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FOREWORD

This report presents the results of studies conducted during the continuation

period of the Orbital Transfer Vehicle Engine Study, Phase A - Contract.

Engine programmatics at low pump NPSH, engine operation at intermediate thrust

levels and low thrust eng . .ne operation during aerobraking maneuvers were inves-

tigated by Rocketdyne, a Division of Rockwell International, under Contract

NAS8-32996--administered by Marshall Space Flight Center (MSFC) of the 'National

Aeronautics and Space Administration (NASA). The NASA Contracting Officer's

Representative was Mr. Fred Braam of MSFC. Mr. H. C. Diem was the Rocketdyne

Program ',Manager. The technical effort was conducted under the direction of

Mr. A. Martinez, Study Manager.
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INTRODUCTION AND SUMARY

The Orbital Transfer Vehicle (OTV) in which the oxygen/hydrogen OTV engine will

be utili^.ed is part of the planned space transportation system (STS). The OTV,

carried into a low earth orbit by the Space Shuttle Orbiter, will extend the

operating regime of the STS beyond the capability of the basic Space Shuttle,

to include higher altitude orbits, geosynchronous orbits, and other space mis-

sions. For the past several years. NASA, the Department of Defense, and vari-

ous vehicle and propulsion system contractors, including Rocketdyne, have been

studying OTV related requirements, missions, vehicle configurations, and engine

sy stems for this application. The goals of the vehicle and propulsion system

studies have been the definition of and technology development for a high-

performance, low-operating cost, reusable long life space system with the re-

quired operational versatility and payload retrieval capability.

Three concepts have been defined by NASA and vehicle contractors as potential

designs for the Orbital. Transfer Vehicle: these are tie all-propulsive orbit

transfer vehicle (APOTV), the aero-maneuvering orbit transfer vehicle (AMOTV),

and the aerobraking orbit transfer vehicle (ABOTV). The baseline design of

these preliminary studies had assumed an uprated shuttle orbiter with 100,000

pound payload capability to low earth orbit. As an interim vehicle, the current

65,000-pound payload capability shuttle orbiter would be used.

The baseline mission defined by NASA for the OTV Phase A Engine Studies was a

four-man, 30-day sortie from low earth orbit to geosynchronous orbit and return

to low earth orbit. A reusable oxygen-hydrogen upper stage with the high per-

formance which these propellants offer is essential to achieving a defined round

trip payload of 13,000 pounds.

The OTV Engine Phase A Continuation studies performed by Rocketdyne nave re-

suited in:

(1) Selection of boost pump designs for low NPSH operation and generation of

associated programmatic data.

RI /RD91-120
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(2) Evaluati-..,n of OTV engine operation at intermediate thrust levels and

impact on programmatics.

(3) Assessment of OTV engine operation at idle-mode thrusts under conditions

experienced during aerobraking maneuvers of the ABOTV.

As a result of the studies conducted, it is recomLanded that the original OTV

boost pump d:signc be used without change for low NPSH operation. Lower pro-

gramma..i,c Impact will be experienced without loss in suction performance capa-

bility.

Intermediate thrust operation is feasible for both the expander cycle and

staged combustion cycles. The engines can be adapted for intermediate thrust

operation through minor modifications of the preburner, main injector, pumps,

dump coolant control valve and certain component connecting ducts.

Operating; conditions defined during aerobraking maneuvers do not impose any

problems in engine operation at pumped idle mode. However, in tank-head idle

mode,nozzle. flow separation and side-loads for the bipropellant mode and flow

instability for the hydrogen-only mode are predicted. Operation of the engine

under these conditions is not recommended.

To accomplish the effort described in the Statement of Work (SOW), the following

technical study tasks were added to the original contract.

Task 13 Programmatics for Low NPSH Operation

Task 15 Intermediate Thrust Operation

Task 16 Engine Operation for an Aerobraking OTV (ABOTV)

This report is organized by study tasks and summarizes the results of the three

tasks defined above. The work was performed during; a five-month period, from

October 1980 to February 1981.

