NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
MODIFICATION OF THE FLOW PASS METHOD AS APPLIED TO PROBLEMS OF CHEMISTRY OF PLANET ATMOSPHERES

V. A. Parshev

Translation of "Modifikatsiya metoda potokovoy progontki primenitel'no k zadacham khimii planetnykh atmosfer", Academy of Sciences USSR, Institute of Space Research, Moscow, Report Pr-387, 1978, pp. 1-12
Carried out herein is generalization of the flow pass method for a stationary problem of diffusion of a minor component in a stratified medium, with the presence of the force of gravity and chemical reactions.

It is shown that the modified flow pass method, applied to problems of chemistry of planet atmospheres, possesses considerable effectiveness, both in the case when the coefficient of diffusion changes severely in the examined region, and in the case when diffusion is the prevalent process, as compared with chemical reactions, i.e., in the case when a regular pass proves inapplicable, or applicable in a limited interval of the decisive parameters.

Translation of "Modifikatsiya metoda potokovoy progonki primenitel'no k zadacham khimii planetnykh atmosfer", Academy of Sciences USSR, Institute of Space Research, Moscow, Report Pr-387, 1978, pp. 1-12
MODIFICATION OF THE FLOW PASS METHOD AS APPLIED TO PROBLEMS OF CHEMISTRY OF PLANET ATMOSPHERES

V. A. Parshev

Carried out herein is generalization of the flow pass method for a stationary problem of diffusion of a minor component in a stratified medium, with the presence of the force of gravity and chemical reactions.

It is shown that the modified flow pass method, applied to problems of chemistry of planet atmospheres, possesses considerable effectiveness, both in the case when the coefficient of diffusion changes severely in the examined region, and in the case when diffusion is the prevalent process, as compared with chemical reactions, i.e., in the case when a regular pass proves inapplicable or applicable in a limited interval of the decisive parameters.

The problem of determining the spatial distribution of minor components in the atmospheres of planets amounts to the solution of a system of equations, each of which has the form

\[
\frac{d\Phi_i}{dz} = p_i - L_i n_i \quad (1.1)
\]

with one of the following typical boundary conditions at the upper boundary:

1. \(\Phi_i \big|_{z=ZM} = Q_m \) —representation of flow,
2. \(n_i \big|_{z=ZM} = n_{im} \) —representation of concentration

and at the lower boundary:

Numbers in the margin indicate pagination in the foreign text.
Here, \(n_i \) is the concentration, and \(\Phi_i \) is the flow of the component \(i \).

\[
\Phi_i = -\kappa \left\{ \frac{dn_i}{dz} + \frac{P_i}{H_{cp}} + \frac{n_i dT}{z} \right\} - D_i \left\{ \frac{dn_i}{dz} + \frac{n_i}{T} + (1 + \alpha_1) \frac{dT}{dz} \right\},
\]

\(P_i, L_i \) are the rate of production and the function of particle destruction, \(k \) is the coefficient of diffusion, brought about by motion of the medium, \(D_i \) is the coefficient of molecular diffusion, \(H_i, H_{cp} \) are the scales of the altitudes of the examined component and the medium, respectively, \(T \) is the temperature, \(\alpha_1 \) is the thermodiffusion factor, \(Z \) is the altitude reckoned from a certain level (not necessarily from the surface of the planet, \(0 \leq Z_M \)), \(Z_M \) is the upper boundary, and \(i \) is the number of the component.

Using the method of component breakdown, the problem of many components can be reduced to the sum of the problems of the given type, which makes it possible to examine the problem (1.1)-(1.4) for a single component. Subsequently, the index \(i \) will be omitted.

The following boundary value problem corresponds to the differential boundary value problem (1.1)-(1.4):

\[
\begin{align*}
\Phi_i \bigg|_{z=0} & = Q_0 \\
\phi_i \bigg|_{z=0} & = \frac{P_i}{L_i} \\
n_i \bigg|_{z=0} & = n_{i0}
\end{align*}
\]
The equation is approximated according to three points on a uniform network, according to \(Z \), in a conservative manner, \(i \) is the number of the point in sampling for \(Z \), \(\varepsilon_i \) is the difference analog of \(L \), \(d_i \) is the difference analog of \(p \), and \(F_i \) is the difference analog of the flow \(\phi \).

By bounding our problem by the description of the method of solution of the difference system, according to all questions associated with the derivation and substantiation of the differential equations, as well as the switch to an approximating system of difference equations, we will refer the reader to the appropriate literature (for example, one can find a detailed bibliography on these questions in study [5]).

