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RECOGNITION OF BINARY X~RAY SYSTEMS UTILIZING THE
DOPPLER EFFECT

B. L. Novak

K
bt Studied herein is the possibility of the recognition of the /2*
P duality of a single class of X-ray systems utilizing the Doppler

3 effect. The procedure is based on the presence of a period which
coincides with the orbital period at the intensity of the radiation

in a fixed energy interval of the X-ray component of a binary

system.

l. We will use Y(t,Ek) to designate the density of the flow /3
of radiation from the X-ray source, that is, the average number
of photons striking a site of unit area, perpendicular to the flow,

per unit of time in the vicinity of the current time t in a unit
energy interval in the vicinity of the energy E. One of the
following forms of the functional dependence of ¥ on E is usually
adopted [1]:

i __ R
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Plt.E)= ALE" ¥ o

, Wit £)=BWE e"“*’E )
W(t £)=B)Ete *HE - ()

Let ¢(t,E) and L(t), respectively, be the energy and time
spectra, that is, the average number of photons recorded by the
radiation detector:

-in a unit energy interval per unit of time for the energy

spectrum,

AR N . P

-in a unit of time for the time spectrum.

e

A The energy spectrum is associated with the density of the flow

-

by the relationship
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RLE)=£STEE).

where ¢ is the effectiveness of registration, and S is the area
of the detector. We will assume that the detector does not rotate
in absolute space and

E,=const#Q  witn E<E<r,
- 0 with E(Eu &E>Em

(4)

where EH and EK are some energy values which are characteristic
for the given detector. It follows from (4) that ¢(t,E) differs
from zero only with EH<E<EK.

It is clear that E“ | -
0= [ROOE=BEOE. o

We will use n=n(ti,ti+At,E{,E§) to designate the calculation
of the pulses with energies from E{ to E} in the detector within
the time interval of a magnitude At from ti to ti+At, where
ti=to+(i-1)At, and t is the beginning of the observation process.
Then, the process of registration of the radiation may be described
in the following manner: the sequence of measurements {hi} is gener-
ated by the Poisson process with variable intensity

B~

A= | E“e(E:E)ma,E)M: "

E{

Here, G(E',E) is the fuiiction of response of the detector,
that is, the conditional density of distribution of the pulse

energy, occurring during registration of a photon of a certain

energy by the detector.
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2. If the X-ray source is part of a binary system, then its
flow density ¥Y(t,E), and, consequently, its energy spectrum ¢(t,E),
changes with time for two reasons:

1) the orbital motion of the source, which evokes the Doppler

effect,
2) the variability of the radiation process itself.

We will first examine the form of the energy spectrum ¢g(t,E).
the variability of which is associated with the Doppler effect. /5
Let ¢°(E) be the "unperturbed" spectrum, that is, the spectrum
which would have a source if it were not part of a binary system.
't is not difficult to show that

BiED=(EDERE). o

R T T
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Here, v(t) is the projection onto the line of sight of the velocity
of the X-ray component, relative to the center of mass of the
binary system, and c is the magnitude of the speed of light.

We would note that

T, e)dE = [l Rde=

3

lUPQ(U)JU - @

]

and does not depend on t.

We have indicated three forms of the functional dependence of
the density of the radiation flow on the energy. Three forms of
the spectra ¢g(t,E) correspond to these forms of the dependence.




1f the density of the radiation flow is described by expression
(1), then

o, (1) = (b ) ReSAE)E) ™ =
s (1) '

Ry (£.E)=Re § (b L vety)E™ (5

If the density of the flow is described by (2), then

(*v{)
Q1= ERes(-LEfe "
< Bes@ et P

and with v(t) <<c

Ky (t,E)=BeS(1~ ¢ U3+ xE)E%®

VE

If the density of the flow is described by (3), then




and with v(t)<<c

mg (t,E)=BeS(E™ Kv_gz}e"f{ @)

We will now switch to the energy spectrum which describes
the variability of the radiation process. We will designate this
spectrum using ¢c(t,E). According to [2-5], there exists a class
of X-ray sources in which the variability of the radiation process
has a random nature. It is precisely this class with which we
will be occupied subsequently. Judging from those same studies
[2-5], the time spectra of the sources of this class are described
well by a model of the random pulse process (shot noise), that
is

L(t) =}; B(t-t-b) , (12)

where ¢(t) are pulses of a given form, and the times ti are random
magnitudes, distributed according to Poisson's law with some

parameter u.

