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RECOGNITION OF BINARY X-RAY SYSTEMS UTILIZING THE
DOPPLER EFFECT

B. L. Novak

Studied herein is the possibility of the recognition of the

duality.of a single class of X-ray systesas utilizing the Doppler

effect. The procedure is based on the presence of a period which

coincides with the orbital period at the intensity of the radiation

in a fixed energy interval of the X-ray component of a binary

system.

1. We will use I'(t,L) to designate the density of the flow 	 L
of radiation from the X-ray source, that is, the average number

of photons striking a site of unit area, perpendicular to the flow,

per unit of time in the vicinity of the current time t in a unit

energy interval in the vicinity of the energy E. One of the

following forms of the functional dependence of T on E is usually

adopted [1]:

Ott, E} - R(t^ E - ^^'_^I)

	

It E =B t E 2 e- Kt E
 .	 (2)

	

47 (t) E) _ B (t E -i C K (t)E.	 (3)

Let ^(t,E) and L(t), respectively, be the energy and time

spectra, that is, the average number of photons recorded by the

radiation detector:

-in a unit energy interval per unit of time for the energy

spectrum,

- in a unit of time for the time spectrum.

The energy spectrum is associated with the density of the flow

by the relationship

*Numbers in the margin indicate ragination in the foreign text.



where a is the effectiveness of registration, and S is the area

of the detector. We will assume that the detector does not rotate

in absolute space and
i

^a  coast 0	 with	 E w^ E `K	 {4

with	 M

where EH and E  are some energy values which are characteristic

for the given detector. It follows from (4) that 0(t,E) differs

from zero only with EH`E`EK'

It is clear that

L(tl= ^^'(t,E)dE _	 (tx)dl.
We will use n=n(t i , t i +At,Ei,Ej) to designate the calculation

of the pulses with energies from El to E ¢ in the detector within

the time interval of a magnitude At from t i to t i +At, where

t i =to +(i-1)At, and to is the beginning of the observation process.

Then, the process of registration of the radiation may be described

in the following manner: the sequence of measurements { h i } is gener-

ated by the Poisson process with variable intensity

E'

a(t)= J ^ G(E ;F) q^(tf)dEdE', 	 ^s^
E;

Here, G(E',E) is the fu::ction of response of the detector,

that is, the conditional density of distribution of the pulse

energy, occurring during registration of a photon of a certain

energy by the detector.
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JCOe(t,E)de
0
00

=;+O(L')dU
0

00	
V(f)
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2. If the X-ray source is part of a binary system, then its

flow density T(t,E), and, consequently, its energy spectrum ^(t,E),

changes with time for two reasons:

1) the orbital motion of the source, which evokes the Doppler

effect,

2) the variability of the radiation process itself.

We will first examine the form of the energy spectrum 09(t,E),

the variability of which is associated with the Doppler effect.

Let 0 0 (E) be the "unperturbed" spectrum, that is, the spectrum

which would have a source if it were not part of a binary system.

is not difficult to show that

_. vtt^	 l+ v( ) 3 (tI+	 E	 7)

Here, v(t) is the projection onto the line of sight of the velocity

of the X-ray component, relative to the center of mass of the

binary system, and c is the magnitude of the speed of light.

We would note that

and does not depend on t.

We have indicated three forms of the functional dependence of

the density of the radiation flow on the energy. Three forms of

the spectra ^ 9 (t,E) correspond to these forms of the dependence.

3
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If the density of the radiation flow is described by expression

(1) , then

=R ES
(i+v(+)—C  -YE

and with v(t)<<c

CO, (u) =RE $ (^+ ^v(t))E 110 	 tee
If the density of the flow is described by (2), then

a, V- LA Ev(DLt) )B C$ ((I+ V)C	 -, F
_pt )2. F2e K (J+ V(

and with v(t)<<c

1 C.

If the density of the flow is described by (3), then

WI) s K(1*v^t))E

j Kc^+"^t>>e= aeS E^e
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X12)

and with v(t)<<c

44 q jKE
je

We will now switch to the energy spectrum which describes

the variability of the radiation process. We will designate this

spectrum using 0 C (t,E). According to (2-5), there exists a class

of X-ray sources in which the variability of the radiation process

has a random nature. It is precisely this class with which we

will be occupied subsequently. Judging from those same studies

[2-5], the time spectra of the sources of this class are described

well by a model of the random pulse process (shot noise), that

is

W) =^: f (t-tL)%P
where Q(t) are pulses of a given form, and the times t  are random

magnitudes, distributed according to Poisson ' s law with some

parameter u.

