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UNSTEADY TRANSONIC SMALL DISTURBANCE THEORY \HTH 
STRO~G SHOCK WAVES 

1. INTRODUCTION 

The most common methods of predicting steady flow aero

dynamic characteristics at transonic speeds are either the 

Transonic Small Disturbance (TSD) theory (ref. 1) or the Full 

Potential Equation (FPE) theory (ref. 2). The more accurate 

Euler equations solutions (ref. 3) are expensive to obtain, 

although for flows with strong shock waves such solutions are 

essential. The FPE theory is based on the assumption that the 

flow is isentropic and irrotational and generally has a (numeri

cally) exact treatment of the wing boundary conditions. The 

TSD theory is an approxi~ation to the FPE theory and thin wing 

boundary conditions are used in the solution procedure. One of 

the advantages of the TSD theory is the flexibility in deriving 

the approximate equation. This flexibility is generally 

utilized by a choice of a transonic scale parameter. The basic 
, 

assumptions of isentropy and irrotationality in both these 

theories are only valid v,hen there are no shock waves in the flml 

or when any shock waves are weak. The generally accepted defini

tion of a \'leak shock is "'hen the local Mach number just ahead 

of the shock is less than 1.3. When both TSD and FPE solutions 

are compared to the more realistic Euler equation solutions it 

is found that the agreement is satisfactory provided that the 

basic restriction to weak shock waves is not violated. The use 

of thin wing boundary conditions can also introduce errors into 

the TSD solutions. If the flow has strong shock waves, however, 

then there is considerable disagreement between both TSD and FPE 

solutions and Euler equation solutions. Generally the predicted 

shock location for the potential theories is much further aft 

than that for the Euler equation solutions. This is due to the 

isentropic assuroption being invalid in these flows. The causes 

of the error in the shock location in the steady TSD theory for 
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two-dimensional flow have been examined in reference 4 where a 

correction procedure has been derived that allows the basic 

equation within the formal accuracy bounds of a small disturbance 

theory. The basic hypothes~s of the theory is that the error 

in shock location is primarily due to the stronger shock 

predicted by TSD theory compared to the shock strength of the 

Euler equations. It is also assumed that if the shock strength 

is suitably corrected then the shock location should be approxi

mately correct. The technique used in reference 4 makes use of 

two TSD solutions, with different scaling parameters, and an 

interpolation scheme derived for discontinuous transonic flows. 

Examples of flows with strong shocks computed with this method 

agree satisfactorily with the Euler equation solutions, although 

the use of the thin airfoil boundary conditions in the TSD theory 

can give rise to errors near the leading edge. 

The aim of the present paper is to extend the basic concept 

of reference 4 to include unsteady transonic potential flows. The 

only satisfactory unsteady transonic method available is the low 

frequency theory of Ballhaus and Goorjian (ref. 5) which numeri

cally integrates the nonlinear low frequency transonic small 

disturbance equation in a time accurate manner. As in steady flow 

the results for a small disturbance equation formulation compare 

satisfactorily with solutions of the Euler equations when any 

shock waves in the flow are weak. However, the accuracy of the 

solution d~minishes, particularly as regards the shock location 

and motion, as the shocks become stronger. Again, as in the 

steady flow, it is assumed that this error is due to the shock 

strength of the small disturbance solution being larger than the 

corresponding Euler equation solution and that it is this dif

ference that leads to the wrong shock location. 

In reference 4 the correction to the TSD equation is obtained 

by computing two steady state solutions and then using an 

interpolation technique to give the required solution. This 

technique is not really feasible for unsteady flow since the 

correction procedure is required for each time step in the 
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solution. As there may be 1,000 or more such time steps the 

technique used in reference 4 would require an inord1nate amount 

of computer time to obtain a solution. Consequently, a different 

means of implementing the shock strength correction is developed 

in this paper. The technique involves the addition of higher 

order terms, which are formally of negligible magnitude, to the 

low frequency TSD equation. These terms are then chosen such that 

any shock waves in the flow have strengths approximately equal 

to the appropriate Rankine-Hugoniot shock strength. Two correcting 

approaches are investi3ated in the paper. The first is to 

derive a correction for the mean steady flow a~d then simply use 

this corrected form for oscillatory flows. The second is to 

derive a correction for both steady and oscillatory parts of the 

flow. This second development is the most satisfactory and com

parisons of the present results with Euler equation results are 

generally favorable, particularly regardIng shock location, 

although there are some discrepancies in the pressure distribu

tion in the leading edge region. 

