ’

+ WAIT

Enable/Disable Read Retry (EDR)

EDRI: RTRY + AB“; ¢ ABn =] to enable
MCOMPL + 1; AB“ = (0 to disable
retry 3

<+ WAIT

R

4-18

IR e .S

Replace i-th Bit with Spare a/b (BSP)
RSPV: Af AB,, ghea .

{rosar, «Bmei} Do, 4 epecifies
the i-th bit posdtion -
- 4a the binary oeode

it W, then
irom.,*md

MCOMPL + 13

-+ WAIT

Reset i-th Bit Replacement a/b (RBR)

RBR1: 1if AB then

n

{PosAR_ « 13} £ All 1's indicate a non-
existent bit plane.

MCOMPL « 1;
-+ WAIT

Enable/Disable Single Error Correction (SEC)

SEC1: SECEN « AB ¢ AB,, = | to enable,

1n 1"
MCOMPL « 13 A31‘ = (0 to disable
-+ WALIT single error correction
4-19

T T T T

LA Ot e S A

v

'Ys
Ly
i,
s Y
‘A .
\ .
.

4.1.3 Brror Control Capabilities

The address, data and commands are systematically checked
against single and double errore using appropriate encoding schemes
(byte-parity, morphic and an SEC/DED code) and self-checking checkers.
The information ebout code errors and circuit faults is collected during
each memory operation cycle and saved in the error status register ESR
as follows:

sno = Address Parity Brror

!881 = Data Parity Error

§ nsnz - S$Single Brror

% nsxa - Double Error
ESRA - Circuit Brror
ESR, - Soft Name Decoding Error
BSR, - Read/Write Command Error
BSR7 - Control Error

The error checking capabilities of the MIBB are specified in more detail

next.

Address Parity Checking

APC = (APC.APC,)

((0,1) v(1,0) = 1 if no parity errors

M
in MAR
APC =
((0,0) v (1,1) = 0M if parity incorrect
or checker fault
Action:

_I_f_ (APC-O“)A(MCM'O)ACS‘ M

MINT « 0“; ESRO « 13 MCOMPL « 1

- no operation on the storage array performed

- CS‘ is a control state.

4-20

RO

e T e e e Ak mac . aenng . - . -

e e

v A e e e L o s S

Data Pari S
1, AL purity errore iR |
DPC = ' : j

0, Af perity imcorrect er mm:

Actiont

If (@FC=0) n GEOONFL = 0) shen

AL WRITE A CS, then

um«o“;nn«-umm.«t

else if BREAD A CS, thes

MINT « OH; 888‘ « 1

- write operation not performed on the storage
array.

Data SEC/DED Checking

An odd-weight separable single error correcting and double
error detecting (SEC/DED) code is used to encode 16-bit
data words on 22-bit memory words [CART 76]). The SEC/DED
code is specified in Table 4~1.

A memory word consists of 16 data bits followed by six check
bits.

The check bits co. esey cs are defined as

Cop = @ /(mR, ,) = DGy

C, = ® /(mRy 43 = DG

4-21

z v 8 9 ;W € 1 w1 ¢z 6L 8 05 IS 95 Ty 8C v st WY (Sg*+-+0%)
AR W T | Lt S|
i R | t t Ll |
i i .t 1 t i t
| l O | i t S| t)
i U T T L L L
t "SR SR W W T S S
83W01puis
iz 0z 6L st 1 9t | s v €1 ZL UL oo 6 8 ¢t 9 ¢ v € 7 + 0 uoyaysod 114

0

Sy ¥ €5 %y 1 O

831 P

¥GW Ul 8114 °ITQ

apo) @3a/238 PeIUBTaN-PPO

*i-y 31971

i

.

M

H A
M

m

M

g

c, =® / (0BR, 5 4,3,8,10,14,18 = D)
g =® /(0mRy ;¢ 411,12,03,18 = %9
c, -® / (OBR, o 4 7.9,11,13,18 = DG

cs ~B® 7 (0mR, , 010 42.13,14,15 s)

‘o.o, (c‘.. Ni) has odd m‘t’.

: The check bit C, 1s 1o MDR, ..
The syndromes 80,.... Bs are defined as
st -® / (ci. mi’

20 that

»
o -

1 1if there is no single error in (ci. DG‘)
t 0 othervwise
r

a The analysis of syndromes is implemented with morphic logic
in the following cases:

(1) Single errvor:

r 1 @/ (8ge ++es 85) = 1 then

f.e., an odd (actually, 3 or 1) number of syndromes
with the value 1 i{ndicates the single error case.

(2) Doudble error:

U (@ 8y cees 8) = 0)a(8) = 8, .0 §¢ = 0)

then DE = !"

(i.e., a double ervor i{s iadicated by an even number
(< 6) of syndromes having the value 1).

: 4-23
1
:a rr————————— s e I ik e e e el s aamatih o s i

) B0 etngle or doble grver -
I %8 .8y o1 gm
mey s

the value 1. |

The resd/write commend 15 checked by morphic logic and error
cmw!S%*I,M«-ouandnomuononmuoraseatm;
The out-of-range commands are implemented using two micro-
programmed control units, checked with morphic comparators

at the control signal outputs. In case of discrepancy,
nsa74- 1,unrr<-ouat the operation is termimated. The
memory uame decbding is checked by duplication and morphic
comparators. All checker circuits are checked using morphic E
logic against single errors.

4.1.4 Design of Memory Interface Building Block

As indicated in Sectiom 4.1.2, the memory system consists of
two sections: the Storage Array (SA) composed of a set of commercially
available memory chips, and the Memory Interface Building Block.

The Storage Array consists of up to 22 active bit-planes,
denoted BPi, i=20,1,...,21, which are used for storing 16 data bits
and six check bits. The check bits are defined by a modified Hamming
SEC/DED code for which relatively efficient implementation with good
coverage cam be specified. There are two spare bit-planes, SPa and

SPb.

All bit-planes are identical and contain up to 4 (4K x 1) .
basic memory chips with on-chip decoding. The reconfiguration is per-
formed by replacing a faulty-bit plane using a direct spare demultiplex-
ing replacement scheme, as described later.

4-24

I s I SR it &+ XA AW X, AT 728 1 T LRl TS i il RN BT 0 a0 N 5

~

The Hemory Interface Building Block is partiticned ia four
. sections (see Pigure 4~1) which are described in detail in the following
paragraphs. §

4.1.4.1 Address Bus Interfgoce. The Address Bus Interface (ABI) B
section, which provides the sddress parity checking and dscoding required
to select a memory module, is shown in Figure 4=3. Specifically, it
receives a 16-bit memory address encoded with two byte-parity bits from.
the Address Bus and stores it into the Memory Address Register (MAR).
The self-checking parity checker cireuit (APC) is used to validate the
address before a read or write operation is pé:fomd. If no errors are
detected, the low-order 12 bits are sent to the Storage Array Block
vhere the independent, on-chip decoding is performed. A fault in ome
oon-chip decoder may cause access to a wrong location to occur, but this

| will be detected and corrected by the data-word SEC/DED code. Similarly,

two decoding errors will be detected by the SEC/DED scheme. No distimc-

tion is made between errors caused by faults in on-chip decoders or

- storage.cells. ‘

The decoding of the high-order (0-2) address bits, which are
used to select a module within the Storage Artay, are checked by a self-
testing decoder. Alternately, a separate decoder can be associated with
each bit-plane, thus making it possible to use the data-word error code
for correction of single bit errors and detec;ion of double bit errors
‘in the address decoding. The high-order, module select bits are used
as "soft" names and must be mapped into the physical module address.

The design of the Soft Name Checker (SNC) is given in
Figure 4-4. The Address Parity Checker and the 5-input morphic compara-
tor are shown in Figures 4~5 and 4-6. The Error Word Address Register
(EWAR) is used to store the address currently being referenced. If a
fault should occur the EWAR can be read out for subsequent diagnosis.) '
The block labeled ORC detects out of range commands to the MIBB. It is
shown in Figure 4-6.

kY L el hnt

)
3

a————

4=-25

e P VTS T & o e V. yy - e . ¢ aviman ol

89B3JI93U] Sng SSIIPPY °‘¢-y 2an8yy

(DONS) 39393Yy) ameyN 3JO0S “H-% 3an314

) (L]
INS
98 1741
ﬁN Q— ﬂsnonucu
] Sx Vi w oszm At
14 1 4 xy y »
/
’y
Vi
’y
NS GvO1 ~
4 3
7y -~
9 174
ﬂ§u.o~°‘
0
30X L=t Syns £
y 14 Xy ‘y 7y
e i

?q "?‘m":

L e . s s <o

AL CIERRNS IR GETEES IR SRSt Seneme wmeie 4

P

MAR .,

1
i

MR (MORPHIC REDUCTION CIRCUIT)

—.—-——' —dp——-—

X

EQV GATES: ~ 100

Figure 4-5. Address Parity Checker (APC)

Fl

A\
a

SY].

FORME =———1 5|

(]
s,

REPEAT FOR 6TzEb EQV GATES: ~ 40

Figure 4~6., 5-Input Morphic Comparator (MPCS)

4-28

ha [OWERP U S W SRS

JAGIRASE I SRR IR A R R IR

A Data Bit Module (mo 1s a-bttwtda. Itmhuotnmﬁmo!m
Memory Data Register (MDR) and networks for interfacing MDR with regular
end gpare bit-planes. The designs of subblocks are indicated in
Pigures 4-8 to 4-13. The replecement of a faulty bit-plane is done dy
decoding replacement registers ?OIAR‘ (vosanb) (rigure 4-14). E}hn
decision which bit-plane to replace is made by the gysten, Oa. the basis
of error information (location of last faulty bit), the system sends the
correspending RSP command and loads POSAR_ (POSAR,) with the bit-plane
position coda. A correction input is used to allow the error correction
subsystem to complement an erroneous bit. The concurrence of POB. and
";1 causaes the specified bit to be replaced by spare-a im the ith DBM
or CBM. Similarly Inbi enables replacement of the intermal bit speci-
fied by POS, using spare plane § . The signal CEN enables correctiop
(inversion) of the bit specified by x°’1’2 within the selected DBM (or
CBM). The signals so-ss are the Hamming code syndromes to be inserted
in the check bits during store operations.

4.1.4.3 Brror Control Section. The Error Control Section (ECS),
shown in Figure 4~15 is responsible for generating Hamming code check
bits and syndromes (SGC) (see Figure 4-17), byte-parity generation and
checking (DPCG) (see Figure 4-16), and error analysis (SDA). The cir-
cuits used in BCS block are also self-testing. The single bit error is
corrected by a decoding syndrome generated from the word contained in
the Memory Data Register (MDR) in order to localize the faulty bit {.
The correction is performed by reloading MDR1 with the faulty bit com-
plemented. The correction mechanism can be disabled on system request
to preserve the data information for systems diagnostics. The byte-
parity checking provides for detection of most frequent errors im the
bus and interface circuits.

4-29

A

~ _M @993303uy feiay afeiolg-sng ®vIvQq /-y ANyl
: SU~ UV A3 1359 o_o<O._
Sl " tlgg
7 1 4
(4
Yo 03)
19,5 719
ﬂm %v - n—....-oao

o il i

] (RED ‘WEQ) STPOW ITE YPaqd/eled °g-y 2andyj
o2 ~ VD ALS £

4-31

(XZ) °TRPoR 374 ©IvQ - 3°3sT3ey wIvq LiomaR

3

A2

J

3

j

4

1 e
%

!

3 —
4

m

W

00000S

*6-y 3ImB1a
%a
-
_
“
A - voonss i
0 %saw t — AGWOVO?
2.
NSU‘I.I Ly
m ©00230 b 0,
-l T
ND
%> _
—— 3

|
i
M
|
|
m,
|
STNPOH 3T WD - 31918789y vIeq K30WdH °Q|-y dINB14 M
. [Y XXX] X J ~ .“
S -\ - - - = -/ | _A
.. | L
| | / | e
“,_ Ag & M
_ ! |
_ _ :
I 300138 a ;
: _ Oyow 3
_ | 0 1 0w avor
] — . , Y X} _
| > % L,
%0 - 1, .
_ - e 300230 0,
R . B Ly NOUISOd mw..w
_ 900 |
L SR ‘- — e —— = J
G |
S5 10g 0 18 10a o g N 9y 9,

T T

B e T,

N WRITE

s e W

1 l
T e

: e |

o |

o Y {3 S e 1 -

Yo %b, “o 7 58, %

Figure 4-11. Bit Interface Module (3X)

L L7

| iy A |

} 1

(REPEAT FOR "|7)

;"F_..-..-

\ /

- o - o

o Y i mh

Tie T1sbie ™6 Pis
N WRITE
— ——’
HAM

Figure 4-12, Bit-Plane Interface Module (2X)

4-34

R, POSAR, WhiTE ERV GATES ~36

Figure 4-13. Spare Plane Interface Module
(3X for 81". X for SPb)

r.-ﬂjﬁm$

aqol !NLl
EN, T ER, POS, ‘Fkof :f%z POS,,
L !
DECODER DECODER
1/2 139 /2139
2 }3 2 j 3
CP —o» rosAR - o
SETPOS =8> ° 174 % 174
a
s
5 s 1
r‘ T 7‘— }
LOADA OBy, ... 15 LOADS
EQV GATES; ~ 75

Figure 4-14, Replacement Control Section (RCS)

4-35

o ————ee = e

3 (S21) ©OI3IVeS [013U0) 20217 G|~y 8anByy

Mw 000~ }SAVO A3 BZAWNY 1003-T19N00 OGNV -TTONIS = vaS
wﬂ SEDNDID/ASWLVEINIO WOUANAS = DS

JOLVEINIDADDINO ALV VIVO - 9040
SIAMARLNI ORI ASOWIW ONV ¥SION SNLVIS JOWI = 1IW/¥53

“- OOOOO P
A
N& -L gL’ ev N-s‘f
- é /]
' * * ot Z
i _ -
¢ - o .
208 (EN vas 9240 3
..JP'@ o e JLFUM
" Ny oy <@ ° [} 4 2 e £ o
.M 240 VI
T 2 o2 gocoe %2 ~— wﬂ!q“,_od
GE .g 3G 2 13W/53 m > 335
1o, ‘]».'i BN v INW
: e N» Z 4 X4
N g— 33 GVvO1
@ mo uivhas g g3 L3S INS 24V MY UNOD

> "
—
-
-

f
(90da) amIvasusd-18d8Y) Lariwg wiBq -9)-y 2anByg

_ m: —r_ n..,.,,.lr.r..l...hﬁ

N
0 WM
= %
NIA3 a0 00 N3A3
VOLWIINSD AllewW

v
m B
| ¥ rw e mawas
,m.) 1
g e * a* A
W
W ﬂ-.ooo-ﬂu-. ﬂ-.-.ﬂ;—’ oo’ Nsﬂ. Y LALLL z -*

T P S P TP

e EE TR A O e, T AR e TR T e e T e s o Sttt A C A A O L CoT TR IR

& So0

-5

MDRub__;.__a I:::> ’ =%

N WRITE s

REPEAT FOR INPUT :
Sy0,511) MDR (5,6,7,8,9,10,11,12,17)
(S00:Spy) MDR (0,2,4,5,8,10,14,15,18)
(S30:537) MDR (0,3,6,8,11,12,13,15,19)
GeorSar) MDR (1,3,4,7,9,11,13,14,20)
(Sg9:S5y) MDR (1,2,9,10,12,13,14,15,21)

EQV GATES: ~ 150 (TOTAL)

Figure 4-17. Syndrome Generators/Checkers (SGC) 6X

The error analyzer receives the inputs from the following
functiéns: data-word error coding; data-word byte-parity checking;
address-word byte-parity checking; all self-testing circuits and check-
ers of duplicated units. The output signals indicate the conditions,
such as NE (no error), SE (single error), DE (double error), CE (circuit
error), and they are recorded in the Error Status Register (ESR) which
can be transmitted over the Data Bus on system demand. The specifica-
tion of the fields and informationm to be recorded in ESR should enhance

the systems diagnostics and maintainability of the memory system.

The design of ECS follows that of Carter et al.

4-38

The morphic XOR trees are used in checking and generating
check bits as follows:

- in READ operation, the output 8i represents the i-th
syndrome

8, =®/(c,, bc)

where <, is in HDR'6+1 and DGi represents 8 MDR posi-
@ tions as defined on the diqgtam. The signals 810'
| 511 are morphic outputs for the i-th syndrome. By
; definition, s1 = | if there are no single errors in
L ‘ the positions corresponding to ci and DGi.
The Carter SEC/DED analyzer, sﬁcuu in Figure 4-18, performs
i the checking of syndrome generation by morphic signal SGC, which is IM N

if there is no error in any of the syndrome ggnerators and 0M otherwise.

This is so because odd parity is used in tpe encoding. Two parity trees
. are used to produce a morphic syndrome parity check (SPC). Since there

is an even number of syndromes and parity bits and the syndrome "no

error" condition is 'M' there should be an even number of 1's in total

under no error condition. Therefore, both parity trees should have like

SO UG A

e nabis

parity and SDC is OM under a no error condition and 1M otherwise.

From morphic signals SGC and SPC it can be decided when !
; there is a no syndrome error (NE), a double error (DE) or a single error

{ (SE). These conditions are mutually exclusive and that fact can be used

e A R lase aa

to provide for checking analyzer circuits as indicated by the No Circuit
§ Error (NCE) network.

The morphic error indication signals are systematically
collected in an 8-bit error status register (ESR) (see Figure 4-19).
On the basis of address and data parity checking, SES/DED analyzer out-

puts and command/control checking, two outgoing signals, are formed. !

”‘w—vﬂv«. N
1

Whenever a single error has been corrected, a morphic interrupt signal
SECI is generated. If an uncorrectable condition exists, the memory
F% error interrupt (MINT) is generated. If MINT condition exists, a write

operation is prevented.

4-39

.
&
4
v

JOERE N A L e T

AT RAT T e A TS

(vas) aszdyevy @EdA/OES

JO¥¥3 LINDYD ON - DN

o TR L ST s ST LR T T e T T

‘8L~y @an814

)

¥O¥3 31WNOA - 20 LX) —
JO¥¥ JNONIS - 3§ I
YOXION - 3N <l w =1
MOIHD ALISVM SLI8 ¥DIHD - DdD | ¥OX | e
MDD ALV INOYANAS - OdS — 1
ND3HD BOLVEINIO INOUANAS - D95 e—
¥IDN ~ Muz
ON 2
240 las 08z _u
! d
@i 4 ™ N3Dd | o
Z °
Is - -N (‘hoz » -N , ——m
@y DO p— 10
(4 30 Ayt iOZ(
2 p
0 51 V10N ["z m\) Toez —
O3 345) | 4
1s — e | S me
¢ N304 | O
— 2 ®
A HHH ~ _u..u 35 @ Waony * o
3
. - Wion R p———n 00
ts 5 <<h°2 ‘l\M_ 1 xg ~; (155405,
[J
Ga INaee W] W M
°um OGNV 505 ONV L e (Mg 0L,
o -— % i (1950

4-40

Y P L Y U S Oy

3
4
.
1
.

ST AT AR TR T T T TR TR B v i -

(1mi/9sd) 3Idnizajul Kiowmel pue 1939732y sniels 10113

*61-% 2an8713

—8—1,

4-41

YT TR v

L

!

4.1.4.4 Memory Control Section. The Memory Control Section (MCS)
provides control signals required to implement operation and command
algorithms. As indicated in Figure 4-20a, the MCS consists of the
following subsections: the Control Interface (CI), the Clock Generator
(CPG), two Condition Generators-(KGa. ch), two State Sequences (ss..
ssb). two Control Signal Generators (CSG‘. cscb) and a Control Signal
Comparater (CSR). Thease subsections are described in more detail in

the following paragraphs.
(a) Control Interface (CI) and Clock Generator (CPG)
The Control Interface (CI) is shown in Figure 4-20b. It
consists of SCCM-MIBB handshaking circuits (MSTART-MCOMPLETE

circuits), and several flags at the out-of-range command

register with the command decoder. The Clock Generator,
also shown in Figure 4-20b, consists of the basic 8MHz
clock oscillator, a synchronizing divider which produces a
4MHz clock train in automatic mode when MSTART=1l. In the
manual mode, a single edge is produced. (It is assumed
that all flip-flops are edge-triggered.)

