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ABSTRACT
 

A method has been developed and demonstrated for the direct measurement
 

of aerodynamic forcing and aerodynamic damping of a transonic compressor.
 

The method is based on the inverse solution of the structural dynamic equa

tions of motion of the blade disk system in order to determine the forces
 

acting on the system. The disturbing and damping forces acting on a given
 

blade are determined if the equations of motion are expressed in individual
 

blade coordinates. If the structural dynamic equations are transformed to
 

multiblade coordinates, the damping can be measured for blade-disk modes,
 

and related to a reduced frequency and interblade phase angle. To measure
 

the aerodynamic damping in this way, the free response to a known excitation
 

is studied.
 

This method of force determination was demonstrated using a specially
 

instrumented version of the MIT Transonic Compressor run in the MIT Blow

down Compressor Test Facility. Unique on-rotor instrumentation included
 

piezoelectric displacement transducers to monitor the displacement of each
 

blade, three accelerometers to measure in plane motion of the disk and a
 

leading edge mounted total pressure transducer. Resonance tests performed
 

prior to installation of the rotor in the tunnel indicate that the blade

disk structural interaction is dominated by the rigid body inertial coupling
 

of the disk. An analytical model was developed for this inertial coupling.
 

The model was verified by extensive testing of the tuned and severely mis

tuned rotor.
 

No regions of aeroelastic instability were found while testing the
 

rotor in the Blowdown Facility, but three forms of forced vibration were
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encountered. When operated in rotating stall, the blades were strongly
 

excited at the fundamental frequency of stall cell excitation and those
 

higher harmonics in proximity to blade resonances. At the fundamental
 

frequency, the blade bending loading decreased as the blade entered the
 

stall cell and increased as smooth flow was reestablished over the blade.
 

In runs near the operating point, the rotor was aerodynamically ex

cited by a controlled two-per-revolution fixed upstream disturbance. The
 

disturbance was sharply terminated midway through the test and the ring
 

down of the rotor monitored. Analysis of the data in terms of multiblade
 

modes led to a direct measurement of aerodynamic damping for several
 

interblade phase angles.
 

During all runs, .the third circumferential harmonic of the blade
 

displacement was strongly excited by wakes shed from three evenly spaced
 

upstream struts. The addition of a two per revolution fixed upstream
 

disturbance caused a marked decrease in the third harmonic response,
 

suggesting a nonlinear mechanism either in the upstream wake production or
 

in the aerodynamic response of the rotor. It may therefore be possible to
 

alleviate some forced vibrations by the deliberate introduction of upstream
 

disturbances.
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1. INTRODUCTION
 

It is of primary importance in the study of turbomachine aeroelasti

city to develop techniques for the measurement of aerodynamic damping and
 

eventually to gain an understanding of the physical processes which control
 

that damping. Taken in its broadest sense, aerodynamic damping together
 

with structural damping plays a role in both forced vibration and flutter,
 

by limiting the amplitude of response and controlling the decay rates in
 

the former and in the determination of the stability boundaries for the
 

latter. It is the purpose of this investigation to develop techniques for
 

the measurement of aerodynamic damping, and to make direct measurements of
 

damping in a transonic rotor operating at a known point on its performance
 

map.
 

The importance of aerodynamic: damping can best be seen by examining a
 

typical performance map with the aeroelastic stability boundaries super

imposed (Figure 1-1). It can be seen that flutter boundaries can place
 

limits on all sides of the performance map of the modern, lightweight tran

sonic fan or compressor. Adamczyk [1] identifies five different stability
 

boundaries, each of which is associated with a different unsteady fluid
 

mechanical process [2,3]. Within the boundaries, the stage is aeroelasti

cally stable, but is susceptible to forced vibration due to upstream and
 

downstream disturbances, as well as unsteady effects such as rotating stall
 

and surge. While the stability and forced vibration problems are usually
 

formulated differently, Dugundji [4] has shown that given the aerodynamic
 

damping coefficients in a proper form, the two problems can be analyzed in
 

a unified systematic manner. Aerodynamic damping coefficients used in such
 

an analysis might be based on either analytic or experimental results.
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Since the early 1960's, a number of analytical models of damping in
 

cascades have been developed. These analyses have in common that they
 

model the 3-dimensional annular geometry of an axial flow turbomachine as
 

a 2-dimensional infinite cascade, the blades of which undergo uniform sinu

soidal motion with a fixed interblade phase angle. The force and moment
 

The earliest work
coefficients for a given blade are then calculated. 


focused primarily on the low-backpressure supersonic flutter of Region III
 

(Figure 1-1), beginning with Whitehead's analysis of incompressible flutter
 

of flat plate airfoils in bending [5] and in torsion [6]. This was
 

extended to the compressible case by Smith [71 and to supersonic rela

tive flow by Verdon [8]. Recent work by Whitehead [9] has extended the
 

compressible flow case to cascades of finite thickness and high-deflections
 

using 2-dimensional computational fluid dynamics techniques [9]. Comparison
 

of these 2-dimensional analytic models with experimental data by Snyder
 

[10], shows that although these models greatly simplify the flow con

ditions, good agreement is found between experimental and predicted flutter
 

boundaries for cascades.
 

The other four flutter regions have received less extensive analysis.
 

A model which allows for finite shock strength has been developed by
 

Goldstein [11] to examine the high-backpressure supersonic flutter of
 

Region IV (Figure 1-1). Adamczyk has developed a low reduced frequency,
 

small interblade phase angle model which treats the supersonic stall
 

flutter Region V with an actuator disk model [1]. Finally, Ginzburg has
 

proposed a low reduced frequency model [12] which can be used to treat the
 

subsonic/transonic flutter of Region I, and the choke flutter of Region II.
 

In general, these theories give qualitative agreement with observed
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stability boundaries, but are not sufficiently refined to predict a priori
 

the boundary location.
 

Experimental investigations of turbomachine aerodynamic damping fall
 

into one of two distinctly different categories, cascade experiments and
 

full scale rig tests. Cascade experiments are conducted in essentially 2-


The blades are
dimensional linear (finite) or annular (infinite) cascades. 


externally driven by mechanical or electromagnetic drivers with a uniform
 

Blades can be driven
oscillatory motion and fixed interblade phase angle. 


in rotational mode, representing torsional flutter [13] or in a transla

tional mode, as in bending flutter [14]. Measurements of the overall aero

dynamic damping as well as detailed measurements of the unsteady pressure
 

distribution over the blade can be made over a wide range of Mach number
 

and reduced frequency.
 

Full scale engine tests are performed by first heavily instrumenting a
 

specially prepared stage or a fully operational engine and-then running the
 

device in the vicinity of one of its stability boundaries. Instrumentation
 

usually consists of a number of low frequency response pressure taps to
 

determine the overall operating point and flow conditions, and a large
 

number of stratn gauges mounted on the rotating assembly to monitor blade
 

strain and displacement levels [15]. In the last few years, full scale
 

rigs have also been run with miniature high frequency response pressure
 

transducers mounted on the blade of a rotor, so that unsteady on-blade
 

pressure measurements could be made in flutter. The principle value of
 

these tests is to identify the location of the stability boundaries of real
 

stages and the influence changes in operating parameters such as inlet tem.

perature and pressure, as well as changes in blade design, have on these
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A further objective is to identify the modes of aeroelastic
locations. 


instability [16].
 

Each of the two experimental procedures, cascade and full rig tests,
 

have their advantages and shortcomings. Cascade experiments, performed
 

under controlled conditions, lend themselves to careful study 
of the
 

influence that parameters such as reduced frequency and interblade 
phase
 

angle have on aerodynamic damping. Detailed measurement of energy input
 

and blade unsteady pressure distribution made in 2-dimensional 
cascades can
 

be directly correlated with existing 2-dimensional theory. 
However, the
 

principal shortcoming of cascades is that they fail to model 
the essential
 

3-dimensional nature of the flow in axial flow turbomachines, including
 

such potentially important effects as strong radial variation 
in shock
 

strength and boundary layer interaction, and distribution of total pressure
 

rise and flow quantities due to work done on the fluid [17].
 

Full scale rig tests model this complex 3-dimensional nature of 
the
 

flow, but do so under conditions which make the extraction of detailed
 

quantitative information about aerodynamic damping extremely difficult.
 

Since the blade-disk-shroud structural system is complex and highly
 

coupled, it is often impossible to isolate the response of a single struc

tural mode so as to gain parameteric information of damping in terms of
 

The results are confined to
reduced frequency and interblade phase angle. 


location of the boundary of neutral stability, rather than quantitative
 

Although there are
measurements of damping on either side of the boundary. 


empirical and semi-empirical procedures for the correlation of such 3

there is really no truly 3-dimensional
dimensional flutter data [18], 
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theory to predict unsteady aerodynamic damping for a rotor operating at
 

any point of its performance map.
 

The distinction between the two forms of experiments can be summarized
 

in the following way. Cascades provide a controlled environment to gain
 

detailed parameteric data but in simplified flow conditions. Rig tests
 

operate under real flow conditions but an uncontrolled aeroelastic en

vironment.
 

The purposes of this investigation are to help bridge this gap and to
 

develop techniques by which quantitative parametric aeroelastic damping
 

data can be extracted from a device operating in a real working tur

bomachine environment. The methods developed are general enough so that
 

they can be applied to the investigation of any of the stability boun

daries. They are also applicable to the interior of the performance map
 

where the stage is stable, but encounters forced vibration. Included in
 

the present work are both a description of a new technique for determining
 

aerodynamic damping and the application of that technique to the MIT Rotor
 

[19]. The result is one of the first direct measurements of damping in a
 

transonic compressor.
 

The rotor chosen for the current experiments was the MIT Transonic
 

Rotor, typical of current stages with a hub tip ratio of 0.5, tip Mach
 

number of 1.2, pressure ratio of 1.6, and conventional, but somewhat stiff,
 

blades. Since the rotor had never encountered flutter in testing, a scan
 

of the performance map was made to locate any regions of aeroelastic insta

bility. Although not all encompassing, 19 different runs were made, which
 

probed the stall, high speed and choke boundaries of the map (Figure 1-2).
 

For the current MIT Transonic Rotor design and within the limits of the MIT
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Blowdown Test Facility, [20], no regions of instability were found.
 

The current investigation is therefore confined of necessity to those
 

areas where the rotor is aeroelastically stable. Several cases of forced
 

vibration and resulting measurements of damping will be shown 
in later
 

chapters, but first the techniques and necessary background 
will be given,
 

beginning with a description of the instrumented rotor, 
the experimental
 

In Chapter 3, the technique for
 facility and the procedure in Chapter 2. 


This tech
the extraction of aerodynamic forcing and damping is developed. 


nique requires a characterization of the structural dynamics 
of the blade
 

disk system and a knowledge of the response while rotating in 
vacuum, which
 

An example of a direct measurement of damping
are reported in Chapter 4. 


obtained by subjecting the rotor to time varying upstream disturbances 
is
 

Other cases of forced vibration, including forced
given in Chapter 5. 


vibration due to rotating stall are discussed in Chapter 6, followed 
by a
 

summary and conclusion in Chapter 7.
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2. APPARATUS AND INSTRUMENTATION
 

2.1 The MIT Blowdown Facility and Compressor
 

2.1.1 The Blowdown Facility
 

The MIT Blowdown Compressor Facility, in operation for nearly ten
 

years, has been used to gather extensive data on the aerodynamic perfor

mance of the MIT Transonic Compressor [19], as well as other state of the
 

art compressor stages [211. The facility itself consists of three main
 

components, a supply tank, test section, and dump- tank (Figure 2-1). Prior
 

to the test, the supply tank is filled to an initial pressure of 464 mm
 

with a Freon 12-Argon mixture having a speed of sound 74% that- of air, and
 

a ratio of specific heats of 1.4. Downstream of an aluminum diaphragm and
 

still in the vacuum, the rotor is driven to speed by a small electric
 

motor. The test is begun by cutting power to the motor and-explosively
 

cutting the diaphragm. After a start-up transient of approximately 60
 

msec, the flow becomes quasi-steady in the test section with the supply
 

tank essentially behaving as a stagnation plenum. The mass flow is set by
 

an orifice downstream of the stage which remains choked for about 150 msec.
 

During the test, the rotor slows down, doing work on the flow. By proper
 

matching of the rotor inertia and initial supply tank pressure, the tangen

tial Mach number of the rotor can be kept constant. The torque can be
 

determined by monitoring the rotor deceleration. During this period of
 

constant Mach number flow, the steady aerodynamic performance of the stage
 

can be determined from a number of wall static pressure transducers, and a
 

five-way pressure probe which traverses the flow during the test [22].
 

For a complete discussion of the dynamics of the Blowdown Facility, see
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Reference [20]. Reference [21] describes in detail the data reduction
 

technique used to determine overall stage performance.
 

2.1.2 MIT Rotor
 

The Blowdown Facility has been adapted for use in aeroelastic studies
 

by structural, but not aerodynamic, modification of the MIT Transonic
 

Compressor Rotor, the geometry and performance of which are extensively
 

The 23 blade, 23.25 inch diameter rotor operates at a
documented in [19]. 


tip Mach number of 1.2, an average pressure ratio of 1.66. The mass flow
 

corrected to air at standard temperature and pressure is 84.7 lbm/see (38.4
 

kg/sec) at the design point. The rotor is cantilevered forward of a center
 

body on which a fixed 48 blade stator is mounted, and which houses the
 

drive motor and a 12 channel slip-ring assembly. In aeroelastic studies,
 

these slip rings are supplemented by a 24 channel slip ring assembly housed
 

in a centerbody supported by three struts ahead of the rotor (Figure 2-2).
 

At design, the overall stage pressure ratio is 1.6.
 