If the time spectrum is described by a model of the random
pulse process, then, keeping relationship (5) in mind, it seems
natural to utilize a similar model for the description of the
energy spectrum, as well., We will assume that

0, (£,E)=2 g(t,E). ()

where Q(t-ti,E), similar to (12), are pulses of a given form, and

they have the very same meaning as in (12). Following study (5] /1
in the assumption of the nondependence of the times of appearance

of the pulse ¢(-) on the energy, we will assume that ¢(-) can be




Lf(t‘ti.,s)?"fi(t'tt)?z(f:); - (n)

We will now construct a general model of the energy spectrum
¢ (t,E). We will assume that it consists of two additive com-
ponents, associated with the above-indicated reasons for the
variability. Thus, in the case when the source is part of a
binary system,

D(LE)=Ry(tD)+REE)-ERLD. 1o

O(t,E) =Wal(E)* Me (L,E)-ERLEE).- )

where éais the sign of the mathematical expectancy.

For the evaluations which we will carry out subsequently, it
is desirable to know the connection between the characteristics of
the time and energy spectra. In this connection, we will give our
model in detail. We woul note that, in virtue of (5), (12), (14)
and (15), and (16),

Z0-t)= Ty (-t T pede

and it is natural to assume that 2(t)=¢;,(t), that is,




We will assume that the distribution of the pulse 2(+), according
to the energies, takes place in accordance with the energy spectrun
¢°(E), that is,

a.(E) =
? ' Q{EHE """"" .

or &

(1};IE)EEL(E:) .
0,6

‘f(t'ta,E\l- (7)

It is evident that the model we constructed generalizes the
model in (2] in a natural manner. In principle, one can compli-
cate the model by taking into account the dependence of the dis-
tribution of the pulse 2(¢) according to the energies on the
true spectrum ¢(t,E), and not on ¢°(E).

3. We will examine the probability properties of the intro-
duced magnitudes. We would note that, since relationships (15)
and (16) differ only in their determined additive terms, the
probability characteristics of the spread for these cases coincide.
Thus, if ¢(t,E) and ¢(t,U) are functions determined by expressions
(15) or (16), with various values of the energy E and U, then,
making use of the results in {2], we obtain an expression for the
mutual spectral density S(v,E,U) of the random processes ¢(t,E),

2 0L(E)R,(0)

S (",E,U)z'- IFO) Ex 2 (18}
d fmexE)
Ricryy, k.
OF Poop ngce Is )




Here, F(v) is the transform of the Fourier function 2(t). The
mutual covariation function of the processes ¢(t,E) and ¢(t,U) is
stationary, and is determined by the expression

K&EU)' §5(vE,

arove

The average values of the magnitudes determined from relation- /9
ships (15) and (16) will be distinguished using the indexes g and
o, respectively. Thus, the mathematical expectancy of the random
process ¢(t,E) is equal to ¢g’o(t,E).

From the obtained results and expression (6), we conclude

that the intensity A(t) is a random process with a mathematical
expectancy

E Ex ,
Myolth=[ [6(EE) Dyt VEE
| £ E, | ,

and a stationary covariation function

ilF(wf e
(jm.,( gdE )’

We will now examine the probability properties of the sequence
of measurements {ni}. It is evident that

t;+at

En, = SMg,o(t)Jt | 22)

BR) = =%, Efé‘G(E E)E MFJE') (21)

We will obtain expressions for the covariation of the magnitudes

8 ORIGINAL PAGE 1>
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ny and Nyaje lnitially, let j>0, that is, the time intervals in
the course of which the calculation is recorded do not intersect.
It is not difficult to see that, for this rase,

1{" at tl'." sat

cov ( N, "J’ = .) B (tz‘tx)atat‘ .

tu,
Here, cov is the sign of covariation.

We will make a substitution in the integral of the variables
11=t); 1=t;-t;. Then,

teal toped (j+0at

J Bt,-t)dtdt,=at | BoMe

oty (j-bat
(j=0iat /10

+GS£(J ) dz, (3)

where

Q?
{ ('t—jAt) with 'Z’<6At ”Q
[ A\ o
HD=] - “
4> (jat=7) wen TO4AT. e,
| o)
It is evident from expression (23) that the covariation is
stationary, that is, it depends only on the magnitude of j. We
will use cj to designate cov(ni,ni‘j).
Now, let j=0. Utilizir3 the results given in (6], we obtain
the following expres. ion for the dispersion of the magnitude n ¢
@nk_c =cov(Ny )= j g,o(t )dt+ I(AT DB dz. (24)
9




AT,

The spectral density of the sequence of measurements {"i}
is expressed via the covariation and dispersion according to the
formula

~mijat
3’0(V)=ZC C J ’ ' (25)

vhere °-j'°j‘ Specifically,
teat
lgetn= Zc =§ 3o(t)Jt+AﬂB(t)Jt. (26)

F(v)< ;- | @

4. We will now switch to the verification cf the'duality of
the source. In the current study, for simplicity, we will examine
only circular orbits. In this case, v(t), which is part of
relationship (7), is a harmonic function, and Mg(t) for a binary
source, as follows from (20) and (9) or (10), or (l1l), may be
represented in the form

Qo+, os(wet +)» (28)

where w is the circular freaguency of rotation along the orbit, and

a raj, ¢are some constants.