(b) Condition Gemerator (KG)

The conditions generated by KG are defined below:
= HAMeSER*SECEN*NCER*RTRY

= HAM*SER*SECEN*NCER* RTRY *RTRONE

= HAM®ERR*SER+HAM* E2R+RTRY * RTRONE* ERR
= RES+REA+REP+EDR+RSP+RBR+SEC

ORC_ *MSTART

= NWRITE+SSN

= NWRITE*K, +SSN

= FORME*MSTART (WR1TE+NWRITE)

= WRITE*NWRITE*SSN*RCB

= (ERR+K +K,)NWRITE

372
NWRITF+WRITE

7R R R R R R R
; -T- - VI SRV I S I
L]

K
-
ot

#

The fmplementation is straightforward and is not shown here.
(¢) State Sequencer (88)

State Sequencer (8S) implements the control state diagram
shown in Figure 4-20c. The t states correspond to the steps

of the operation and command algorithms given bhetore, as
follows:

4-42

UOFII9S§ [0I3u0)

*eQz-y 2andg

, (WyH ‘w3 ‘N3N
435 ‘IW¥04 *"J¥0)

SNOIWLIGNOD
{ ! 1
— 4 L)
Y9 [@— % [Yo ,
SIVNOIS
i i </ 1081NOD
m e
[4 a@~/— 0D
9°° yinoD @A ¥ 4
W do *— (o) 0
m - v
,) e M
L SNSS - ~ s e s = | o 4
m 09~ - —— aWODW
;
| t !
SNOILIGNO LaVISW

940

Nww

4-43

e e ot T e

o

(3539 VBISVW) 3d]

S AP A CAR I P b 3 -

938

$—dd

3300230

WWOIWIVITD

4-44

aisya3s WWOW e S —— WWODW13S

hc(»mﬂc HAII_ 4

1¥ViSW

440,
N,

|

i + DRl asl A
R

AEMP

5

LNBHSNd SS

P

440 NWW

RCB
-
K9 .
Kg + WRITE

K10°K2

—
Ky, NWRITE

SSN -

NWRITE
—e

K"'WR"E

Figure 4=-20c, MCS State Diagram

,g i l’; :1

to WAIT

Y DECODE

t2* READ1l, RCB1

ty READ2, 8SN1, RES1, REAl, REP1, EDRi, RSP1, RBR1, SECl
t, READ3, sSN2

ts READ4, SSN3

t6* READS, WRITEL

t7 READ6, WRITE2

The states t, and t_ take two (2) clock pariods in order to

2 6
accomnodate the access to the atorage array. The implemen-

tation for the breadboard uses a standard synchronous con-
nector plus multiplexer approach., In a VLSI implementation
it is likely that an asynchronous sequencer would be more
appropriate., The state transitions of the counter T,

shown in Figure 4-20d, =re controlled by the following
functions:

TCOUNT=t_ *K_+t *RCB+t *NWRITE+t . °K +t, *K_+t ‘NWRITE+t6*WR1TE

051 2 376 4 75

= . L1 . . . *] .
TLOAD to K8+t2 RCB+t3 K9+t4 K10+t5 SSN#t6 NWRITE+t7 K

TCLEAR®PR+TQ, (i.e. for all ¢t ,, 1>8).

The parallel load inputs are defined as follows:

11

Next State
Present State 13 12 I1 IO Condition
¢ 0 01 0O NWRITE
0 0110 WRITE
t, 0 01 1 RCB
tz 0 0 0 O
ty
t 0 K ¥ERR
4 0111 K
2
t5 0O 0 0 O
‘b 0 0
¢ 0 01 0 NWRITE
7 0 0 0 O WRITE

Therefore, the parallel inputs are:

13 = 0

12 = LO-HRITE+LA'k2

4-4b

P U (O NPT |

U O

ac et e

oy TR T e

304 VOIHNG

(®ss) aaouanbag ajeag

LM 1

‘POZ-% 2an8yy

|
N

«Ou

¥ILNNOD 1

%t o0 fou
11
8 L "
9 P JILRHMN *. ¢
xnw § P NSS
- v p—— c—v.
N Pre—— 6“ L)
| Proe—— ﬁ
Ole o o ch

XNW

=9t

© = N™Mm ¥ N O N ®

LM e

L

p.|
vy

A

e p— ILMN .

e 80

Prm——— ﬂx

4-47

cxscih

}

B s At D

e T

PR S ksl

I - toﬁWt"l'(+t. «NWRITE

lo - tIch+t“82

The sequencer is shown in Pigure 4-204. For additional
flexibility in the breadboarding phase, we use Nod-16
counter and 16-to-1 multiplaxers even though Mod-8 counter
and 8-to-1 multiplexers would be sufficient.

(d) Control Signal Generator (CSG)

The control signals for register and selection networks are
defined below. Again, the implementation is simple and it
i not shown here. Since there is a larjo number of control
signals (approx. 60), direct morphic reduction would be too
costly. However, it is possible to group together (by ORing)
mutually exclusive signals before reduction. For bread-
boarding phase, a direct signal-to~signal comparison on
equivalence is preferred. A control error is indicated {f

not all comparisons are the same.

EBAR register
SETEB-PR+17'NHRITE+MSTART-MCOHPL
LOADEB-tS-NwRITE

EWAR register

LUADEH=(LZ*'NWRITE+t6*'WRITE)FRSTEH

FRSTEW flag
CLEARFRSTEW=PR+t , - REA
SETFRSTEW~(6'NHRXTE-K3+t7-WRITE‘ERR
E register (morphic)
SETE=PR+t - NWRITE

7
LnADElsz,*-NwRITE+t6*-NRITE
LUADE2=t3'NWRITE+t6*-WRITE
LuAuﬁzst*+t'2t'b

LUADE6=lj°NHRlTE

4-48

i bt

MCOMPL

MCR

ouTen

RTRONE

e """mr-!

register

CLEARESR = PRt NWRITE+HETART*MCOMPL
LOADESR, = ¢, %*MMRITE+t *-WRITR
LOADESR, = t,°NWRITE+t MWRITE
LOADESR, = t,-NWRITE+t,WRITE
LOADESR, = LOADESR,

LOADESR, = LOADESR,

wmnsas - LOADBSR°+t 'S SSN /

wADzsn6 - Lomsao
mnsn, - tﬂt'z't",

flag .
SETMCOMPL = PR+t *NWRITE'K,+t 6*'-mrrs+: 7'

HRITE+t5'SSN+t3'KA+t2*‘RCB

CLEARCOMPL= fMSTART(FORME+0RC.)

register

LOADMAR = to(FORHE+0RCa'RCB)*MSTART

register

LOADMDR = to-FORME-HSTART'HRITE+(t2*+t5+ .
th-Kz)'NURITE

register _

LOADMCR = t *-WRITE-HAM+t,*-RCB ;

flag

CLEAROUTEN= PR+MSTART+-MCOMPL
SETOUTEN = t3(NHRITE+K“)+t2*RCB

f lag ‘.

CLEARRTRONE= PR+MSTART MCOMPL
SETRTRONE = t7'NURITE

4-49

Bt Koan
Ll

I~

SECI

MINT

SECEN

B LS

flag

CLEARRTRY =
LOADRTRY =

registae

LOADORCR

SETPOS‘
SBTPOSb
LOADA
LOADB

T

register

LOADP

register

SETRW
LOADRW

CLEARRW
RESETRW

register

SETS
LOADS

register

SETM
LOADM

flag

SETSECEN
LOADSECEN

register

SETSNRb
LOADSNR

4-50

to-ORC.'NBTART

PRet,
PRt

ty°RSP°AB,,
ty RSP-AB,

'RBR-Abll

'RBR-ABII

to'FORHE'NSTART-NRITE+(t2*+t6*)-
NWRITE

t7'NWRITE

t o+ FORME - MSTART
MSTART - MCOMPL
t, Ky

PR+t7-NHRITE+HSTART°MCOMPL

ts'NHRITE'

PR+t7+MSTART'MCOHPL

tlo -K3+t7+t S-SSN

PR
t,-SEC

t.-SSN
ta~SSN

P

e R D e e el

DBOUT Signals
OUTEA = OUTEN. RBA-MCOMPL
OUTRSR = OUTEN-RES -MOOMPL
OUTMCR = OUTEN:RCB-MCOMPL
OUTMIR = OUTEN.NWRITR.MCOMPL
OUTEBA = QUTEN-+REP.MCOMPL
SELDW Selectivn
SELDW - cza.uwntrn
MEMEN (Memory Enable)
MEMEN = ERR
ERR
ERR - NHERROONHEBR
SER SEOOS!I
NCER - NCEOONC!1

4,1.5
The design of the MIBB
into LSI modules of 500-750 gates
achieved, as summarized in Table &
implemented on a single VLSI circu
The breadboard realiza
about 200 chips,

Estimated Complexity of Implementation

wvas directed toward partitioning
per module.
-2,
it,

This has been largely

1t is also small enough to be

tion using SSI/MSI modules requires

Table 4-2. Component Count

Module Equivalent Gates 1/0 Pins LS1 Chips

ABl "~ 465 64 1

ECS ~ 650 <100 1

DBSA ~ 775 < 64 1

Mcs ~ 500 < 64 1
(Duplicate)

23000 3+ 2
4-51

P S P >

R A

i B

4.2 THE CORE BUILDING BLOCK

The Core Building Block (Core-BB) is responsible for
(1) detecting CPU and bus faults, (2) collecting fault indications from
the other building blocks, and (3) disabling its computer module upon
the detection of a permanent fault. Two fault-handling options are
provided by the Core-BB:

(1) Stop at the first fault indication;

(2) Rollback at first fault indication, stop if fault
recurs

4.2.1 Core Building Block Requirements
Specific requirements of the Core Building Block are listed
below:

Q) Compare two CPU's for disagreement;

(2) Parity encode CPU output for internal bus transmission;

(3) Check parity on internal bus;

(4) Recognize Core-BB commands: Halt and Inhibit, Restart,
and Enable, as out-of-range addresses;

(5) Allocate the internal bus amongst several DMA modules;

(6) Detect internal faults within the Core-BB;

(7) Collect internal fault indications from all building
blocks within the computer module;

(8) Disable SCCM output (or set error message) under fault
conditions;

(9) Provide reset/halt, or reset/rollback, capability for
optional transient fault recovery;

(10) Halt computation on recurring faults.

A block diagram of the Core-BB is shown in Figure 4-21.

P TP U SEr . e S

4-52

S TR TR e e

ISW DVIEINI SIANTTONI.

wex8ey1q yoo1g gg-210)

“1Z-y @angyy

)

ﬂ

1¥v1S34
1353%

gy
GNV=-DIHQION LNNI-11TW «NINaOW JINAOW
¥ SI HOBHM * LIN8ID zo_g ndd ndd e T:
ggwg AI3IHD $IUSYW o vm_ A
91 1
~ 0L n\
sne YaIOH LT
‘QoH I g. t 901 91 y? 'va)) x “
Sav-tav \ -
; Swv-luv 1 -3 a@nNvwS
» IAVINOD
; @ @ (anvw)
! amosn | laniosu] | TN
M Al s#OUV | 21ve3
i Sy-ly ; 3 } owm) | -NO _ Oawna)
; Syl . SHUSIO | oD 1 4, H0D30
i K ot | Snivis >=u§_ /
{ oowW 4 P
W 91 NIGW o“ﬂuu‘ 4 oWﬂ_ y N ingwns
j 1 ok #AI3H
: bl S8V JINIOW-8) (anww) v 305530084
IWsD 2
“ w04. | |awaos ’
g 2N S Istwnors 1wnva) Wt 4 avd)
" | SIHIIOW| | 14wOD
r ok bx7ena) i
133 _ $IZINOYHINAS LWV | Rt
€01 — (XTNC) | SaNYWWOD | :
VAISAS o pu— FIONINO] ANINOII X31Na | sne
LI’} TNOOW 10UNOD
NE D0 JOUNOD INIWIYI ¥IONVH L1INV4 N
te > TYNELX SANVWWOD
aNVY Tvnnww
—1 MO0 SNIGlINE 3OO
AVPTION ‘1353 SMOUMS
4 ICUNOD
1INV

R -

4-51

ks
. &)
e s A S e M 55 n % g A T ..

e e P

. A ————

R R T N I T L —

4.2.1.1 Core Building Block Connections. The following is a listing

of Core-BB connections and a brief description of their function:

(1)
(2)

3)

(4)

(5)

Internal Data Bus (DB) 18 lines (16 + 2 parity)

Internal Address Bus (AB) 18 lines (16 + 2 parity) -
All building blocks and the Master CPU are connected
to these buses which tie together to the SCCM. The

Core-BB checks parity on outputs from other modules

and generates parity when the Master CPU outputs on

either bus.

Local Data Bus (LDB) 16 lines - Special data bus to
the check CPU. The Core-BB passes data directly from
the Internal Data Bus to the Local Data Bus when
inputs are required by both CPU's. When both CPU's
output, the Core-BB compares the two processors by

comparing the two data buses.

Local Address Bus (LAB) 16 lines - Carries address
outputs by the Check CPU which are compared with
address outputs of the Master CPU (by comparing the
Internal Address Bus with Local Address Bus).

R1-R5 (5) -~ Bus Request signals from DMA controllers
in other building blocks.

R1-R5 (5) Complement of RI1-R5

These signals form morphic pairs (Ri' EI’ esey RS’ Es),
which are sent from up to five SCCM building blocks.
They are checked for proper coding (i.e., being com-
plementary). The true values (R1-R5) and the comple-
ment requests (ii_ES) are processed by two redundant
circuits within the Core-BB, which in turn generate a
true and complementary set of acknowledge signals
(Ak1-A5). (Ak1-AKS).

4-54

DPUIT P S PRI RCLE P IS et

e oAt B e

P P

e L

(6) Ak1-ARS5 (5) - Bus Grant (Acknowledge) signals to DMA
channels. Ak1-Ak5 (3) - complement of Ak1-AkS forming
morphic pairs.

(7) HOLD HOLD (2) - Bus Release request to Master and
Check CPU's.

(8) HOLDA, HOLDA (2) - Bus Release acknowledge from Master
and Check CPU's,

(9) IF1-IF8, IFI-TF@ (16) - Eight morphic Internal Fault
indicators from other building block circuits.

(10) RESET, RESET (2) - Morphic reset signals to all SCCM
modules from duplicated logic in the Core-BB.

(11) INHOUT, INHOUT (2) - Inhibit outputs to Bus Controller
and 1/0 BB's, from duplicated logic in Core~BB.

(12) RESTART, RESTART (2) - Mdrphic restart signals to
Master and Check CPU from duplicated logic in Core-BB.

(13) @1 Clock In (1) - 1 Mhz square wave clock in to
Core-BB.

(14) ¢' (1) System Clock - Clock to all circuitry in SCCM,

sent from and controlled by Core-BB.

(15) WRITE, NWRITE (2) - Memory read/write control level of
the SCCM Internal Bus.

(16) MSTART (1) - Memory Start Signal of SCCM Internal Bus.

(17) COMPL (1) - Completion level of SCCM Internal Bus.
Counting Vcc and ground, this circuit will require a 128 pin

package.

4.2.2 Core Building Block Implementation

The Core Building Block consists of three sub-clements: A
Processotr Check Element, A Bus Arbitration Element, and a Fault Handler

Element, which are described below.

4=55

- e———
-
S pe

iAot e s

e t—— s

4.2.2.1 The Processor Check Element (PCE). The Processor Check

Element serves three functions: (1) to compare the outputs of two
synchronous processors; (2) to encode and check internal bus parity;
and (3) to recognisze and decode commands sent to the Core through the
internal SCCM bus.

The PCE is shown in Figure 4-22. 1t is connected to the two
18-bit internal address and data buses within the SCCM. The Master CPU
and other building blocks in the SCCM also reside on the.® buses. The §
PCE provides a local addvess and data bus for a Check CPU, which is f
operated synchronously with the Master CPU, and its outputs are compared i

for checking.
Internal circuits in the PCE consist of:

(a) Morphic Comparators MCMP - Each of these circuits com-

pares two pairs of 16-bit inputs, and generates a two-
wire output. The output takes on vaiues 0,1 or 1,0 if
the 16-bit inputs agree, and they take on valies 1,1
or 0,0 if the inputs disagree or if an internal fault
occurs in the comparator circuit. These circuits are
said to be self-checking in that nearly all internal

faults will eventually result in an error indicationm.

One MCMP circuit compares the address output of the
two processors. The second compares their outputs to
the data bus. An isolation circuit is provided so
that input data to the Master CPU can also be passed
to the check CFU.

(b) Morphic Parity Check/Generator - Two circuits are pro-

vided to check and generate parity on the address and
data buses respectively. Coding on each bus consists
of two odd parity bits; one over all even bits and one
over all odd bits. Since the Master CPU gencrates

16 bit address and data outputs without parity, the

parity generators add the extra two parity bits to

4-56

Rd ARSI S e B oY

3 ADORESS 1
: - MASTEY CPU
AR - EXTNAD ™SS o DATA S (O8)
1 - T - S
: - - - i
-l - - Tny
'.d‘:' -1ne

1& ;o .
K] SNk cen PO, *0, oot ==

" CMD V-6 Ut "
[STATUS o .

p—ty COMMAND REGISTER 3

y 4

y——y| DECODE FORME FyF, v INPUTS TO 86 1

‘ L

\ cMD 1o $

n 7

p— COMMAND Y
[7——¥] Decooe *FORME OUTs2 "
, V" STATUS bl

;'.;2 ;EGB“R y m—

v
| e
® ? MCMP 16 2
7 compAR ISOLATOR
I
) A
PASS,)
~
\. TO MEST OF
CORE 80
re- _'} ¢
e N
J LOcAL ApoRESS) LOCAL DATA
LAS s, 108, -L08,

Figure 4-22. The Processor Check Element

4-57

(e)

(d)

i N e D e da e e T e a

their associated bus during CPU outputs. Other data
on the internal buses is expected to be coded (e.g.,
memory data) and the parity checkers check for proper
coding.

Each self-checking (morphic) parity check generates a
two-wire output with values 1,0 and 0,1, which repre-
gsent a correct check, and 1,1 and 0,0, which represent
either uncoded data on the associated bus or a fault
in the checker.

Command Decoders. Two command decoders are provided

which have identical outputs. When an out-of-range
address appears on the address bus (with ABO-AB3 =
1111) and the Core-BB is addressed (ABA-AB7 = 0001),
the three least significant bits of the address bus
are decoded to generate six commands. These are
designated CMD1~CMD6 (*CMD1-*CMD6 from the duplicate
decoder). If any of these commands are received, the
level FORME is raised. The outputs of the command
decoder are compared in the Fault Handler to detect
faults in this circuitry.

Core-BB Commands are:

CMD1 - START Clock

CMD2 - STOP Clock

CMD3 - Initiate Rollback

CMD4 - Clear Faults, Enable Outputs
CMDS - Output Error Status Word 1
CMD6

Output Error Status Word 2

Status Registers. Two status registers are used to

sample various fault Indicators and make this informa-
tion available to external computer modules. When a
fault is detected (F1+F2) by a fault synchronizer,
this data is sampled (i.e., clocked into the status
registers). Two Core-BB commands are reserved to read

out the status registers. When the level OUTS goes

-58

&

| 3

ST AR RET TR R, 4 TR ey

e e et e S T R D e B ot pp—

D ik sttt

low, tri-state drivers are enabled in the respective
status register and its data is output to the data bus.

Figure 4-23 shows a preliminary logic design of the circuits

which make up the Processor Check Element. Specific interface signals

are:
Input to DCE:
Poa-Pod Generate and output parity on address or
data bus, respectively.
OUTS1 Output Status Register 1 to SCCM data bus.
oUTS2 Output Status Register 2 to SCCM data bus.
F1+F2 Load status registers (a fault is detected).
PASSd Connect Local Data Bus with Internal SCCM
data bus.
Outputs from DCE
MPCq, MPCd Two~wire morphic parity check results for
address and data bus, respectively.
CMPa. CMPb Two-wire morphic comparison results for
address and data bus, respectively.
CMD1-6 Command lines for decoded commands to the
Core-BB.
FORME Indicates Core-BB has been commanded by an
out of range address.
*CMD1-6, *FORME Duplicate of command decoder signals above.
4,2,2.2 The Bus Arbitor Element. The bus arbitor accepts internal

bus requests (R,R) from up to five DMA channels in other building block

circuits. It accepts multiple requests on the basis of priority, requests

release of the internal bus by the two processors (HOLD), and upon com-

pliance by the processors (HOLDA) it grants access to the selected DMA

controller (AK). Incoming bus requests are morphic signal pairs which

take on values of 0,1 when access is requested and values 1,0 when no

4-59

ppm—— s - .
e A, e = = A s .

|

—ry

*s1a3syBday smjyeig () f{aapodsq pusmmo) (p) tfaojerosy (9) tuostaedwoyn 108832024 d91ydiaoy (q)
$a3e1auag/yday) L11aeq (®) :d57%07 3uBWATT }I3Y) 10882001y *gz-y an¥rg

D dad. o nfk a A

@ ovasanst)
satvis = 54300330 OMi 4O INO NI

19 . G30NTONI KALEIANI SIHg)
3N ey R —
wevY 2480 L] —u IT\S..!