2.1.3 Secondary Flow Injector
 

In certain runs, a time varying upstream disturbance was created in
 

front of the rotor. This disturbance was created by the interaction of the
 

primary flow with a series of small jets injected normal to the surface of
 

The injection
streamlined struts five inches upstream of the rotor face. 


takes place through a 5/8 inch tube which extends 3 inches into the tunnel
 

from the outer wall and is faired by an NACA 0012 airfoil. Two such
 

assemblies were located 1800 apart, at the 00 and 1800 instrument locations
 

(right and left hand sides looking downstream). Figure 2-3 shows the
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injector protruding into the tunnel downstream of the boundary layer bleed
 

and upstream of the rotor. A close-up showing the fairing and proximity of
 

the injector to the rotor is shown in Figure 2-4.
 

The injector operates in the following manner. At 50 msec after the
 

diaphragm bursts, just as quasi-steady flow is established in the facility,
 

the main injector solenoid valve is opened, venting Argon 
from a 110 in3
 

-
(1.8 x 10 3 m3 ) supply bottle at 150 psi into the inner diameter of the
 

injector assembly. The assembly consists of two concentric tubes, an outer
 

tube to which the fairing is attached and an inner tube which is free to
 

rotate within the outer (Figure 2-5). The assembly of fairing, outer and
 

inner tube has drilled through its walls two rows of twelve 1/16" diameter
 

holes (1/8" center to center). The rows are on opposite sides of the
 

injector tube, one facing in the clockwise, and the other in the coun

terclockwise circumferential direction (Figure 2-5). The high pressure
 

argon passes through these holes and is injected normal to the mean flow.
 

In this way, the symmetric disturbance creates a region of velocity defect
 

behind the injector, but imparts no mean -swirl in the flow. The radial
 

extent of the defect is about 1 1/2 inches, and- the circumferential extent
 

is determined in part by the total pressure ratio of the mean flow to
 

injected flow. With the given geometry and supply pressure, each injector
 

adds only 0.27% to the mass flow of the tunnel.
 

The disturbance is shut off at 100 msec after the start of the test by
 

pneumatically operating a rotary piston. This piston rotates the inner
 

tube of the assembly, closing off the two rows of vent holes in less than 1
 

msec. In this way, a very well defined and sharp termination of the
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upstream disturbance is achieved, which will be important in the later
 

analysis.
 

The creation of upstream disturbances by injection of a secondary flow
 

In fact, several of the major laboratories have
is not a new concept. 


sophisticated devices for creation of arbitrary distortion patterns [23].
 

The emphasis in those facilities is on degradation of engine performance
 

due to distortion. The patterns created are therefore steady, requiring
 

time on the order of seconds to change. The unique features of the injec

tor described are its fast shut off characteristics and the ability to
 

tailor the circumferential extent of the disturbance simply by changing
 

injector supply pressure.
 

2.2 Instrumentation and Data Acquisition
 

2.2.1 Rotor Instrumentation
 

In addition to the usual tunnel instrumentation used at the blowdown
 

facility, a unique set of on-rotor instrumentation has been developed for
 

aeroelastic experimentation. This includes piezoelectric crystals and
 

strain gauges to monitor blade motion, accelerometers to monitor disk
 

motion, and a blade-mounted total pressure probe.
 

Several years ago, a second article of the MIT Transonic Compressor
 

Rotor was built, which incorporated a piezoelectric crystal into the root
 

of each blade [24]. The details of the root attachment (Figure 2-6) show
 

that the blade is attached well below the fairing line of the disk.
 

The piezoelectric crystal assemblies (consisting of a soft rubber spring,
 

G-10 glass/epoxy disk, brass electrical contact and PZTSH crystal) are held
 

in place between the disk and blade. In this configuration, the crystals
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can be used either to drive the blades with independent control of driving
 

amplitude and phase, or as displacement transducers. As transducers, the
 

crystals give a signal, linear to a very high amplitude, which can be
 

calibrated against tip displacement for each of the natural modes of the
 

blade. For the first flexural mode, the crystal yield a gain of 2400 V/in
 

or 24 Volts across the rings for a nominal 0.01 inch tip deflection.
 

Signals from the 23 crystals plus ground were carried across the forward
 

set of 24 slip rings.
 

It should be emphasized that for frequencies above its RC rolloff point
 

(about 30 Hz), the piezoelectric crystal (PZT) is functionally identical to
 

a strain gauge. That is, it measures the blade displacement at one point,
 

and for any blade mode this can be related to the displacement at all
 

points on the blade. To confirm this functional'similarity, four blades
 

were also strain gauged with semiconductor gauges in a position to give
 

primary sensitivity to the blade's first bending mode (Figure 2-7). 
 When
 

the PZT and strain gauge signals for the same blade were properly filtered
 

and scaled in terms of tip displacement, they showed exactly the same time
 

history of blademotion. 
The advantages of PZT's in this application are
 

that they are rugged and produce a signal of 500 to 1000 times greater
 

amplitude than that of a semiconductor strain gauge. Since they are active
 

transducers, N blades instrumented with PZT's require N+l slip rings, while
 

strain gauges would require 2N+2 rings. Their principal and perhaps
 

overwhelming disadvantage is that they must be incorporated into the blade
 

disk system at its design, and cannot be retrofitted to a rotor as can
 

strain gauges.
 

Of interest to the understanding of the response of the blade disk
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system is the in-plane motion of the disk. To monitor this, the disk was
 

instrumented with three Bolt Beranek and Newman Model 501 miniature
 

The accelerometers
accelerometers, with a nominal sensitivity of 10 mv/g. 


were mounted 1200 apart with their axis of principal sensitivity 
aligned
 

From these three acceleroin the circumferential direction (Figure 2-7). 


meter signals, one can extract the rotational and two translational 
com

ponents of in plane disk acceleration.
 

While most piezoelectric accelerometers are charge coupled devices, 
the
 

BBN accelerometers produce a voltage output by using an FET amplifier 
in

side the device. The cost of this choice, made to reduce slip ring noise,
 

was that a power supply line for the FET's had to be run to 
the rotor, and
 

a power-signal conditioning circuit for each accelerometer had 
to be
 

well as all other on-rotor
included on the rotor., These three circuits, as 


connections were potted in an epoxy module and mounted inside the rim 
of
 

run at
the disk. The accelerometers worked perfectly when the rotor was 


one
full speed in vacuum. However, during the actual data test runs, 


signal consistently failed and the other two were intermittent. After the
 

test, the accelerometers were always found to be working perfectly again.
 

This pattern of failure and recovery is probably due to thermal or accel

eration spikes saturating the signal conditioning circuit. This behavior
 

could be eliminated by either thermally insulating the accelerometers or by
 

soft mounting them to the disk so that accelerations above several thousand
 

Hertz would be attenuated. In the present investigation, neither of these
 

remedies were attempted.
 

The final piece of on-rotor instrumentation was a total pressure probe,
 

aligned with the relative flow and located on the leading edge of blade 8
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at r/rT = 0.73, just on the nominal sonic radius (Figure 2.7). The trans

ducer used was a third generation Kulite high frequency response silicion
 

diaphragm type CQ-080-25 with type B screen, and a diameter of 0.064".
 

Mounted inside a supporting stainless steel tube, the probe was located as
 

far out radially as the structure of the blade would allow. The active
 

diaphragm was 0.2" in front of the blade leading edge. Signals from the
 

pressure probe, as well as accelerometers and strain gauges were carried on
 

the 12 rear slip rings.
 

The intent of placing a total pressure probe on the leading edge was to 

investigate circumferential nonuniformities in the flow. The transducer
 

performed flawlessly, capturing low and high frequency content of the
 

pressure field with no apparent thermal drift. The pressure field
 

measured, even in the absence of any upstream distortion, was more complex
 

than expected. It was rich in frequency content in the range of several
 

hundred to 2000 Hz, and not easily identifiable with any blade resonance or
 

acoustic mode of the Blowdown Facility. The complete analysis of this
 

acoustic signal, and comparison with pressure measurements made by fixed
 

transducers will be the subject of further investigation.
 

Before moving on to the fixed instrumentation, it should be noted that
 

in 11 runs to full speed made in the most recent test, aside from the
 

accelerometer problems there were no failures of instrumentation in the
 

rotating system, despite vigorous vibration and centrifugal loading of up
 

to 20,000 g's at the pressure probe location.
 

2.2.2 Tunnel Instrumentation
 

Fixed instrumentation, pressure sensors and tachometers, used to
 

determine the overall operating conditions of the stage were essentially
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identical to those used-in previous experiments in the blowdown facility,
 

and are thoroughly documented in [19] and [21]. Beginning at the extreme
 

upstream end of the facility, the pressure in the supply tank is measured
 

by two low frequency response transducers. These indicate the total
 

pressure of the upstream flow, and from their decay rate, the mass 
flow
 

through the facility can be determined [20]. One chord upstream of the
 

rotor at 00 and 720 circumferential location are a pair of high 
frequency
 

response (50 KHz) kulite semiconductor wall static pressure 
gauges.
 

Between the rotor and the stator is a low frequency static pressure
 

gauge and the location of the five-way probe. Unlike in aerodynamic tests
 

when the five-way probe is used to traverse downstream of the rotor 
from
 

tip to hub during the quasi-steady flow period, in these aeroelastic tests,
 

the probe was quickly translated to one radius, r/rT equals 0.93, 
before
 

the establishment of quasi-steady flow, and left there during the entire
 

In this way, it was hoped the effect of unsteady blade motion on the
 test. 


downstream Mach number, pressure and flow angles at one radius, the
 

aeroelastic radius, could be understood. However, like the data from the
 

rotating total pressure probe, the five-way probe data is very complex, and
 

lends itself to no simple analysis. Except for extraction of overall
 

qualities such as downstream total pressure, this data will be left for
 

further analysis together with the other unsteady pressure data. Finally,
 

measurements were made of the dump tank pressure, and of a one per revolu

tion and a 115 per revolution -tachometer on the rotor shaft.
 

2.2.3 Data Acquisition
 

In summary, data was collected on 44 channels, including 23 PZT's, 2
 

strain gauges, 3 accelerometers, 2 tachometers, 12 pressure gauges, and 
2
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other channels. Data rates ranged from 5 KHz for vibration data to 100 KHz
 

for high speed pressure data. The-management, storage and analysis of this
 

data was a formidable task. The amount of data taken and number of chan

nels exceeded the existing analog to digital conversion capability of the
 

Blowdown Facility [21]. As part of this investigation, a new A/D system
 

based on the CAMAC convention and manufactured by LeCroy was acquired,
 

installed, integrated into the lab's PDP 11/70 and checked out. Run in
 

parallel with the existing MIT A/D system, this gave a capability of
 

sampling 14 channels- at up to 100 KHz, and 46 channels at up to 10 KHz,
 

with an aggregate storage of 170,000 data samples.
 

High speed pressure transducers and strain gauges were amplified and
 

digitized directly, while low speed pressure signals were amplified and low
 

pass filtered at 1 KHz prior to digitization. Accelerometer signals were
 

low pass filtered at 600 Hz, then digitized, but PZT's and tachometer data
 

went directly into the A/D converter. Immediately after a test, data from
 

the MIT A/D is moved from core to disk, while data from the CAMAC A/D is
 

read slowly over a serial line to core and finally to disk. All data is
 

eventually backed up to magnetic tape, where it is stored for further
 

analysis.
 

2.3 Summary of a Typical Run
 

A concise summary of the instrumentation used is given in Table 2.1.
 

Listed with each transducer are its location, the analogue to digital con

verter and channel type used to digitize the data. If the signal was low
 

pass filtered before digitization, the -3 dB cutoff point of the four pole
 

Bessel filter is also listed. Table 2.2 gives the chronology of major
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Note that times listed are after the rupture of the
events during the run. 


which begins the flow of gas into the test section. In some
diaphragm 


0, while in other runs, the
runs,- the diaphragm was broken at time t = 


delayed 20 msec to observe the response of the blades
diaphragm rupture was 


in vacuum at speed for those 20 msec.
 

To put in perspective the overall pattern of a test and some of the
 

shows the pressure and blade response time
data collected, Figure 2.8 


histories for a run in which the stage was operated in rotating stall, and
 

The top two traces show
the diaphragm was commanded to rupture at 20 msec. 


the wall static pressure one chord upstream and 0.1 chord downstream of the
 

rotor, and the bottom trace shows the response of blade 12 as measured by
 

The test can be divided into three time
the piezoelectric transducer. 


periods. From 0 to 24 msec, the rotor is spinning in a vacuum and there is
 

At 24 msec, the gas arrives and
 a low level of vibration of the blades. 


impulsively drives the blades backwards, the blade row acting as a turbine.
 

The start-up time, reflected in the pressure and blade response, extends
 

until about 70 msec, after which the flow becomes quite steady. In this
 

last period, from 70 to 140 msec, three effects are reflected in the
 

pressure signal: a steady decrease with a time constant of about 100 msec
 

as the supply tank pressure drops; the stall cell passage with a period of
 

7 msec; and the blade passage with a period of 0.3 msec. The blade
 

that caused by the
response to the stall cell passage is almost as large as 


initial transient. All further discussion of the blade response will be
 

or 50 msec after diaphragm opening,
confined to the time after 70 msec, 


when quasi-steady flow has been achieved.
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3. COMPUTATION OF AERODYNAMIC FORCES ACTING ON THE BLADES
 

The data commonly acquired in full scale engine aeroelastic tests is
 

the deflection of the blades relative to the disk. This data can be
 

extracted from simple strain gauge data, or, in the case of this
 

investigation, piezoelectric displacement transducer data. The quantity of
 

ultimate interest to the aeroelastician is the net aerodynamic force acting
 

on the blade. These aerodynamic forces might be due to perturbations in
 

the flow arising oustside the blade row, which can lead to forced
 

vibration, or they might be due to the motion of the blades, in which case
 

they can be classified as damping terms.
 

In this chapter, a technique will be outlined for direct computation
 

of the aerodynamic forces acting on a blade from the blade deflection data.
 