RI/RD81-120
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TASK 13. PROGWIMATICS FOR LOW NPSH OPERATION

The intermediate objective of this task was to conduct an analysis of engine

operation at low tank NPSH values of sufficient depth to define the impact on

engine design. Tank NPSH conditions examined and stipulated in the SOW are as

indicated in Table 1.	 The ultimate objective of the study was to define by

WBS element the impact on previously reported DDT&E, production, and operations

costs and schedules of design changes required for the baseline engine, Base-

line design tank NPSH values far the OTV entire pumps were 2 and 15 feet, ;respec-

tively, for the oxygen and hydrogen pumps. Low NPSH is desired because it

reduces the vehicle propellant tank pressurization system requirements and

therefore reduces system weights. It has been shown in vehicle studies (Ref.1)

that pressurization system weights can be reduced approximately 60 lb for OTV-

type missions by reducing NPSH in the hydrogen boost pump to 4 feet and the

oxygen pump to 1.5 feet from the baseline values of 15 and 2 feet, respectively.

Most of the weight savings are attributed to the hydrogen pump. Additional

weight savings would occur if the hydrogen pump could be operated at zero tank

NPSH with various amounts of vapor in the flow.

TABLE 1.	 LOW NPSH OPERATING CONDITIONS, OTV ENGINES

PUMPED FLUID	 TANK NPSH, FT	 VAPOR FRACTION, % VOL

Oxygen 2	 -

Hydrogen 15

Hydrogen 10	 -

Hydrogen 5	 -

Hydrogen 0	 5

Hydrogen 0	 10

Hydrogen 0	 20

RI/RDR1-120
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It was confirmed in this study that finite NPSH OTV boost pump designs can oper-

ate at zero NPSH as efficiently as boost pump desi.gn p venerated specifically for

zero NPSH operation. It was also determined that finis '!PS.q fuel pump designs

in the range 0-10 Ft would have the following disadvantages compared to the se-

lected 15 Ft design; (1) larger inlet diameter and larger weight, (2) lower inlet

flew coefficient with associated suction performance losses, and (3) increased

suction performance limitations at off-design pumped-idle thrust. As indicated

in Appendix A the baseline 15 Ft NPSH hydrogen pump and the 2 Ft NPSH oxygen

pump can operate under "zero" tank NPSH conditions and various amounts of vapor

at the pump inlet. These designs are thus recommended without mayor change for

"zero" NPSH tank conditions. Though no impact on engine design was established a

slight impact can cost was found. The impact had to do with the added require-

ments to the engine of operating in low NPSH conditions and the more meticulous

pump analysis, design, and testing required to verify pump operation at NPSH

values below those originally designed for.

IMPACT ON ENGINE DESIGN

The impact on engine design of low NPSH operation occurs chiefly through the

turbomachinery design. Two types of pump designs were examined: one where a

finite low NPSH exists at the tank and vapor-free flow is required at the pump

inlet, and another where zero tank NPSH exists and vapor is allowed at the pump

inlets.

Finite NPS11 with Vapor-Free Flow Desig ns

The inlet line conditions for pump designs with finite tank NPSH and zero

vapor at the pump inlet are indicated in Figure lfor hydrogen and oxygen. As

tank NPSH decreases, fluid velocity must decrease to maintain saturated liquid

conditions at the pump inlet; thus inlet diameter increases. As indicated in

the figure, NPSH values near zero with no vapor in the pump inlet flow requires

relatively large pump inlet diameters. Higher NPSH values result in more

reasonable pump inlet sizes. Depending on the engine Met line losses, indi-

cated in Figure 1 in velocity heads, the inlet pump diameter for the 15-foot

KI/ RDR1-120
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NPSH case coula vary between 2.65 to 3.5 inches. A diameter of 3.14 inches was

selected for the 15K engine hydrog.n boost pump to allow for typical vehicle

inlet line losses. For the same reason, a diameter of 3.6 inches was selected

for the oxygen boost pump at 2 feet NPSH. These selections also satisfy mini-

mum inlet flow coefficient limits of 0.05 below which design point pump suction

performance i.s significantly affected (Fig. 1)	 due to blade blockage at lower

values.