In order to solve problems of the type (2), the pass method [1] is usually utilized, which possesses great effectiveness and stability and makes it possible to obtain a solution of the problem in a rather broad range of decisive parameters. However, there exists a large class of problems of the described type, when the use of the standard pass method (SP) is not possible, since it leads to a considerable loss of accuracy, for example, in problems of chemistry of planet atmospheres: (*) when the coefficient of diffusion changes severely, i.e., the coefficients \(a_{i-1}, b_i \) in (2)
charge in the examined area by several orders; or (**), when
the diffusion is a more effective process, as compared with the
chemical reactions between the components, and the flow through
the boundary is absent, i.e., \(a_{i-1}, b_i \equiv \varepsilon_i, d_i \) and \(F_{nz} = 0 \). Under
these conditions, the total concentration of the component in
the examined area is determined by the balance between the total
production and destruction, and its altitude distribution is
brought about by diffusion. The use of the standard pass method
for solving these problems leads to a considerable loss of
accuracy, if the order of the relationship of the minimum value
of \(b_i, \varepsilon_i, d_i, a_{i-1} \) to the maximum value of \(a_{i-1}, b_i \) is greater
than the number of significant digits with which the computer
operates. The flow pass method (PP) [2,3,4] makes it possible
to obtain a solution of the problem in both cases (*) and (**),
if the flow is determined as \(\phi = k \frac{dn}{dz} \).

Given in the present study is a modification of the flow
pass method for a flow of a more general type (1.4), which makes
it possible to overcome both of the indicated difficulties.

Description of the Algorithm

Thus, we will examine the difference boundary value problem
(2.1)-(2.4). For a common pass, we have

\[
\begin{align*}
 n_{i+1} &= z_i n_i + m_i, \\
 z_{i-1} &= \frac{b_i}{b_{i+1} + \alpha_i + \varepsilon_i - \alpha_i z_i}, \\
 m_{i-1} &= \frac{d_i + m_i \alpha_i}{b_{i+1} + \alpha_i + \varepsilon_i - \alpha_i z_i}.
\end{align*}
\]

The first equation (2), we will write in the form
\[F_i - F_{i-1} = -\varepsilon_i n_i + d_i. \]

Expressing \(n_{i+1} = \frac{F_i}{a_i} + \frac{d_i}{a_i} n_i \) from (2.2) and substituting into (3.1), we obtain

\[-F_i + n_i (b_{i+1} - z_i a_i) = m_i a_i. \quad (5)\]

Introducing new coefficients according to the formulas

\[\chi_i = m_i a_i; \quad \alpha_i = b_{i+1} - z_i a_i. \quad (6)\]

we will write (5) in the form

\[-F_i = -\alpha_i n_i + \chi_i. \quad (7)\]

From (7) and (4), excluding \(n_1 \), we obtain the recurrent relationship for the flow

\[F_i = \frac{\alpha_i}{\alpha_i + \varepsilon_i} F_{i-1} + \frac{d_i \alpha_i - \varepsilon_i \chi_i}{\alpha_i + \varepsilon_i}. \]

From (6), we obtain the expressions for \(z_i \), \(m_i \):

\[z_i = \frac{b_{i+1} - \alpha_i}{\alpha_i}; \quad m_i = \chi_i / \alpha_i. \]

From the first equation in (3), we obtain the recurrent relationship for \(n_1 \):

\[n_{i+1} = \frac{b_{i+1} - \alpha_i}{\alpha_i} n_i + \frac{\chi_i}{\alpha_i}. \quad (8)\]

The recurrent relationships for \(\alpha_i, \gamma_i \) are obtained from (6), (3.2), and (3.3):
\[\alpha_i = b_{i+1} \frac{d_{i+1} + E_{i+1}}{d_{i+1} + a_i + E_{i+1}} \]
\[\gamma_i = \alpha_i \frac{d_{i+1} + \gamma_{i+1}}{d_{i+1} + a_i + E_{i+1}} \]

(9)

With regard for (9), expression (8) takes on the form
\[n_{i+1} = \frac{(b_{i+1} n_i + d_{i+1} + \gamma_{i+1})}{(d_{i+1} + E_{i+1} + a_i)} \]

The final formulas for the direct pass have the form
\[\alpha_i = b_{i+1} \frac{d_{i+1} + E_{i+1}}{d_{i+1} + a_i + E_{i+1}} ; \gamma_i = \alpha_i \frac{d_{i+1} + \gamma_{i+1}}{d_{i+1} + a_i + E_{i+1}} \]

(10.1)

\[\alpha_1 / \alpha_n = 0 ; \gamma_n = Q_M \]

(10.2)

\[\alpha_1 / \alpha_n = b_{n_2} ; \gamma_{n_2} = \alpha_n \cdot n_M \]

(10.3)

Reverse pass is carried out according to the formulas
\[n_{i+1} = \frac{b_{i+1}}{\alpha_i} \frac{d_{i+1} + E_{i+1}}{d_{i+1} + a_i + E_{i+1}} n_i + \frac{d_{i+1} + \gamma_{i+1}}{d_{i+1} + a_i + E_{i+1}} \]

\[F_{i+1} = \frac{d_{i+1} + E_{i+1}}{d_{i+1} + a_i + E_{i+1}} F_i + \frac{d_{i+1} + \gamma_{i+1}}{d_{i+1} + a_i + E_{i+1}} \]

(11)

\[\beta_1 / \beta_0 \]

\[\beta_1 / \beta_0 \]

The obtained formulas, as easily noted, are similar to the formulas of flow pass, given in [1]; therefore, they may be
called the algorithm of the modified flow pass (MPP).

The stability of the recurrent relationships given above is evident.