Some aeroelastic effects in rotors are best viewed in a local sense, such
 

as the forced vibration of a blade due to passage of a stall cell. Other
 

effects are better viewed on a more global level, such as the correlation
 

of blade damping with interblade phase angle. In view of this, two comple

mentary techniques will be developed for the computation of aerodynamic
 

forces acting on blades; one which focuses on the response of a single
 

blade and is based on the concept of dynamic substructuring, and a second
 

which focuses on the response of the entire blade disk system and is based
 

on the use of multiblade or modal coordinates. Since the single blade case,
 

is most direct and lays the foundation for the multiblade case, it will be
 

discussed first.
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3.1 Computation of Forces Acting on a Single Blade
 

3.1.1 Single degree of freedom blade
 

If a blade is modelled as a single degree of freedom cantilever
 

mounted on a rigid massive disk, as in Figure 3-1(a), then the governing
 

equation of motion is simply:
 

(3.1)
ml ql + klql = F(t) 

The problem usually solved with this equation is to find the response
 

ql of mass m, to an arbitrary forcing function F(t). However, the
 

problem at hand is the inverse problem, that is to find the aerodynamic
 

forces acting on a blade. The new problem statement is: given an
 

(and q1), find the force F(t) which would produce
arbitrary response q1 


this response.
 

If the motion of the blade were represented by Equation 3.1, the prob

lem would be solved at this point. But two major simplifications were made
 

in arriving at this simple model, first that the blade has a single degree
 

of freedom and second that the disk is massive and rigid, and takes no part
 

in the motion. These simplificatlons will be removed first by allowing
 

participation of the disk, then by including multiple degrees of freedom of
 

the blade.
 

3.1.2 Single DOF blade with disk participation
 

The blade can be considered a substructure of a complex blade-disk

shaft structural system. Each blade is attached to a part of the disk with
 

finite mass and elasticity. Through the root attachment, the motion of the
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disk can influence the blade asa substructure in much the same way the
 

motion of the ground excites a building in an earthquake.
 

Fabunmi proposed a very general model for this blade disk interaction
 

[24], a segment of which is reproduced in Figure 3-1(b). In this model,
 

each section of the disk has mass m2, and is influenced by other sections
 

of the disk through the springs k2 and by the shaft through the spring k3.
 

The displacement q2 is the absolute displacement of the disk, and q, is the
 

displacement of the blade relative to the disk. The governing equations
 

for this system become
 

ql + m, q2 + k, ql = F(t) (3.2)m1 


m1 ql + (m, + m2 ) q2 + (k2 
+ k3 ) q2 = F(t), (3.3)
 

The exciting force F(t) can be solved for in one of two ways. If both
 

Equations 3.2 and 3.3 are given, F(t) and q2 can be solved for, given only
 

ql. Given only Equation 3.2, F(t) can be found if both ql and q2 are
 

known. In this second approach, ql, the relative displacement, can be
 

inferred from strain gauge data, and q2 can be measured directly with an
 

accelerometer placed on the disk at the blade disk interface. Thus, with
 

the proper strain gauge and accelerometer data, the disturbance force F(t)
 

acting on the blade can be found directly. While this development used a
 

simple lumped mass model of the blade and disk, a model allowing distri

buted mass and flexibility of the blade and disk results in equations of
 

the same functional form as Equations 3.2 and 3.3, but with slightly
 

different definitions of the mass and stiffness constants. The essential
 

feature remains that given any characterization of the structural interac
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tion of the form of Equation 3.2 and the required data, the aerodynamic
 

forces on the blade can be calculated.
 

3.1.3 Multi Degree of Freedom blade
 

The simplification that the blade has only one degree of freedom 
can
 

be relaxed by expressing the displacement on the substructure of the 
blade
 

Then if the equations of
in terms of its blade cantilevered normal modes. 


motion are written in terms of the blade normal modes, the governing
 

equations reduce to r single degree of freedom equations of the form
 

2
 
Mr qr + Mr Wr qr = Frtota r-1, 2,... (3.4) 

where q, wr" M r and Fr are the modal displacement, frequency, mass, and the
 

The blade
net modal force exclusive of the elastic restoring force. 


displacement is given by
 

w (x,y,t) qr (t) Tr (x,y) (3.5)
 

where yr is the rth blade mode shape, and the modal force is defined by
 

TE 
Fr (t) = f r t f f(x,y,t) Yr (x,y) dy dx (3.6) 

rh LE 

Using equation (3.4), the total modal force can be calculated if the
 

modal mass, frequency and displacement are known. The modal mass and
 

frequency can be found numerically using finite element models or
 

experimentally. In this investigation, the modal mass was calculated from
 

mode shapes measured holographically and the response of the blades
 

spinning in vacuum was used to determine the natural frequencies. Some
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care must be exercised in determining the modal displacement. If the
 

natural frequencies are well separated and the blade response is primarily
 

at or near the natural frequencies, then the modal displacements can be
 

determined by band pass filtering the total response of a single displace

ment transducer and scaling the result appropriately. If the blade fre

quencies are closely spaced, or if the response of the system is not easily
 

identifiable with a single particular mode, as would be the case in
 

bending-torsion flutter, a more elaborate technique would be required.
 

Several strain gauges could be used, each primarily sensitive to one blade
 

mode. In general, to determine the displacement of N modes, at least N
 

transducers would be required.
 

Substitution of the known amplitude, mass and frequency in equation
 

(3.4) will give the modal component of the sum of all the forces acting
 

on the blade. This sum contains at least three distinct components,
 

Frtotal Fraer° + Frdisturbance + Frdik (3.7)
 

the unsteady aerodynamic forces due to blade motion and interaction, the
 

unsteady aerodynamic forces due to upstream or downstream disturbances, and
 

the forcing of the blade due to interaction with the disk, and shrouds, if
 

present. Unlike the energy approach, this generalizable formulation of the
 

problem using the equations of motion with the aerodynamic damping and
 

disturbance forces on the right hand side allows a consistent treatment of
 

both forced vibration and flutter [4].
 

Looking at the origins of each of the force components, the disturb

ance force includes effects of blade passage through stationary circum

ferential nonuniformities in the flow such as inlet distortion, wakes from
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struts and guide vanes, influences from upstream and downstream stators and
 

Also included
nonuniformities in burner outflow in the case of a turbine. 


would be unsteady aerodynamic loads .not attributable to the motion of the
 

loads induced by surge and rotating stall.
blades themselves such as 


The disk force is the term through which the presence of the disk and
 

shrouds is accounted for. If handled rigorously, the influence of the disk
 

and shroud would be included by a complete specification of the stress or
 

displacement state of all the surfaces of contact of the blade with other
 

parts of the blade-disk system. However, with a proper model of the struc

tural dynamics of the blade disk system, the expression of this disk
 

interaction force can be considerably simplified. In the single blade
 

degree of freedom model of Equation 3.2, the disk force appears simply as
 

In the MIT Rotor, the three accelerothe base acceleration term (mIq2). 


meters described in Section 2.2.1 will be sufficient to characterize the
 

disk force. In general, the number of pieces of data required to charac

terize the disk force will depend on the details of the rotor studied, and
 

will increase as the number of blade modes and degree of participation of
 

the disk in the model is increased.
 

After the disk and disturbance forces have been sorted out, the
 

remaining aerodynamic force is the one of most interest in the understanding
 

of aerodynamic damping. The aerodynamic modal force of equation (3.7)
 

represents exactly the quantity one calculates for each blade in deter

mining flutter boundaries, that is, the integrated effect along the blade
 

span of the local damping forces. In the conventional calculation,
 

Equation (3.6) is evaluated as
 

(t) = f f_ (x,y) y (x) dx (3.8) 
raero 3
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where f is the force per unit span usually found either from a two

dimensional theory or the results of cascade experiments.
 

There are two potential sources of error in the proposed method for
) 

force computation, the choice of natural frequency wr, and the twice dif

ferentiation of the blade displacement to obtain the acceleration. The
 

accuracy of the differentiation depends on the data sampling rate and
 

algorithm used in the differentiation, and will be discussed in Chapter 6.
 

An error in the choice of natural frequency in equation (3.4) will intro

duce an error in the force which is in phase with displacement. The result
 

will be a small error in the amplitude and phase of the force. From the
 

simple case of a free decay, it can be shown that the error introduced in
 

the phase is small, provided the fractional error in frequency is small
 

compared to the critical damping ratio. Provided this criterion is met and
 

the differentiation done accurately, the modal force acting on the system
 

will be correctly calculated.
 

Since the blade damping force (Fa ) depends strongly on the motion 
aero
 

of the other blades in the cascade, it is best analyzed by the more global
 

method developed next. The single blade approach as formulated with
 

equation (3.4) is best used to study forced vibrations localized to one or
 

several blades. Finally, it should be noted that the equations (3.4) for
 

the blade modal displacement which appear uncoupled can be recoupled
 

through the force term in one of two ways. This could occur either through
 

the disk force (Frdisk ) if the disk or shrouds strongly couple the blade
 

modes, or through the aerodynamic damping force (Fraero) if the unsteady
 

aerodynamic effects couple the modes. If these equations are solved in an
 

uncoupled way, as will be done in this analysis, it must be recognized as a
 

simplification of the actual system.
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3.2 Analysis of Blade Motion .using Multiblade Coordinates
 

are best viewed in a global sense,
Certain forces acting on the blades 


that is looking at the response of all the blades simultaneously. 
Among
 

these are the unsteady aerodynamic damping which can be expanded 
in its
 

most general form as
 

Fiaero = F i (qi' i, q ) + Fi I (qili+'qi+) + Fi+ 2... (3.9)
 

++Fi-i (qi-l' 4i_11 qi-i ) Fi1-2"' 

where the force acting on the ith blade is dependent in some way on 
the
 

blade's own position, velocity and acceleration, and the position, velocity
 

and acceleration of all the remaining blades in the cascade, as well 
as the
 

In current analytical models for compressible and
aerodynamic parameters. 


transonic aeroelastic interaction [7,8], the assumption is made that every
 

blade in the cascade moves with a constant amplitude, frequency and
 

interblade phase angle. These assumptions reduce the complex functional
 

dependence expressed by the infinite series of equation (3.9) to a depen

dence on just three parameters, the amplitude, reduced frequency (Wc/V) and
 

interblade phase angle, for any given aerodynamic operating point and
 

cascade geometry. In this way, the displacement of the ith blade of an N
 

blade rotor located at i is given as
 

qi = A ei(wt - n41i) = 1,2,3,...,N (3.10) 
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where
 

N 

2n 

N 

where p is the interblade phase angle and n is the number of nodal diameters.
 

While this traveling wave formulation is useful -in aerodynamic calcu

lations, an alternate multiblade coordinate formlation [25] is more useful
 

in analyzing the structural response. In this formulation, the displace

ments of the blades are given as a sum of two standing waves of the disk,
 

cos ni and sin n i corresponding to n nodal diameters such that
 

qi = an sin n4,i + bn cos nWi (3.11)
 

where: an , bn - generalized coordinates
 

cos n i" sin 4, - disk modes
 

= n - interblade phase angle 
N
 

The relation between the two formulations can be seen by expanding the real
 

part of equation (3.10)
 

q. = A cos (wt - nqi) (3.12) 

A cos wt cos 41 + A sin wt sin n i
 

By comparing this to equation (3.11), it can be seen that if an and
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bn are sinusoidal and temporarily out of phase by 9
0* they give rise to
 

a travelling wave with interblade phase angle f.
 

The advantages of formulating the structural problem in generalized
 

multiblade coordinates as opposed to individual blade coordinates of the
 

type in equation (3.4) are several. First, each coordinate conveys infor

mation about the global, rather than'the local behavior of the rotor.
 

Second, the coordinates relate directly to the interblade phase 
angle used
 

in unsteady aerodynamic calculations. Third, as will be seen in Chapter 4,
 

the structural dynamic equations for the blade disk system expressed in
 

multiblade coordinates are considerably simpler than those expressed in
 

individual blade coordinates.
 

3.3 Application of Techniques for Computation of Blade Forces
 

Listed below is a brief step by step explanation of the application of
 

the techniques discussed to a set of structural response data for the pur-


This is given both as a summary of
 poses of computing aerodynamic forces. 


this section and as a guide to the remainder of this report which will
 

follow this procedure:
 

1. Develop the equations of motion of the blade disk system which
 

adequately characterize the blade modes expected to be present and the
 

blade disk interaction. This will be done in Chapter 4.
 

2. Run a "model experiment", at full speed, but in vacuum to deter

mine the excitation of the blades, if any, through the structural
 

system. This will be discussed at the end of Chapter 4.
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3. Run the aeroelastic experiment collecting data on every blade
 

response and disk participation and analyze the data in the following
 

manner:
 

a) Identify by Fourier transform in time, the dominant frequen

cies of response and the blade modes (first bend, etc.) with which
 

they are associated.
 

b) Narrow band pass filter the raw data to isolate each frequency
 

of response.
 

c) If the excitation is local, work directly with the data pro

duced in (b). If the response is global, perform discrete Fourier
 

transforms of the blade data in theta to transform to multiblade
 

coordinates.
 

d) Use the amplitude data collected, together with the structural
 

model, to calculate aerodynamic forces acting on the blades.
 

Examples of this last step will be given in Chapters 6 and 7.
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4. Structural Dynamics of the MIT Rotor
 

4.1 Inertial and Elastic Coupling in Bladed Disks
 

In determining the response of the rotor to applied external forcing,
 

and especially in determining the flutter boundaries of a stage, it is
 

important to understand and characterize the coupled response of the blade

disk or blade-disk-shroud system. Previously, several authors have
 

and blade-diskdisdussed the effects of blade-disk elastic coupling [26] 


Other

shroud elastic coupling [27] on the modal response of a tuned rotor. 


inve~tigators have looked further into the effect that mistuning of 
blades
 

has on the response of these systems [28].
 