Zero Tank NPSH with Vapor-In-Inlet-Flow Designs

Inlet line diameters for pump designs with saturated li quid in the tank and

vapor in the pump inlet flow are shown in Fig. 2 for the hydrogen boost pump

compared to the finite NPSH pu¢;? design cases. Since vapor is allowed in the

flow, pump inlet diameters decrease as the allowable vapor fraction is increased.

A vapor fraction cf 30 percent by volume is co •isidered the design limit.

An isentropic flow expansion has been assumed to the allowable vapor fraction.

The change in enthalpy dur[ng isentropic expansion is larger for the higher

vapor fractions; thus flow velocities are higher a-id pump inlet diameters can

be lower for the same design mass flowrate. As shown in Fig. 2, 	 zero vapor

conditions again require very large diameters. Increasing line losses also

require larger pum p inlet diameters since the total expansion pressure differen-

tial is not all available for flow velocity increase, and a portion is lost to

friction.

As was the case witls the finite NPSH pump design, the requirement for a lower

limit of 0.05 on the design inlet flow coefficient precludes designs above the

indicated dashed line. According to the above analysis, the baseline 15K OTV

hydrogen boost pump inlet diameter of 3.14 inches supplies the pump diffuser

with 10 percent vapor fraction at full thrust. A more detained analysis for

the same pump with a particular OTV vehicle propellant duct configuration and

vehicle accelerations (shown in Appendix A) indicated the inlet line would supply

RI/RD81-120
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9.9 percent vapor while the inducer blade capacity was 27.5 percent vapor at

full thrust. The procedures used are also presented in Appendix A. Also shown

In Fig. 2 is that the OTV pump could operate at a finite NPSH below design

with a vapor fraction delivered at the inlet of from 0 - 10 percent.

Off-Design. Pump Idle Operat_on

The OTV engine provides aultogeneous tank pressurization at full thrust condi-

tions sufficient to provide thc, required boost pump tank NPSH values of 15 and

2 feet on the hydrogen and oxygen sides. respectively. Engine starts occur in

tank head idle followed by pumped idle mode where tank pressurization is

initiated. Therefore, the engintf boost pumps must operate with zero NPSH

during the initial phases of the pumped idle mode. Thus, the pump suction per-

formance at pump idle mode impacts boost pump design selection.

The OTV pump idle mode vapor fraction is small (less than I percent by volume,

Appendix A) but the boost pump design should ha -6 the capability to pump it.

The pump vapor fraction capacity is predictable if the liquid incidence-to-

blade angle ratio (i/B) is less than 0.7 and is zero if i/P exceeds 0.8.
According to test data correlations, small amounts of vapor e:re pumpable up to

a ratio of 0.8, but a more certain prediction results as 1/p approaches 0.7.

The angle ratio is shown parametrically in Fig. 3 for both types of boost pump

designs so far considered. It is seen that the finite NPSH boost pump designs

have generally lower 1/0 values due to their higher design blade angles (8).

The zero NPSH pump designs have higher 1/8 values which place more uncertainty

in the prediction of their two-phase flow pumping capability at off-design con-

ditions and their ability to handle small vapor fractions off-design. The

higher finite NPSH pump designs have less uncertainty in meeting off-design

vapor conditions because of their higher incidence-to-blade angle ratio.