2. BASIC SMALL DISTURBANCE FORMULATIO~ 

The low frequency TSD equation for the perturbation velocity 

potential ¢(x,y) at a free-stream Mach number Moo can be written 

in the form (ref. 6) 

(1) 

where y is the ratio of specific heats and q is the transonic 

scaling parameter. The two most commonly used (ref. 6) values of 

q are 2 (Spreiter scaling) and 1.75 (Krupp scaling). In the 

transonic limit of Moo ~ 1 both scalings are ident1cal. The 

pressure coefficient cp{x,y,t) is given in the low frequency 

small disturbance theory by 



c (x,y,t) 
p 
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= -29 (x,y,t) 
x 

(2) 

Associated with Equation (1) are the usual tangency and far 

field boundary conditions. The weak shock jump conditions for 

Equat~on (I) are 

(3) 

where [ ] denotes a jump through a shock wave, ~s is the angle 

that the normal to the shock makes with the x-axis and 

xs = (d::) is the shock speed. For a shock normal to the free 

stream the shock strength, crT' is defined as 

where c+, C- are the pressure coefficients just ahead of and 
p p 

behind the shock and 

c* = p 

2 -2(1 - M } 
00 

(y + I) Mq 
00 

For a harreonic oscillation with frequency w 

. I ~ I iwt x = ux we s s 

where loxsl is the magnitude of the shock motion. Now 

loxsl - 0(8 1 ) \lhere 01 is the amplitude of the oscillatory 

motion and generally 1011 «1. Since in the low frequency 

equation, Equation (1), it is implied (ref. 6) that 

(4) 

(5) 

(6 ) 
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it can be seen from Equations (4) and (5) that 

Hence, the shock speed can be neglected in the computation of 

the oscillatory shock strength. Thus 

crT ~ -2{C+(t) - C*} 
P P 

(7 ) 

For the following shock jump relations for the Euler 

equations it is assumed that the low frequency assu~ption noted 

above still applies. That is, the shock speed is sufficiently 

small that the quasi-steady relation holds. 

Consider now the quasi-steady Euler equation normal shock 

jump, crE(t), in terms of Nand C+(t) which is given (ref. 7) 
<Xl P 

by 

2y [Me
2

(t) - l][~2 + C+(t)] 
y + 1 yM P 

<Xl 
(8 ) 

where the epstream shock Bach number Ne is given by 

(9) 

The TSD (wlth q = 2.0) and Euler shock strengths are plotted 

against c+ for Hco = 0.755 in figure 1 and it can be seen that as 
+ p 

ICpl increases the discrepancy between 0T and 0E increases. It 
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should be noted here that different transonic scalings not only 

give a different value of C; but generally a different value of 

C+. Thus, for different scalings the shock strength may vary 
p 

considerably. 

The basic hypot sis of the present theory, as in reference 

4, is that the error in the shock location in both the steady 

and unsteady TSD solutions is due primarily to the error in the 

shock strength as exhibited in figure 1. Solutions of the Euler 

equations give a different pressure jump across a shock wave 

than potential theories because of the entropy production due 

to the shock wave. It is suggested that if t~ TSD equation is 

altered, still w~thin its formal accuracy bounds, such that the 

shock jump approximates the Euler equation shock jump, then the 

resulting equat~on is a better compromise in representing the 

actual flow. The reason for this statement is that by matching 

the shock jump the new equation implicitly introduces an addi

tional mechanism (formally negligible) that cancels the entropy 

production and rotationality errors in a potential formulation. 