These studies have focused primarily on the coupling of the flexural
 

and torsiodal modes of the blades through out of plane elastic deflection
 

of the disk. In these models, the hub or center of the disk is usually
 

Therefore the resulting
constrained from motion in or out of the plane. 


coupling of blade modes into blade-disk modes, characterized by a number of
 

nodal circles and diameters, is attributable solely to the elastic defor-


Even the very general model of Fabumni [241 which
mation of the disk. 


allows for in plane and out of plane motion of the disk imposes the boun

dary condition that the hub center remain fixed.
 

Th hub of any real rotor is not perfectly constrained, but is elasti-


In the'
cally constrained by the stiffness of the shaft on which it runs. 


case of an isolated rotor on a shaft, the transverse deflection of the
 

shaft allows two in plane translatioi and two out of plane rotational modes
 

of the disk. The single out of plane translational degree of freedom of
 

the disk is resisted by the longitudinal stiff-ness of the shaft. The last
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of ,the six rigid body modes of the disk, in plane rotation, is completely
 

unconstrained by a shaft running on bearings.
 

Any of these rigid body degrees of freedom of the disk can couple the
 

blades through the inertia of the rotor. In principle, all six should be
 

considered in computing the coupled modes of the bladed disk. In the case
 

of very flexible disks, these couplings could be dominated by the out of
 

plane elastic deflection of the disk. However in the case of research
 

rotors which tend to have thick, massive disks, the inertial effect of the
 

relatively rigid disk can be the dominant source of blade disk coupling.
 

This chapter will deal with the question of in plane inertial coupling
 

as observed in the MIT Rotor. In the next section, a model of the blade

disk-shaft system will be developed. In subsequent sections, the results
 

of three -sets of experiments are discussed in which the natural modes of
 

the bladed rotor were found. In the first set of experiments, the blades
 

were uniform and well tuned. In the latter two sets, different com

binations of blades were weighted at the tips to produce a bladed disk
 

system with extreme nonuniformity. The frequency results obtained from
 

these experiments were found to correlate well with the proposed model.
 

4.2 Model of Blade-Disk Inertial Coupling
 

The proposed model of the blade-disk tystem is shown in Figure 4-1.
 

A solid disk extends from the center to the hub radius (r = rh), and
 

possesses two translational and one rotational in plane degrees of freedom.
 

= 
Extending from the hub to the tip (r rt ) are N blades located at angles
 

i (4i = 2iti/N). The blades deflect with a single mode shape y which has
 

an amplitude of qirt. For every mode shape, the twisted blades deflect at
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an effective angle to the normal, so their in plane component of deflection
 

is qirt cos a With these assumptions, the deflections of a point on the
 

blade are given as
 

u q x - rq6 sin yrtqi sin
r- cos a
 

v qy + rq 0Cos Pi + y rt q Cos i cos a
 

w y r t qli sin a
 

Evaluating the kinetic energy of a single blade gives 

rt 

Ti 2 + . 2+ 2) dm 

rh 

rt
 

-1 f 2 q2 2.2q y2r2 q2 
=(x + + rq + Y r2t 2 + 2qr [q cosqi
 

rh
 

sin 1+ 2 i Y rt cos a y cos sixsin ]
 

+ 2 4e ii yrt r cos a ) dm (4.2) 

Evaluating the mass integrals gives 

(q + 2 + 21 2 + mo q, .2Ti 2 b qy Ibq0 + 

+ 0 Sb [4y Cos - sin 'I (4.3) 

+ 4i m cos a [4y cos - sin (Pi] + q4 jim, cos a2 

where the integrals are defined as
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fdm = dm =mrt y °
 

frdm = Sb fr t y r dm = mI (4.4) 

fr 2 dm = Ib frt Y dm =m 2 

where the limits of integration go from rh to rt. The integrals in
 

Equation (4.4) are respectively the contribution of the blade to the system
 

mass (Mb), static imbalance (Sb) and moment of inertia (Ib), the blade
 

modal mass (mo ) and the consistent mass terms of the coupling of the blade
 

with the rotation (m1) and translation (m2 ) of the disk.
 

The kinetic energy of a uniform disk reduces to
 

1 .2 .2 1 .-2
 

Td = 6(qx +qy) Md + {q8 d (4.5) 

If the center of the disk is restrained by translational and rotary
 

springs, the potential energy is
 

1 2 1 2 1 2
 

gd K= q + I Ky + q (4.6)K qy 

and each blade has a potential energy
 

1 1 22
 

=
Ui, ki qi moWe qi (4.7)
 

where w is the cantilevered natural frequency.

4
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Substitution of equations (4.3), (4.5), (4.6), and (4.7) into
 

Lagrange's equation yields the equations of motion as expressed in
 

individual blade coordinates.
 

Nf.
 
i + q, m2 cos a sin i = 0 

S qx + Kxqx I- 1 q0 Sb sin 

N
 

q sin + q cos a 0 
qy + qy + 1Sbj y cos 

m qi + m2 cos a I q osi q sin Pi 

= +qs ml cos a +ki q 1 0 i 1,2,...,N (4.8) 

where NT = Md + M
 

(4.9)
IT = Id + IIb 


Note that the translational and rotational equations are coupled
 

through the combined imbalance of the blades and the motion of the blades.
 

The blade motions do not couple to each other directly, but through the
 

inertial coupling of the disk represented by the mlcos a and m2cos a terms.
 

The equations of motion as expressed in equation (4.8) are very
 

general. They will be used in simplified form to examine the cases of
 

extreme mistune of the disk. The equations are highly coupled through the
 

disk rigid body modes, making them difficult to work with. For uniform
 

blades, the equations can be simplified considerably by transforming to
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generalized multiblade coordinates, which for an odd number of blades N are
 

N-I N-I
 
2 2 

= +qi I a nsin nli I b cos ni (4.10) 
n=1 n0 

Substitution of this expression for qi into the first three equations 

of set (4.8), and carrying out the sums in i gives 

qx +Kqx - a, f m2 cos= (4.11) 

MTqy+Kqy+b 1 N'
 

i m2 cos a
 y 


T q 0 + K0 qO + 0o N mI Cos a 0 

Upon substitution of the expression for qi in (4.10) into the last N
 

equations of set (4.8), multiplication by successive values of cos ni
 

and sin nPi and summation over i gives the N new equations
 

= + N k i b + N m1 cos a 0 

N N

Tmo +"k a - qxom 2 cos = 

Nmo bl + kibl + qy m2
- toe -

N N 0
 
man + k, an
 

= 
n 2, 3, 4, ...,(N-I)/2
 

N mN i = 0fm0 n 2 1 bn (4.12) 

where the equations have been simplified by the trigonometric summations
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valid for n, m # N/2, N, 3N/2,..., namely 

N 2 N 2N
 
cos = sin n 2
n i
i=1 1=1
 

(4.13)
 

N
= 0
 

i l
) sin n4, cos n i 

A high degree of uncoupling has taken place by transformation to multiblade
 

coordinates. To emphasize this uncoupling, the equations in sets (4.11)
 

and (4.12) can be rewritten
 

- m 2 cos a + K 0 qx 

+ =0 

N N N 
22 ao 1 0 2 ki a1
 

N
 

m2 cosa k b
mo 


IT N m1Cosa {qe0 + k0 0 (q81
 
=0+ 

N Cosa Nm 0 N k. b° 

ma+kia =0}N-I 

=

o f n 2 ,3,2..., 2 (4.14)
:1}

nikb+k0
 

mo n in
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Transformation to multiblade coordinates has reduced the completely
 

coupled set of (4.8) to three sets of two coupled equations each and N-I
 

simple single degree of freedom equations. It can be seen that the sine
 

and cosine modes (aI and b1 ) couple to the translational rigid body modes
 

of the disk. The collective or cosO mode couples only to the rotational
 

degree of freedom of the disk, and all higher modes are not coupled through
 

the disk.
 

The implications of this simple rigid body coupling for the calcula

tion of the aerodynamic forces acting on the blade are enormous. The
 

second equation of each of the first three pairs in set (4.14) parallels
 

equation (3.2). Thus, if the modal displacements (b0 ,al,b1 ) are known and
 

the in plane translational and rotational acceleration of the disk are
 

measured, the modal forces acting on the cos0e, sinO and cosO modes can be
 

directly calculated. The-last N-I equations of set (4.14) resemble the
 

even simpler equation (3.1), and with knowledge of the modal displacements,
 

the modal forces can be calculated without any information about the disk
 

motion.
 

It remains to be shown that this disk inertial coupling model is suf

ficient to characterize the dynamics of the MIT Rotor. The remainder of
 

this chapter describes the method used to determine the constants in
 

Equation (4.14) using a well-Euned rotor. Then, two experiments will be
 

discussed in which severe mistune was introduced to check and verify the
 

model.
 

4.3 Experiments with a Tuned Rotor
 

A series of tests was performed on the tuned MIT Aeroelastic Rotor to
 

determine its mass and stiffness properties and compare its resonant modes
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The rotor was mounted to a
with those predicted by the proposed model. 


short steel shaft, machined with the same taper and keyway as the shaft on
 

which the rotor was mounted in the Blowdown Facility. This short shaft was
 

then mounted directly to the head of a Ling Model 420 electromagnetic
 

Excitation of the
shaker designed to produce a peak force of 100 pounds. 


rotor to determine resonances was sometimes achieved by the shaker 
through
 

In other cases, a loud speaker was used to acoustithe mounting shaft. 


cally excite the blades directly. Amplitudes of response were monitored
 

with the rotor strain gauges and PZT's and with blade and disk 
mounted
 

accelerometers.
 

First the mass properties of the rotor as defined by equations (4.14)
 

were determined. The dimensions of the aluminum rotor and blades were
 

carefully measured using calipers. These dimensions were used to calculate
 

the mass and rotary moment of inertia (MT and IT) of the rotor. As a
 

check, the calculated mass agreed within 2% of the measured mass, which is
 

well within the accuracy of the measurement. The blade mass properties
 

were based on the measured dimensions and holographic measure(m0, ml, i2) 


ments of the first bending mode made while the rotor was not rotating. The
 

dimension and mass properties for the blade first bending mode are sum

marized in the Appendix.
 

One more required constant can be estimated from the rotor geometery,
 

the angle between the plane of the disk and the normal to the cambdr line
 

-For the blades of the MIT Rotor, this angle varies from
(Figure 4-1). 


The effective angle around which
about 300 at the root to 600 at the tip. 


the blade flexes must lie between these limiting values. Reference I (page
 

23) cites the normal to the chord at 20% span height outboard of the root
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attachment as the effective flexural axis of such blades in first bending
 

mode. A value of 36' was measured for this location and will be used in
 

further calculations.
 

The remaining constants to be determined were the stiffness of the hub
 

restraint (Kx, Ky, K0 ) and blade (ki). Rather than measure these directly,
 

it was decided to search for the resonances suggested by the model and
 

calculate the values of the stiffness using the mass properties and
 

observed frequencies.
 

Before any resonance tests were performed, the rotor was tuned in much
 

the same way as a string instrument. In designing and installing the
 

piezoelectric crystal assembly, it was observed that by selectively
 

tightening the retaining bolt, a variation of about 6 Hz could be achieved
 

in the frequency of the blade's first bending mode. It was impossible to
 

simply tune any given blade due to the participation of all the other bla

des through the disk coupling. To isolate a given blade, all the other
 

blades in the rotor were weighted at the tip by a two inch "C" clamp, which
 

pulled the resonance of the weighted blades well below 200 Hz. The reso

nance of the single unweighted blade could then easily be identified and
 

adjusted. In this way, the blades were tuned to 378 + 2 Hz
 

With the rotor thus tuned, scans were made for overall blade-disk reso

nances and their modal patterns. Using the shaker excitation, a strong
 

resonance was found at 374.5 Hz with no distinct modal pattern, and a
 

second at 417-418 Hz. In this second resonance, all blades moved in phase.
 

The disk moved in a rotational sense opposite in direction to the blade
 

tips. This mode was referred to as the counterrotating mode. Under
 

acoustic excitation, the modes at 374 Hz and 417 Hz were found, plus an
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additional mode at 390-394 Hz. In this mode, the countertranslating mode,
 

the tip displacement pattern was observed to go as sinO, and the disk
 

translated in the sense opposite that of the blade tips.
 

The countertranslating mode is the one associated with the first two
 

equations of.set (4.14). If the base translation stiffness (Kx ) is set to
 

zero, and the proper blade cantilever frequency is used (to be discussed
 

shortly), the calculated frequency of the aIsin and b1cos modes is 381 Hz.
 

But the shaft mounted on the shaker provides a finite restraining spring.
 

To move this resonance from 381 Hz to 390-394 Hz, Kx must have a value of 3
 

6 6 
x 10 to 3.5 x 10 lb/ft. If this were the right value, the second mode
 

associated with these equations, the translating mode in which the blades
 

and disk move in phase rather than out of phase, would have a resonance in
 

the range of 280 Hz to 302 Hz. A weak resonance with this modal structure
 

was found in this range. The values of Kx and Ky will be taken as 3 - 3.5
 

x 106 lb/ft.
 

Similarly, the counterrotating mode is associated with the third
 

equation of set (4.14). With K set to zro, the predicted frequency is
 

417.2 Hz, within the observed range. However, a weak rotating resonance
 

was observed at 40 Hz, suggesting a small, but nonzero, torsional stiffness
 

of 1.5 x 104 lb ft/rad. This only moves the calculated counterrotating
 

frequency to 417.7 Hz, and will bejincluded in subsequent calculations.
 

The strong resonance at 374.5 Hz was found to be the true blade can

tilever natural frequency, as given by the last N-i equations of set
 

(4.14). However, when the blades were tuned individually, they resonated
 

at an average of 378 Hz. This difference of 3.5 Hz is associated with the
 

participation of the disk. When the blades were tuned only one blade was
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excited at a time and the disk participated in the motion. This observed
 

natural frequency was not based on the modal mass of the blade, but on the
 

reduced mass of the blade disk system. With all the blades free to
 

vibrate, some combination of the higher modes (cos 20, cos 30,...) was
 

excited; the disk did not participate and the real blade cantilever fre

quency was observed. In Section 4.5, the difference between the blade
 

modal mass and blade-disk reduced mass will be shown to lead to a dif

ference of 3.5 Hz in first bending frequency.
 