Discussion of the Method

We will give reasons which show that the calculations according to the given scheme prove more accurate than those which are carried out by the traditional pass method.

Insofar as the coefficients a_i, b_i, c_i, and d_i are positive, the pass coefficients a_i, $y_i > 0$, and, thus, the sums of the positive magnitudes stand both in the numerator and in the denominator of the expressions (10), and, although the absolute error in the sum is made up of the absolute errors of the terms, the relative error does not increase, insofar as the moduli of the magnitudes in the numerator and denominator increase, while the accumulation of the error (relative) during division and multiplication does not have such catastrophic consequences as during subtraction.

If d_i, e_i, f_i, and $g_i = 0$, then the method of mathematical induction may be used to show that a_i, $y_i > 0$, and $z_i < 0$, $n_i > 0$, i, e_i, magnitudes of a single order take part in the determination of a_i, y_i, although only as sums, and the relative error does not increase.

These reasons show that the modified flow pass is free from the above-indicated difficulties, which occur during the solution of problems of chemical kinetics by normal pass.

For illustration, we will examine two models of the problem. The first is described by the following system of equations

$$
\begin{align*}
\frac{d \phi}{dz} &= 0, \\
\phi &= D \left(\frac{dn}{dz} + n \right); \\
\left. n \right|_{z=c} &= 1, \\
D &= \exp (\beta z); \\
\left. \phi \right|_{z=0} &= 0, \\
0 &\leq z \leq 20.
\end{align*}
$$

(A)
where $\beta > 0$ is the parameter of the problem.

There exists an accurate solution of the problem, which has the form

$$n = e^{\lambda Z}.$$

The second problem is formulated using the following system of equations

$$\frac{d^2 \phi}{dz^2} = E(1 - n), \quad \phi = \frac{dn}{dz} + n.$$

(B)

$$\phi|_{z=0} = 0; \quad \phi|_{z=ZM} = 0, \quad 0 \leq z \leq Z0.$$

where the coefficient of diffusion is assumed as equal to 1, $E = 1$, $ZM = 20$. The asymptotic solution of this problem, with the condition $ZM \cdot E \ll 1$, has the form

$$n = n_0 \cdot e^{\lambda Z}, \quad \text{where} \quad n_0 = ZM.$$

For these problems, in accordance with what has been set forth above, approximating difference equations were written, which were solved both by the method of the standard pass and by the method of the modified flow pass. A computer, operating with 12-digit numbers, was utilized for the solution.

Problem (A) was solved with various values of the parameter β in the coefficient of diffusion in a uniform network with a spacing $\Delta Z = 0.1$. It turned out that the method of the standard pass, with $\beta < 2$, provides a solution of the problem which differs by less than 2% from the analytical solution, but with $\beta > 2$, the solution differs considerably from the analytical solution (fig. 2).

The method of the modified flow pass provides a solution which
coincides, with an accuracy of up to 2% for all β (fig. 1).

Problem (B) was solved with various values of E in the very same network. It was found that, with $E<10^{-10}$, the solutions for the standard pass and the modified flow pass coincide, with an accuracy of up to 5%, but with $E>10^{-7}$, these solutions differ from the asymptotic solution (fig. 3), and only with $E<10^{-7}$ do all three solutions coincide—that obtained according to the standard pass up to 10%, and that obtained according to the modified flow pass with an accuracy of up to 4% (fig. 4).

With $E<10^{-10}$, the solution by the method of the standard pass is impossible to find (the system becomes confluent for the computer), while the modified flow pass provides a solution with extremely small E, for example, a solution was obtained with $E=10^{-10}$ (fig. 4).

The results given above show the effectiveness of the method of the modified flow pass during the solution of problems of the described type, for example, those associated with the chemistry of planet atmospheres. It combines within itself both the advantages of the standard pass, namely efficiency and a small volume of required storage, and the advantage of methods which utilize a double length of the computer number—namely, high accuracy of solution.

In conclusion, the author thanks V. A. Krasnopolskiy for his detailed discussion of the study.
REFERENCES

Fig. 1. Dependence of relationship \(\frac{n}{n_{\text{anal}}} \) on the coordinate \(Z \). (1) \(n=n_{\text{anal}} \) (2) \(n \) is the solution of the problem by the method of the modified flow pass and standard pass with \(\beta<2 \).

Fig. 2. Dependence of magnitude of \(\beta n(\frac{n}{n_{\text{anal}}} - 1) \) on the coordinate \(Z \) for problem (A) by the method:
(1) Modified flow pass for all \(\beta \); (2) Standard pass with \(\beta=2.5 \); (3) Standard pass with \(\beta=3 \).
Fig. 3. Dependence of magnitude of $\ln(n/n_{\text{asymp}})$ for problem (B) on the coordinate Z:
1. $E=10^{-5}$; solutions by modified flow pass and standard pass methods coincide;

Fig. 4. Dependence of magnitude of (n/n_{asymp}) on coordinates Z for problem (B): (1) Asymptotic; (2) Modified flow pass with $10^{-3} \geq E > 10^{-7}$; (3) Standard pass with $E=10^{-10}$.