(oaswey) z S3VIS oy
©9 Lo smoy SHUSIO FBU 0 D

1353m

IR

]
i
§

- N

e e | “mw eziswe lml*.l&nmﬁ

n h ~ WO %Ou SOWD.. Sowd roL

+ € %0 1 4o 9GW3.) 9QwD

aSigager, ZigligOly 4g 23 29 % g *; ta2g ig o suvss rxul...-ﬂ._ 1300530 Crovwwos >
w1 57

o1-¢ N

AR NEY

3
3
A_

3
;

=0 Peswe

19ESWL
1343 4 UVIS-TU - SEFAIN0

o0 @B RN EREN I EERE R

W0LvIos: >
91-¢ 0 [o 1] L
US) LBANL/SOQONY WG S| _— 4D X33MD 40 "¢ 0 D01 aNV §1% viva NIBMUMN KOLVIOSH UVIS-t - D8I
90) SWWANI XM €

r 4 11 -

w

0= — =

:
w * w w
3
w
4
W
_
-
m
w

4-60

|
) unS>e>
1137 ~NOONG3Y |
ANY- ANHdBOW _
LNdNI-Z fww

]

w w eziswe

lllll SR S

[R N o T B

w w

TUTETETT T TUTE | G

1 wWOW 0ty o_l!_KN—XO-K 0y ° ¥ n_ln.!—_l 6y ¢y $, €

x ¥ Tu

e b Oy

AUVEINID NI altewe =

B v

T I WAt o ot . i it o n o

3
.
m
W NOSIFVOWOD 3055ID08 WNHIIOW (3
-

?i.:,_;
o
J
\
X

e ANNS

request is made. Values 1,1 and 0,0 represent fault conditioms.
Similarly, the acknowledge signals are morphic with 01, and 1,0 repre~
senting not-acknowledge and acknowledge (grant). As before, the values
00, and 11 represent fault conditions. One variable of each morphic
pair is associated with one priority resolver circuit and the other is
associated with the second resolver.

The two priority resolvers are duplicated circuits, each of
which provide the buz arbitration function — one in "true" logic and
the other in "complement" logic. They are compared using morphic-and
circuits to detect faults in either unit by their disagreement. Each
priority resolver {s a simple sequential circuit which accepts bus
request inputs, obtains release of the internal bus by the CPU, and
grants bus access to the requesting DMA channel with highest priority.
A functional block diagram of the Bus Arbitor Element is shown in
Figure 4-24, and a logic description of the Priority Resolver is pre-
gsented in Figure 4-25. The morphic-and circuits are shown in Figure 4-26.

Synchronization of the two priority resolvers is described below:

(a) Timing. A square wave clock is sent to all building
blocks in the SCCM and is used for synchronization.
In the first half of the cycle, the clock is high and
this signal is designated @1. The inverse of the
clock is ¢2. Thus, the rise of &I is the beginning of
a clock cvcle and the rise of ¢2 is the middle.

All bus request, interrupt, and fault indicators are
constrained to change only at the beginning of P and
it is assumed that they are generated by a D or .J/k
flip-flop clocked with 01. If these incoming signals
are examined instantaneously at the rise of either :2
or ¢1. they are assumed stable., Transmissfon delays
prevent change at the rise of . and the circuits

"
have settled by the rise of :2.

C v e — 20 o

R P P [t SO SRS G UV
;;

\ s 10 SELF 10 s
AVARANE
mumﬁr 7o ed m TO REGUESTING OMA

| *COMMEMENT" {} |
PRIOITY ;;
| RESOLVER | ;
| | INTERNAL EOR i
L 4 j
cicx g e e
Lt 10 mASTER CPU
o) FUNCTIONAL BLOCK DIAGRAM OMA BUS REQUESTS |
NEy hy |
MDIN 5
wdf manD s 5,
¢, (CLOCK)
PRIORITY RESOLVER =1 PRIONITY RESOLVER
1441 P —
j -,
HOLD
. HOLDA —OHOLDA
Y © AK! -AKS
e T s —
3 -0 AKI -AKS
" ¢
- o pORC
' MAND 8 <i FAULY
: MAND 4 INDICATORS ,
v REDUCTION OF ALL |
. CSMF 22 MORPHIC F .1 :
| ” SYNCHTO ¢, ¢, -

b) DETAILED BLOCK DIAGR W

| Figure 4-24. Bus Arbitor layout

4-62

A e w B LU E RS el i o
T ™

BuBEL TS 0 ouTLTS
D rOR
ri- -'/ o,
|
L -t d s
M0 -
‘M m
PPLA e AXS | |
00t
[°1 4] Ef. e T D"j L
. 1 1 A Dot T
AKS
'_0: K] R Py 1 Do [
cLock Q Q ENARE | |
1% ¢ f, '
o o ‘ AOTOA
[]
f, LA 1)- [/}) g | ' .
1510 2 = |
S P— L {>o—|— LS
_—D__;mcmrsucu
MESTARY —d{ § Q
ALTERNATE IMPLEMENTATION INVERTERS REQUIRED
/" ON ONE COPY —_ _
INPUTS CHANGE ON ¢, 1] napBRn o = —a{" T 7 .

| . :— - _‘:/ ,.D a3 | E |m
cLocK m—L(—~\ smom - S 3 'TJ = I W | AK)
" 1 1| S e
24278 "'ol', 027 P Irb":‘&
= e

' RS | |
._,-Cr_u — R+ Lmorsa

— == T -

:1@1:2 T

Lo

7 LB P 0 L—“(:‘j:u | |
m: — 1D :_ | D

i.’ CHIPS EACH

|
E

Figure 4-25. Prioritv Resolver lLogic

4-63

&g?ﬁiiigi&:;&af‘ ¢N!VIM£!O!GI|D.Aieg%:u‘l!ﬂi&#=g==gfaﬂ

PARS TO A SINGLE OUTPUT

° ™ 5 ;;;;: LT —— Qogu;s!EE! oy

= > il il
1 1010 10

X }_ UNCODED INMTS QUIPWY

00K X 1
- XX00 11
{ : 110X 90
BEX] 00
VXYY ®0
'Y X111 00
AN EXAMINATION OF THIS CIRCUIT WILL SHOW
THAT FOR EVERY *STUCK® VARIABLE, THERE EXISTS
AT LEATT ONE CODED INFUT WHICH WILL RESULT I
A PAURT INDICATION AT THE QUTPUT o2 = 80 OR 11,

a; SELF-CNECKING EXCLUSIVE-OR REDUCTION CIRCUIT OR TWO INPUT MORPHIC AND

MULTIRLE INPUT MORPHIC -AND (MAND) CIRCUITS CONSIST OF TREES OF THE
CIRCUIT IN ¢ ABOVE AND REDUCE MULTIPLE MORPHIC PAIRS 1O A SINGLE
TWO-WIRE PAIR TAKING ON 01 OR 10 IF AcL INPUT PAIRS ARE COMPLEMENTARY,
lAsND LA Olﬂol' ALL INPUTS ARE NOT COMPLEMENTARY OR A CIRCUIT ERROR

i | 1 | | R 1

= 2l " 2 =
o ol 1 e
§ INPUT MORPNIC AND 'lwl}wﬁcw

b) REDUCTION TREES

Figure 4-26. Morphic and Currents:
(a) Self=Checking Exclusive, or Reduction
Circuit; (b) Reduction Trees

4-64

v

Incoming bus request pairs and outgoing acknowledge
pairs are reduced with S-pair morphic AND circuits to
genurate two 2-wire morphic check signals. MDIN
verifies that the inputs are correct and MDO checks
that the duplex arbitors agree. These check signals
are examined precisely on the rise of 0' in the Fault
Handling Logic.

{t:} Implementation. Two priority resolver implementations
are given; one with a PLA and the other {s built
around a priority encoder chip (74278). The PLA is
better for VLSI layout, and the other approach ie
easier for breadboarding (see Figure 4~25).

The resolver implementation is straightforward and the
logic is largely self-explanatory. One additional
feature is an added flip-flop which has a subtle but
important purpose. When the system 18 RESET upon
error, the CPU will not necessarily release itself
from the bus. Thus we force isolation of the processor
with tri-state transceivers and must also generate a
hold acknowledge HOLDA signal. Upon detecting a
permanent fault, a latch is set in the resolver which
generates a continuous HOLDA signal. 7t is only
released upon a comnand to restart the CPUs in a
program rollback (RESTART).
4.2.2.3 Combining Fauliv indicators and Other Synchronized Morphic
Check Signals. There can bc up to eight morphic internal fault indi-
cators from external building blocks. These signed pairs make transi-
tfons between values 0,1 and 1,0 if their associated buflding block feg
working properly. Values 00 or 11 indicate an internal fault.

These signals are reduced by an 8-pair morphic-and circuit
to produce a s.ngle morphic Iinternal fault indicator MIF. Since the
fnternal fault and bus arhitor check signals are all synchronized with
the 4 clock, they can be combined into a single 2-wire merphic fault
indfcater. Thus, MIF, MDIN, and MDO ar. combined with a 4-input

4-65

' 1w"V‘*TWwW", R e R

e o v A T

morphic-and circuit to produce a single CSMF fault indicator which is
a combination of all Clock-Synchronized Morphic Fault indicators. (An
additional synchronous morphic indicator MRS ic included which is the

result of comparing the outputs of two duplex Recovery Sequencers im the
Fault Handling Logic.)

4.2.2.4 The Fault Handler Element. The Fault Handler Element is
responsible for overall fault detection in the SCCM and is also capable
of taking limited recovery action. It consists of two major parts;

duplex Fault Synchronizers, and duplex Recovery Sequencers. Both parts

are duplicated and compared to provide fault detection, as shown in
Figure 4-27.

Each Fault Synchronizer examines morphic fault indicators

and check signals from the other building blocks and from within the
Core-BB itself. Its primary function is to examine these signals only
when they are stable and valid to detect faults, and to deliver a Master
Fault Indicator to the Recovery Sequencer pair.

The Recovery Sequencer (upon receiving a Master Fault Indi-
cator), disables outputs from the SCCM and resets the CPU's. Optiorally,
a restart can be attempted, and if successful, the software can re-enable

outputs and clear the fault indications in the Fault Handler.

Either of the Fault Synchronizer-Recovery Sequencer pairs
can disable outputs from the SCCM. Also Recovery Sequencer outputs are

compared and a disagreement is signalled to both Fault Synchronizers.

A logic diagram for a Fault Synchronizer and Recovery
Sequencer is given in Figure 4-28 and is described below:

(a) The Fault Synchronizer. This circuit examines the

various morphic fault indicators (CMP, MPC, CSMF) at
times when (1) their checks are relevant, and (2) when
the morphic signals are stable (not changing). The
clock-synchronized morphic fault indicator CSMF is
examined at the rise of every ¢1. The comparison and
parity check pairs are examined when a bus completion

signal (COMPL) is observed. The five morphic check

4-66

weiSelg UOI1D3UUODI3IU] - D0Tg BuIpring 210D

T{T-y fandld

NIVETION ‘$353Y NI X012
, ‘435 ‘LIS ‘401S Tty o g 0 s
\ ; e e
NOW i, C TNYW e
H wH§HSAS © 10WD Y ‘O‘ -
n = W 0 zlolo - i
. £ & |= g 2lzlzlzl3]2]E
{ % * ° L 7o o 212
SINAING LIgNT - - o o 4
SIUINO LIt o 7 °
B0 NI 4 W02
Y xp ABAODIN BNIZINOBOINAS 1 INV4 WNOAS >
| 1ovisn 1081401 - LEVISW
30092224
3 Z,
i o —rd
] SINIENO 1086 F(
i
2 WOININO3S FIZINOBHINAS 1V 4 T e vl 0%
! 1353y y 3 ABAOOU — vivag Tv01 553002V WD
2 18v2$38 = g m zldzl8ngo e ~ ——— \A)
3 m .. o m Px A m M N .,
3 'Y & G J&‘ J_‘v /Q o “\
1 19 01 HINAS ¥ 14 A3
3§ JAK30W TI¥ o’) | R
= 10 NOILING {4 [5) w1 Poove
2 SIOLYIIONI v OrvW ety
: 1Yv3 v
U m Teraant V] O 3 z
| DHIIOW 2 z 7 1B © _ 2101¥1051 idvawoo i
H 91 dWIW va
! 4 i FJVIWOD [
g gav-1 XV —— c 1. ry > . g R
V-1V % anvw |7 oaw : g ‘e v WD ABCT
i
" Qe A _y 4
| Euno..Q. vaI0H =z aisiom | Sty | RO GO AL
W : . 9 snivis ONYWWOD -
; i QIO ’ b $1no -1awD.
ﬂm arom VaIOH
w. 1NV NOIN 1
¥ . - 1
ot oA Y [“ % PEF) 0 UwYS I y ais03 | by W04 | 300DIQ [Ammyle
2 t_-o._onwh o IOSTY = oL sinant [[Vor snivis orwww OO
“ : ALTIOIN T 1 1S1IN0 ~tawd
3 M 20N ‘¢ lllvos nO;
3 " -1 g T T e
3 : v P 5
.m, ﬁ ﬁ % r ONYW [oW 8t MM_ Tl Adtewe w F||~|\.I. Al18vd 8 a1
' - - ° -
”,. m.u—- m‘—t ”““’ U&!..ll -— Pl \\\\\\\
1 —— 19Q) $M viva <3 _.l.,?z . Tt
2 SIS 3 SN vwa =<3 -Esnuu, ﬂ\\\\ - Y SNE $SIQAY
ssvw
——d

.

AR

4-67

TS T SRy TN TR S e T g R N — ‘. ‘4:1 ‘I,i‘i:.,z.:

e e o e A

aasuanbag Ai1aa002y pue 19zTU0ayduikg I(ned °|I-Y 2an313

(SKUW3 TV SIVD - OISIVID)
(*%005 43638 GV LIVASE TIVEQ ‘SIMINO THVEQ - SBUND 54057 10uNOD 0 80D € LIVd
|ININDAS
ABAO3
OINVIL
STYNOIS NOILIWWO)D 304
st

= A
SINAINO SI0NING YANNOD INO-IMIL H
p————— v
WWOD
i3s3 +WWOD .
4

SINAINO 100MaNE _
Adn_ _‘ndo.. L
YUNNOD 13540
T
IOI _

4-68

AWNO L 1584 § 301 iﬂu- ‘ $3403
4 NG OML 40 INO ATNO
—... n_. w ..- a3USYW 2 [yonx { (¥) BONX 1 NI O3IVEINID STYNOIS.
- T T o T
0 i 0 0 Iws 2dw “aw “awd Tawd
DR

R A S TR AL e B b v
: RIS bl i i Pt RS

signals (CMP,, CHPa. MPC,, m'ca. CSMF) are input to a
not exclusive-or function which yields a logic 1 out-
put whenever these signals indicate a fault by taking
on values 11 or 00. These signals are "anded" with a
set of signals which indicate the times at which each
specific check is relevant, and the result is fed to

a flip-flop which is clocked at a time when the results
are stable. Conditions for examining the morphic check
signals are given below in Table 4-3.

Table 4~3. Conditions for Examining Morphic Check Signals

Signals Function Enabling Function Strobe F.F.
MPCa - Address bus HOLDA - processor COMPL - bus f2
parity check off the bus completion
MPCd - Data bus parity HOLDA + READ COMPL @1
check
CMPa - Compare check HOLDA COMPL f3

CPU & master
CPU outputs to

address bus

cMP - Compare CPU's HOLDA*WRITE COMPL f

d 4
outputs to data
bus
CSMF - All clock at all times ¢2 f5
synchronized

morphic fault

indicators

A flip-flop is associated with each fault indicator
which is set if a fault is observed. An additional
fault flip-flop (f6) is included, which is set if

(1) the bus signals MSTART and COMPL occur in improper
order, (2) too much time elapses between memory com-

plete signals (COMPL), or (3) a program rollback is

4-69

externally commanded (CFSET). All six fault flip-flops
are synchronized with 0' (by f7) and combined to pro-
duce a Master Fault Indicator F which can only be set
at the rise of 0'.

(b) The Recovery Sequencer (RS). Upon detecting a fault
(F), the RS (1) inhibits outputs, (2) generates a four

clock pulse reset signal, and (3) for the first fault,

commands a program rollback/restart (see Fa’ Fb

sequence in Figure 4-28).

When a "first" fault occurs, the RS inhibits outputs

and issues a five pulse sequence. For four clock
periods, a RESET signal is generated, followed by a
RESTART to the CPUs to attempt a program rollback.
For subsequent faults, the outputs remain inhibited
and a reset is generated, but no additional RESTART
is generated. (This effectively halts the CPU upon a
second fault committed while trying to roll back.)

1f the rollback is successful, a program command can
be issued (CMD4) which clears all fault latches
(CLEARSEQ), re-enables outputs, and thus provides

complete cbsolution for the remission of faults.

(¢) Control Signal Generation. One of the two Fault

Handler Elements contains a small circuit for control
signal generation. Internal Control Signals are

generated in the following fashion.

PASSd (Pass data to check CPU) = HOLDA + READ

\— don't care

POa (Generate address parity) = HOLDA .

POd (Generate data parity) = HOLDAWRITE

+ READ*FORME MSTART

4-70

Bt

BERE e A S D e e dd S b ic i S e A s N 5 L e il g L e] B-S i WSS

OUTS1 = READ*FORME*MSTART *CMD5

OUTS, = READ-FORME+«MSTARTCMD6

2

COMPL (generate completion) = FORME*MSTART (delayed)

(d) Manual and External Module Control - This small circuit
providen for clearing of fault latches in the Fault
Handler and for initiating program restart. These can
be carried out by front panel switches or under program
control through out-of-range commands. Also included
is a master reset switch and a facility for single-
stepping the SCCM clock for test and debugging. The
logic diagram is shown in Figure 4-29.

4.3 THE BUS INTERFACE BUILDING BLOCK (BIBB)

The Bus Interface Building Blotck provides the mechanism by
which information is transferred between computer modules via the inter-
communications bus system. The BIBB can be programmed as a Bus Adaptor
or as a Bus Controller, as previously described in Section 3.5.4. The
following sections provide a more detailed description of the require-

ments, functions, and implementation of this building block.

4.3.1 Bus System Requirements

The choice of a bus system for the fault-tolerant building-
block computers requires careful consideration of functional character-
istics so as to meet a wide range of applications, which is to say that,
it must be useful as well as fault-tolerant. Therefore, the following

general chavacteristics have been provided in the bus system.

(1) Formats. The Building Block Bus System (BBBS)
utilizes 1553A formats to maximize compatibility with
planned and existing equipments. This also defines
speed and electrical characteristics. The 1553 for-

mat contafns status messages required for fault-

tolerant fmplementation.

e g 3gme

o g
20LVINOSO
asvw

Toa3u0) ITNPOK [BUI2IXF pue [BNUEBK °*GZ-% 3InB1g

zqsﬁuww

T

woune i bt N
4318 NONIS
S
-’ 4' + amAAN ma=l
(4] mul\\\
N
| P

\LA”HWHWicu
rawd

(S1Vv2 av3ITD)

W

«~AWWNG. ONILYISNI AS
MIVETION SONYWWOD

(344018 X010

3

! e
< \ h] 0y
b4

A0

-

Oz
[, p]

ovaow

4-72

(2) Memory-to-Memory Transmission. The bus system is
capable of moving deta blocks dirertly between
memories of the connected computers, using cycle-

stealing techniques to minimize software support
requirements.

(3) Indirect Addressin!. Within each SCCM of a network,

f various areas of memory are reserved for incoming or
reached through the bus system by absolute memory
address or by "name" through indirect addressing.

In the first case, a typical bus command is "Move a

5-word block from source SCCM 5 location 200, to

acceptor SCCM 3 location 3000." 1In the second case, .
the bus commard would be, "Move 5 words from source

‘\ outgoing information blocks. These data blocks can be
E

|

l

D

[SCCM 5, pointer 1 to acceptor SCCM 3, pointer 2."

]

In the indirect addressing case, the computers main-

tain a pointer table within their own memory which

| contains the addresses of the relevant data (and which
} is referenced by the BIBB). In our example the first
| pointer table entry in module 5 would contain the

F address 200 and the second pointer in module 3 would

|

contain 3000.