As a final test on the tuned rotor, the structural damping of single
 

blades was measured by the half power bandwidth technique. Just as in the
 

tuning process all the blades but one were weighted, and the response of
 

the unweighted blade to constant amplitude excitation was measured. In
 

this way, the structural damping in air of individual blades was found to
 

have a Q ranging from 190 to 40 with an average value of 210. This
 

corresponds to an average log decrement of 0.015 or a critical damping
 

ratio of 0.0024. The combined material and structural damping only lightly
 

damp the motion of the blade.
 

4.4 Severely Mistuned Rotor with Several Blades Participating
 

In the process of tuning each blade of the rotor weights were clamped
 

to the tips of all the other blades. This process can be thought of as
 

introducing a severe mistune into the rotor, in this case to isolate the
 

resonance of a single blade. This method of creating a severe mistune was
 

used in two additional ways. In one case, two blades were left unweighted
 

and their natural frequencies were determined as a function of the angle
 

that separated them. These results will be described in Section 4.4. In
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the second case, between one and twenty-three adjacent blades were left
 

unweighted. A study was made of how the observed frequency changed with an
 

increasing number of participating blades.
 

The blades were weighted by a 2 inch steel "c-clamp" near the tip.
 

Between the contact points of the clamp and the metal surface of the blade
 

was a small piece of 1/8 inch thick hard rubber mat to prevent the clamp
 

from slipping or chattering. With this weighting, the blades were observed
 

to have a very well damped resonance in the range of 160 to 180 Hz, well
 

below the unweighted resonance of 374 Hz.
 

When only one blade was unweighted, its single natural frequency was
 

When two or more blades
 near that to which the blades were tuned, 378 Hz. 


At the blade cantilever
 were unweighted, two strong resonances were found. 


frequency of 374 Hz, the blades moved without any noticeable phase
 

relation. At a higher frequency, the blades were observed to move in
 

phase, This natural frequency was found at 381 Hz for two blades and mono

tonically increased with increasing number of blades unweighted. As the
 

number of blades approached 23, the observed frequency approached the coun-


The trend of the highest
terrotating mode of the tuned rotor at 418 Hz. 


resonant frequency versus participating blades can be seen from the experi

mental data in Figure 4-2.
 

This highest mode resonance of the mistuned rotor can be modelled by
 

assuming two modes for the blade displacements whose amplitudes are qA and
 

qB The J unweighted blades respond at equal amplitude and in phase and
 

are symmetrically distributed about ® = 
0 ' such that for a blade at
 

2ii/N, the displacement is
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i-a 1-Ji - J-i1 
A- 2 2, 2 2 (4.15) 

The remaining K weighted blades respond at equal amplitude and in phase and 

are symmetrically distributed about 0 = 1800 such that 

-1J-
 2, N J-1 
q = qB 2 +2, ,N 2 2
 

(4.16)
 

where
 
J+K=N
 

To derive the equations of motion for this untuned case, the two
 

assumed modes qA and qB are substituted into equation set (4.8). The sum

mations in the first three equations and over the last N equations are
 

divided into sums over the K weighted and J unweighted blades. The
 

resulting equations are
 

qx x
MT +K qx=0
 

Mqy + Ky qy a Sw q8 - qB m2 cos
 

+ aqA m2 cos a = 0
 

T q + K q0 - a S q + l qB m1 cosa
 

+ JqA ml cos a 0
 

o qA + a m2 qy cos a + Jm1 q9 cos a + J k A = 0 

m0 q B - a m2 qy cos a + K m, % cos a + K kiqB 0 (4.17)
 

where the blades have been assumed to be uniform except for the presence of
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the weights at the tips. The mass properties of the weighted blades are
 

given in a form similar to equation set (4.4) as
 

2 Y2dm = M t y dm m4 
(4.18)
fm 2
rt 

jt yr dm= mI Mw r w 

the last term representing the contribution to the static imbalance by a
 

The total rotor mass and inertia terms must
weight of Mw at radius rw. 


The term a is defined
also reflect the addition of weights at the tips. 


as the partial sum
 

(4.19)
a= cos
J
 

where the summation over the J blades represents the indices in equation
 

(4.15). It can be shown that
 

- a = cos 4i (4.20) 

K
 

where the summation is over the K blades of the indices in equation (4.16).
 

Note that since the displacements were assumed to be symmetric about the x
 

axis, the x equation has uncoupled from the remaining four.
 

The solution to the last four equations of set (4.17) is shown in
 

Figure 4.2 for the range of experimentally determined elastic constants.
 

The agreement between the experimental results and those predicted by the
 

model for this assumed mode are excellent. In particular, note that the
 

model reproduces the dip in the resonance curve in the range of 15 to 20
 

blades unweighted. The lower end point for zero blades is the true can
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tilever frequency of the blade and the upper end point with all 23 blades
 

unweighted is that of the in-phase mode found for the perfectly tuned
 

rotor. In the range of 1 to 5 blades participating, the trend is nearly
 

linear. When the first blade is unweighted, the reduced mass effect of the
 

disk causes an increase in the observed resonance of about 3 Hz. As the
 

next few adjacent blades are unweighted, the effective modal mass of the
 

blades increases, growing closer to that of the disk. This increases the
 

reduced mass effect and the increment in frequency. Once the participating
 

blades subtend a large angle, the translational coupling begins to be
 

reduced and the trend curves over.
 

A simplification can be made to equations (4.17) if the weighted blades
 

are simply ignored, that is, they are assumed not to participate in the
 

motion, and that the additional mass of the weights at the tips is not
 

significant. With these assumptions, the last of the five equations of set
 

(4.17) is removed, qK and Sw are set to zero and the remaining three
 

equations are less highly coupled. Solutions of this simplified set of
 

equations for the in-plane resonance are shown in Figure 4-3. This
 

agreement is also quite good. In this case, simply ignoring the mass of
 

the weights and participation of the weighted blades still gives reasonable
 

results.
 

4.5 Severely Mistuned Rotor with Two Blades Participating
 

In this second set of experiments with severe mistune, two blades were
 

left unweighted. The angle subtended by the two blades was varied so that
 

the blades were first adjacent, then separated by one weighted blade, then
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two and so on until the unweighted blades were on opposite sides of the
 

rotor.
 

For each location of the two blades, two distinct resonances were
 

found, one in which the blades moved in phase, and one in which they moved
 

out of phase. When the blades were adjacent, the out of phase mode was
 

The out of
found at the true cantilever frequency of the blades (374 Hz). 


phase motion of the blades cancelled the participation of the disk. The in
 

phase mode was found at about 381 Hz, 7 Hz above the cantilever frequency.
 

This difference is just twice the increase in observed natural frequency
 

caused by the reduced mass effect of the disk acting on a single blade. As
 

the spacing of the two active blades increases, the two observed frequen

cies tend to coalesce as shown in Figure 4-4. The error bars in the data
 

represent several different pairs of blades tested for each angular
 

separation.
 

Once again, this mistune can be modelled by assuming two modes for the
 

displacement of the two blades. As in the simplified analysis at the end
 

of section 4.4, the weighted blades will be assumed to have no displacement
 

and the mass of the clamps will be ignored. Then the displacement of the
 

two blades participating in the motion at plus ki and minus i can be given
 

as the sum and difference of an in phase and out of phase mode
 

qlP + qop
 
qi = 2 at +
 

(4.21)
 
qlP - qoP
 

qi = 2 at 

where 4 is one half the angle subtended by the two blades. 
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Substitution of the displacements expressed above into equations (4.8)
 

gives
 

MT qx + Kx qx - qoP m2 cos a sin 4 = 0
 

T qy + Ky qy + qlP m2 cos a cos (P= 0~ 2(4.22) ~ ~ 

IT q8 + KO q9 + qlP ml cos a = 0 

+ +mo qlP k qP 2qy m2 Cos a cos4 

+ 2q m1cos a = 0 

m qoP + ki qOP - 2 qx m2 cos a sin = 0 

The symmetry of the in and out of phase modes about the x axis has
 

caused an uncoupling of the equations of motion. It can be seen that the
 

first and last of set (4.22) completely determine the out of phase reso

nance and lead to the lower curve of Figure 4-4. The middle three
 

equations are coupled and determine the in phase resonance responsible for
 

the upper curve of Figure 4-4.
 

Within the uncertainty concerning the disk restraint stiffness, the
 

agreement with experimental results is again excellent. Both branches of
 

the response and their coalescense are predicted correctly. Examination of
 

equations (4.22) shows the origin of this coalescence. The first and last
 

equations are coupled through a term expressing the translational coupling
 

which depends on sin P. For adjacent blades, 4 is near zero and the true
 

cantilever frequency is observed. As q)moves towards 90, the equations
 

are increasingly coupled with a resulting upward shift in resonance. The
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middle three equations are coupled through translational terms which depend
 

and rotational terms which have no 4)dependence. At"small values
 on cos 4, 

of 4,both are present. As 4,approaches 900 the transiational terms go to 

zero, reducing the coupling, but the rotational coupling still keeps the 

observed resonance above the cantilever frequency. If the magnitude of the 

translational and rotational coupling are the same, as they are in the MIT
 

Rotor, the two frequencies tend to coalesce as 4 approaches 90.
 

4.6 Summary
 

A structural model has been developed and demonstrated in which the
 

coupling of the blade motion is caused by the inertia of the disk. The
 

model correctly predicts the behavior of the real rotor even in the case of
 

severe mistune. Although present in all rotors, this inertial coupling
 

appears to dominate in the case of the MIT Rotor.
 

The model simplifies the interpretation of the aeroelastic data that
 

follows in two ways. First the higher multiblade modes (cos 20, sin 20,
 

cos 30, etc.) are unaffected by the motion of the disk. Therefore the
 

response of these modes can be calculated in the absence of any information
 

The three lowest modes are coupled by the translational
about the disk. 


and rotational motion of the disk. These are quantities which can be
 

measured using disk mounted accelerometers as are included in the MIT
 

Rotor.
 

Transformation of the equations of motion developed can be achieved by
 

letting the location of the blade depend on time such that
 

= + (4.23)'Pi N Qt 
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where Q is the rotation rate. This transformation has two effects on the 

equations derived for a tuned rotor expressed by Equations (4.8). A
 

centrifural stiffening term is added in the blade bending stiffness kj,
 

which raises the cantilever frequency to 410 Hz at full speed. A gyrosco

pic coupling term appears which couples the two translational degrees of
 

freedom of the disk. This gyroscopic coupling leads to whirling of the
 

disk and blades [29]. When run at full speed in a vacuum, a forced vibra

tion of the blade was observed due to one modal diameter which occurred at
 

one, two, and three times the rotor rotation speed. This effect must be
 

included in the analysis of the aeroelastic response at these frequencies
 

and in these modes.
 

57
 



5. FORCED VIBRATION DUE TO UPSTREAM DISTURBANCES
 

5.1 Stage Performance and Aerodynamic Response
 

Since no aeroelastic stability boundaries were encountered within the
 

performance map of the MIT Transonic Compressor Rotor, it was decided to
 

study the response to forced vibration at the design point. There, the
 

steady aerodynamic performance of the rotor is understood and well docu

mented [19]. The secondary flow injector system described in Section 2.1.3
 

The disturbance
is used to create a disturbance upstream of the rotor. 


extends part way through the period of quasi-steady flow during which time
 

the forced vibration response of the rotor can be determined. Then the
 

disturbance is sharply ended and the subsequent ring down of the rotor is a
 

measure of the aerodynamic plus structural damping.
 

Several attempts were made before the flow injector successfully
 

created a steady disturbance. At first, the downstream throttle orifice
 

was chosen so that the rotor would operate at its design point when run at
 

100% speed. The disturbance was scheduled to turn on at the start of the
 

test and off at 80 msec or 30 msec into the quasi-steady flow. The total
 

This strong disturbance drove
pressure of the injected flow was 200 psia. 


the stage into a two cell rotating stall from which it did not recover
 

during the test. To correct this, the throttle was opened to move the
 

operating line away from the stall boundary, the beginning of gas injection
 

was delayed until the start of the quasi-steady flow at 50 msec, and the
 

injector pressure was reduced to 60 psia. This combination created no
 

In the third attempt, the throttle and
clear excitation of the blades. 


start time were left unchanged, but the supply pressure was increased to
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150 psia. This combination succeeded in creating a disturbance with a
 

clearly observable aeroelastic response which will be discussed below.
 

The steady operating point of the rotor was on the 100% speed line just
 

below the design point, with a flow corrected to air at standard conditions
 

of 77 lb/sec (35 Kg/sec), and a tip Mach number of 1.23. A total pressure
 

ratio of 1.57 was measured by the 5 way probe at the 94% tip radius. This
 

is less than the pressure ratio of 1.70 measured by Durali [19] at this
 

radius at the design point. This would be expected since the throttle
 

orifice was larger than that for design. However, the corrected mass flow
 

of 77 lb/sec calculated from the rate of pressure decrease in the supply
 

tank is also less than Durali's measured value of 84.7 lb/sec. This
 

discrepancy can be accounted for by an inaccuracy in the supply tank volume
 

and calculation procedures used by Durali.
 

The aerodynamic response of the rotor to the upstream disturbance can
 

be seen in a change in bow shock strength. Figure 5-la shows the trace of
 

the high frequency response wall static pressure transducer 0.1 chord
 

upstream of the rotor at the '0 instrument location directly behind one of
 

the injectors. An increase in the bow shock strength can be seen starting
 

at about 55 msec and ending at 100-102 msec. During this period, when the
 

injector is on, a region of velocity defect is created behind the injector.
 