The method introduced in reference 4 to modify the TSD 

equation is to interpolate two TSD results with different scalings, 

to obtain the des~red pressure Jump. While this technique is 

adequate for steady flow corrections it is not really adequate 

for unsteady flow results since it would require two TSD results 

at each time step. This would lead to an inordinate amount of 

computer time. Consequently simpler means of modifying the TSD 

equation are examined; these are discussed in the next section. 

3. HODIFIED SMALL DISTURBANCE EQUATION 

In an init~al attempt to derive a small disturbance equation 

that will g~ve a more realistic shock jump the follo'ving equation 

is used. 

2M2 ...£. cP 
00 U xt 

00 

(10) 
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If a = 1 - M2, b = (y + l)Mq and c = 0 Equation (10) is identical 
00 00 

to Equation (1). 

In the follo~ing analysis it is assumed that all shock 

waves are normal to the free stream. In this case contributions 

from the ~yy ter~ to the Jump relation can be neglected. 

Consider for the mor-ent the more general form of Equation (10) 

(11) 

The normal shock Jump relation is 

Xs = 0 (12) 

where ~~ is the value of 9x just ahead of the shock and a is the 

shock strength. The function F(~~,a) is given by 

+ 2 J$~ 
f(~x)d(~x) F(¢ ,0) = -- (13) x a 

a ~+ - 2 x 

The problem is to pick a suitable form of f($x)' and in 

the follow1ng discussion some conditions that should be satisfied 

by f(~x) are suggested. 

(a) In general the function f(~x) will be nonlinear in 

~x which leads to the possibility of multiple parabol1c points 

when 

f(~ ) = 0 x (14) 

It is advisable that at least one of the roots of Equation (14) 

* be ~ which 1S the parabolic point for a conventional (say Krupp) 
Xc 

TSD solution. Thus 
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f(=>* ) = 0 
Xc (IS) 

In order to avold unrealistic multiple parabolic points in the 

domain of interest it is also desirable that f(¢x} be a monotoni

cally decreasing function 1n some range AX' < A < AX • Thus ~ m1n - Yx - Y max 

(b) The normal shock strength should be ~he same as the 

normal Euler shock strength. Neglecting the shock speed term 

in Equat10n (11), as d1scussed in the previous section, this 

gives 

+ F(a , 0E) = 0 x 

where a
E 

is give~ by Equatlon (8). 

(16 ) 

(17) 

These three conditions, glven in Equations (15), (16), and 

(17), will glve the desired shock strength with no undesirable 

slde effects. 

Equatlons (IS), (16), and (17) must be satisfied at each 

1terative step or tlme step in order to get the correct shock 

Jump. While there is little option to satisfY1ng each of these 

equations at all 1terative steps at this preliminary stage of 

the invest1gatlon, it is possible to reduce the amount of com

putational "york ::-equired for an unsteady example if a steady 

state solution 1S first computed. 

It is of~en the case that the unsteady pressure d1stribution 

is related by a sroall steady perturbation to a mean state, which 

itself is close to the steady state result. Hence, 1f a modified 

small disturbance equation has been evolved for the steady state 

case it may be possible to use a simple analytic perturbation 

of the function f(¢x) that will give good accuracy 1n the 
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neighborhood of the steady state result. The additional condi

tion for this idea 1S given below. 

(c) For the shock strength to be approximately correct 

over a range of values close to the steady state value of 
+ + 

~x' ~x ' Equation (17) can be expanded as a Taylor's series to 
. s 

g1ve 

where the subscript s denotes a value in the steady state. 

Now by defl~i~1on 

and hence for Eq~ation (18) to be satisfied for a range of 

(~+ - ~+ ) 
x xs 

f dF dF dUE} td¢: + aCPE de>: = 0 
s 

(18 ) 

(19) 

(20) 

For an unsteady flow therefore there are two opt1ons for practical 

calculations. 