RI/RD81-120
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Oxygen Boost Pumps with Zero Tank NPSH

Oxygen boost pump inlet diameters required for zero tank NPSH are indicated in

Fig. 4.	 Also indicated in the fig%,r- are inlet diameters required for finite

tank NPSH and vapor-tree flow at ti t, r: r,, ,j inlet. With zero tank NPSH, extremely

high vapor fractions would be dellvv., A to the pump inducer by the inlet pump

diameter sizes that satisfy the minimum inlet flow coefficient requirement of

.05. The selected OTV 15K thrust oxygen boost pump inlet diameter would deliver

vapor fractions near 30 percent by volume,close to the limit of what the inducer

could handle. See Appendix Table 7-31 for values in a specific vehicle duct

configuration and vehicle acceleration.

The contract SOW did not require other NPSH designs to be examined for the

oxygen boost pumps. The OTV oxygen boost pump designs at 2 NPSH and 15K lb

thrust have two-phase pumping capabilities as indicated in Table 7-31 and 7-32

of Appendix A. No modifications to the oxygen pumps are recommended. The gains

in tank pressurization system weights are small as indicated in Ref. 1•

SELECTED BOOST PUMP DESIGNS

For the following reasons. the 15-foot NPSH pump design is selected as the OTV

15K engine hydrogen boost pump design.

(1) The pump has a reasonably sized inlet diameter

(2) Its design inlet flow coefficient does not compromise

on-design suction performance

(3) Its design blade angle provides low i/$ angle values

and thus less uncertainty in meeting suction performance

of f -des i;n.

(4) It will operate satisfactorily at "zero" NPSH and 10% vapor and,

therefore, could also be considered to be a "zero" NPSH design.
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Since the recommended oxygen. and hydrogen boost pump designs for operation at

the NPSH conditions of Table 1 	 are the same as those previously selected in

A	 the OTV Engine Phase A studies, no impact on engine design is anticipated.

IMPACT ON PROGRAMMATICS

The cost and schedule Impacts of low NPSH operation boost pumps on the overall

OTV engine program were determined as increments with respect to the cost and

schedule of the 20K lb thrust staged combustion engine previously submitted in

Report RI/RD79-191-2s Volume lI-B, and of the 10K lb thrust expander engine pro-

vided in report RI/RD80-1.55-2, Volume II-B. The programmatic impacts discussed

below are identical for both engine cycles, staged combustion and expander, and

for both thrust levels, 10 and 20K 1b, since the impacts are small and only

involve the engine low pressure pumps.

No cost or schedule impact was found for the low pressure oxidizer turbopump

since the inlet condition for this pump (2 feet NPSH) is unchanged from the

reference pumps.

Similarly, no cost of schedule impact wes found for the low pressure fuel turbo-

pump at pump inlet NPSH's of 5 and 10 feet liquid hydrogen. These inlet

heads are considered to be not too different from the 15-foot NPSH reference

point to influence pump designs though they would lead to different pump dimen-

sions and rotational speeds. rhese parameters do not change sufficiently

enough to influence cost or schedule.

For the cases of zero NPSH, with pump inlet vapor fractions of 5, 10, and 20

percent, a small influence on DDT&K cost was determined, but no impact on

schedule or on production or operation costs. Roc.ketdyne has successfully run

turbopumps with as much as 30 percent vapor fraction in the inlet and no basic

difficulties are expected in designing a fuel boost pump with 5, 10 or 20%

vapor at the pump inlet. however, it is anticipated that about 10 percent more

lti/UK-120
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design and analysis work needs to be performed and that about 20 percent more

testing at the pump component level will be required to verify two-phase flow

operation. The total DDUE rough order of magnitude (ROM) incremental increase

is estimated to be 0.60M $ (FY 1979 dollars), and is all contained in 14BX

element 1.1.1.3 (page 14 of RI/RD79-191-2).
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TASK 15 - INTERMEDIATE THRUST OPERATION