As a blade passes through this region, the incidence increases, and with it
 

the local shock strength. Comparison with Figure 5-lb taken from a wall
 

static transducer 1.0 chords upstream at the 720 instrument location (i.e.
 

far from the injectors at 0* and 1800) shows no corresponding change in
 

shock strength.
 

5.2 Aeroelastic Response of the Individual Blades
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The individual response of all 23 blades is shown in Figure 5-2. The
 

blades are shown in their proper relative positions around the rotor. The
 

signal from blade 23 is shown twice for reference, once at position zero
 

and again at position 23. The reference time is that time when the
 

diaphragm is commanded to burst. From this presentation of the data, some
 

The rotor spins in vacuum until 3 msec when
overall trends can be seen. 


the wavefront of the gas expanding into the test section subjects the rotor
 

A complex and large amplitude response
to an almost impulsive loading. 


continues until about 50 msec, when the first bending frequency becomes
 

dominant in a response which locally has some phase coherence. From 70 to
 

100 msec the first bending mode appears to damp and a higher frequency
 

grows, that of the second bending mode. After 100 msec, the second bending
 

response decays and the first bending re-emerges.
 

Other than these general observations, it is difficult to gain any
 

qualitative understanding of the response as it is shown in Figure 5-2.
 

The first step in reducing the data is to determine the frequency content
 

of the response by performing Fast Fourier Transform (FFT) in time of indi

vidual blade signals. Fourier transforms of blade 3 response are shown in
 

Figure 5-3 for the period when the injector is on, and in Figure 5-4 for
 

the period after the injector is turned off. Both figures indicate that
 

the amplitude of response is concentrated in distinct frequencies: at low
 

frequency less than 50 Hz, at about 150 Hz, at 300 Hz, in a band from 400
 

to 500 Hz, and at 1140 Hz. These spikes correspond to the low frequency
 

response due to the blowdown transient, the first, second and third engine
 

orders, and the second blade bending frequency at the eighth engine order.
 

The next step in the data reduction is to narrow bandpass filter the
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total response of each blade to isolate each of the frequencies indicated. 

This is done digitally using a Nearly Equal Ripple digital filter [30]. 

The filter parameters typically used included a transition width at the 

edge of the pass band of 70 Hz and a loss outside of the pass band of 50 

dB. Figure 5-5 shows the original data for blade 1 as well as its com

ponents derived from low pass filtering the raw data below 100 Hz, and in 

the ranges 100 - 220 Hz to isolate the first engine order, 220 - 350 Hz to 

isolate the second engine order, 350 - 750 Hz which contains the bulk of 

the first bending response, and 750 - 1500 Hz which contains the second 

bending response. Little response of interest is contained in the two 

lowest frequency ranges in the period of quasi-steady flow. 

The bandpass filtered responses for the last three frequency ranges are
 

shown for all the blades in Figures 5-6, 5-7 and 5-8. The components of
 

the blade displacement data at the second engine order (Figure 5-6) should
 

show some sign of response to the flow injector since a two per revolution
 

disturbance fixed in tunnel coordinates would be seen by the rotor at this
 

frequency. While the amplitude of response is on average greater prior to
 

100 msec than after 100 msec, no clear pattern or phase relation emerges.
 

The situation is only slightly more clear in the response at the first
 

bending frequency (Figure 5-7). Here certain "patches" of response have
 

uniform amplitude and phase relation, such as the group of blades 1-8 from
 

50 to 70 msec and 16-22 from 60 to 80 msec. Again, no clear demarcation of
 

the response before and after termination of the disturbance is evident.
 

The response at second bending frequency (Figure 5-8) does show a rise in
 

amplitude prior to 100 msec and a decay thereafter for most blades, but no
 

global pattern is evident.
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At this point, the analysis can proceed in two ways. Either a detailed
 

study can be made of the individual blade data, or a transformation can be
 

made to disk modal or multiblade coordinates. Since the aerodynamic
 

damping is expected to depend on the global property of interblade phase
 

angle, the transformation to multiblade coordinates will be made.
 

5.3 Aeroelastic Response of the Multiblade Modes
 

The values of the multiblade coordinates as described in Section 3.2
 

can be calculated from the individual blade coordinates by performing at
 

each instant in time a Discrete Fourier Transform in theta such that
 

N
bo =1 qi 
ii
 

(5.1)an N2 N ql sin nFi 


i=l
 

where an and bn are the generalized multiblade coordinates defined by
 

Equation (3.11). In this way, the information contained in the displace

ments of 23 individual blades has been transformed to the generalized
 

..., cosllO) and 11 sine
displacements of 12 cosine modes (cos0e, coslO, 


modes (sinle, sin2G, ..., sinll). The transformed data for the frequency
 

ranges of interest corresponding to Figures 5-6, 5-7 and 5-8 is shown in
 

Figures 5-9, 5-10 and 5-11. The global nature of the response is much more
 

apparent from examination of the amplitudes of the multiblade modes.
 

Figure 5-9 reveals that for the frequency range around second engine order
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(220-350 Hz), the motion of the blades is primarily a superposition of the
 

lowest seven modes, the in-phase mode (cosO) and the sin3G and cos30 modes
 

appear in bursts which are unrelated to the upstream excitation. However
 

the one and two modal diameter modes clearly respond to the excitation.
 

The sinG and cos modes decay in the time period up to 100 msec. After
 

that time, the two modes grow with the same amplitude envelope and with a
 

temporal phase relation such that the cosine mode lags the sine mode by 90
 

degrees. The two modal diameter modes are the pair which should respond
 

most strongly to the two per rev disturbance, and this is seen to happen.
 

Through the entire test time from 50 to 150 msec, the sin2e and cos2e have
 

similar amplitude and are temporarily 90 degrees out of phase.
 

As was discussed in Section 3.2, the condition that the sine and cosine
 

modes have the same amplitude and are 90 degrees out of phase is synonymous
 

with a travelling wave with a fixed amplitude and interblade phase angle.
 

In both the cases of the sine and cosO modes, and the sin2G and cos20, the
 

cosine mode lags the sine mode 90 degrees. This translates to a rearward
 

travelling wave in rotor coordinates.
 

With an interblade phase angle
 

2 n (5.2)
 

the blade displacements are
 

q= A sinwt sin n i - A cos wt cos nli (5.3)
 

where n is the number of modal diameters. The wave speed of this tra

velling wave is
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(5.4)V -=+-n 

where has a forward sense for a positive interblade phase angle and a
 

rearward sense for a negative interblade phase angle.
 

The travelling blade displacement pattern given by the sin
20 and cos2e
 

Since the observed
modes has an interblade phase angle of -31.3 degrees. 

frequency is exactly twice the engine speed, the wave speed in 
rotating 

- Q. In rotor coordinates, thecoordinates given by Equation (5.4) is just 


By a stationary observer,
displacement pattern travels backward at Q .
 

this would be viewed as a standing wave and is therefore the forced
 

response to the fixed upstream disturbance. The observed response fluc

tuates in amplitude in the interval from 60 to 100 msec, but from 100 to
 

120 msec, there is a smooth decay from a higher to a lower amplitude of
 

response.
 

a resonance of the blade disk system at this frequency, so
There is not 


the continued response indicates some lower level two per revolution exci

tation must be present after 100 msec when the injector system-shuts off.
 

Since it was shown in Chapter 4 that structural and shaft vibrations cannot
 

excite this two modal diameter mode, the source of this disturbance must be
 

However, the
 an innate 20 nonuniformity in the flow in the facility. 


smooth decay between two levels of excitation can be used to determine the
 

With a knowledge of the structural damping, the aerodynamic
total damping. 


damping for this interblade phase angle and reduced frequency can be
 

The numerical values of these parameters are listed in the
calculated. 


summary at the end of this chapter.
 

The response of the one nodal diameter mode (cose, sine) is also a
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backwards travelling wave disturbance with an interblade phase angle of
 

-15.6 degrees and a wave speed of -2 9 in rotor coordinates or - Q as viewed
 

by a fixed observer. This is therefore not the response to any fixed
 

disturbanceL The response builds up from a lower level at 100 msec to a
 

higher level at 120 msec. It then remains about at this level as if
 

responding to a fixed amplitude excitation. The source of this excitation
 

is probably the second engine order excitation of the backward whirling
 

mode of the blades and disk, as is observed in a vacuum (Section 4.6).
 

Again, an estimate of damping can be made from the time constant of the
 

transition from a lower to a higher amplitude of response.
 

The amplitudes of the multiblade coordinates for the component of the
 

response which includes blade first bending frequency is shown in Figure
 

5-10. The lowest nine modes (cos0, sin®, ...cos4e) meet the criteria of
 

significant amplitude of response, similar envelopes of response of the
 

sine and cosine modes, and 90 degree phase lag of the cosine mode. While
 

all nine show some,response to the turn on or off of the injector, only the
 

sin3® and cos3 modes have a response from which a damping estimate can be
 

made. 'This mode has an interblade phase angle of -50.0 degrees, and again
 

a wave speed of - 0 giving a fixed pattern of blade deflection as viewed by
 

a stationary observer. This is a forced response to a steady 30 aerodyna

mic disturbance which has its origins in the interaction of the boundary
 

layer bleed and three struts which support the forward centerbody (Figure
 

2.3). This response is present in every run, with or without the gas 

injector system present. 

The interaction between the fixed 30 disturbance and the controllable 

20 disturbance can be seen at two times in the test. Prior to about 60 
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msec, the response is large. When the 20 disturbance is turned on at about
 

55 msec, the three nodal diameter response diminishes sharply. When the
 

injectors are turned off at 100 msec, the response grows. From this growth
 

the damping listed in the summary is calculated. The
after 100 msee, 


Prior to injector turn
explanation of this response pattern is as follows. 


on, the three struts create wakes at 60, 180 and 300 degree locations. The
 

third circumferential Fourier component of this distortion pattern is domi

nant, and the rotor sees an excitation at 3 o (435 Hz). Since this is
 

close to blade first bending frequency (410 Hz), there is a strong
 

response. At 55 msec, the gas is injected and wakes created at 0 and 180
 

If the wake production and aerodynamic response
degrees (Figure 2.3). 


cos 30 and
mechanisms were both linear, the structural response of the 


sin30 modes would not change in response to the 20 excitation. Obviously,
 

the responses do interact such that the third circumferential Fourier com

ponent is reduced and the responseat 30 decreases. When the injector
 

shuts off at 100 msec, the reverse process takes place and the 38 component
 

again dominates.
 

Since there clearly is an interaction of the two per revolution Axcita

tion and three per revolution response, there could be a nonlinear mecha

nism present. Since one gas injector is located directly downstream of one
 

of the struts (at 180 degrees, Figure 2.3), one possible explanation is
 

that the disturbance created by the strut does not combine in a simple
 

linear manner with the disturbance created by the injector. Another expla

nation is that the unsteady aerodynamic response of the blades is not
 

linear. The actual disturbance that the blade encounters is not a smooth
 

sinusoidal variation in the inlet velocity, but a sharp edge gust whose
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width is about one blade chord. If the aerodynamic response were nonlinear
 

the response to such a gust or wake would be different than that predicted
 

by linear superposition of the response to circumferential Fourier cor

ponents of the gust. Such a nonlinearity 'wouldallow the two per revolu

tion excitation and three per revolution response to interact.
 

At this time, it is not possible to determine if the source of the
 

interaction is in the wake generation mechanism,or aerodynamic response.
 

The source of this effect could be isolated by changing the location and
 

number of upstream wake generators. A possible conclusion to be drawn -from
 

this is that if an engine has a forced vibration problem due to proximity
 

of an engine order to a blade resonance, it is possible by selectively
 

adding upstream disturbances to change the frequency content of the excita

tion and reduce the overall response of the blades.
 

The response of the rotor at second blade bending frequency shows a
 

completely different pattern in the response of the multiblade modes than
 

the two frequency ranges already discussed. Figure 5-11 shows that only
 

the eight nodal diameter modes (sin8e, cos8o) respond to the disturbance
 

created by the injector. It has an interblade phase angle of -125 degrees
 

and a wave speed of - 0. Two injectors located 180 degrees apart in the
 

tunnel will create disturbances at all the even harmonics of the tunnel.
 

The rotor will see the eighth harmonic at eight times rotor rotation speed
 

or about 1160 Hz. Since this is very close to second blade bending, a
 

large response in the eighth multiblade mode results. The response after
 

100 msec is a decaying free vibration which gives another measurement of
 

aerodynamic damping.
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5.4 Summary of Measured Aerodynamic Damping
 

The techniques developed have been used to estimate four values of the
 

damping for the operating point tested. They are summarized in Table 5-1.
 

These are, in fact, measurements of the total modal damping; aerodynamic
 

plus structural. The value of the modal structural damping can be deter

mined for a rotor spinning in a vacuum and subtracted out to leave only the
 

These modal dampings were not determined in the preaerodynamic damping. 


sent investigation. Individual blade structural damping was found to have
 

Since this is a factor
 a log decrement of 0.015 in the first bending mode. 


of 10 to 50 less than the total damping, it can be assumed that the prin

cipal source of the measured damping is aerodynamic.
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6. FORCED VIBRATION DUE TO ROTATING STALL
 

6.1 Stage Performance
 

With the stage operating just above its design point, a two cell
 

rotating stall was encountered. The wall static pressure signature from
 

this run is shown in Figure 2-8 and was discussed in Section 2.3. The
 

stall cells were found to rotate at a constant 54% of the rotor speed even
 

though the rotor decelerated during the test time. At the tip, each of the
 

two cells occupied about one-sixth of the rotor circumference. The rotor
 

was operated on the nominal 100% speed line with a measured tip Mach number
 

of 1.22. The mass flow passed by the stage was 66 lb/sec (30 kg/sec), 14%
 

less than the 77 lb/sec measured in the test at 100% speed just below the
 

design point. The total pressure ratio measured at 94% tip radius in the
 

smooth flow between stall cells was 1.70, the same as the pressure ratio
 

measured by Durali for this radius at the design point.
 