] Indirect addressing is important because it allows
decoupling of the specification of global data blocks
from the detailed assembly listings in the host SCCMs.,
Thus, software can be changed in one computer without

affecting the data references in the other machines.

€3] Multiple Acceptors. The data bus {s capable of trans-

mitting information blocks from the memory of any
source SCCM to the memories of one or more acceptor
SCCMs. Since multiple acceptors are not directly
provided in the 1553 format, additional modules must
be commanded to "listen in" on a 1553-terminal-to-

terminal transmission. This preserves the 1553A

4-73

~rra

(5)

(6)

(7)

format while allowing a "broadcast" mode for distri-
buting time and engineering measurements of general

interest.

Block Length. The maximum length of memory blocks
transmitted between computers should be at least

several hundred words in order to transfer files of \
collected data (for a number of information collection
systems). This is implemented by allowing the concat-
enation of 32-word transfers (the maximum number
allowed in the 1553A format). Long block tiansfers
are implemented as a sequence of 32-word transmissions
in sequence followed by a final block of less than

32 words. This chopping up of long blocks into
32-word segments is carried out by the bus system in
order to preserve 1553 compatibility.

Universal Hardware Interface. The bus system inter-

face with the host processors should be sufficiently
general to be applied to any of a large number of dif-
ferent host CPUs which may be employed. The most
standard interface that we could find is memory-mapped
1/0. The BIBB communicates with the SCCM through the
18-bit internal address and data buses, using direct
memory access (DMA). Control of the bus system by the
host CPU, occurs using out-of-range addresses (memory-

mapped 1/0) as commands.

The Bus Controller. The Bus Controller performs the

Bus Control functions associated with the 1553A for-

mat, along with the augmentations described above.

The Bus Controller is given a pointer to a bus control

table in the host SCCM's memory by an out-of-range !
store instruction. The Bus Controller extracts che

control table from the memory of the host module,

interprets the bug table, issues bus commands to effect

(8)

(%)

S T T TR T o, YT Y T T e T oy T e tamany

the requested block transfer, carries out data block
transactions involving its own memory, and monitors
status signals. The host SCCM is notified of correct
or erroneous transmissions through a status measage
left in memory and receipt of an interrupt upon
completion of the transmission.

The Bus Adaptor. Each Bus Adaptor moves data into and

out of its associated SCCMS memory as requaested by the
controller of its associated bus.

Requirements for Fault Tolerance. General requirements

of the bus system to ensure fault tolerance are:

(a) Protection against "party line damage" of bus

shorts or a bus interface talking out of turn.

(b) Detection of errors in transmission and (i) noti- %
fication of the SCCM by the Bus Controller-
through status messages, and (1i) providing a
mechanism to allow the acceptor module to deter-
mine that it has received an incomplete or

erroneocus message.

(c) Detection of internal faults in the Bus Control-
ler and notification of its host SCCM. The
Core=-BB disables the SCCM under this condition.

(d) Detection of internal faults fn a Bus Adaptor
and disabling its subsequent function. (This
does not disable the SCCM since other redundant

Bus Adaptors may still be functioning.)

(e) The use of redundant buses and host computers
so that messages can be rerouted in case of bus
fatlures, and computations can be relocated in

case of computer failures.

4=75

4,3,2 Bus Controller Functions

The Bus Controller (BC) is activated by a store instruction
to one of a set of out-of-range addresses. It uses the value of the

vord being stored as a pointer to a Bus Control Table in the host memory.
The BC reads the Bus Control Table from memory by cycle stealing and
carries out the requested transfer. The BC issues those 1553A commands
necessary to execute the requested data transfer over an external bus,
and monitors the associated status words to verify that the transfer was
: properly completed. Two additional out-of-range references can be used
to reset the BC or read out status. The specific memory-mapped commands
to the BC are shown in Table 4-4.

Table 4-4. Memory Mapped BC Commands

Conmand R/W - Address (ADO-AD15) — Comments

(1) Execute Bus Write to:
Control Table 1111 0010 dddO zzzz

AD12 = Odd Parity over (AD13-AD15)
(AD13-AD15) Specifies which
external bus to use for
transmission

DB contains address of Bus

Control Table

(2) Read BC Read from:
Internal Status 1111 0010 ddd1 0001
DB <« Status Register (value of
internal flip-flops)

(3) Reset BC Write to:
1111 0010 ddd1 0010
DB ignored - BC is reset

NOTES: ABO-AB3 = 0000 -- Out of Range Address
AB4-AB7 = 0010 -- Identifies BC
AB11-AB15 -- Specifies BC command

T T Y T T TN Y Yy T Y

d -- don't care

4-76

el bt a2 < o B R A C T WUEFETURRTT YR e

4.3,2.1 The Bus Control Table (BCT). Bus Control Tables are three
or four words long and have one of two formats which are decodable from
the first word Iin the table, as shown in Table 4=5.

Table 4-5. Bus Control Table Pormate

Controller/Terminal Transmission

‘ = 0 Do this table and stop
Word 1

l = 1 Execute next table after completing this table
Word 2 Data Address for block in BC host SCCMs memory
Word 3 A 1553A transmit or receive command

Terminal/Terminal Transmission

= -32768 Do this table and stop (1000 ... 00)
Word 1 ‘
' = -1 Execute next table after this one (111 ... W)
Word 2 Data Address for block in BC host SCCMs memory
(to "listen in")
Word 3 A 1553A Receive Command
Word 4 A 1553A Transmit Command

Word 1 of the control table specifies a Controller/Terminal
or Terminal/Controller transmission if its most significant bit is zero,
and a Terminal/Terminal transmission if its MSB is one. For a sequence
of short transmissions, it is useful to place their control tables in
consecut {ve memory locations and direct the BC to execute them all auto-
matically. This option is provided in the following fashion: 1If the
least significant bit of word 1 equals one, the BC will automatically
execute the next Bus Control Table after successfully executing the

current one,

4-77

,
H
3

T T

I e 2l

The first word of a BCT is inspected to determine which of

the two formats is employed, the remaining words are intevpreted in the
following fashion:

)

(2)

Transmissions Between Controller and a Terminal

The second word specifies the address within the
controller's host memory where information is to be
extracted or stored. If this address is positive
(1.e. less than 32768), it is treated as an absolute
address. If it is negative, it is complemented by
the BC and used as an indirect address, i.e. the
specified location is used as a pointer to thé speci-
fied data. The third word {s a 1553A command to be
issued to the participating terminal on the bus to
which information is to be sent or received.

Transmission Between Terminals

For a terminal/terminal transmission the second tus
table word specifies an address to store data in memory
of the BCs host SCCM. The word is interpreted as in
(1) above. The BC "listens in" on the transmission
between terminals and stores the information in its
local memory where it may or may not be used by {its
host processor. The third and fourth words are the
1553A receive and transmit commands necessary to set-

up the specified communication.

4,3.2.2 Status on Completion or Termination. Upon completion or

error termination of a communication, the BC writes a Completion Status

Word (CSW) into a fixed location in memory and generates an {nterrupt.

The CSW specifies one of five conditions:

(1)
(2)

(3)

Communication OK (COM OK)

Communicat fon complete but terminals host SCCM has
shutdown (MDOWN)

Requested bus not available (BNA)

4-78

PO «

ST T e e R e T R R T e e e e T e A T e S TR Ty

(4) Brror in transmission — improper coding detected ur
status nessage not returned (COMERR)

(5) Improper activity on requested bus (BACT)

In the locations immediately following the CSW, the BC
stores the address of the Bus Control Table which was executed, and any
: (one or two) 1553A status messages that were received. Thus up to four
' words of status are:

: N CsW

N+1 Bus Control Table Address

N+2 1553A Status Word* ‘

N+2 Second 1553A Status Word* (Terminal/terninal

transmission)

*Only stored if received properly

4.3.2.3 Redundant Bus Utilization. The BC can be connected to
several Intercommunication Buses. Its access is granied on the basis of

a priority assignment established by “daisy chain" connections for each
bus. The bus access control hardware is implemented in the driver/
receiver logic external to the BC. The BC passes-on the bus specifica-
tion in the memory mapped command (AD12-AD15) that caused its activation.
The interface electronics either connects the BC with that bus or, {f it
is not available returns a busy indicator (BBUSY). The bus request is
latched so that, if the bus is granted, the BC maintains contrnl over

the bus subsequent to the initial transmission. (Buses can be released

by specifying a transaission over bus “zero", which is non existent.)

4.3.) Bus Adaptor Functions

The Bus Adaptor responds to 1553 transmit and receive com=
mands directed toward fts host module. 1t accepts or delivers the number
of words specified in the Word Count field of the bus command. The func-
tions performed internal to the bus adaptor are determined by the 5-bit
sub-address/mode (S/M) field of the associated command. These functions

fall fnto two categories: transfer functions and set-up functions.

AAAA -

4.3.3.1 Transfer Functions. Twenty-eight S/M values are interpreted
as Indirect Transfer instructions, and one 8/M value is reserved for the !
Continue function, respectively, as described below: :

(1) Indirect Tramsfer - The S/M fiaeld specifies one of
28 pointers maintained at fixed locations within the
host computer memory. When a transmit or receive

command is received, the bus adaptor accesses the
appropriate pointer to determine the starting address
for the incoming or outgoing data. By modifying
pointers the host computer programs can change the
physical locations accessed through each pointer.

Sequential data words are accessed for output to the
bus, or input to the host memory from the bus, using
DMA-cycle-stealing techniques.

Several bus adaptors may be moving data out of or into
the host memory in a time-multiplexed fashion so long
as none is forced to wait beyond 20 p seconds. (The
maximum word rate of the 1553A bus.)

(2) Continue - The continue function is specified by ome
value of the S/M field (00011) and is used for trans-
mission of messages longer than 32 words as well as
for direct addressing. The continue function in a bus
command specifies that the specified transfer should
continue from where the last transfer left off in the
host computer memory. Thus a long message can be
broken into a series of siorter transmissions from and

into concatenated memory locations.

Direct memory addressing is achieved by loading an
internal address register in the bus adaptor with a
special setup instruction (described below). A
"“(Continue" transfer then moves da-a into or out of

locations beginning at the specified physical address.

4-80

4,3.3.2 Setup Instructions. Three special Setup instructions are

specified by individual S/M field values. They are (1) Direct Command,
(2) Direct Address, and (3) Silent Acceptor. These are all "receive"
commands with a one word data transmission (WC = 1) which contains the

parameters of the specified function,

¢))

(2)

3)

e i e aad i e o ey

Direct Command (00000) -~ The data word sent to the
adaptor (terminal) is decoded as a discrete command.

If there is no error the least significant 8-bits of
the received word is output (DC) and a stroke is gener-.
ated by the bus adaptor. Direct commands are used to
generate interrupts, to effect power switching within
the host module, and othét direct control -functions as

required.

Direct Address (00010) - The data word sent to the

adaptor is loaded into an internal address register
and is used as a physical address from which a subse-
quent transfer can enter or extract data into the host
memory. This setup instruction is followed by a
“Continue" transfer command to move data into or out

of specified locations.

Silent Acceptor (00001) - The data word sent to the

adaptor specifies a "soft" name. If a subsequent
receive command is sent to a module with the same
identification as the temporary soft name, the adaptor
"listens in" on the transmission and stores the trans-
mitted data in its own SCCM's memory. It, in effect,
becomes a covert acceptor, and does not generate a

status message.

The silent acceptor mode {s cancelled by any subsequent
Direct Command, Direct Address, or Silent Acceptor
command to the module. A silent acceptor module does
nct return status messages, since this is done by the

module which is overtly addressed.

4-81

e AN i e

“F ey

4.3.4 BIBB Implementation

The BIBB consists of five subelements: (1) the Mill,
{2) the External Bus Interface (EBI), (3) the Internal Bus Interface
(1IBI), (4) the Controller (CONT), and (5) the Fault Handler (FH), as
shown in Figure 4-30,

The BIBB is centered around the Mill, a small processor
which includes ROM, RAM, internal registers, and an ALU. Data words in
transit between the external bus and the SCCM are buffered in the Mill,
it is also responsible for gencrating addresses for DMA, word counting,
te in- control words, and other processing functions required of the
B.

The EBI provides the interface between the Mill and the
extcernal bus. It accepts parallel command and data words from the mill
and encodes them for sevial transmission over the bus. It also samples
incoming manchester coded data words, performs serial to parallel
conversion, makes these words available to the Mill and signals the

Controller of their arrival.

The IB1 provides a DMA interface through which information
can be transferred between the Mill and the SCCMs memory. 1t contains
data and address registers for buffering incoming and outgoing data and
DMA request and acknowledge control logic. The IBT also contains a
command decoder, used to recognize and decode memory-mapped commands to

the BIBB (from the host SCCM).

The Controller generates control signals for the other
subelements as a function of commands received from the external or
internal (SCCM) bus and conditions sampled within the BIBB. It is

ricroprogrammed using both a ROM and a PLA.

The various circuits within the BIBB use either error
detecting codes or are duplicated and compared with self-checking

checkers to provide fault detection. The Fault Handler combines these

fault signals info a single morphic Intermal Fault Indicator (IF).
Upon detection of an internal fault, the FH terminates any ongoing

transmission.

4-82

R T e

g
weaBerq j¥oor1d 9914 PaIITTdwIS °0f-y 2andry
-« * .
% <
. E vn./l
STYNOIS le &
nnvd 4 SIOVSSIW 11NV Mrd A
==Sde ~J
& <&
jo— = g ASNE8 = =3
$NANVH k) nmw
1104 >
sd | 3TO¥INGD (SN8 NO 30¥¥3 viva) 3a
r
Z
4 (Covisonn 7 T
:)
o
]
-~
(8119 SNe
SNY TYNIING \22._&2_ 9919
-aom Ot ¥300234 y2 .
SmmA—— _ _
(S IORINGO) ONVWWOD ~ - NM_I_WA = > ONILVD
| >
W T0UNOD YW | u ons
_ ¥ @il wUSIOF SuvLS my
{13s9) NOISYUIANOD .
% 4_ am.».w.&ozu“ Jpeaee 4315193y 131IVaVd-1143S :
sne 30023a A
WY] . P -
BUNON WO3Y "Wy 3GOON3 Z¥N S .
380u1S ‘20 GNVWWOD LO3Mg AYOW3IW J43LSIHONYW = TVN3diX3
FOVAILNI SN (¥0$5300ud) TW 3HL IDVINLLNI !
TVYNUIUNI $Ng 1WN¥3LX3 \“
B
|

k
5
E
|

In order to explain the workings of the BIBB we first
examine the external and internal interface logic (BRI, and IBI). These
circuits supply data and commands and largely define the environment of
the Mill and the Controller. The latter two subelements are then

explained as a fairly conventional processor.

4,3.4.1 The External Bus Interfacg. The external bus interface has

two operating modes. In the input mole it decodes words appearing om

the 1553A external bus, and converts these incoming serial words to
parallel NRZ form. It alerts the Controller when a 1553A Command Word

or Data Word has arrived, and is available for transfer to the Mill over
the BIBB internal bus (BIBIB). A one-word buffer (CDR) holds an incoming
command or data word while the next word may be arriving over the bus.
This allows a period of 20 usec for a word to be moved to the Mill before
it is overwritten by a subsequent word arriving over the external bus.

A newly arrived word in the CDR may be output to the BIBIB in three ways.
The sixteen bit word may be moved directly, or if the word is a command,
the word count, or S/M fields can be right justified and individually
moved to the Mill.

In the output mode, words are transferred from the Mill to
the EBI. Each word is designated as a command or data. A command sync
or data sync is appended and the word is converted to serial biphase
Manchester and output to the externa) bus. A one word buffer is pro-
vided in the EMI so that a new output woru can be moved from the Mill
to the EBI while the current word is being (serially) output. This
allows up to 20 psec to elapse between loading data words for output
(before the message is inter:upted for lack of data). The Controller
is notified when the EBI is capable of accepting a new word, and output
terminates when no words arrive from the Mill to coantinue the

transmission.

The External Bus Interface block diagram is shown in
Figure 4-31, and consists of a Manchester/NRZ Translator (MNT), and
Buf fer and Control Logic (BAC). The EBI is fully duplexed, i.e. thcre

are two complete EBI circuits (A, and B) whose outputs are compared

4-34

P T T T D P U

Al TN TN NSRRI R . a -

J e

.
S MNZ (CKB) A
: " v aNATOR F"'T"__'?—m
g?m
9 NS0 enmmpy
! E‘ le‘(-]’ T T | T T
| | ']] \
ng# 5 .f |§ |§§ |§) ATOA,BTO8
=l 1=11 =11 et
o Pl Rl Il el P
I ¢ 3 °
- -1 A
—t - - - - -4
M e

1 MHZ CLOCK (CK 1)
c——

TO ASS

9.9,

(A)%, 1@) ala tl))

EBMIF 888 CODED R1 R2 RY R2
INTERNAL CONTROL
8US (BIdI8) CINCNTS
1

[- —

CONTRCL AND DATA INTLRFACE TO REST OF BIBB

COOED CONTROL
INPUTS MNE
0 000 NOP
1 0001 INWRD 81818 — CDR
2 0010 INWC 8818 (11-15) - COR (11-18)
3 0on INSM S8 (10-15) — COR (6-10)
4 00 OutCMD COR — (818, QOUTPUT COMMAND TO EXTERNAL*
5 1101 OUT DATA COR - 8188, CUTPUT DATA TO EXTERNAL BUS *

Rl R2
- 0 0
0 1
1 0
1 0

*AS SOON AS CURRENT CONTENTS OF XFR REG SENT OUT, DATA IN CDR
1S TRANSFERRED TO XFR AND OUTPUT W/PRECEEDING CMD SYNC OR DATA SYNC

*QUTAUT MODE ESTABLISHED BY RECEIPT OF OUT CMD OR QUT DATA IT IS CLEARED
WHEN NO FURTHER WORDS SENT FOR OUTPUT

MODE
X NO &Pt
INPUT DATA WOPD RECEIVED IN CDR FROM EXTERNAL BUS

INPUT COMMAND RECEIVED IN COR FROM EXTERNAL BUS
OUTPUT CODR IS CLEAR TO ACCEPT NEXT WORD FOR QUTRUT

EBMIF - INTERNAL ERROR DETECTED IN £BM
Figure 4-31. External Bus Manager Block Diagram

4-85

v TR SRR R PSSt = - Bt TV

to detect internal faults. A transfer register (XFR) provides serial/
parallel conversion, and the Command Data Register (CDR) serves as a
single word buffer through which incoming and outgoing words are passed.

Both copies of the BB receive data from the external bus
(TNBUSHI, INBUSLO), and the BIBB internal bus (BIBIB). However, only
copy A outputs data over these buses. Copy B contains morphic compara-
tors and compares the values being vutput with values it is generating

The BIBIB is bi-directional (3-state) and consists of 18
lines. Sivteen are for data (BIBIBO-BIBIB 15) and two represent parity,
using the same code as is employed in the SCCM internal bus. That {s:

BIBIB 16 = (3)/ (BIBIB 0, 2, 4, ... 14)
BIBIB 17 = (3)/ (BIBIB 1, 3, 5, 7, ... 15)

Both the A and B copies of the EBI generate two control
levels (R1, R2) to notify the Controller of its state. Assignments of
R1, R2 are shown in Figure 4-31. In the input mode, they indicate that
a command or data is available in the CDR register. In the output mode,

they indicate that the CDR is free to accept new data.

Coded control inputs (CCI) to the EBI are also shown in
Figure 4-31. 1In the input mode, they allow outputting the contents of
the CDR (or only the S/M or WC) fields to the BIBIB. In the output mode
they are used to load command or data words from the BIBIB into the CDPR

The output mode is established by executing an OUTCMD or
OUTDATA command. The EBI remains in the output mode until no new words
are loaded into the CDR for output. It then returns to the input mode.

The following paragraphs describe a preliminary logic design

4-86

{
i
i
i
A)
: to defect faults.
for subsequent transmission over the external bus.
of the EBM,
t
2
i.
$
1
o
S
T
-
Wi ian, . . .