The impact on engine design of a low thrust mode of operation requirement on the

nominal thrust OTV engine was defined in this task. Both the expander cycle

engine and the staged combustion engine were addressed. Detailed effort was

carried out for the expander cycle engine with nominal thrust of 15,000 lb, and

I

	

	 for the staged combustion engine at a nominal thrust of 20,000 lb. Conclusions

for the other nominal thrusts of 10K, 15K and 20K were made qualitatively from

`

	

	 these two detailed baseline cases. Each baseline case was examined at low

thrust levels of 2000, 3000, 5000, and 7000 lb. Relative merits of kitting or

throttling to achieve the low thrusts were addressed. From the design impact

results obtained, the effect on DDT&E production and operation costs and

schedules was determined. These costs and schedule changes were related to

previous OTV Engine Phase A studies (Ref. 2 ) in the form of incremental values

relative to the basic programs previously described in the reference.

IMPACT ON ENGINE DESIGN - EXPANDER CYCLE

Steady state and transient computer models were employed to assess the impact

of intermediate thrust levels upon engine operation for an expander engine

having a design thrust of 15,000 lb. Thrusts of 2000, 3000, 5000 and 7000 lb

were considered. Qualitative analyses performed for design thrusts of 10K and

20K indicated the thrust levels where engine kitting becomes necessary and

throttling alone cannot be used to achieve the desired thrust and mixtur(a ratio

levels.

An engine mixture ratio goal of 6.0 was selected for all intermediate thrust

levels. This value was chosen for two reasons: (1) the design mixture ratio

for low thrust OTV missions is 6:1,at the present time,for best utilization of

available stage length, ana (2) a mixture ratio of 6.0 represents a desired

value in pump idle operation to maintain high engine specific impulse perform-

ance and overall delivered impulse for the high thrust OTV missions.

RI/RD81-120
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The results obtained using the transient simulation engine model with the OTV

expander cycle engine of nominal thrust of 15.000 lbf indicated that: (1) at

2000 lbf thrust. stable engine operating conditions could be maintained only

up to mixture ratio of 4.35:1; an excursion beyond this mixture ratio resulted

in fuel-pump-generated instability; (2) different kittings of the engine

showed satisfactory operating conditions at 2000 lbf thrust and a mixture

ratio range from 5:1 to 6:1; and (3) at 3000 lbf thrust, stable engine operat-

ing conditions were achievable at mixture ratio of 6:1 without engine kitting.

The transient studies were concentrated at thrust levels of 2000 and 3000 lbf

where unstable engine operating conditions are most likely to occur. The

engine kits investigated at 2000 lbf thrust included removins the turbine inlet

orifice, recirculating hydrogen in the main fuel pump and combinations of these

options.

The expander cycle rocket engine dynamic computer code developed in NAS 8-33568

effort was utilized as a basic analytical tool for this part of the investiga-

tion. Some modifications were made to the model in order to reflect changes

made to engine system by the engine kits. The steady-state engine operating

conditions at 1800 lbf thrust and 4:1 mixture ratio (pumped-idle) were used as

a nonzero time starting point for the transient simulations. The results of

the dynamic analysis conducted are discussed in detail below.

Engine Operation at 2000 lbf

Dynamic analysis was performed at 2000 lbf thrust for the OTV expander cycle

engine which has the baseline cycle configuration as shown in Fig. 5 	 Open

loop control of main oxidizer valve (MOV) and/or oxidizer turbine bypass valve

(OTBV) were utilized for mixture ratio control, and thrust control was achieved

by using the turbine bypass valve (TBV). A summary of cases run is presented

in Table 2 . The first case represents the highest mixture ratio attained

with stable pump operation.