If the time spectrum is described by a model of the random

pulse process, then, keeping relationship (5) in mind, it seems

natural to utilize a similar model for the description of the

energy spectrum, as well. We will assume that

t (t ) E) -	 ^'^-^^^ E)	 ^I3}c	 ^

where V t-t i ,E), similar to ( 12), are pulses of a given form, and

they have the very same meaning as in ( 12). Following study [5) 	 /7

in the assumption of the nondependence of the tiro.-s of appearance

of the pulse ^(•) on the energy, we wi ll assume that ^(•) can be

0
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represented in the form

(t-t 3 E) ^ fj(t—tc)TL(E)
r

We will now construct a general model of the energy spectrum

^(t,E). We will assume that it consists of two additive com-

ponents, associated with the above-indicated reasons for the

variability. Thus, in the case when the source is part of a

binary system,

---a r4r,CP(t )E)	 (t 3E)+ CR(tjE)- CO, ft3E)o

and in the opposite case

qP(t,E) = 9Pa(E)* Qk(t,e)--6Qc(t,E) . 	(T I-)

where 4f is the sign of the mathematical expectancy.

For the evaluations which we will carry out subsequently, it

is desirable to know the connection between the characteristics of

the time and energy spectra. In this connection, we will give our

model in detail. We woul note that, in virtue of (5), (12), (14)

and (15), and (16),

(NO = Z: Ti. (t_t^.' To fz(E)d C
and it is natural to assume that ¢(t) = $i (t), that is,

_ EM t_t, • E ^E
M

(I^j
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We will assume that the distribution of the pulse 1(-), according

to the energies, takes place in accordance with the energy spectrum

0 0 (E), that is,

TAP
	 JOE --

or
	 L

T(t_tLjE)=	 t- 9l(^	 (n)
q^(gdf

It is evident that the model we constructed generalizes the

model in (2) in a natural manner. In principle, one can compli-

cate the model by taking into account the dependence of the dis-

tribution of the pulse 1( • ) according to the energies on the
true spectrum O(t,E), and not on 00(E).

3. We will examine the probability properties of the intro-

duced magnitudes. We would note that, since relationships (15)

and (16) differ only in their determined additive terms, the

probability characteristics of the spread for these cases coincide.

Thus, if ^(t , E) and ¢(t,U) are functions determined by expressions

(15) or ( 16), with various values of the energy E and U, then,

making use of the results in i21, we obtain an expression for the

mutual spectral density S ( v,E,U) of the random processes O(t,E),

^(t,U)

R-01

z. ^o(E) (U)S Cy, Ex) = I 	 cIb^
CY

OF 
IC^,AL 

PPOOj 4 qL ,,	 7



xku^_ I8)

Here, F(v) is the transform of the Fourier function L(t). The

mutual covariation function of the processes ^(t,E) and #(t,U) is
s
	

stationary, and is determined by the expression

8

The average values of the magnitudes determined from relation-
ships ( 15) and (16) will be distinguished using the indexes g and

o, respectively. Thus, the mathematical expectancy of the random
process @(t,E) is equal to 09,0(t,E).

From the obtained results and expression (6), we conclude
that the intensity a(t) is a random process with a mathematical
expectancy

Ei EK

M ,oCt)= 	 GC`;E) ,oCt,E^EdE' 	 (nA
9

E' `t

and a stationary covariation function

w	 2 2Riv^
6(̂ ) ^ -

	

( JZJ)dE)	 E'
1IF(v)I e Z (^ G(E;E)^o(E)JFJE'^ ^ (2I^

We will now examine the probability properties of the sequence

of measurements Ini}. It is evident that

ti.at

We will obtain expressions for the covariation of the magnitudes

UR1t;L'NA.L PAGE 1b
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A i and n i*j . Initially, let j>0, that is, the time intervals in

the course of which the calculation is recorded do not intersect.

It is not difficult to see that, for this vise,

cif At ti;.+Ot

t t	 t^,,

Here, cov is the sign of covariation.

We will make a substitution in the integral of the variables

Tj-t1; T-t2-ti. Then,

	ti+Ai
	!

^Ct2 ^^^^ dt i = At 

(j♦414 to

	

+.	 ^a )L}",	 tom}

where rf,

with Z< 0At 	'YC

	

^ • r• _..._	

f /^	
/ry	 G, .. 'fir►

	

`^ r	

t •/.^_ ` with	 >jA 9	 t '..

f

It is evident from expression (23) that the covariation is

stationary, that is, it depends only on the magnitude of j. We

will use c. to designate cov(ni,ni+j).

Now, let j -0. Utilizin g the results given in (6), we obtain

the following expres s ion for the dispersion of the magnitude nk:

tt♦&t	 At

= cov(nK nK	 M t) it + Jot	 it (24)CU n CO 
tK	 O	 9

i



f (y) c f't^ I .

r

The spectral density of the sequence of measurements (ni)

is expressed via the covariation and dispersion according to the

formula

CO	 ^At-r
,
,(V)Mzc

i 
e	 (^

1JM-00
where c_ j =c j . Specifically,

eb	 tetAt	 ao

oty ) = E C - = S M o(t)jt+AjB(t)at, 	 (2-9011
K

with

4. We will now switch to the verification of the duality of

the source. In the current study, for simplicity, we will examine

only circular orbits. In this case, v(t), which is part of

relationship (7), is a harmonic function, and Mg ( t) for a binary

source, as follows from (20) and ( 4) or (10), or (11), may be

represented in the form

4 0+ Q1 CAS( (Jet '+V 9	 (26)

where WO is the circular frequency of rotation along the orbit, and

ap ,a,, #are some constants.

tae will examine the sample spectrum of the sequence of measurements,

that is (7),

10



C^	 N	 d
	

N r.K Wx CC420VKAt

Here, N is the total number of measurements, taking part in the

process "ng, n = N %i	 , and W(K) is the correlation window. In
a

our analysis, we will limit ourselves to the simplest case, when

W(K)-1 with K-1,2.... I N, that is, to the study of the unleveled
spectrum CM [7).