RS £ S e A R S

4.3.4.1.1 The Manchester/NRZ Translator (MNT). The MNT synchronizes
with incoming bus data and delivers serial NRZ data. It also detects

and signals data sync and command sync headers of the 1553A messages.
The circuit, shown in Figure 4-32, has the following inputs and outputst

INPUTS: 8 mhz clock
TNBUSHT {detect high and low
INBUSLO (levels of the 1553A bus

RESET sets MNT to HALT State (So)
OUTM (NOT) OUTPUT MODE
OUTPUTS: DATA IN Serial bus data and 1 mhz

DATA IR clock synchronized to

DATA CLOCK ‘bus data

DATA SYNC Data Sync being received
COMMAND SYNC Command Sync being received

sS4 Not in State 4

A transition and Zero Detector samples the external bus at
an 8 mhz rate. If the bus has value zero during any two samples (i.e.
for 125 usec), it is assumed to be quiescent (BZRO). If the bus changes
value between any two samples a transition is signalled (XTN). These
signals control a simple sequencer (shown in Figure 4-32), which rums
at 8 mhz.

The sequencer state is determined by @ flip flops. The
first three specify by one of six receive states (S0 - SS) which deter-
mine the sequencer's view of what is occurring on the external bus as

indicated below:

So- HALT Bus is quiescent
S1- WAIT SYNCYC1 ‘Fitst Microsecond of Sync Signal
|(No Transitions Expected)
52- RESYNC ‘Second Microsecond of Sync Signral
(Transition Expected middle of
'period)
4-87

lo03e[sSuel] ZYN O3 1238ayduey °zE-4 2andyy

Z L
, AT i
Il Ly e&—- !Al.utzw 1
NI vivO o 2y Ya afb—ts
] Q¢ z o> {
30u1s L 2 j
NI VIvO {ONAS QWD) 2 I
INAS 3
NASD GNYWWOD YL
Ouxl.,wlzy.lux._ NSAQ DNAS Viva 2y 2 45 AQHsm:m
ONY NOILISNVIL X s *201 viva ! =
T - XY ‘u
4 a 1
WOoUs M & U
— a
NIX L] -Q 14 L
A | - S
N SOMD I & ¥,
1 -Vid -)
g == 30 2, 7, s 27 3 .
~r
p D e N J
z]]
L
—E&= =
Quze , 13539
IX¥ ‘SOHD ‘LIo~3-4i . &y (g
wonviva-4-¥s v SOHD “to1~1+- 0x - Y- %5 (g) “
INAS viva - Niviva - 4 - &5 (o) 2101 ‘tot=s- nux S . &5 {
gglthooﬂm (Y] a1 .—Q-‘--er.no.ww 9) g
9O ‘00t —+- Qx4 - "s () SOHO “to1=s- QO - & - %5 (5) ,
nu-%-% v SOHD ‘0l0—~s-44 . ts (p)
SOMD ‘080—2- 00X - 41 - s (zu axu-b-k
SO0 ‘it ~s-4-0ox -85 (10 2 4oHD ‘w0~s-Nix . %5 @
s940 ‘oot ~=s- 4 . & (o) SOHD ‘000~ ¢~ O¥Z4 (1)
SINANO ¥O GNV SWaIL NY - VI

»
¢
¥
b

y

T Tw

1

83- WAIT SYNCYC3 Third Microsecond of Sync Signal
(No Transitions Expectaed)

s&' RUN Data Bit Being Received
(Transition Expected in middle of
period)

S¢- Error {Brror Detected - Stop decoding until

lbus becomes quiescent

The other state flip flops form a time counter which 1is
synchronized with the incoming data. The incoming data is being
received at 1 mhz, while the time counter operates at 8 mhz - counting
from t - t,. When the sync signal arrives, the time counter is set to
tos and it is periodically resyncronized during bus transitions so that
t-t, define one bit time on the external bus.

A state diagram for the MNT is also shown in Figure 4-32.
If transitions occur on the external bus at the proper times for a
“correct" transmission the states (So-sa) reflect whether sync or data
is being received. If an improper transition occurs, or an expected
transition fails to occur in the external bus the sequencer enters the
error state (SS) and ceases operation until the current external bus

transmission completes and the bus returns to zero.

The Data Clock, Data Sync, and Command Sync are derived from
the sequencer and are generated during the states for which they are
valid, (as shown in the state equations in Figure 4-32). A special flip
flop Ft is included to "remember" if a transition has occurred on the
external bus during the current bus period (1 usecond) and is used to
detect unexpected (error) transitions or lack of expected transitions
on the external bus. XC! indicates that a transition occurred, XCO is
its compliment. A special strobe pulse is generated to insure that the
3:8 decoder is only enabled when its input signals are stable. Three
conditions asvnchronously reset thc MNT, they are external RESET, BZRO
(the bus returns to zero), and OUTM. When the BIBB is outputting to
the external bus (OUTM), the MNT is disabled since it is only used for
input.

4-89

Y P - -

e TR T e TR LT T P T - A IR e T R e T SR e e e e T R

4.3,4.1.2 The Buffer and Control Logic (BAC). The BAC logic consists
of three parts: (1) BAC Control, (2) BAC Data Paths, and (3) BAC Fault
Detection Logic. The BAC is unusual in that it uses the SCCM clock (¢2)
in the output mode (OUTM), and it uses an axternal-bus derived data
clock for internal control in the input mode (INM).

BAC Control

Figure 4-33 shows the BAC Control logic. These circuits

decode incoming commands (CCI) to the EBI, control the EBI input or !
output mode (INM, OUTM), and provide a counter synchronized to incoming
or outgoing serial data (M1-M20). The following paragraphs describe

various component parts of this logic.

4-90

o o e o S iR e meimaa s e aart o m el ool

il

WA R BRI RN AT e T T
d

To13uo) - Jyg *adejaa3u] sng [PUIIIXY

LL-% AAnHpy

153
Q” w 195
T0UNOD VIS ¥ 3G0I30 GNYWWO)D . _ « ~
{
4300230
siva W 1353y ANVYWWO)
oLy
- d
]] Jﬁ & r' QaranI
3 _
it oa
> — T DN
wWINOo wsHI
e ' : I
s 3 oa —
£ds zd 19 o
, n .J awdiINo
: sawd -
” vivaino
i BINNOD W o Ival
| W o f 2
;)
| 2N) xnw LNW WO
n EW @ 5013 viva oy 21501 1837V B3 NOUNOD
M ©ZW - yw) L
M INUNO @ r— WNI|
ww-wm | 300330 w »y " ONAS
m 240N sﬁ.«. 1253y wino Q — <—¢cuz>m
“ Wino 1 ANVWWO)
-r——f - """"""" L _v
INNOD r 1
LW w ONAS] |
Wi +
e | T N1 Qwom
; ; O¥zs ! | ¥3HI0 Ol 135
!) INAS { 183 x3WNa Qu
i 13530 | ANVWWOD “ © aj~(_l T~ 43IHLO WOU4 o s ramm o_h..
aw—d-o q s —= | | 3 : i
j INW WO | 34 "
‘ L, -4
$3ZINGEHONAS XTUWIS

4-91

(a)

(b)

(c)

Command Decoder - Decodes CCI commands or detects
improperly coded commands.

State Coutrol - Receipt of an OUTDATA or OUTCMD
command establishes the output mode (OUTM) and causes
the BAC to use the SCCM clock ¢2. The OUTM mode 1is
terminated when the EBM ready to output the next word
and no new words have been sent for output, {.e.,
OUTCMD or OUTDATA has not been received. The three
pairs of flip flops provide a means of recording the
next OUTCMD or OUTDATA command (fp2) while the current
such command i{s ''eing executed. If no new commands
have been recorded by fp2 when it is time to send out
a new word (M), fp3 is reset and OUTM is terminated.

M Counter - The M Counter is synchronized with

incoming or outgoing data words. 1In the input mode
(INM) it is started at M1, when the first data bit
arrives from the external bus, and reaches count M17
when the final parity bit arrives on the incoming
word. During INM, the M counter is reset to M1 by an
incoming Command Sync, Data Sync or no activity on the
external bus. It is advanced by the incoming Data
Clock which generates seventeen pulses as the data and
parity bits arrive. An 18th pulse is generated (M18)
to allow fellow-up logic functions such as transfer-
ring the newly arrived word from the XFR register to
the CDR register and alerting the BIBB Controller.

In the output mode (OUTM), the first ihree counts

(M1-M3) designar: the time when a data sync or command
sync is outpnt to the external bus. M4-M20 corresnrnd
to transmission of data bits and parity of the cut-
going word. The M counter is reset by the initial
OUTCMD or OUTDATA command which inftiates the output
mode (NEWOUT « OUTM). (The M counter is a 20-count

counter.)

4-92

(d) Comtroller Alert Logic - This logic generates the
signals R{,R2 which alert the BIEB Controller to the
arrival of an input data word or the nsed for an
additional output data word. This logic is straight-
forward with the exception of the Simplex Synchroniszer.

During the input mode, an available data word {s
signalled by M18 and correct parity on the arrived
word (INM « PTY « MI18). However, the A & 8 copies of
the EBI may be out of step by 125 nsec since they each
use their own bus-derived clock CL. The Simplex
Synchroniszer waits until bouth copies agree that the
word has arrived, and then synchronizes the generation
of the R1,R: signals with the SCCM clock ¢2 (which is
the clock used by the BIBB Coantroller).

BAC Data Paths

Figure 4-34 shows the BAC Data Paths. The Transfer Register
(XFR) provides serial-parallel conversion for incoming and cutgoing data.

A serial parity checker is used to check incoming external bus words,
and to encode outgoing words. The Commanc-Data Register (CDR) serves as
a one~-word buffer between the BIBB internal bus and the XFR register.
During the input mode, each incoming data word is automatically trans-
ferred to the CDR register immediately after it is assembled in XFR

(at M18), and the BIBB Controller is alerted (PF2¢R1, or R2*R1). The
controller has approximately 19 useconds to ruaove the word in CDR
before the next word arrives., The output driver logic allows contents
of the CDR or selected fields to be output to the BIBIB,

When the output mode is establ ished (by OUTCMD or (i .bsTA)
a command or data word is moved from the BIBIB to the XFR register,
Subsequent OUTCMD or OUTDATA commands move data from the BIBIR to the
CDR register. As each word is shipped out of the XFR (at M20) a new
word is taken from the CDR register. Transmission steps when no new
word 13 available. (It is important that the first output word not -
disturb the CDR. At one point in the 1553A transmission sequence, a
sta*us word {8 output before :n 1553A command in the COR is fully

processed.)

4-93

TO EXTERNAL

HILO @
QUTFUT,
ENANLE

FROM MNT

DATA IN

TRANSTER %G
XFR (17-877%)

[

L8

Figure 4-34.

XSCL = (INM e INCYC + OUTM » OUTCYC) o CL
DATA g;mu.amn+mm¢oum.m.q
(Che Rec cno-m-(oumo+mnmw+mo
pARAUEL LOAD C3S0 = INWRD + INWC + INSM
cPLD INWORD = QUTCMD + OUTDATA
€30 —ISTATEOUTRUT |
' | .
3-STATE 3-STATE INWRD - - BIBIB « CDR (0 - 15)
INPUT DRIVERS OUIPUT DRIVERS INWC - - BI8IB (11 - 15) = CDR (11 - 15)
AND
w,u PERR FIELD SELECT INSM - - BIBIB (11 - 15) « CDR (6 - 10)
INWORD ' r 7.5]',!"“' 2
—] C OMPARES 2 .
PARITY L SoMPares_J ois
CHECK/ |GEN
GENERATE [*—
1 *IN COPY (8) OF £81 ONLY,
COMPARE 81818 WITH
P OUTPUT OF COPY (B)
1]
')
(818D INTERNAL BUS)
NOTES: INM - INPUT MODE; OUTM -~ OUTPUT MODE (INM = OUTM)

INCYC = M1 - M17 (COUNTS INCOMING DATA BITS AFTER SYNC)
OUTCYC = M4 - M20 (COUNTS OUTGOING DATA AFTER "YNC)

OUTCMD, OUTDATA -- CCl COMMANDS TO

EB8 TO TARE W

FROM 81818 AND QU TPUT IT OVER SXTERNAL 8US
INWRD, INWC, INSM -- CCI COMMANDS TO OUTPUT WHOLE WORD OR

FIELDS TO Bidie

CL - CLOCK WHICH COUNTS SERIAL DATA BITS - IN OUTPUT MODE
INTERNAL CLOCK ¢2, FOR INPUF MODE {T IS A BUS-DERIVED DAYA CI.OCK

4~-94

External Bus Interface, BAC - Data Paths

et ik e T A i e R il i

PRI

The Parity Check/Cenerate Circuit checks that incoming
words from the BIBIB are properly coded and encodes outgoing words to

tha BIBIB.

The Manchester Encoder is a'combinational circuit which
generates a two-wire output to the 1553A bus driver, with the following

interpretation:
OUTPUT ENABLE HILO EXTERNAL BUS
0 d 0
+1
1 0 -1

It generates a command sync (CMDS) or data sync (DATS)
during M1-M3, and then Manchester-encodes the data bits which arrive

BAC Fault Detection Logic

BAC Fault Detection Logic is shown in Figure 4-35. Each
copy of the BAC compares its outputs with the other copy and, after
careful strobing to assure that the signals are stable, sets a latch F1
(A,B) if they disagree. Similar latches record parity errors detected
on the BIBIB (F2) and improperly coded commands (F3). In each copy of
the BAC, a master fault indicator (EBMIF) is generated and sent to the
BIBB Fault Handler.

Four of the fault indications (F1A, F2A, F3A, EBMIF(B)) can
be sampled for diagnostic purposes by (DUMPSTAT)X. This function is
activated by a Read Internal Status Command from the SCCM to the BIBB.

4.,3.4.2 The Internal Bus Interface (IBI). The IBI provides the
mechanism by which the BIBB can perform Direct Memory Access into the
memory of its host SCCM. Being connected to the SCCM's internal buses,

the IBI is a convenient place to place the decoding circuitry for

memory-mapped commands to the BIBB.

As shown in Figure 4-36, the IBI contains three 18-bit
registers to support DMA: an address register (ADROUT), and two data
registers for incoming and outgoing words (DRIN, DOUT). When the BIBB
sends data to the SCCM memory, it transfers an address via the BIBIB to

4-95

+ Newide aneaa icslliibiolh. o S e —ce s el

L

e

P e I G S S satld

s (N QOPY A Sttoremnamu——"

RI(®) RI(®)

FIA
= o0—ICATT TES -
m RXB)
‘2-
*2 F2A ¢
2 l J ‘ E { E‘ 2
PERR(A) _‘_‘Q,_D—‘ i Bl S | 2 PERR(B)
DISAMILLF cQumend O DISAMILLF
‘2 $Q o um $2
CCERRA)])-‘ X Q "‘(.T————— CCERR(B)
RESET] L RESET
FIA F2A F3A EBMIF(B)
L1 11
RESFL e LATCNES
FW (12 - 19
EBMIF(A) EBMIF(B) FIA - DISAGREEMENT

F2A - PARITY ERROR ON 81818
F3A ~ PARITY ERRCR ON CCI
DUMPERR - OUTPUT FAULT
LATCHES TO Bidi8

RESFL - RESET FAULT LATCHES

Figure 4-35. External Bus Interface, BAC - Fault Detection Logic

4-96

a9®3193ul sng [PuUIaIUT AUl ‘9¢-y In3y3

ASAS VWO —

m : ws

WNIOUNOD 18 avua —_= v
, - e
3 s
: . waswna «—_| P
m. _ . JDJMMW aena Navi| §) BNCUNOD OL K3 e
: b, uu.u%m_ {v) EITIOUNOD O}
3 — ixa

LoVISW == [V

By
|
|
2
g
g
4-97

00 BNV

by Q | -
ey - ‘ o 8
——— 17 @l— .vlﬁ

ADRDUT, and it trmfors 8 deta word to m The BIBB then aettvaus _
the DMA Controller with a DMAWRITE commend. The DMA Controller. obtam

control of the SC/'M 1ntotna1 bus. and performs the epeeiﬂcd mmory wito. |

To rcaﬂ thc sccn'a mtmofy. an address 13 trausferred tfdh th.
BIBIB to ADROUT and a DHARBAD eonmand is issuod to the DMA Gontrollor.
The controller returns a Wy cignal whne the DMA trmaction is itr-
progress. . : | . ey
The three address and data registers are 1phep¢ndén:1j cbﬁéf
trolléd by the BIBB Controller and the DMA Controller. A four-bit .
Transfer Code (TC) is semt from the BIBB microprogrammed Controller and.
decoded to comtrol transfer of data into and out of the ﬁtgisters'froﬁ%t
the BIBIB, as shown in Table 4-6.

An independent set of controls (D350, DIN, A3S0) are‘geﬁ- ‘
erated by the DMA Controller to gate data words onto or off of the SCCM
local bus. Fault detection in the ADROUT, DRIN. end DOUT registers is
implemented using the error detection code (with two patity bits) which
is common to both the SCCM intcrnal bus and the BIBB internal bus. Im
order to detect the failure mode of a disabled load signal, the regis-
ters can be periodically reset to zero (which is uncoded) by the BIBB -
microprogram (CLEAR).

The Direct Command Register is also included in the IBI.
One form of bus transfer (DC) causes eight bits from the BIBIB to be
loaded into the DC-Reg. Another command gates out this byte along with

a strobe level.

Table 4-6. IBl Transfer Commands

e e e m s e o [PO . . - . i ——————————

Code Source Destination
0001 DRIN BIBIB
0010 DRIN ADROUT and BIBIB
1011 BIBIB ADROUT
0100 BIBIR pouT
1101 BIBIB (8-15) DC REG
1110 -« - - - STROBE = = - - -
4-98

I T . S

P TPy T

Two duplicated command decoders are employed to detect the
three memory-mapped commands to the BIBB. Bither decoder can issue @
RESET or Read Internal Status (DUMPERR) command. Each Execute Bus
Table Command is sent to one of two duplicated control sequemcer
circuits. 1If they disagree a massive disruption of control will occur
and be detected in the Comtroller, The Bus Assignment Latch stores the
number of the external bus being requested for a tramsmission. It is
parity checked and a fault latch is set when the parity signal is stable
(BSELF). Figure 4-37 shows the DMA Control Logic. Its input command
codes (DMAC) are listed in Table 4=7.

The DMA Controller is an asynchronous circuit. Upon
receiving a (DMAC) command, the corresponding flip flop (READ, WRITE,
HOLD) is set. The SCCM internal bus is requested (R), and upon receiv-
ing an acknowledgement (AK), the following occurs:

(a) For a READ command

(1) The address is gated out (A3S0); NWRITE is
raised, and a memory start (MSTART) is issued.

(2) Upon receipt of a completion signal from memory
(COMPL), data is gated into the DRIN register
(DIN) and the READ flip flop is reset.

(b) For a WRITE command

(1) The Address is gated out (A3S0), DOUT is gated
to the Data Bus (D3SO), WRITE is raised, and a
MSTART is issued.

Table 4-7. DMA Command Codes (DMAC)

DMAC (0 - 2) COMMAND
100 NO DMA -- Drop DMAHOLD
001 DMA READ -- DRIN <« M(ADROUT)
010 DMA WRITE -- M(ADROUT) <« DOUT
111 HOLD -- Hold SCCM Internal Bus
4-99

P o Lot ool Loc
-
L) z
1]
[
i

: DMAC! ‘
DMAC2 f
1
OMA
0
INPUTS
012
100 - NO DMA
00 | - DMA READ
01 0 - DMA WRITE
111 - HOLD BUS
i
)
{ LD N P - R
FD"
RESET
, 0 : RDCHK
m—ﬁ
DMAC! 0 Q
DMAC2 ™
RESET R
cneck cx —
CiRCuIT AK
DMACO WICHK r0 |
DMAC) D Q ‘
| omaca :
RESET ;
=D ¥ -i.
i
wT i
$2 2
et DMA ER :
_Mst
coMPL :

Figure 4-37. The IBI - DMA Controller

4-100

(2) Upon completion (COMPL) the WRITE flip flop is
reset.

(c) The Hold state only requests (R) and holds tha SCCM
internal bus. S8ince it takes at least 3 clock periods
to gain bus access, HOLD can be issued early to
overlap setting up of ADROUT, DOUT, and the gaining of
bus access.

The check circuit contains two flip flope which are set by
READ and WRITE commands. They are reset only if they "see" that the
DMA cycle actually occurred (i.e., the appropriate command level (RD,
WT), a bus acknowledge (Ak) and a completion signal COMPL). Two
conditions result in the fault indication DMA ER:

(1) The check circuit "saw" a DMA command but none was
performed. (The check flip flops do not get reset,
resulting in the 2 « BUSY fault condition.)

(2) A DMA was performed but the check circuits did not
receive a command (MST * COMPL « Z).