We will examine the sample spectrum of the sequence of measurements,
that is (7],

10
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C(V):’At(i?(n n) *'N Z\J tos2nym‘[x
*;( h)( IR “«)) '

e A

L4

Here, N is the total number of measurements, taking part in the
processing, Y\:%ZY\S . and W(K) is the correlation window. In
d

our analysig, we will limit ourselves to the simplest case, when
W(K)=) with K=1,2,...,N, that is, to the study of the unleveled
spectrum C(v) [7].

Let us assume that
AR = L5y —~
ani=r5-Eny BR= o 2. A% s En= iﬂi‘,:‘ ",

and

C,(v="N (; &n, Sn) +22 Wy, cos2nvirat x

X Z(gh &h)(sﬂ LY -Eh )

C (v)“' X (Zu(any- *AR)? +2.2 W Cos2nykat x
X Z(Ah A“)(An m“An»

(V) Aﬁ' (Z 6 M\ "'An) *ZTWKMWA
X %: (8“&-&“)(6»“;“\' AR),

Then
LRICTAL PAGE Iy
LE DO ITATITY
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C(\#)#Q(V.)fg(v‘)kr c;(v'). o (29)

We will occupy ourselves with the study of C;(v). We will assume
that

watkd ¢ o (30)

and, for convenience, we will examine the continuous analog C; (v),
that is,

§ cos ziqu‘i‘Fé Vl(t) - 8‘7\)(8‘1({*“) 'E H)Cﬂ J w, (31)

Since relationship (22) is fulfilled, then

1
T

t+at

o= %E\ iMc, o(®d7 )t D)

t-

)

Mg =

For evaluation, we will limit ourselves to the main loop of C)(v).

Then, making use of relationships (22) and (30), and having
carried out the operations determined by expressions (31), (32),
and (33), we obtain, in the case when the source is binary:

mgx (=G, (57) =26Tat? C)

We will switch to the study of C,(v). We will evaluate the

maximally possible magnitude of C,;(v). Since Cy(v) is a random

function of the argument v, then we will make use of the traditional

12
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probability evaluation 8QW)‘3V9QV) for the maximally

possible values of this function. Utilizing the results of [7],
we obtain

ECM=T(); HCH)=2re)

and

ECm VTR -GN, (a9

From (35) and (27), the following evaluation follows:
G, (V)& (4+3V2)I(0). | (%)

On the other hand, according to the prcoperties of the sample
spectrum, C, v} 0. Thus,

0 <G, (v) & (4+3V2)HT0)

and, in that case when the X-ray source is part of a binary

system with sufficiently large values of T (greater than some T¥*),
the maximum value of the function C(v) exceeds the threshold value,
determined by the expression (l+3/f)ro(0). If the source is
single, then the values of the sample spectrum are no greater than
(1+372)_(0).

5. We will evaluate the magnitude of T*, having adopted the
Gaussian form of the pulse of the time spectrum. Thus, let

{()=ae &

where a and b are some constants.

13
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The transform of the Fourier function t(t) is then determined by
the expression

ﬂ!—
Ty) = abVire
Let the function of response of the detector be ideal, that is,

G(E E)= §(E~E),

where §(-) is Dirac's delta-function. Then, the covariation
function of intensity A(t), according to (21), is determined by
the expression

d.

EmEde)* \r o o I
ks 2. Q e

*

Hence, utilizing (26), we obtain

Swrat &E)
[ (0=|M (04t + atpma§’ Ee*',‘ =,
1 i 3(& I (o))

E
We would note that, according to [2],

L=y St Jac Bit-pabim

"

On the other hand, ‘
Ex

£1(1)=& [(t,E)dE= [RENE
En

H

Therefore,

14

A3




teat .
=] §M(L)&L j‘(? E)JE

For definiteness, let the dependence of ¥ on E be described
by relationship (1); then

a,=ReST (fllx )

Here, Vo is the maximum value of the projection of the velocity
of the X-ray component, relative to the center of mass of the
binary system, on the line of sight.

Hence,

2 _29 S g
maxC,0=2odTat= SEER (T T

and T*, according to (34) and (36), is determined from the equality /14

(3w esmg_“';a'u ST

2 a.S (E“ 4 ’-’“X)
= ,i :
that is, .
_3 11_
i+3V§X(i+Y3 - EX
x ( ) eSNE-ETY) )
(1-2)*




We will utilize the obtained formula for the evaluation of T*
during the registration of the radiation by the detector with the
parameters of the SNEG-2MP instrument [8]:

ES“iZu@; E:"ZO kev .E;=280kev .

We will take the parameters of the Sud X-1 as the characteristics
of the X-ray source (5,9]:

X :1)93, V°=S‘84l-yseé’y-_.zo}/sec;Hngssshotons/cmzke' )

Through the utilization of these data, the value of T* is
obtained as equal to 4.4 days, which should evidently be recognized
as acceptable.

16
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