Let us assume that

and

t' ►)= ^ ^ (( ,i - 8 n)Z+2 WK cos^n,rKet X.
Ci^	 N ,	 K

Eall

C2(y)= ( ^©na- Ah) +Z W% cos 2RVKdx
J

X E(&Vl a — An)(An	 AR))

	

C ev) - -	 C^ h	 r }(sn - en) + 2E, Wve52rjVv,4&

X^( a11 , — 9

Then

A

11



(29)C ^V ^- Ci (V) t C,(-V) C3 (A
we will occupy ourselves with the study of C I (v). We will assume

that

moot LG ^
	

(30)

and, for convenience, we will examine the continuous analog C1(v),

that is,

Scm2rtvu I(ErLffl-T &n)(Snft+o -^h)^du.	 (^)

Since relationship (22) is fulfilled, then

t+,4t

eftrw= i M OWIt P

i T t t at

n	 - C	 d Cit	 e=^^3

For evaluation, we will limit ourselves to the main loop of C1(v).

Then, making use of relationships (22) and (30), and having

carried out the operations determined by expressions (31), (32),

and (33), we obtain, in the case when the source is binary:

:max Clay}- Cl ( ) =2a l ADZ	 (34
-	 1t

We will switch to the study of C 2 (v). We will evaluate the

maximally possible magnitude of C 2 (v). Since C 2 (v) is a random

function of the argument v, then we will make use of the traditional

/12

12



probability evaluation 	 for the maximally
possible values of this function. Utilizing the result& of !7]t
we obtain

MC

and

8c,(-v)+3 $cj-v

From (35) and (27), the following evaluation follows:

(36)

On the other hand, according to the properties of the sample
spectrum, C2^v)-,>O. Thus,

0 '< C, (-V) 	 t

and, in that case when the X-ray source is part of a binary
system with sufficiently large values of T (greater than some T*),
the maximum value of the function CM exceeds the threshold value,
determined by the expression (1+3V'T)r 0 (0). If the source is
single, then the values of the sample spectrum are no greater than
(1+3VZ r 0 (0).

5. We will evaluate the magnitude of T*, having adopted the
Gaussian form of the pulse of the time spectrum. Thus, let

f (t)—c", — ^
where a and b are some constants.

13



transform of the Fourier function t(t) is then determined by 	X13

expression

,---	 _n^8^ti+ti

the function of response of the detector be ideal, that is,

CT^E ) ': ) =  S(E- ),
where 6(•) is Dirac's delta-function. Then, the covariation

function of intensity A(t), according to (21), is determined by

the expression

rcP, (EME

 
OL

^M

Hence, utilizing (26), we obtain 	 I

	

z	 2
^^^-a-t	 ( /t^'t tEl^^l

r,l,^ M (^^ ^+ at iTa g	 EK	 z .P
tK	

(

We would note that, according to [2],

oc	 _ 42

L(t)Ue 6
00

On the other hand,

E	 EKEh^q(E)R.
E„	 EN

Therefore,

14



at q(E)I[

For definiteness, let the dependence of T on E be described

by relationship (1); then

i	 2	 ^	 •

Here, V  is the maximum value of the projection of the velocity

of the X-ray component, relative to the center of mass of the

binary system, on the line of sight.

Hence,

2 ._ Z A
II

 ̂ 2 S ^o m e CA V) — 20 Tat —	 Z	 E 
^

and T*, according to (34) and (36), is determined from the equality /14

(1.+ 3V z) i+ --Q
SA(E  +G

'A

.	 V2 2 2 ^ it,i-^j ^_^	 a2 ^ AE SCE2 -E1 )

that is,

4+3
0_

VC

i`	 i, ---
Pz

C1-^ )2 v°CL_
15



a, L

We will utilize the obtained formula for the evaluation of T*

during the registration of the radiation by the detector with the

parameters of the SNEG-2MP instrument [8]:

—s	

f
	 t

— lt^.C.^tZ^ E 1°20 kev .E1-2DMker

We will take the parameters of the Sud X-1 as the characteristics

of the X-ray source [5,91:

581se	 se; fl=3,Q(fhotons/cm2 ke ♦ •JJ	
^	 -

Through the utilization of these data, the value of T* is

obtained as equal to 4.4 days, which should evidently be recognized

as acceptable.

1.6
M,
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