Figure 4-38 shows the fault-handling circuitry for the IBI.
There are four error checks. Boch control inputs, (TC) and (DMAC) are
parity encoded, and they are checked with morphic parity checkers which
generate morphic signals PERR and DMACMP. These signals are synchronous
with the BIBB internal clock and can be combined and sent to the Fault
Handler. The other two fault signals (BSYLF) and DMAER are not synchro-
nous with the BIBB check and are latched locally within the IBI.

To generate a single "morphic" IBI fault indicator (IBIF),
we reduce the two incoming morphic fault signals (PERR, DMACMP) to a
single morphic pair and then logical - or the other two simplex fault
signals to both lines of the morphic pair. This results in forcing the
morphic pair (IBIF) to the error state (1,1), if one of the simplex

fault signals is activated.

4-101

P Y SV NN 2 v e &

aatiche e aariad Ll

X,

e WO FETETTLST R TR R e o e e e R E S TSNS ST R

$31n211) Buytpuey Ifney - 1491 °gg-y aansyd
%
8 Ad s
diel
Oll jg—
SOOIV
O M s . e
it tl ——— ¢
| THIT THIT
2 ! 1 vwa N
f h 1 .:- 3497 =
— s 4 J :
i + L
47359 () 3481 O_“..._ —
' GNIV JIHJUOW ww

- - - * 3 .
R ARt S P oo e

Fault conditions are latched and can be read out with a
read internal atatus command. The (DUMPERR) signal, generated by that
command, causes the fault latches to be output and transferred to the
SCCM data bus (see Pigure 4-36).

4.3.4.) The Mill. The Mill provides limited processing capability
in the BIBB and is shown in Pigure 4-39. Its two main components are a
memory and ALU. The Mill memory contains 48 eighteen=bit words of RAN,
and 16 eighteen-bit worde of ROM. The parity encoding used to protect
the BIBIB (i.e., 2 odd parity bits over even and odd bit positions) is
also used to provide detection of Mill memory faults. A Mill memory
word can be output to the BIBIB from an address specified by either

(1) the BIBB microprogram, or (2) a local memory addre.s register
(LMADR).

Also included in the Mill ave a pair of sixteen-bit
A registers and ALUs. These circuits are .duplicated and compared with
a morphic comparator (MCALU) to implement fault detection. Words on
the BIBIB can be stored in the A register and are also sent to the (:)
port of the ALU. ALU outputs can be loaded back into memory or into
the LMADR register., Control codes and condition codes are shown in
Figure 4-39. It is possible to read modify and write a single Mill

memory word in a single clock cycle (e.g., increment a location).

Four fault checks are provided which are all morphic and

synchronous with the BIBB clock (o'. ¢2).

The address sent to Mill memory, and the BIBIB are checked
for the (2 parfty bit) internal bus code (MPC1, MPC2). The morphic
comparison of ALU outputs produces the morphic disagreement indicator
(MCALU). The control codes and memory address from the microprogram
(MILC) are encoded with a single parity bit. A morphic parity check is
performed producing (MILCK).

4-103

CAMSC AR Dol Ll T ha i et - At ettt o

e A A

atae i

STOSAK
MORPHIC

11

48 »

18 Ram
16 = 18 ROM

MEMORY

1
ADRESS

SIL‘

R Lot J

A ERES]

MILC) - MILCIS

b

v(Q) Wpesmn——

(o] Ell<

YOUW
YWI3) pee—— "
! BT 3 §

b} APnae—
yeols TR 5
g |3

T1OWW
V]

5 o O

10 6DUW g
e T 4 g
i -

¥avijs

—

<1OMUwW E

-
VELTT

ft

< 3
S—
OUW - 1 DUw J

J

(424

GEN

4-104

The Mill

Figure 4-39(a).

ardw g 8ni1Llg JOJ 83YdIE] IR - TTTH AUl *(q)6c-y 2anBy3
SN

X o 26
: - 2N
wv

R e i e e e Ph o et e s i e b

The fault indicators are combined into a single morphic
fault detection pair (MILLCHK) which is sent to the BIBB Fault Handler.
FPigure 4-39(b) shows that the individual morphic fault indicators are
decoded, latched, and made available for read out with a read internal
status command to the BIBB as previously doscribed.

4.3.4.4 The Controller. The Controller con~ists of a Control
Sequencer (€S) and a Control ROM (CROM) which contains the microprograms
for the BIBB. FPigure 4-40 shows the Control Sequencer, and CROM. The
CS samples various conditions from the other logic circuits within the
BIBB. On the basis of these conditions it outputs a sequence of
addresses to the control ROM, The CROM, ir turn, maps these addresses
into the control signals necessary to operate the BIBB.

Inputs to the CS are listed in Table 4-8 along with their

associated control information:

Table 4-8. Control Sequencer Inputs

Input Associated Control Information

BIBIB - 1553A commands - Terminal 1/D, S/M, and
word count fields are available to CS

along with T/R (transmit receive bit)

BBUSY - From external logic - indicates that
requested bus is not available

BZRO - From EBl - indicates that external 1553A
bus is idle
R1,R2, - From EB! - indicates incoming commands or

data have arrived or a new word can be

accepted for output (see Figure 4-31)

OUTMODE - From EBl - indicates EBI is in the output
mode and is sending data over an external
1553A bus

COND - Conditions from ALU - indicate that current

arithmetic result §s PLUS, MINUS, or ZERO

4-106

m”

| §D PUB ROWD - 13TT01U0) YL °Qy-y 2314

,, AINO (v) AJOD -

- . IONIIOR OBNOD

, ..q.....m Hn nu won/ ©) = 24 QIND 4INOD

Yy y
4 Z

(47vH ¥HIO0 OL 8 AJDD \\ \\

SdIHD WOV 30

4TVH Ol ¥ AdOD)

SSVOAY ;]
WVEO0UON

- LN

Ls.

e A L4

A | oN N n/ m”./r

L 4
L g

xm.wzgcuw 0 5 \
OYINO! 88~ 330D WO
IIND J00D TOUUNOD ¥ITIOUNOD D_ nov

Z.(WID WOoud)
= ASNG 9

(SN1d-9)
M N

N TYNEUX3
Nex3

=l P
3
§,
;,
:

U ‘14

NNV -

4-107

TOUNOD YWa
TOUNOD ¥3NVIL

@ ﬂm<
o-n:n<r
@i~ l)'llw<
TOUINDOD TIW

e 1
g

Y,

4

2%

183 WO
281y
‘0829

t M ,.
. s ' ;
| | o " w
w IQONLINO X
X3 NV ASTR VG o |
,.m worw'mam. V5§ V§

DR R R i L
D R T S e T T e A S N

Entii A e

- Execute Bus Table Command received from
the IQI

DMA ‘BUSY

[3

PFrom IB1 - BMA in progress

- From input pins -~ indicates "hard" name

The CROM generates a set of control levels (STATE, CSEL,
CNCC, TOCNO1, TOCNO2) which are used in the C8 as will be described
below. Most of the other CROM outputs are the signals (previously
described) which control the MILL (MILC), IBI (TC, DMAC), and EBI (CCI).
Three additional signals are generated which require explanation. Ome
(RUPT) is a programmed interrupt to the SCCM. It is pseudomorphic in
that its complement is directly generated as shown. All CROM outputs

are encoded in the error detecting code shown in Figure 4-40, are pro-

tected with two parity bits (P1,P2), and are checked with a morphic
parity checker. One odd control is included (DISAMILLE) - disable Mill ?
Fault Indicator. The Mill fauit indicator (MILLCHK) is only valid when |
there is properly coded data on BIBIB, which is most of the time. For a

few microinstructions, BIBIB is not coded, and the programmer commands

the Fault Handler to ignore MILLCHK during these instructions.

4.3.4.4.1 The Control Sequencer (CS). The CS is built around a PLA and
a Microprogram Location Counter (MLC) as shown in Figure 4-41. The MLC

generates a sequence of addresses to the CROM. It is reset to zero and
counts in the following fashion:
(1) If the PLA outputs a non-zero number, which is not
28-1 (all ones), that number will be loaded into the
MLC as a branch address (executed at the next clock

period).

(2) If the PLA outputs zeros, the MLC will continue to

the next sequential count (address).

3) If the PLA outputs (28-1) all ones, the current value
of the MLC will be reloaded - holding it at its current

value,

4-108

aa3uanbag TOajuo) Byl ‘iy-y 2and14

«0- OL 13530,

tvaw) $HTOUNOS S19 ALTVE DML SINGINO § AGOD “YIVA SINAINO (¥S) 4O v AdOD
99 3900 WO THVSIQ INUNO - GO,
Wy3o0Oud WO

3002 10UINDD
(IIND) ¥ITIOAUNOD

_“w
IO
ALIIVE HAHIIOW ¥
"GNV 200K -
ﬂ — 270vOo1 INid
8 NS¥VITD »
s NSQVOl
AIWD
148 Aligve
SN
145 N
1]
TN
< Qo0
<
m ino1v1s
i
P et ﬁ t 9]
M g FWaWOD BI51938
= 2 snivIS
e I}
(] = ~
-] 1o}
“ Allgvd
=
= s

4-109

N I P T T

x O m‘.‘lii‘ﬁu»:.‘ -t

PLA operation is controlled by the 6-bit STATE input from
the microprogram. REach defined STATE input value (with the exception of
state szero, S0 = 000000) activates a set of AND terms in the PLA which
determine various branch addresses as a function of the PLA inputs. For
State S0, no and-terms are decuded, so the microprogram proceeds:
sequentially.

An example of the branching technique, taken from the BUS
Adaptor Microprogram is shown below in Table 4-9:

Table 4-9. A Control Sequencing Example

CROM
Location State PLA and Terms Control Qutputs

1 st R1-MINE - HOLD BIBIB + COMMAND
 R1-MINE-T + 26
'R1+MINE-T- (OP = 0000d) + 18
R1+MINE-T- (OP = 00010) - 18
R1+MINE*T* (OP = 00011) - 7
R1-MINE and all other OP-codes fall through as

sequential code

When the microprogram gets to location one, we wish to do a
five-way branch on the basis of a 1553A command received in the BIBB.
We display the command on the BIBIB, which includes a T bit, and a 5-bit
S/M field which is interpreted as a command OP-code. These six bits are
sent directly to the PLA, along with a condition signal R1<MINE which
indicates that a command has been received which was addressed to this

BIBB. The state S=1 activates the five and-terms shown above.

If no command arrives (i.e., R1+MINE), the PLA outputs all
ones and generates a one-instiuction wait loop. When the command
arrives (R1.MINE), the PLA generates a transfer address corresponding to

the command being decoded.
Inputs to the PLA are listed below:

(1) TOC! - A time out counter to verify expeditious
completion of DMA in the SCCM

4-110

""-'&-""1‘"3 S

T o L P U D T W Ly ©

. L..MMMM—A“@n&;m PN S N S S T _g“

(2) MINR - When a comiand 18 placed on the BIBIB, MINE -
indicates that its module ID matches the hard name or ’ P
soft name of the BIBB.

2 (3) T - BIBIB (3) is the Transmit/Receiver bit of a 13553A
L command displayed on BIBIB '

(4) S/M Field - BIBIB (6-10) the S/M field of a 1553A ,
command displayed on BIBIB. It is also designated OP /

ol (for op-code to microprograms)

(5) STATE - from CROM. Activates group of PLA-AND terms
to define branch(s) associated with a given micro-

program location.

(6) CC - Condition signal - selected as one out of sixteen
by Condition Select (CSEL) control from microprogram.
Multiplexed condition signals are shown in Figure 4-41.

Only one can be used at a time for a given branching

! instruction.

Other circuitry in the CS is explained below:

H
}
{
H
]
H

(1) Status Register (SR) - contains the 155_A status word
to be output during transmissions. SR (0-4) contains
the external bus name determined from the external

pins. SR(5) = 1, indicates an internal fault has shut

down the host SCCM, and is generated from the Output
Disable levels from the Core-BB. One CS outputs data,
and the other outputs the parity bits for fault

detection.

(2) ID Compare - The terminal ID field of an incoming
command (displayed in BIBIB) is compared with the hard
name and soft name of the BIBB. If the hard name
matches in a transmit command, or if either hard or
soft names match in a receive command, the level MINE
is raised. A soft name register can be loaded or
cleared under microprogrammer control, from BIBIB
(11-15). The terminal ID of zero (00000) is reserved

for broadcast commands since all BIBBs with their soft

4-111

S G E A N L L MR R OO §

BERES SR

riv'\“ ST

name vegistar SNR=0 will recognise it. A latch is
provided to "remember" that a soft name match occurred
until the end of a transmission (S80FY). It can be
resat under program control.

(3) A loop countét is provided which can be loaded from
BIBIB, and decremented under microprogram coatrol.
Its underflow is signalled to the condition multiplexor
LZRO. '

(4) TOC!1 ~ This time out counter counts eight pulses, and
its overflow is an input to the PLA. It can be reset
under program coantrol.

(5) TOC2 - This time-out-counter is used to detect when an
expected incoming or outgoing word did not arrive. It
is reset by R1,R2 or both under microprogram control.
TOCNO1 and TOCNO2 inhibit resetting of the counter by
R1 and R2 respectively. The counter counts 26 clock
times, which is longer than the time for a single vord
transmission. Thus if the expected words arrive, it
will not oveirflow because it will be reset by the next
arrival of a command or data sync (R1,R2) at time 20.
If the expected command or data word does not arrive,
the counter overflows, and delivers the signal TOC2 to

the condition multiplexor.

(6) F1,F2 - These flip flops can be set, resét and tested

under microprogram control.

4.3,4.5 The Fault Handler. The Fault Handler (FH) is shown in
Figure 4-42., It is responsible for collecting fault signals from the

BIBB and, if a fault occurs, signalling an internal fault IF, As shown
in the figure, the morphic fault indicators are combined to a single
morphic pair which is decoded by duplex exclusive nor circuits and
combined with the EBI fault indicators (EBMIF) to set a pair of dupli-
cated fault latches (fl’fz)' These latches generatc the IF, IF signals.
These fault signals are fed to a two pairs of clocked flip flops.

4-112

il 2l g LR

1sTpuey ITnel

*IH-% 2an3td

s 2 WOOS WOU¥I SONVWWOD 13533 = ()8 * (V)¥e [

) _ P}

% »
J.mTlJ.eOnAHH

5 F5)

O 1Sy (1] €
s | obayd “dle T

Ofp— V1S4 . 401540
4
¢ (9 siwe3

D OINI 1x3 301540
¥300 2¢ e
35 o ¥ d01s =
g 2 S NN

NI3HD 30D ALYV WOED - WOUD

198 304 JOLVIIONS L1¥YV4 GINISWOD - el
SEITIOMNOD NI SSINVY TYNEINI -~ (8°VHINOD
SEITIOWUMOD NIMMLN INIWIROVSIO - AINOD
BOLYRAN] SNV THW QINIWOD = FHOTHW

$40IVIIONE 1HW3 JBIGIOW - STONOEHONAS

NOLONAR

IWOEO
419
(9M4INOD

(VHINOD

aiINOD

1nvy
IIHHOW
N_‘ fefe Nﬂ 21
4
N = XHOTIW

aisy
El

V1S3

4-113

e

The first pair (f3’ fﬁ) provide the option to stop the clock to the BIBY
before a rasaet occurs. This is useful in breadboarding for fault isola-
tion. The second pair guarantee a full cycle reset pulse to return the |
BIBB to an initial state.

The reset command from the SCCM generates RES(A) and RES(B)
from duplex command decoders in the IBI., These simulate an internal
fault which results in a reset.

Additional circuits are provided to stop, start, and single
step the clock to simplify breadboarding.

4.3.5 BIBB Microprograms

The following are preliminary register-transfer descriptions
of microprograms which cause the BIBB to perform as a Bus Adaptor or Bus
Controller. The mnemonics refer to signals and registers previously
described in this text. The notation M(XXX) refers to a Mill memory
register containing the variable or constant named XXX. These variables

are listed below:

(a) Bus Adaptor
BASEADR - Address in SCCM memory where the mapping

table resides which maps command pointers

(SM) to datu addresses

PTR = A pointer used to read out or store data
words in sequential locations in the SCCMS

memory

WwC - Word count, counts words transmitted and

is taken from 1553A command field

COMND - Memory location used to store incoming
command

BUSERADD - Address in SCCM where BA can store error
message

ERRMESS =~ Error message word from the BA

4-114

w—m“??‘* Ty

BCTADR =~ Address of Bus Control Table in SCCM
PNT « Pointer used to access BCT words

BCT1, BCT2, BCT3
= First three words of BCT

PTR - Pointer to data words in SCCM memory
wC = Word count
STAT1 = Status word returned in a controller-

terminal 1553A transmission

STAT2 - Second status word returned in a
1553A terminal-terminal transmission
STATLOC - Location where Controller Status Word is

stored in SCCM memory

STATLOC+t, STATLOC+2, STATLOC+3
- Sequential locations from STATLOC

MDOWN, COMOK, COMERR, BNA, BACT
- CSW status words stored in STATLOC which

indicate the results of the transmission

The Bus Adaptor and Bus Controller Microprograms are shown
in Tables 4-10 and 4-~11.

4-115

L aame o o T oy

Aciic

Table 4-10. Bus Adaptor Microprogram

CROM LOCATION STATE PLA~AND TERMS CONTROL OUTPUTS

. 0 so - A+M(BASEADR)

; ¢ Load A Reg. with SCCM address of pointer table
| ¢ Then wait for incoming command

| f RT-MINE-HOLD BIBIB+CDR, CKSOFT
| R1+MINE*T>TRMIT ¢ Transmit Command |
CMD 1 S1 { R1-MINET> (OP=0000d)+SP ¢ Special Command ¥

R1+MINE-T- (OP=00010)+SP ¢ Special Command ;

\ R1+MINE+T- (OP=00011)~+ ¢ Continue Command ;
WAITNEXT :

¢ Branch on incoming T/R and S/M bits to processing

¢ routine. :
RID 2 SO ——- DMA HOLD, M(PTR)+«CDR(SM)+A
| 3 SO - DMA READ, ADROUT<M(PTR)
4 SO - START TOC1, M(WC)<+CDR(WC)

¢ RID - Read Indirect Command -- Move WC to RAM in MILL
¢ and start DMA cycle to get data address specified by

¢ S/M.
DMA BUSY-HOLD
5 $2
TOC 1 « DMABUSY-+T IMEOUT
| 6 S0 —- M(PTR)«DRIN, NO DMA

¢ We now have absolute SCCM address for incoming data

¢ Now we wait for the data, or a XMIT command if this

¢ is the first command of a terminal to terminal

¢ transmission. ‘

‘ TOC2+R1°R2+HOLD - BIBIB«CDR, :
WAITNEXT 7 $3 4 R1+MAYBE ¢ maybe T/T Transmission

l TOC2+R1 *R2+T IMEOUT

4-116 ' -

N gy Tt S U P - St N Y U P ¥

S A S S Sasha e b -t R b Ak Rt gy LR v IR, e e . SR TR T TR ST T TR BT R A R s e s

Table 4-10. Bus Adaptor Microprogram (Continuatiom 1)

CROM LOCATION STATE PLA-AND TERMS CONTROL OUTPUTS

7 ¢ If command go to Maybe, If data interrupt continue.

§ 8 84 +DATAINHI A first data word in CDR
R ‘R2+TOC2-+HOLD ¢ wait for next data wozd
DATA 1IN 9 85 - in
TOC2+R2-+TIMEOUT TOCNO1
10 S6 PLUS + SOFT-+%+2 M(WC)«+M(WC) -1

¢ 1f soft name or not end of message skip status output.

1" S0 —— BIBIB+SR, OUTCMD
DMA WRITE ADROUT+M(PTR)
12 SO —
M(PTR)«~M(PTR)+1
13 SO —— DOUT+CDR
]
¢ Write Received Word into SCCM's memory.
l
14 57 ZERO-CMD-1 M(WC)+0

¢ If word is not zero, end message, wait for next command

15 S8 *DATA IN ¢ else waft for next data

’ MAY BE 16 S9 MINE *ERROR BIBIR CDR

¢ It is a terminal/terminal transmission it not mine.

R1+TOC2+HOLD TOCNO2
17 S10 R1+DATA 1IN ¢ When status arrives,
. ¢ then walt for first
TOC2+R1+TIMEOUT ¢ data word.
sp 18 SO -— M(COMND)« CDR, CLEAR SN
‘ RZ<TOC2+HOLD TOCNO |
19 S5
l TOC2+R2+-TIMEOUT ¢ If no data, timcout.