6.2 Response of the Blades
 

The procedure used for analyzing the structural data was much the same
 

as that described in Chapter 5. Fast Fourier Transforms in time of indivi

dual blade signals revealed that the dominant frequencies in the response
 

were a low frequency component below 50 Hz, a component at about the rotor
 

rotation speed, and bands at the blade first bending resonance and second
 

bending resonance. The raw data was then digitally filtered to isolate the
 

response at each of these frequencies. Since this run was made in an
 

earlier series of tests, not all the blade displacement transducers were
 

functioning and recorded. In view of this missing data and the fact that
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the forcing due to passage of a stall cell is more-a local than a global
 

went, the data was analyzed in terms of the individual blade displacements
 

rather than the amplitudes of the multiblade modes.
 

Figure 6-1 shows the blade response low pass filtered in the range up
 

to 250 Hz. Again, each trace is in a position corresponding to the circum

ferential location of the blade. The propagating nature of the disturbance
 

caused by the rotating stall cells can be clearly seen to lock the ampli

tude signals. The frequency of this response is just the apparent fre

quency of cell passage which occurs at twice the rotating speed of the
 

- 0.54) x 9 = i36 Hz]. Recall that
cells in rotor coordinates [2 x (1 


since the rotor decelerates, the stall cell rotation speed slows as a
 

so the blade forcing frequency drops
constant fraction of the rotor speed; 


through the test.
 

The band pass filtered response at first blade bending frequency in the
 

range from 250 to 750 Hz is shown in the game format in Figure 6-2. -Not
 

only is the response of large amplitude, but it is also very closely phase-


For a 23 blade
locked with an interblade phase angle of about -90 degrees. 


rotor, this phase angle corresponds to a backward travelling displacement
 

pattern with 6 nodal diameters. If the source of this excitation were
 

linked to the rotating stall cells, the disturbance would be seen in rotor
 

0.54) x Q or about 408 Hz, the measured frequency
coordinates at 6 x (1 

of response. Since this excitation is just below the first bending fre

quency it accounts for the strong excitation and phase lock.
 

A clearer picture of the forcing can be gained by focussing on one
 

blade. Figure 6-3 shows the low frequency, first bending and second
 

bending responses of blade 12, as well as the frequency of the first
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bending response. The frequency shown in this last curve is derived by
 

making a least squares fit of a decaying sinusoid to segments of the data
 

about 1.5 periods in length. The center time of the segment over which
 

the fit is made is progressively incremented in time and the process
 

repeated. The derived parameters of the curve which was fit to a segment
 

of data, namely its frequency, amplitude, phase, and time constant of decay
 

or growth, are assigned to the center time of the segment.
 

Returning to Figure 6-3, the small arrows at the bottom mark the
 

approximate arrival of the leading edge of the stall cell. From each of
 

the responses something can be learned about the nature of the forcing
 

during the passage of the cell, and of the damping while the blade is
 

operating in smoother flow between cells. The second bending response is
 

excited by the leading edge of the stall, and less strongly so at the
 

trailing edge, indicating that the higher frequency content of the distur

bance is at its leading edge. This implies the blades stall sharply and
 

recover more gradually. As was pointed out by Bartlett [31] and Day and
 

Cumpsty [32], this difference between the sharp stall cell leading edge and
 

more gradual recovery can also be seen in the wall static pressure (Figure
 

2-8), if one recalls that in fixed coordinates one sees the trailing edge
 

of the cell go by before the leading edge. In undisturbed flow, the second
 

bending mode appears to be lightly damped.
 

The low frequency signal shows that the blade springs back from its
 

steady forward loaded position towards its neutral rest position as the
 

cell passes, indicating that the bending load on the blade drops off

sharply in the stall cell. Close examination of this top trace in figure
 

6-3 as well as the traces of the same low frequency range in Figure 6-1
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reveals that the signal is periodic with the stall cell passage period but
 

not sinusoidal. For about 60% of the period, the blades are deflected for

ward by the gas bending loads of unstalled flow. Then for the remaining
 

40% of the period, the blades begin to relax back to their neutral rest
 

position, then suddenly regain their steady gas bending load. This ten

poral division in the behavior of the blade corresponds directly to the
 

circumferential distribution of the stall cell which was found to occupy
 

about one third of the annulus at the tip. The conclusion drawn from the
 

phasing of this response to the arrival of the stall cell (Figure 6-3) and
 

its time history is that the "steady" gas bending load drops off sharply
 

during the passage of a stall cell.
 

6.3 Discussion of the Forcing Due to Stall Cell Passage
 

Day and Cumpsty [32] have studied the kinematics of the flow within
 

rotating stall cells in axial compressors. While the details of the flow
 

were found to depend on the number of stages, flow coefficient and degree
 

of reaction of the design, there were two traits theyfound-fundamenttl--o-

the behavior of flow within the stall cell. First, that the net axial flow
 

in the stall cell is much less than that of the mean flow, and second that
 

the tangential velocity of the fluid in the cell is equal to the rotor's,
 

such that "the stalled blades behave like paddle wheels, sweeping the flow
 

in their direction of motion, and not at all in the manner of unstalled
 

airfoils". In rotor coordinates, the average flow within the cell would
 

have little net axial or tangential velocity although in any part of the
 

cell, the velocity is non-zero.
 

The influence that the flow field within the stall cell would have on
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the blade bending load is uncertain. Attention must be paid to the
 

interruption of the primary flow and the creation of secondary flows in the
 

cell. If one considers the net or specially averaged flow velocities, the
 

flow is nearly at rest in rotor coordinates. This reduction in the net
 

relative dynamic pressure would suggest an unloading of the blade as the
 

blade stalls and a reloading as the blade recovers. However, the presence
 

of secondary flow within the stall cells, and in particular the drift of
 

flow into and out of the rotor at the front of the passages, may cause a
 

redistribution of loading on the blading.
 

This redistribution of load can be measured in two ways, as a change in
 

torque on the rotor, and as a change in bending load on the blades. Note
 

that these two measurements are not synonymous. Torque is the product of
 

load times radius from the axis of rotation and can only be measured as an
 

average over the rotor. Bending moment is the product of load and distance
 

from the hub radius and can be measured for each blade. For moderate and
 

low aspect ratio (high hub to tip ratio) stages, this is an important
 

distinction. In particular, if the loading in a stall cell decreased on
 

the tip and increased in the root area, the torque could be unaffected, but
 

the bending load would decrease. Direct measurements of the torque were
 

not made on the MIT Rotor, but the bending load was found to decrease in
 

the stall cell as the blades relaxed back to their unloaded position. As
 

the blade emerged from the stall cell, it recovered its steady load.
 

That this redistribution of load is a quasi-steady aerodynamic process
 

can be inferred by comparing the duration of the stall cell passage to the
 

through flow time of the undisturbed flow and the lowest blade natural
 

frequency. The length of time any one blade remains stalled corresponds to
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the duration of the stall cell passage as seen in rotor coordinates. For
 

the MIT Rotor, this is 1/[6 x (i - 0.54) x 0 ] or 2.4 msec. The flow time
 

through the passage of undisturbed flow (c/Vw) is 0.26 msec. Thus for about
 

ten through-flow times, the blades sit in the cell.
 

Returning to the first bending response in Figure 6-3 and focussing on
 

the four cell passage events "from 80 to 110 msec" it is clear that once
 

-every three cycles the blade is forced by the stall cell, and in the
 

remaining time it rings down. The frequency is seen to drop just as the
 

cell arrives and peak just as the blade unstalls, oscillating approximately
 

between the forcing frequency at the-sixth harmonic of the rotating distur

bance and the blade natural frequency.
 

Figure 6-4 shows the modal velocity and force for the same blade, both
 

of which were calculated from the band pass filtered blade displacement
 

data. The velocity was calculated with a simple second order finite dif

ference operator. The force was calculated for the first bending mode
 

using the model of Equation 3.4, with the interaction of the disk set to
 

zero, with the modal mass and stiffness derived in Chapter 4. Great care
 

had to be exercised in calculation of the inertial force since it required
 

twice differentiating numerical -data. Second and fourth order finite dif

ference operators were tried, but when the inertial and elastic terms were
 

added, the resulting apparent force was very noisy. Finally, a routine was
 

developed which for any given point fit a fourth order polynomial to -seven
 

adjacent points (about one third of a period) by a least squares method.
 

The second derivative-was then calculated for the centerpoint from the
 

fit. The force calculated with the curve -fitting technique contained less
 

noise at the sampling frequency than that calculated using finite dif
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ference approximations.
 

The passage of the cell stands out clearly when the force signal is
 

compared to the velocity (Figure 6-4). As the blade stalls then recovers,
 

the forcing is nearly in phase with the velocity. Away from the distur

bance the blade damping is just 180 degrees out of phase with the velocity.
 

In a sense, each stall cell passage can be viewed as an experiment to
 

measure the aerodynamic damping. The passage of the cell provides an exci

tation and locks the phase of the blades to almost exactly -90 degrees. In
 

the clear flow, the blade motion usually decays, and by plotting the -modal
 

force versus the velocity, as shown in Figure 6-5, it is clear that the
 

damping force is 180 degrees out of phase with the veloctty. The log

decrement measured this way and averaged over the three events from 90'to
 

110 msec is 0.2.
 

In this chapter, the technique to calculate the aerodynamic forces
 

acting on a rotor by analysis of individual blade displacements has been
 

demonstrated. Unlike the multiblade method of Chapter 5, this method is
 

best used when the events are of a local nature, or when the data from all
 

the blades is not available for transformation to multiblade coordinates.
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7. SUMMARY AND RECOMMENDATIONS
 

7.1 Summary
 

1. A method has been demonstrated for the measurement of
 

aerodynamic forcing and damping of a transonic rotor by an inverse solution
 

The method is quite general
of the structural dynamic equation of motion. 


and can be used in the analysis of forced vibration and damping of a rotor
 

in that region of its performance map where the rotor is aeroelastically
 

stable, as well as the behavior in regions of instability. It uses data
 

In damping studies,
which is available from conventional strain gauges. 


the final result is a direct measurement of the aerodynamic damping for a
 

known point on the performance map as a function of the interblade phase
 

angle and reduced frequency.
 

2. The experimental and analytical tools needed to implement the pro

posed method have been developed. Specifically, they are:
 

a) 	The rotor must be subjected to a controlled excitation which
 

The excitation
causes measurable amplitude response of the blades. 


must be of a type which can be terminated within one period of the
 

blade vibratory response. In the present investigation a
 

controllable upstream gas injector was used, but in general any
 

combination of structural or aerodynamic excitation can be
 

employed.
 

'
 
b) During and after the excitation, the displacements of each
 

blade must be measured. The blade modal displacements must then
 

be identified by proper transformations and filtering. Either
 

piezoelectric crystals or strain gauges will provide the data.
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c) An adequate characterization of the structural dynamics of the
 

blade-disk-shroud-shaft system must be developed and sufficient
 

data must be collected during the test to determine the partici

pation of the disk in the response. In this investigation, a
 

structural model was developed which focuses on the inertial
 

coupling of the blades through the rigid body mode of the disk, and
 

three accelerometers were mounted on the disk to measure these in

plane displacements.
 

d)- A capability must exist to process and reduce the data,
 

gathered in order to solve the-equations of motion for the force
 

acting on the blades. If the equations are expressed in terms of
 

individual blade displacements the result is a calculation of the
 

force acting on an individual blade. If a Discrete Fourier trans

form around the rotor is performed on the blade displacement data
 

to-extract the amplitude of the multiblade modes, the computed
 

forces are the generalized forces acting on these global modes.
 

Pairs of these multiblade modes have specific interblade phase
 

angles.
 

3. In addition to the elastic deformation of the disk, the rigid body
 

modes of the disk must be included in any model of the structural dynamics
 

of the blade disk system. For research rotors with thick massive 'disks,
 

these in-plane inertial effects dominate the blade disk coupling.
 

4. The aerodynamic damping of a transonic rotor operating at a known
 

point has been measured for several values of the interblade phase angle.
 

In all cases, the rotor was aeroelastically stable.
 

5. When operating in rotating stalls the passage of stall cells by a
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blade excite the blade at the fundamental frequency of cell passage and its
 

For. the rotor tested, the blade bending load decreases
higher harmonics. 


as it enters the stall cell and it relaxes back toward its test position.
 

As the cell passes the blade regains its steady load and maintains it until
 

the arrival of the next cell.
 

6.' In the forced vibration response to three upstream struts, it was
 

observed that the addition of a two per revolution upstream disturbance
 

This could be due to a nonlidiminished the three per revolution response. 


near mechanism either in the disturbance generation or the blade response.
 

It suggests that it may be possible to reduce the forced vibration response
 

of a rotor by "mistuning" the upstream disturbance.
 

7.2 Recommendations for Future Study
 

1. A useful demonstration of the techniques developed would be to per

form a series of experiments on a rotor known to have an aeroelastic stabi

lity boundary close to or within its normal operating map. A series of
 

runs could then be made where the xotor was successively run first near,
 

then at, then over, its stability boundary. The aerodynamic damping of the
 

mode known to become unstable could be followed from positive damping,
 

through zero at the boundary, to a negative value in the unstable egion.
 

In this way, a great deal of insight could be gained into the nature of
 

aerodynamic damping in general, and its role in aeroelastic instabilities
 

in particular.
 

2. During the course of this investigation, a great deal of data was
 

taken on the unsteady pressure field upstream and downstream of the rotor,
 

both,by fixed and rotating transducers. The signal from the rotating total
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pressure probe showed a great deal of response in the range of several
 

hundred to a thousand Hertz not readily associated with the blade natural
 

frequencies or any multiple of the shaft frequency. Surprisingly, the
 

fixed transducers also showed a great deal of response in this range, well
 

below blade passage frequency, at about 3400 Hz. The frequencies and
 

amplitudes as measured by the fixed transducers were similar but not iden

tical to those measured by the rotating probe. It is thought that this
 

"combination tone" noise, responsible for some of the acoustic emission of
 

modern jet engines, could be related to the unsteady vibratory motion of
 

the blades. The interaction of the aeroelastic and acoustic phenomena is
 

important and of great interest, and should be further explored.
 