Option 1.- ~he function f($x) can be chosen such that 

Equations (15)-(17) are satisfied at each iterative and time 

step. 

Option 11.- Equations (15), (16), and (19) are satisfied 

for each iterative step in the steady calculations and Equations 

(15), (16), and (20) are satisfied at each time step for the 

oscillatory calculation. 
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4. PRELHlINARY IMPLEME~TATION OF THE CORRECTION PROCEDURE 

It is possible to der1ve functions f{~x) that satisfy all 

of the conditions given in the preceding section, but in a limited 

study, such as the present one, it is more convenient to satisfy 

only certain of these conditions explicitly and to test the 

resulting function w1th respect to the other conditions. In the 

following discussion the set of conditions given in Option II 

are considered. 

The most crucial conditions to satisfy are the shock 

strength conditions, Equations (19) and (20) since the object of 

the present excercise is to realize the correct shock strengths. 

Consequently, these conditlo~S are satisfied explicitly. For 

simplicity in derivation, it is assumed that the modifications 

to the small d1sturbance equation will be sufficiently small that 

Equations (IS) and (16) will be, at least, approximately 

satisfied. This aspect will be considered with each application 

of the theory. 

The form of f{¢x) chosen is that of Equation (10), that is 

= a + b~ + c~2 x x 

where a, b, c are either constants of simple functions of ~+. 
x 

(21) 

The part1cular form of Equations (15), (16), (19), and (20) 

lS now 

(22) 

b + 2CcDX < 0 for Ox . < ~x < ~x (23) - -
m1n max 

b r 0+ - O~sl + 0

2 
1 [6+2 - + Es 

a + c °E ~x + -3- = 0 (24) l Xs Xs s s 
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b[l - aEO] 2 T + C[2~;s + I 

aE a~ ] - a ¢x GE + 3" E s s s s s 

[~] ++ CEs] [~] [< - + + C~sl [~] 0 + + GE ¢x = 
d¢+ Xs 2 d<!>+ S s 3 d¢+ 

x s x s x s 

(25 ) 

Two applications of this correct jon were developed as 

follows. 

Method I.- The coefficients band c were chosen such that 

for the mean steady case Equation (24) is satisfied with a = 1 - M~ 
and b = (y + l)Mq . The coefficients are then frozen for the 

co 

unsteady part of the computation. Thus, no further correction 

is required for the unsteady calculation. 

Method II.- The coefficient c is chosen such that Equation 

(24) is satisfed and 

a = 
(26) 

The exponent a is chosen such that equation (25) is satisifed. 

This form of f(¢x) does not have the same propensity for 

producing multiple parabolic points, as altering b for the steady 

state solution but incurs the cost of altering f(¢ ) at each x 
time step by computing ~+. 

x 

In both cases the coefficients a, b, c are chosen such that 

the shock strength on the upper surface satisfies Equation (20) 

and these values are retained throughout the flow field. 
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5. NUMERICAL ALGORITHM 

The basic algorithm in the Ballhaus-Goorjian (ref. 5) 

computer code LTRAN2 solves the equation 

[F(¢ >] + ~ - 2M2 U
c ~ t = 0 x yy 00 x x co 

in conservation form, where F(~x) = [1 - 1-'12 - (y + l)Mq<P 1. 
00 00 x 

(27) 

The present, mod1fied,form of the TSD equation is in the 

form of Equation (27) [but with a different F(~x)l and the same 

algorithm will suffice. However, because of the type dependent 

switching of the difference scheme it is important to ensure the 

conservation properties of the modified TSD solution. 

The general form of the type dependent differencing used in 

LTRAN2, which is applied only to the first term of Equation (27), 

is 

FX ::: h.x-
l 

[(F - F 
; + 1 ... '2 1 

where E. is a sW1tching operator given by 
1 

E. = r 0 

1 1..1 
if F. > 0 

1 

if F. < 0 
1 

(28) 

(29) 

The suffix i denotes the ith point and ~x is the mesh spacing. 