¢ Walt above for data to arrive (R2)

4~117

:“' Table 4=10. Bus Adaptor Microprogram (Continuation 2)

CROM LOCATION STATE PLA=-AND TERMB CONTROL OUTPUTS
; ; 20 8o —— ¢ Wait for time Status Out
21 SO —— BIBIB+SR, OUTCMD
. OP= (00000)-DC
22 s
OP= (00001)+SETSN
23 S12 +CMD-1 M(PTR)<CDR

DC 24

SETSN 25

XMIT 27

28

29

30

3

‘ GETFW 32

33

Ll L R S

N P, ey

¢ This is the direct address command (00010) which loads
¢ a value into the pointer register. Command {s com-

¢ pleted, return to zero.

S12 »CMD-1 DC+«CDR, STROBE

¢ Output Dir-:t Command completed, return to zero,
¢ do not col:ect $200.

$12 -+CMD-1 BIBIB+CDR, LOADSN
¢ Set soft name completed
SO ——- DMA HOLD, M(PTR)<CDR(SM)+A

¢ Establish ptr to address of datia.

S0 - ADROUT+M(PTR), DMA READ

SO —— M{WC)+CDR (WC) ,START TOC1
DMA BUSY-HOLD ¢ Wait for DMA to complete

82

TOC1+DMA BUSY-»TIMEOUT
SO M(PTR)<DRIN, ADROUT«DRIN
¢ Now we have the address of the data, next get the data.
‘ DMA READ, M(PTR)<M(PTR+1)
SO
l START TOCH
’ DMA BUSY »HOLD

S2
, TOC1+DMA BUSY »TIMEOUT

4-118

e e
@
‘_r .

e = Y T TR VRS Y

Table 4=i0. Bus Adaptor Microprogram (Continuvation 3)

CROM LOCATION STATE PLA-AND TERMS CONTROL OUTPUTS
% 80 — CDR-DRIN, OUTDATA, NO DMA
¢ Pirst data word sent out.
36 87 ZERO-CMD-1 N(WC)+¥(WC)-1, START T0C 1
¢ Exit 4if only one word else go into output loop.
{ R1TOC2+HOLD ¢ Wait for EBI ready for
Loop 37 813 — ¢ next word.
R1+T0C2+TIMBOUT
DMA READ, ADROUT<M(PTR)
38 SoO
M(PTR)+M(PTR)+1
DMA BUSY-HOLD
39 82
TOC1+DMA BUSY-TIMEOUT
40 S0 —— CDR+DRIN, OUTDATA
¢ Send next word for transmission.
41 87 ZERO+CMD-1 M(WC)+M(iC) -1
¢ If word count = 0, transmission is comrleie
42 814 ~+LoOP
¢ Else wait to deliver next wurdi
TIMEOUT 43 SO -—— NOP
ERROR 44 SO ADROU1+M (BUSER ADD)
45 SO DOUT+M (ERRMESS)
46 SO DMAWRITE
47 $15 DMA BUSY~HOLD
48 S13 ~CMD-!

¢ Optional ~ Write error flag in SCCM memory upon
¢ detecting a bus error,

4-119

Table 4-10. Bus Adaptor Microprcgram (Continuation 4)
: CROM LOCATION STATE PLA-AND TERMS CONTROL OUTPUTS
' ' TRMIT 49 816 OP=(00011)+#+2 BIBIB+CDR
| .50 817 -XNMIT BIBIB+SR, OUTCMD
¢ If not continue send status and go to XMIT.
CONTX 51 80 S BIBIB+S8R, OUTCMD, DMA ROLD
52 S0 M(WC)+CDR (WC)
52 8§18 CETMW ADROUTM(PTR)
4-120

i it o el

T TR TR ST A T TEAASTAN TAT T A TTeTRL ASA T S TR R TR TS TR RIS AT R R SRR TR, R TR

Table 4-11. Bus Controller ﬁ:l.croptogtam

CROM LOCATION STATE PLA-AND TERMS CONTROL OUTPUTS
0 s0 — RESET F1
START 1 St EX~HOLD ¢ Wait for command from
: ¢ SCCM
2 S2 BBUSY-ABEND1 M(BCTADR)+<DRIN, ADROUT«
DRIN
3 $3 BZRO~ABEND2 M(PNT)<«DRIN+1
4 SO — DMA READ
+GETBCT 5 S4 DMA BUSY-HOLD ¢ Wait for first BCT word
6 S0 . —_— M(BCT1)<DRIN
DMA READ, ADROUT<M(PNT)
7 S0 —
M(PNT)<M(PNT)+1
8 S4 DMA BUSY-HOLD ¢ Wait in 2d BCT word.
LADR 9 $26 MINUS~INDIRECT M(BCT2)+DRIN
10 SO M(PTR)<DRIN
DMA READ, ADROUT<M(PNT)
11 S0
M(PNT)«M(PNT+1)
12 sS4 DMA BUSY-HOLD ¢ Wait for 3d BCT woxd.
13 SO - CDR<DRIN, M(BCT3)<«DRIN
¢ First 3 words of Bus Control Table moved to Miil memory
¢ M(PTR) contains address of data message in SCCM
¢ 1553A command in CDR to allow getting word count.
14 SO -— M(WC)+CDR(WC)
¢ Get the word count into M(WC)
¢ Next decode terminal-terminal or controller-terminal.
15 85 MINUS-TT M(BCT1)<M (BCT1)

e e m A - A A o ar B ekt s me

T R

4-121

e

Table 4-11. Bus Controller Microprogram (Continuation 1)

R MR Pttt e i P

CROM LOCATION STATE PLA-AND TERMS CONTROL QUTPUTS
¢ Branch if terminal to terminal, else controller/
¢ terminal.
" 16 S6 THXMT BIBIB«M(BCT3)
¢ Branch if terminal is to transmit to controller.
17 S7 =REC
¢ Transmission from controller to terminal.
DMA READ, ADROUT+M(PTR)
REC 18 SO
M(PTR)+«M(PTR)+1
19 S4 DMA BUSY-HOLD ¢ Wait for DMA of 1st data
¢ word.
20 SO — CDR«M(BCT 3), OUTCMD
¢ OUTPUT 1553A Receive Command.
21 SO —_— CDR+DRIN, OUTDATA
¢ Output first data word.
SYNTOUT 22 S8 Ri1-»21 ¢ Wait until Data is going
¢ out,
23 S9 ZERO-GETST M(WC)«M(WC) -1
¢ If this is the last word wait for status.
24 SO —— DMA READ, ADROUT<M(P1R)
M(PTR)«M(PTR)+1
25 S4 DMA BUSY-HOLD ¢ Waic for DMA.
26 S10 -»SYNCOUT CDR+DRIN, OUTDATA
‘ R1+TOC2-+HOLD TOCNO2
GETST 27 St
l R1+TOC2+ABEND3
28 S12 ~CtTouT M(STAT1)~CDR

¢ ABEND3 - no status received.

4-122

B I s E PR i S S 4 SO IR A I T T AR AT R AR TR e R e T e e e e e e

1
;
) Table 4-11. Bus Controller Microprogram (Continuation 2) %
|
E‘. PR $ v e PET a eit G e M B e aY o e AN 4 & S S Oy T TR PN v ——— 3]’
- CROM LOCATION STATE PLA-AND TERMS CONTROL OUTPUTS é
3 - - o ;
y XMIT 29 SO -— CDR+M(BCT3), OUTCMD
‘ :
. ¢ Jutput 1553 Transmit Command. ; %
‘\ 30 S13 RI-+HOLD ¢ Wait for last output f
¢ cycle.
5 ¢ Now we drop back into the input mode.
; — cmm—
} R1.T0OC2+30 TOCNO2 ¢ Wait for status. |
! WAITSTAT 31 S — :
- TOC2+R1-+ABEND3 ¢ No status. ‘
o 32 S0 —- M(STAT1)+CDR :
- ¢ Save status t. :
‘E-Toczmow TOCNO1 ¢ Wait for data.
v NXTDAT 33 St4 —
- lTOCZ-R2*ABEND3 Data missing ;
» : i
} _ ADROUT<M(PTR)
34 SO
| M(PTR)<«M(PTR)+1
| 35 SO — DMA WRITE, DOUT+CDR
36 S15 ZERO»OUT M(WC)+M(WC) -1

37 S16 -NXTDAT

| ¢ Above, Input Data Word, if WC=0, end
¢ else wait for next word.

‘DMA READ, ADROUT<M(PNT)
TT 38 SO ———

IM(PNT)««(PNT)M

39 ° S4 DMA BUSY-HOLD ¢ Wait for DM\ of second b
¢ command.

40 SO -— CDRM(BCT3), OUTCMD

41 S0 -— CDR+DRIN, OUTCMD

¢ Output Receive CMD followed by XMT command,

42 SO -—- ¢ Wait one period.

4-123

3

Table 4-11.

LT T TE TR AR SRE T T T T e e T T e TR TR .

Bus Controller Microprogram (Continuation 3)

i CROM LOCATION STATE

PLA-AND TERMS

CONTROL OUTPUTS [

.

TTOUT

cTouT

ABEND1

ABEND2

ABEND3

43

44

45

46

47
48
49

50

51
52

53

54
55
56

57

58
59

60

S$17 »WAITSTAT-1

S18 TF1-CTOUT
‘Tii-moc2+u0Ln

S11 _
l TOC2+R1-+ABEND3

S0

$19 -TTOUT
S0
S0

S4 NMA BUSY-HOLD

¢ Write second status word for
S0

S0

S4 DMA BUSY<HOLD

SET F1

TOCNO2 ¢ Wait for second
¢ status message.

M(STAT2)<CDR
¢ Save Status 2

ADROUT+M(STATLOC+3)

DOUT+M(STAT2), DMA WRITE

t-to-t transmission. ;
ADROUT+M(STATLOC+2) . T

DOUT<M(STAT1), DMA WRITE

¢ Write first status word for t-to-t transmission.

S20 R-+*+3

$21 R-+*+42
$22 -WRCSW
522 -*WRCSW
¢ If status indicates SCCM OK,
S22 -WRCSW
$22 -YWWRCSW

SO

4-124

BIBIB+M(STAT1)
BIBIB+M(STAT2)
DOUT+M (MDOWN)
DOUT+M(COMOK)
skip MDOWN.
DOUT<+M(BNA)
DOUT«+M(BACT)

DOUT+COMERR

Table 4-11.

bl ol AC L S e i SRS SaA dl At

Bus Controller Microprogram (Continuation 4)

CROM LOCATION STATR PLA-ARD TERMS CONTROL OUTPUTS
ADROUTM(STATLOC)
WRCSW 61 S0 —
DMA WRITE
62 S4& DMA BUSY-HOL.
63 SO —— DOUT<«M(BCTADR)
ADROUT+M(STATLOC+1)
64 SO |
DMA WRITE, OUTPUT RUPT
65 $23 DMA BUSY-HOLD
DONEXT 66 {1} ——— A<M(ONE)
67 S24 ZERO*START-1 M(BCT1)-A
ADROUT+M(PNT),
68 SO ——
DMA READ
69 S25 DMA BUSY-HOLD !
DMA BUSY-START+1 |
¢ if first word of BCT is odd, do next table
INDIRECT 70 SO -—— M(BCT2)+=-M(BCT2)
‘ ADROUT«M(BCT2)
n SO ——
| oA READ
72 S4 DMA BUSY-HOLD -
73 S27 -+LADR+1 M(BCT2)<«DRIN

¢ if 2d word of BCT is negative,

¢ get indirectly specified address

4-125 Lity

ANDE

AV1Z

AV1Z

AViZ

AViZ

AV1Z

AVIZ

AVIZ

AVIZ

AV1Z

BARL

67

71b

Na

72

75a

75b

77a

77b

77¢

80

65

BIBLIOGRAPHY

J. E. Anderson and F. J. Macri, "Multiple redundancy
applications in a computer,” Proc. 1967 Ann. 0!
Reliability, Washingtom, D.C., January 1967, 553-362.

A. Avizienis, "Arithmetic error codes: Cost and effectiveness
studies for application in digital system design," IEEE Trauns-

actions on Computers, vol. C-20, No. 11, November 1971,
1322-1331.

A. Avizienis, et al., "The STAR (Self-Testing-And-Repairing)
computer: an investigation of the theory and practice of

fault-tolerant computer design," IEEE Transactions on Computers,
vol. C-20, no. 11, November 1971, 1312-1321.

A. Avizienis and D. A. Rennels, "Fault-tolerance experiments
with the JPL STAR computer," Digest of COMPCON '72 (Sixth
Annual IEEE Computer Society Int. Conf.), San Francisco, CA,
1972, 321-324.

A. Avizienis, "Architecture of fault-tolerant computing

systems," Digest 1975 Int. Symposium on Fault-Tolerant Com-
puting, Paris, France, June 1975, 3-16.

A. Avizienis, "Fault-tolerance and Fault-intolerance: comple-
mentary approaches to reliable computing," Proc. 1975

Int. Conference on Reliable Software, Los Angeles, CA,

April 1975, 458-46..

A. Avizienis, "Fault-tolerance and longevity: goals for high-
speed computers of the future," Proc. Symposium on High Speed
Computer and Algorithm Organization, University of Illinois,
Urbana-Champaign, IL, April 1977,

A. Avizienis and L. Chen, "On the implkementation of N-version
programming for software fault-tolerance during program
execution," Proceedings 1977 Int. Computer Software and
Applications Conference, Chicago, IL, November 1977.

A. Avizienis, "Fault-tolerant computing: progress, problems
and prospects,”" Proc. IFIP Congress 1977, Toronto, Canada,
405-420.

A. A. Avizienis, "Fault-tolerance: The survival attribute of
digital systems," Proc. IEEE, vol. 66, No. 10, October 1978,
pp 1109-1125.

R. W, Barlow and F. Proschan, Mathematical theory of
reliability, Wiley and Sons, New York, 1965.

5-1

e e a o e o

e

e r . L . a2%a

; : BEUS
BORG
BOUR
BOUR
BREU
» BRIC

BUTL

CART

CART

CART

CART

T

69

12

69

n

76

13

14

64

72

14

76

L. O. Beum, "Stendardization of avionics information systems,"
System Development Corporation, Santa Monica, CA,
T™M-5159/000/00A, performed for ARPA Institute for Defense
Analysis, August, 1973,

H. J. Beuscher, et al., "Administration and maintenance plan
of no. 2 ESS," The Bell System Technical Jourpal, vel. 48,
October 1969, 2765-2815.

B. R. Borgerson, "A fail-softly system for time-sharing use,"

' Digest 1972 Int. Symposium on Fault-Tolerant Computing,
June ‘97 » 89‘93.

W. G. Bouricius, W. C. Carter, and P. R. Schneider,
"Reliability modeling techniques for self-repairing computer
systems," Proc. 24th National Conference of ACM, 1969, 295-383.

W. G. Bouricius, et al., "Reliability modeling for fault~
tolerant computers,” IEEE Transactions on Computers,

vol. C-20, November 1971, 1306-1311.

M. A. Breuer and A. D. Friedman, Diagnosis and reliable design

of digital systems, Computer Science Press, Inc.,
Woodland Hills, CA, 1976.

J. L. Bricker, "A unified method for analyzing mission relia-
bility for fault-tolerant computer systems,' IEEE Transactions
on Reliability, vol. R-22, no. 2, June 1973, 72-77.

T. T. Butler et al., "LAMP: application to switching-system
development," The Bell System Technical Journal, vol. 53,
no. 8, October 1974, 1535-1555.

W. C. Carter, et al., "Design of serviceability fedtures for
the 1BM system 360," IBM Journal of Research and Development,
vol. 8, no. 2, April 1964, 115-125.

W. C. Carter et al., "Computer error control by testable
morphic boolean functions - a way of removing hardcore,”
Dig. of the 1972 International Symposium on Fault-Tolerant
Comput ing, Newton, MA, IEEE Computer Society, June 1972,
154-159,

W. C. Carter, "Theory and use of checking circuits," Computer
Systems Reliability, Infotech Information Ltd., 1974
(Maidenhead, England), 413-454.

W. C. Carter and C. E. McCarthy, "Implexentation of an experi-
mental fault-tolerant memory system,'" IEEE Transactions on
Computers, vol. C-25, nz. 6, June 1976, 557-568.

5=2

N ST T PO T S s P gy m«mj

:
'
P
§
[

— T

CART

CHAN

CONN

coop

CORB

DOWN

EJCC

EVER

GOLD

HAME

HECH

HOPK

HOPK

7

74

72

76

72

64

53

57

75

76

75

78

W. C. Carter, et al., "Cost effactiveness of self-checking

computer design,” in Dig. 1977 Int. Symp. Fault-Tolerant :
Computing (Los Angeles, CA), pp il’-l%?.‘Junc 1977. :
H. Y. Chang, G. W. Smith, Jr., and R. B. Walford, “LAMP:]
system description,” The Bell System Technical Journal,

vol. 53, no. 8, October 1974, l¥31-1649. o
R. B, Conn, N. A. Alexandridis and A. Avizienis, "Dasign of a L

fault-tolerant modular computer with dynamic redundancy,"
AF1PS Conference Proc. vol. 41, Fall JCC 1972, 1057-1067.

A. E. Cooper and W. T. Chow, '"Development of on-board space
computer systems," IBM Journal of Research and Development,
vol. 20, no. 1, January 1976, 5-19.

F. J. Corbato, J. H. Saltzer, and C. T. Clingen., "Multics:
the first seven years," AFIPS Conference Proceedings, vol. 40,
1974, 571-583.

R. W. Downing, J. S. Nowak, and L. S. Tuomenoksa, "No. 1 ESS
waintenance plan," The Bell System Technical Journal, vol. 43,
no. 5, part 1, September 1964, 1961-2019.

Information processing systems - reliability and requirements,
Proc. of the Eastern Joint Computer Conference, Washington,
D.C., Derember 1953.

R. R. Everett, C. A. Zraket, and H. D. Benington, "SAGE - A
data-processing system for air defense," Proc. Eastern Joint
Computer Conference, Washington, D.C., December 1957, 148-155,

J. Goldberg, "New problems in fault-tolerant computing,"
Digest 1975 Int. Symposium on Fault-Tolerant Computing, Paris,
France, Jure 1975, 29-34,

K. J. Hamer-Hodges, "Fault resistance and recovery within
System 250," Proceedings of I.C.C. Conference, Washingtom, D.C.,
October 1972.

H. Hecht, "Fault-tolerant software for real-time applications,"
ACM Computing Surveys, vol. 8, no. 4, December 1976, 391-407.

A. L. Hopkins, Jr. and T. B. Smith I1II, “The architectural
elements of a symmetric fault-tolerant multiprocessor," IEEE

Transactions on Computers, vol., C-24, no. 5, May 1975,
498-505.

A. L. Hopkins, Jr., et al., "FTMP - A highly reliable
fault tolerant multiprocessor for aircraftr," Proc. IEEE,
vol, 66., no. 10, October 1978, pp. 1221-1239,

IBM 67

ICRS 73

IRE 53

KATS 78

LESH 76

LEVY 75

LOND 75

MAIS 71

MATH 70

MATH 75a

MATH 75b

MCPH 76

MERA 76

An application-oriented multiprocessing system, 1BM Systems
Journal, vol. 6, no. 2, 1967.

Procaed%ggs of the 1975 Int. Conference on Reliable Software,
Los Angeles, CA, April 1975.

Session 14: Symposium - diagnostic programs and marginal
checking for large scale digital computers, Convention Record
of the IRE 1933 National Convention, part 7, New York, N.Y.,
March 1953, 48-=71.

D. Natsuki, et al., "Pluribus - An operational fault-tolerant
multiprocessor," Proc. IEEE, vol. 66, no. 10, October 1978,
pp. 1146-1159,

H. F. Lesh, et al., “"Software techniques for a distributed
real-time processing system," in Proc. IEBE National Aerospace
and Electronics Conf. (Dayton, OH), pp. 290-295, May 1976.

H. O. Levy and R. B. Conn, "A simulation program for relia-
bility prediction of fault tolerant systems," Digest 1975
Int. Symposium on Fault-Tolerant Computing, Paris, France,
June 1975, 104-109.

R. L. London, "A view of program verification,” Proc. 1975
Int. Conference on Reliable Software, Los Angeles, CA, April
1975, 534-545.

F. P. Maison, "The MECRA: a self-repairable computer for
highly reliable process," 1EEE Transactions on Computers,
vol. C-20, no. 11, November 1971, 1382-1393.