3. The techniques developed here for obtaining aerodynamic forcing
 

data from blade motions should be applied to turbomachine experiments
 

other than those conducted in the MIT Blowdown Compressor, so as to assess
 

its general applicability.
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Appendix - Mass Properties of the M.I.T. Rotor
 

Overall and blade mass properties for all blades unweighted and for J blades
 

unweighted. (See equation 4.4 for definition)
 

all' blades J blades
 
unweighted unweighted
 

Md (slug) .793
 

Mb (slug) .0058 ---


Mw (slug) --- .00776
 

MT (slug) .926 .926 + (N-J) .00776
 

IT (slug ft2) .211 .211 + (N-J) .00601
 
mO (slug ft2) .00105 .00472
 

m1 (slug ft2) .00169 .00639
 
m2 (slug ft) .00216 .00750
 

Blade dimensions and first bending mode shape:
 
rh rt-5 rt-4 rt-3 rt-2 rt-1 r
 

r (in) 5.43 6.56 7.56 8.56 9.56 10.56 11.56
 

Chord (in) 2.63 2.73 2.70 2.89 3.05 3.14 3.17
 

thickness(in) .321 .321 .260 .213 .117 .110 .0827
 
area (in2) .844 .745 .491 .431 .378 .242 .184
 
y (mode shape) 0.00 .0693 .168 .311 .489 .714 1.00
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-- 

-- 

-- 
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-- 
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Table 2.1 Instrumentation used inAeroelastic Testing in the Blowdown Facility
 

Analogue to Digital
 
Converter Channel
 

MIT 1 HS 5
 
MIT kS 9
 
CAMACc LS 1
 

CAMAC LS 23
 
CAMAC LS 24
 
CAMAC LS 25
 
CAMAC LS 26
 
CAMAC LS 27
 
CAMAC LS 28
 
MIT HS 6
 
CAMAC HS Bl
 

MIT HS 1
 
MIT HS 2
 
MIT HS 3
 
MIT HS 4
 
MIT LS 2
 
MIT LS 3
 
MIT LS 5
 
MIT LS 6
 
MIT LS 7
 
MIT LS 8.
 
CAMAC HS Al
 
CAMAC HS A2
 

Transducer 


On Rotor Instrumentation: 


Rotor Total Pressure 

PZT Displacement 

PZT Displacement 


PZT Displacement 

Strain Gauge 

Strain Gauge 

Disk Accelerometer 

Disk Accelerometer 

Disk Accelerometer 

115 per Rev Tach 

1 per Rev Tach 


Tunnel Instrumentation:
 

5 way Probe P1 

5 way Probe P2 

5 way Probe P3 

5 way Probe P4J 

Total Pressure (Kulite) 

Total Pressure (Statham) 

Total Pressure (Statham) 

Wall Static Press. (low f) 

Probe Linear Position 

Probe Temp. Signal 

Wall Static Pressure (high f) 

Wall Static Pressure (high f) 


Location 


Blade 8 r/rT = .73 

Blade 18 

Blade 1 


Blade 23 (360' on disk) 

Blade 4 

Blade 5 

120* on diskI 

2400 on disk r/rT = .26 

3600 on diskf 

Rotor Shaft 

Motor Shaft 


Rotor TE 

(@ r/rT = .93 


Supply Tank 

Supply Tank 

Dump Tank 

Rotor TE 

Probe Traverser 

Rotor TE 

1 chord upstream of 2E 


4-Pole Filter 

03db Freq. (KHZ) 


50 


0.6 

0.6 

0.6 


1.4 

1.4 

1.4 

1.4, 


1.4 


1 (.1) chord upstream of LE3 --

Notes: 1. MIT A/D samples at 100 KHZ. (HS) and 10 KHZ.(LS) during "test time"
 
2. CAMAC A/D samples at 100 KHZ. (HS) and 5 KHZ.(LS) during "test time"
 
3. When injector was used,transducer was moved to 0.1 chord upstream.
 



TABLE 2.2
 

TIME LINE OF EVENTS IN BLOWDOWN
 
DURING AEROELASTIC TESTING
 

Time after Rupture Event
 
of Diaphram (msec.)
 

0 Diaphram Bursts, Expanding Gas Hits Rotor
 
5 Probe Traverse Begins
 
i0
 
15 
20
 
25 
30
 
35
 
40 Probe Reaches r/rT = .93
 
45
 
50 Beginning of Quasi-Steady "Test Time"
 
55 Injector Flow Begins (if used)
 
60
 
65
 
70
 
75
 
80
 
85
 
90 
95 

100 Injector Shuts Off (if used)
 
105
 
110
 
115 
120 Boundary Layer Bleed Unchokes 
125 
130 
135 
140 
145 Downstream Throttle Unchokes, End Of "Test Time" 
150 Calibration Continues For 30 Seconds 
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Table 5.1 Measured Values of Damping
 

Blade Nodal Interblade Tip Reduced Time Log
 
Node Diameters Phase Angle Frequency Frequency Constant Decrement
 

(n) () (Hz) (wc/2V) (msec.) (6)
 

1 Bend 1 - 15.6 290 .25 4.8 .72
 
0O 

1 Bend 2 - 31.3 290 .25 5.1 .68
 

2 Bend 3 - 47.0 435 .38 3.0 .77
 

2 Bend 8 -125.0 1160 1.01 6.1 .14
 



,
Stall line
Region V 
(supersonic Region IV 
stall flutter) (high-backpressure 

Region I supersonic flutter)
 
(subsonic/ \'
 

wheel speed- / 	 Region III 
(low-backpressure
supersonic flutter) 

"Choke boundary 

Region II 

(choke flutter) 

Weight flow 

Figure 1-1 Compressor performance and stability map. 
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STALL LINE 

0 
I

wcr 

Z)
V) 
LW 

0L 

8/ 
85% 

i108 % 
100 % 

125 % 

PERCENT 

DESIGN 
WHEEL 
SPEED 

WEIGHT FLOW 

Figure 1-2 Relative location on performance map 

of tests performed in search of flutter 

boundaries. 

88
 



Boundary 
Layer

Manifold for Boundary Layer BleedBleed
Ble \Dump Tank 

Supply Tank st
 

Diaphrag
 

Scale:.- I foot 

Figure 2-1 Scale drawing of Blowdown Compressor Facility
 



\ \ ST R U T S R O T O R_ 

\\ \\ HIGH VOLTAGE 

SIGNAL LEADS PIEZOELECTRIC 
V ASSEMBLY 

SLIP RINGS 

g 
\ \ \M 

2 C a vwBRUSHL SHAFTSEAL 
" 

Figure 2-2 
 Cut away view of the rotor, shaft and forward enterbody
 



Figure 2-3 	 View looking downstream into the 

Blowdown Facility showing the for

ward centerbody, boundary layer
 

bleed, gas injector (only visible
 

on right), and instrumented rotor.
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Figure 2-4 	 Closeup view of the faired gas injector. 

Also visible are the blades on which the 

total pressure probe and strain guages
 

are mounted. 
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SECTION AA 

FLOW 

ROTATION OF INNER 

TUBE CAUSES GAS 
SHUT OFF 

INJECTED 
FLOW 

ARRAY OF 

HOLES 

\~~~ 

° 
0 

0 

o 
0 

2 
L 

N \7 

A 

N\ N 
TUNNE 
WALL 

Figure 2-5 Diagram of gas injector showing hole 

pattern and gas flow path. 
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Blade 

PIEZOELECTRIC 	 Strain gge 
CRYSTAL
 
ASSEMBLY 

% Diso rim 

Roll pins 

EXCITATION
 

Figure 2-6 	 Details of root attachment showing
 

the location of the piezoelectric
 

displacement transducer.
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Figure 2-7a 	 Instrumented M.I.T. Rotor with 
disk exposed showing instrumen
tation and wiring.
 

kr~ 
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TOTAL PRESSURE
 
TRANSDUCER
 

POTTED
 
CIRCUIT 
MODULE STRAIN 

GAGES (4) 

ACCELEROMETERS 
(3,1I200 APART) 

FRONT SLIP 

RING CONNECTORS 

Figure 2-7b Location of instrumentation on disk and blades.
 

(Compare with Figure 2-7a)
 



I 

o 1 DORNSTRERM PRESSURE
 

UPSTREAM PRESSURE
 

20.0( 60 0o0osho80.00 
TIME (MSEC) 

100.00 zIUo ]o.oo 

Figure 2-8 Time history of the wall static pressure 

measured upstream and downstream of the 

rotor, and the response of one blade 

piezoelectric crystal (PZT). In this 

test the diaphram burst at about 23 msec. 
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_ -__
IqaF(t ) 

\ \\ \\ " K 

DISK 

Figure 3-1 Left: Model of an isolated blade mounted
 

on a rigid disk.
 

Right: Model of a blade mournted on a segment
 

of a disk with finite mass and stiffness.
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,Uq qXX 

Figure 3-2 	 Structural iodel of the M.IT. Rotor with
 

flexible blades attached to a rigid disk,
 

which possesses 3 in plane degrees of free

dom.
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0 EXPERIMENTAL 
VALUE 

RIGID DISK 

-MODEL 
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Kg = I.5XI0 4 

a =360 

Kg = 3 5X10 6 

Ke =1.5 X I04 

a =360 

370 
0 5 

I 
10 

NO. OF BLADES 

I 
15 

I 
20 

I 
23 

Figure 3-3 Frequency of the highest observed (in phase) 

mode vs. the number of blades participating. 
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420 -
NOTE: MASS OF CLAMPS AND 

ELASTIC EFFECTS OF 
WEIGHTED BLADES NOT 
INCLUDED IN MODEL 

410 -
0 

o EXPERIMENTAL 
VALUE 

400 RIGID DISK 

MODEL 

N_, 
N6 K9 = 3X1O6 

390 0 

,t'-

~K 

Kg I.SXiO4 

a =360 
Kg=O 

8 =O 

a =360 

Kg =3.5 XI06 

Ke =1.5 X0 4 

a=360 

3701 
0 5 10 15 20 23 

NO. OF BLADES 

Figure 3-4 	 Frequency of the highest observed (in phase)
 

mode vs. the number of blades participating.
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382-
MASS OF CLAMPS AND 
ELASTICITY OF WEIGHTED 
BLADES NOT INCLUDED 

380 

I EXPERIMENTAL 
378 RANGE
 

NT"RIGID DISKS MODEL
 

376 Kg= 3XIO 6 

K0 =I.X10 4 

0 0374a36
 

Kg=3.5X0 
6 

K9 =I.5XIO4 

a=360 
0 2 4 6 8 1O 12 

DISK SEGMENTS BETWEEN BLADES 

Figure 3-5 The two observed frequencies of a system with 2 blades
 

free to participate vs. the angular separation between
 

blades. (For a 23 bladed rotor, 11.5 corresponds to 180
 

degrees).
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o FIG 5-IA WALL 
d* STATIC PRESSURE

BEI-ND- INJECTOR
 

en 	 ijii,
I 	 ii ,II 

co 	 r) 

Cr C 

C,, 
"5.oo s) oo 70 oo1QF~,.!JK. oo 11o1o11 .oo 10.o 

2 ~ ~ ~TI MEilSliI5 1 9 fl 1~~ 	 {IM 

CO. 00 60.00 710.00 810.00 90.00 1i00.0j 1610. 00 -1120.00 
TIME (MS) 

Figure 5-la 	 Upstream wall static pressure measured one inch
 

behind the injector.
 



C FIG 5-1B WALL 
ATIC PRESSURE 

0-.MFR ,INJECTOR 

Cr-

Hn 
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ozo 

C%0.00 60.00 70.00 80.00 90.00 i00.00
TIME (MS) 

Figure 5-lb Upstream wall static pressure measured 

72 degrees away from an injector. 
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~30.00 50.00 7b..00 90.00o 1,10.00 13000 150.00 
TIME (MS) 

Figure 5-6 Blade response in the range of 220-350 Hz.
 

(shown at 4 times the scale of Figure 5-2)
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Figure 5-7 Blade response in the range 350-750 Hz.
 

(shown at the same scale as Figure 5-2)
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TIME (MS) 

Figure 5-8 Blade response in the range 750-1500 Hz. 

(shown at 3 times the scale of Figure 5-2)
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Figure 5-9a 	 Amplitudes of the multiblade modes of the
 

response in the range 220-350 Rz.
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Figure 5-9b 	 Amplitudes of several of the multiblade
 

modes of the response in the range 220

350 Hz.
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Figure 5-10a Amplitudes of the multiblade modes of the
 

response in the range 350-750 Hz.
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modes of the response in the range 350

750 Hz. 
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Figure 5-11a Amnplitndes of the multiblade modes of the
 

response in the range 750-1500 Hz.
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Figure 5-11b 	 Amplitude of several of the multiblade 

modes of the response in the range 750

1500 Hz. 
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Figure 6-1 	 The blade response at the fundamental frequency
 

of the 2-cell rotating stall.
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Figure 6-2 Blade response at the first bending frequency
 

to a 2-cell rotating stall showing the strong
 
phase lock of the blades.
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The passage of four individual stall cells
 

is shown by the response at the forcing
 

frequency of rotating stall, in the second
 

bending mode (shown four times relative
 

scale), and in the first bending mode. The
 

frequency in Hertz of the first bending re

sponse is shown at the bottom. Arrows mark
 

approximate time of arrival of the stall cell.
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Figure 6-4 	 The modal (tip) velocity and force. Note
 

that for about 24 msec after the arrival
 

of the stall cell the force is in phase
 

with the velocity. Outside that time they
 

are 180 out of phase.
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