The differencing of Equation (28) is equivalent to 

F ::: J- (F - ~XEFx) x oX 

which is a conservation form of the equation. In the present 

method this form of dlfferencing is used for the Fx term and 
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the values of ¢x in F(¢x) are computed using central differencing. 

Otherwise the basic LTRAN2 algorithm is unchanged. 

6. DISCUSSION OF RESULTS 

As a first attempt at correcting the conventional unsteady 

small disturbance equation the correction was computed using 

Method I in which only the steady state solution is corrected. 

The first example is for the flow around a NACA 64A410 airfoil 

at M = 0.72 and a = 2° + 2° sin kt, where k is the reduced 
00 

frequency and is equal to 0.2. The steady result is shown in 

figure 2 and it can be seen that the corrected result is a 

considerable improvement on the conventional TSD result. There 

is some additional discrepancy at the leading edge due to the 

inadequate treatment of the boundary cond~tions in the thin 

airfoil approximation. 

In figure 3 the unsteady pressure distribution calculated 

by Option I of the present method is shown for two stations on 

the oscillatory cycle. It can be seen that the present method 

gives too large a shock excursion and that the shock strength 

in the foremost posit~on is much too weak. This is probably 

a consequence of the correction being only valid for the steady 

state solution. The conventional small d~sturbance solution 

procedure diverges rapidly in the unsteady mode due to excessive 

shock motion. 

In figure 4 the steady pressure distributions around a 

NACA 0012 airfoil at M = 0.8 and a = 1.25° for the present method, 
00 

and the Euler equation solution of Sells (ref. 8) is shown. It 

can be seen that the present results agree satisfactorily with the 

Euler equation solution as regards shock location but that the 

upper surface pressures are too high and the lower surface pressure 

is too low. However, the improvement over the conventional TSD 

result is substantial. The disagreement between potential 
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equation results and Euler equation results in the leading edge 

region is also apparent in figure 4 if the results of Holst 

(ref. 9) are compared to the Euler equation results. Since TSD 

methods are usually "tuned" to approximate the full potential 

results it is possible that the discrepancy between the Euler 

solution and the present solution is due to fundamental differences 

in the numerical procedures used to solve full potential and 

Euler equations, since rotational effects should not be very 

important in the leading edge region. 

In figure 5 the unsteady pressure distribution around a 

NACA 64A410 airfoil at M· = 0.72 and a = 2° ± 2° sin kt at 
CX) 

k = 0.2 is shown where ~ethod II is used. It can be seen that 

this option considerably improves the shock behavior over that 

shown in figure 3. It should be noted that part of the 

difference in results of the present method and the Euler equation 

method is due to the different mesh size and in the computations 

this effects the s~ock capture properties of the algorithms. 

Finally in figure 6 a weak shock example is shown to 

illustrate the fact that the present method gives results close 

to the conventional TSD solution for weak shock waves. The 

airfoil is a NACA 0012 airfoil at H = 0.8 and a. = ± 1/2 0 sin kt 
CX) 

with k = 0.2. 

Although the present method does give substantially improved 

results over the conventional TSD solution, there are still 

several points regard~ng both the shock details in unsteady 

motion and the pressure distribution in regions of the flow 

outside the shock regions. It is desirable to obtain further 

Euler equation solutions for such an investigation. 
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7. CONCLUDING REMARKS 

A theory to correct the Transon~c Small Disturbance 

equation to treat strong shock waves in unsteady flow has been 

developed. Although a fairly complete thoery has been developed, 

only a simplified form has been computationally implemented. 

The comparisons of results of the present method with solution 

of the Euler equations is adequate as regards the shock location 

but in certain cases the pressure distribution elsewhere on the 

airfoil surface is not sat~sfactory. It is suggested that the 

discrepancy may be due to inherent differences in the numerical 

scheme used to solve both sets of equations. Finally, although 

the present method g~ves a considerable improvement over the 

conventional TSD theory, it is desirable to further test the 

present theory in order to fully evaluate the techniq~e. 
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