F. P. Mathur, and A, Avizienis, "Reliability analysis and
architecture of a hybrid-redundant digital system; generalized
triple modular redundancy with self-repair," AFIPS Conference
Proceedings, vol. 36, 1970, 375-383. '

F. P. Mathur, and P. T. de Sousa, "Reliability modeling and
analysis of general modular redundant systems,”" LEEE Trans-
actions on Reliability, vol. R-24, No. 5, December 1975,
296-299,

F. P, Mathur, and P. T. de Sousa, "Reliability models of NMR
systems," I1EEE Transactions on reliability, vol. R-24, no. 2,
June 1975, 108-112,

J. A, McPherson and C. R, Kime, "A two-level approach to
modeling system diagnosability," Proc. 1976 Int. Symposium on
Fault-Tolerant Computing, Pittsburgh, PA, June 1976, 33-38.

C. Meraud and F. Browaeys, "Aatomatic rollback techniques of
the COPRA computer,' Proc. 1976 Int. Symposium on Fault-
Tolerant Computing, Pittsburgh, PA, June 1976, 23-29.

-y e T

Y.

L

MORA

NELS

NGYW

NGYW

NGYW

OBLO

ORNS

PARH

PARK

RAND

RAMA

75

15

76

77a

77b

62

75

74

76

75

72

E. F. Moore and C. E. Shannon, "Reliable circuits using less
reliable relays,” Journal of the Franklin Inatitute, vol. 262,
nos. 9 and 10, September, October 1956, 191-208 and 281-297,

P. B. Moranda, "Preduction of software relisbility during
debugging,"” Proc. 1975 Annual Reliability and Maintainability
Symposfum, January 1975, 327-332.

E. C. Nelson, "Software reliability,” Digest 1975 Int.

ngggsium on Pault-Tolerant Computing, Paris, France, June
‘9 5, b-zao .

Y. -W. Ng and A. Avizienis, "A model for transient and perma-
nent fault reccvery in closed fault-tolerant systems,"

Proc. 1976 Int. Symposium on Fault-Tolerant Computing,
Pittsburgh, PA, June 1976, 182-188,

Y. -W. Ng and A. Avizienis, "A reliability model for grace-
fully degrading and repairable fault-tolerant systems," Proc.
1977 Int. Symposium on Fault-Tolerant Computing, Los Angeles,
CA, June 1977, 22-28.

Y. -W. Ng and A. Avizienis, "ARIES - an automated reliability
estimation system," Proc. 1977 Annual Reliability and)
Maintainability Synposium, Philadelphia, PA, .'anuary 1977,
108-113,

J. Oblonsky, "A self-correcting computer,’ Digital Information
Processors, W. Hoifman, ed., Interscience Publishers, New York,
1962, 533-542.

S. M. Ornstein, et al., "Pluribus - a reliable multiprocessor,
AFIPS Conference Proceedings," vol. 44, 1975, 551-559,

B. Parhami and A. Avizienis, "A study of fault-tolerance
techniques for associative processors,”" AFIPS Cimference
Proceedings, vol. 43, 1974, 643-652.

K. P. Parker, "Compact testing: testing with compressed
data," Proc. 1976 Int. Symposium on Fault-Tolc¢ran: Computing,
Pittsburgh, PA, June 1976, 93-98.

B. Randell, "System structure for software fault tolerance,"
1EEE Transactions on Software Engineering, vol. SE-1, no. 2,
Juae 1975, 220-232.

C. V. Ramamoorthy and L. C. Chang, "System modeling and testing
procedures for microdiagnostics," 1EEE Transactions on
Computers, vol. C=21, no. 11, November 1972, 1169-1183.

PETY

e P Mokt e S 2

R PCUNIP-S U OF S

T

RENN

RENN

RENN

RENN

RENN

SHOO

SHOR

SIEW

SKLA

STIF

73a

73

76

78a

78b

80a

80b

73

68

77

16

76

D. A. Rennels and A. Avizienis, "RMS: A reliability modeling
system for self-repairing computers," Digest of the Third

International Symposium on Fault-Tolerant Comggtig‘.
Palo Alto, CA, June 1973, 131-135,

D. A. Rennels, "Fault detection and recovery in redundant

computer using standby spares,” Technical Report UCLA-ENC-7355,
University of California, Los Angeles, CA, June 1973,

D. A. Rennels, et al., "The unified data system: A distri-
buted processing network for control and data handling on a

spacecraft,” in Proc. IEERE National Aerospace and Electronics
conf. (Dayton, OH), pp. 283-289, May 1976.
D. Rennels, Fault-Tolerant building-block computer study,

JPL Publication 78-67, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, July 1978,

D. Rennels, "Architectures for fault tolerant spacecraft
computers,” Proc. LEEE, Vol. 66, No. 10, October 1978,
pp. 1255-1268.

D. A. Rennels, "Distributed Fault-Tolerant Computer Systems,"
Computer, Vol. 13, No. 3, March 1980, pp 55-65.

D. Rennels and M. Buchwalter, "Selective redundancy in a
building-block distributed computing system,” Dig. Government
Microcircuit Applications Conference, (Houston, TX), to be
published November 1980.

M. L. Shooman, "Operational testing and software reliability
estimation during program development," Proc. 1973 IEEE
Symposium on Computer Software Reliabilfity, New York City,
1973, S5i1-56.

R. A. Short, "The attainment of reliable digital systems
through the use of redundancy - a survey," IEEE Computer
Group News, vol. 2, no. 2, March 1968, 2-17.

D. Siewiorek, M. Canepa and S. Clark, "C.vmp: The archfitecture
of a fault-tolerant multiprocessor,' Proc. 1977 Int. Symposium
on Fault-Tolerant Computing, Los Angeles, CA, June 1977.

J. R. Sklaroff, '"Redundancy management technique for space
shuttle computers,” 1BM Journal of Research and Development,
vol. 20, no. 1, January 1976, 20-28.

J. J. stiffler, "Architectural design for near-1002 fault
coverage,” Proc, 1976 IEEE International Symposjum on Fault-
Tolerant Computing, June 21-23, 1976, Pittsburgh, PA.

oS L A N

8$2YG

TAND

TANRG

TAYL

TOYW

ULTR

VONN

WAKE

WENS

WENS

WENS

WYLE

76

76

69

73

78

74

56

74

72

16

78

67

8. A. Saygenda and B. W. Thompson, "Modeling and digital
simulation for design verification and diagnosis,"

Transactions on Computers, vol. C-23, no. 12, Dec r 1976,
1242-1253,

Tandem 16 S8ystem Description, Tandem Computers Inc., Cupertimo,
ﬁ. October 1976,

D. T. Tang and R. T. Chien, "Coding for error coatrol,” IBM
Systems Journal, vol. 8, no. 1, 1969, 48-86.

P. 8. Tayler, "A reliability and comparative analysis of two
standby system configurations," IERR Transactions on

W. N. Toy, "Fault-tolerant design of local ESS processors,”
Proc. 1EEE, vol. 66, no. 10, October 1978, pp. 1126-1145,

Reconf igurable computer system study, Ultrasystems, Inc.,
Newport Beach, CA, performed for NASA Langley Research Center,
1974.

J. Von Neumann, "Probabilistic logics and the synthesis of
reliable organisms from unreliable components," Automata .

Studies, C. E. Shannon and J. McCarthy, eds., Ann. of Math.
Studies No. 34, Princeton University Press, 1956, 43-98,

J. F. Wakerly and E. J. McCluskey, "Design of low-cost general-
purpose self-diagnosing computers,” Information Processing 74,
North-Holland Publ. Co., Amsterdam, 1974, 108-111,

J. H. Wensley, "SIFT - software implemented fault-tolerance,"
AFIPS Conf. Proc. vol. 41, part 1, 1972, 243-254,

J. H. Wensley et al., "The design, analysis and verification
of the SIFT fault-tolerant system," Proc. Second Int.
Conference on Software Engineering, San Francisco, CA,
October 1976, 458-469,

J. H. Wensley, et al., "SIFT: Design and analysis of a fault-
tolerant computer for aircraft control," Proc. 1EEE, vol. 66,
no. 10, October 1978, pp. 1240-1255.

Wyle, H. and G. Burnett, "Some relationships between faflure

detection probability and computer system reliability," AFIPS '
Conference Proceedings, Fall Joint Computer Conference, 1967,

745-1756,

5-7

i R ot Bl Faciich s Lt chiof huikiing o Ca o e > Cadn Eattadiuntc T il I oo TREEERE T T

lement

KILP 72 P, 8. Kilpatrick et al., All semiconductor distributed aero-
space processor/memory study, Volume ! Avionics Processing

: Requirements, Honeywell, Iuc., AFAL TR-72, performed for AFAC,

; Wright-Patterson Air Force Base, Ohic, 1972.

1553A . Adrcraft Internal Time bivision Coumand/Response Multiplex
Data Bus, DoD Military Standard 1553A, April 1975,
U. 8. Government Printing Office 1975-603-767-/1472.

: APPENDIX

1/0 BUILDING BLOCKS

R Sl -

A A TN R TR G e LA il R S ASE AR et L AR B L E s Sen IS SRS o
R T d T ST

1/0 BUILDING BLOCKS

Input-output requirements of host systems vary widely in
voltage ranges, currents, and timing parameters. The approach hest
suited to building-block development is to provide a standard set of

functions which serve a majority of general applications. The user is
required to supply any additional special functions unique to his

applicatiens,

To be consistent with the FTBBC computer modules, all building
blocks must provide memory-mapped I/0. This is, each I/0 building block
must recogni o ity identification and the function being requested from
an out-of-ra' ,e address appearing on the host computer's address bus.
Data for output or input is transferred over the data bus in response to

a write or read to the specified 1/0 address.

A second set of requirements is related to fault-tolerance.
The I/0 building block must check incoming addresses and data for proper
coding, and utilize duplication or coding checks to verify proper func-
tioning of its internal logic. Either an error in incoming data or
detection of an internal fault must signal an error indication to the
CORE Building Block. This internal error indicator should be a morphic

(one-out-of-two) coded signal to prevent a single point failure.

T T T T e

Finally, the building block must encode incoming data for presentation

on the host computer's bus.
Typical I/0 Functions

The following is a listing of I/0 functions which should be
supplied by building-block modules. One especial feature is important in
achieving synchronization in voting configurations, as well as
5 decoupling 1/0 timing from detailed instruction timing in the Terminal
module. This is a feature which creates a granularity in I/0 timing by
synchronizing outputs and ir-puts with the Real-time interrupt which
drives the computer system. Specifically, a Real Time Interrupt (RTI)
input is provided with each building block, and which typically provides

a pulse every few milliseconds. All output commands are held within the
building block, and are executed at precisely the next RTI. Similarly,
inputs are sampled and held through an RTI period.

P SRR v S S e 0

K
!

!

i
f
}
E
}

|

:

TN, Y ke ” M I TR

A e i £ T S - S

. Mamchrmomuﬁwiewlwdmmw
Kodule. this :cchniqu allows software l'.o ba: chnngad witkout changing

the I/0 timing of unmodified programs (RENR: Tab]. It aleo préveats

" DMA activity from the imtercommunications bus from changing 1/0 timing
_ due to slight variations in processor spesd due to stolem memory cycles.

Pinally a restricted interaction with the host system coupled with
syuéhtonons sotbwate operation is expectéd to simplify verification and

validation.

)

2)

3)

(4)

(5)

(6)

1/0 Function #1 Parallel Data Out. Outputs a 16=bit
data word taken from the host computer's data bus at the

next RTI pulse.

1/0 Function #2 Parallel Data Input. Sample and hold a
16-bit data word at the next RTI pulse. A separate Read

Command transfers the sampled data into the host computer.

I1/0 Function #3 Serial Data OQut. Shifts out a 16-bit
data word at the next RTI pulse. Provides word gate and

shift clock signals.

I1/0 Function #4 Serial Data In. Accepts up to 16 bits

of serial digital data from a data source.

1/0 Function #5 Pulse and Bilevel Input. This function

Is used to sense the logical state of up to 8 lines, and
to sense the occurrence of a pulse event within a software
determined measurement period. The pulse sensing logic

is reset on RTI (or multiples of'kml) time centers while
the level sense logic is allowed to change state on

1 usec intervals.

1/0 Function #6 Pulse Counter. This function totals

the number of pulse events over a predetermined time

interval.

i
;
B i e T i

(Modulo ¥ Couster). Used to generate pulse streams
which are integral submultiples of a Master Cleck.

(8) 1/0 Punction #8 Pulge Output. Generates pulses vith

delay and width program-specified and derived from a
Master Clock. Pulses are generated periodically on RT1

":.‘.Ax ' ';"i,' ')

time centers and are typically of 10u sec or 100u sec
duration.

(9) 1/0 Function #9 Analog Multiplexor. Up to 16 lines of
analog data can be collected, in a two-part operation.

First the desired analog line is selected and the data is
quantized at the next RTI time. The resulting digital
data is held in an output register until it is retrieved

by software with a subsequent read operation.

(10) I/0 Function #10 High Rate DMA. This function is
designed to minimize handling of high rate data. A

starting address and word count is loaded into the
building block along with an output or receive request.
Data is transferred to or from the host computer memory

under the control of a peripheral device,

These functions were selected to provide a general 1/0 capa-
bility. The Functions are made sufficiently powerful so that the burden
of high rate timing can be removed from software. In general, the soft-
ware only has to provide outputs with a resolution of a few milliseconds

(determined by the RTI) and the hardware takes care of the finer details.

In order to proceed with 1/0 building block design, a detailed
analysis of NAVY systems and procedures is required. However, the
following general comments can be wmade regarding building block

implementation,
Implementation Strategy

The circuitry for each 1/0 function is not complex and the
implementation of fault-detection is straightforward. Where information
structure is preserved (such as data in and out) parity checking can be

employed, Control functions can be duplicated with morphic comparison,

A-4

DR © N w9 M porey . 3. 2 PP SAT: SR P L GW)

The density of VLSI technology is sufficiently htg? that a
number of 1/0 functions can be placed on a single chip. The‘apeciflc
function which is required cam be activated by comnecting pins. This
technique can reduce the inventory of building blocks to two or three.
Most of the functions described above can be implemented on a single
chip.

One additional requirement is for the redundant use of 1/0
elements. To achieve redundancy in Terminal Modules, two or more
modules are cross-strapped, i.e., their inputs and outputs are hooked
together. One module is powered and the others are used as unpowered
standby spares. When cross-strapped 1/0 is used, it is important that
short-protection be provided at all output connections. Otherwise a
shorted I/0 connection could inactivate all ~f the spares. Typical
techniques for protection are to isolate ouifuis with series diodes

and inputs with series resistors. Thus, hybrid isolator packages will

be required as an integral part or as an adjunct to the building blocks.

1/0 Building Block definition is an area recommended for
further study in the areas of (1) a detailed definition of NAVY func-

tional requirements and (2) chip development.

NASA- JP —Comi_ LA Catt A-5

	1981010149.pdf
	0016A02.TIF
	0016A03.TIF
	0016A04.TIF
	0016A05.TIF
	0016A06.TIF
	0016A07.TIF
	0016A08.TIF
	0016A09.TIF
	0016A10.TIF
	0016A11.TIF
	0016A12.TIF
	0016A13.TIF
	0016A14.TIF
	0016B01.TIF
	0016B02.TIF
	0016B03.TIF
	0016B04.TIF
	0016B05.TIF
	0016B06.TIF
	0016B07.JPG
	0016B07.TIF
	0016B08.TIF
	0016B09.TIF
	0016B10.TIF
	0016B11.TIF
	0016B12.TIF
	0016B13.TIF
	0016B14.TIF
	0016C01.TIF
	0016C02.TIF
	0016C03.TIF
	0016C04.TIF
	0016C05.TIF
	0016C06.TIF
	0016C07.TIF
	0016C08.TIF
	0016C09.TIF
	0016C10.TIF
	0016C11.TIF
	0016C12.TIF
	0016C13.TIF
	0016C14.TIF
	0016D01.TIF
	0016D02.TIF
	0016D03.TIF
	0016D04.TIF
	0016D05.TIF
	0016D06.TIF
	0016D07.TIF
	0016D08.TIF
	0016D09.TIF
	0016D10.TIF
	0016D11.TIF
	0016D12.TIF
	0016D13.TIF
	0016D14.TIF
	0016E01.TIF
	0016E02.TIF
	0016E03.TIF
	0016E04.TIF
	0016E05.TIF
	0016E06.TIF
	0016E07.TIF
	0016E08.TIF
	0016E09.TIF
	0016E10.TIF
	0016E11.TIF
	0016E12.TIF
	0016E13.TIF
	0016E14.TIF
	0016F01.TIF
	0016F02.TIF
	0016F03.TIF
	0016F04.TIF
	0016F05.TIF
	0016F06.TIF
	0016F07.TIF
	0016F08.TIF
	0016F09.TIF
	0016F10.TIF
	0016F11.TIF
	0016F12.TIF
	0016F13.TIF
	0016F14.TIF
	0016G01.TIF
	0016G02.TIF
	0016G03.TIF
	0016G04.TIF
	0016G05.TIF
	0016G06.TIF
	0016G07.TIF
	0016G08.TIF
	0016G09.TIF
	0016G10.TIF
	0016G11.TIF
	0016G12.TIF
	0016G13.TIF
	0016G14.TIF
	0017A02.TIF
	0017A03.TIF
	0017A04.TIF
	0017A05.TIF
	0017A06.TIF
	0017A07.TIF
	0017A08.TIF
	0017A09.TIF
	0017A10.TIF
	0017A11.TIF
	0017A12.TIF
	0017A13.TIF
	0017A14.TIF
	0017B01.TIF
	0017B02.TIF
	0017B03.TIF
	0017B04.TIF
	0017B05.TIF
	0017B06.TIF
	0017B07.TIF
	0017B08.TIF
	0017B09.TIF
	0017B10.TIF
	0017B11.TIF
	0017B12.TIF
	0017B13.TIF
	0017B14.TIF
	0017C01.TIF
	0017C02.TIF
	0017C03.TIF
	0017C04.TIF
	0017C05.TIF
	0017C06.TIF
	0017C07.TIF
	0017C08.TIF
	0017C09.TIF
	0017C10.TIF
	0017C11.TIF
	0017C12.TIF
	0017C13.TIF
	0017C14.TIF
	0017D01.TIF
	0017D02.TIF
	0017D03.TIF
	0017D04.TIF
	0017D05.TIF
	0017D06.TIF
	0017D07.TIF
	0017D08.TIF
	0017D09.TIF
	0017D10.TIF
	0017D11.TIF
	0017D12.TIF
	0017D13.TIF
	0017D14.TIF
	0017E01.TIF
	0017E02.TIF
	0017E03.TIF
	0017E04.TIF
	0017E05.TIF
	0017E06.TIF
	0017E07.TIF
	0017E08.TIF
	0017E09.TIF
	0017E10.TIF
	0017E11.TIF
	0017E12.TIF
	0017E13.TIF
	0017E14.TIF
	0017F01.TIF
	0017F02.TIF
	0017F03.TIF
	0017F04.TIF
	0017F05.TIF
	0017F06.TIF
	0017F07.TIF
	0017F08.TIF
	0017F09.TIF
	0017F10.TIF
	0017F11.TIF
	0017F12.TIF
	0017F13.TIF
	0017F14.TIF
	0017G01.TIF
	0017G02.TIF
	0017G03.TIF
	0017G04.TIF
	0017G05.TIF
	0017G06.TIF
	0017G07.TIF
	0017G08.TIF
	0017G09.TIF
	0017G10.TIF
	0017G11.TIF
	0017G12.TIF
	0017G13.TIF
	0017G14.TIF
	0018A02.TIF
	0018A03.TIF
	0018A04.TIF
	0018A05.TIF
	0018A06.TIF
	0018A07.TIF
	0018A08.TIF
	0018A09.TIF
	0018A10.TIF
	0018A11.TIF
	0018A12.TIF
	0018A13.TIF
	0018A14.TIF
	0018B01.TIF
	0018B02.TIF
	0018B03.TIF
	0018B04.TIF
	0018B05.TIF
	0018B06.TIF
	0018B07.TIF
	0018B08.TIF
	0018B09.TIF
	0018B10.TIF
	0018B11.TIF
	0018B12.TIF
	0018B13.TIF
	0018B14.TIF
	0018C01.TIF
	0018C02.TIF
	0018C03.TIF
	0018C04.TIF
	0018C05.TIF
	0018C06.TIF
	0018C07.TIF
	0018C08.TIF
	0018C09.TIF
	0018C10.TIF
	0018C11.TIF
	0018C12.TIF
	0018C13.TIF
	0018C14.TIF
	0018D01.TIF
	0018D02.TIF
	0018D03.TIF
	0018D04.TIF