RI/RD81-120
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11)	 IFV - INLET FUEL VALVE
(4) IOV - INLET OXIDIZER VALVE
(9) MFV - MAIN FUEL VALVE
14) MOV - MAIN OXIDIZER VALVE
(S) TBV - TURBINE BYPASS VALVE
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Figure 5.	 Expander Engine Schematic
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The second and third study cases were made using the MOV (Case No. 2) and OTHV

(Case No. 3) independently for mixture ratio control with the unmodified base-

line expander cycle engine configuration. Results show unstable engine operat-

ing conditions at engine mixture ratios of 4.7 and 5.0, respectively, due to

fuel-pump-generated instability. The operating points for these cases are

plotted in the main fuel pump H-Q map as shown in Fig. 6. As indicated, both

Case 1 and Case 2 points are at some distance to the left of the peak of the

H-Q curves. This part of the H-Q curves, having positive slope, represents a

potential pump discharge flow instability and therefore may lead to unstable

engine operation. Figure 7 and 8, which show the chamber mixture ratio pro-

files for the two cases being studied, indicate oscillatory instability in

mixture ratio. Although the magnitudes of the oscillations shown are within

0.2 mixture ratio units, they are expected to grow at higher engine mixture

ratio conditions. Unstable engine operation, therefore, is predicted for the

baseline expander cycle c.onfig , iration at 2000 lbf thrust and mixture ratios

above 4.35. Engine kitting is therefore nec,.s:.iry for engine stabilization at

the higher mixture ration.

It has been found from cryogenic H9 pump and engine tests and from engine

transient model simulation studies of these tests that in order to achieve flow

stab t lity at the pump discharge, the pump-engine operating point needs to be

close to the peak of the H-Q curves on the negative slope side. Unstable operat-

ing points to the left of the H-Q curve peak can be stabilized by either

increasing the pump flewrate or reducing the operating speed, or both. The

first approach requires some recirculation around the pump itself since the

propellant flow requirements are determined by the selected thrust and mixture

ratio which are fixed at 2000 lb and 6.0. The second approach suggests removing

the turbine inlet orifice which reduces pump head requirements and allows more

bypass around the turbine to maintain a constant thrust level, both of which

reduce the pump operating speed. The third approach is a combination of the

first two. Possible engine kittings drawn from these three approaches were

studied and are discussed below.

RI/RD81-1.20
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Pump Recirculation Kit at 2000-1b Thrust. The first engine kit consists of a

valve and connecting line aroucid the main fuel pump for neces ,iary pump recircu-

lation. This valve need not be modulated. Dynamic simulations were made with

20 percent pump recirculation by using open loop controls of TBV, OTBV and MOV

in steps to achieve the desired thrust and mixture ratio levels. Results in

Table 2 (Case 4) show stable engine operating conditions at 2013 lbf thrust

and 6.22 engine mixture ratio. The corresponding pump operating point is shown

in the H-Q map in Fig. 6. 	 It lies on the positive slope side of tae H-Q

curve and therefore does not result in flue: ,, instability as experienced in the

previous two cases. The lower operating hydrogen pump speed for this case is

the result of the engine adjusting to a higher pump flow, and a lower injector

flow (lower system AP). Figure 9 shows a stable chamber mixture ratio time-

trace at steady-state conditions.

Suction Performance During Pub Recirculation. The total pressure drop

requirement for the pump bypass flow at the bypass valve and connecting line

is 508 psi. This pressure drop is needed to diffuse the flow to the inlet

pressure conditions at the high pressure pump. The associated throttling process

increasesthe temperature of the hydrogen stream after mixing is effected. The

increased temperature results in a vapor pressure above the mixed stream static

pressure and leads to vaporization of part of the hydrogen entering the pump.

The pressure, temperature, flow, and suction flow conditions existing at the

puma inlets are indicated in Table 3.	 A volume vapor fraction of 50 percent

was calculated at the pump inlet. The pumps are designed for a vapor fraction

capability of 20 percent at design point thrust. The higher vapor fraction

requirement may be beyond the off-design capability of the pumps.

To reduce the vapor fraction in the flow some pressure recovery is required in

the pump recirculation line to reduce the power losses. This can be accom-

plished through use of a ,jet-pump for momentum exchange between primary and

recirculating flows. The recirculation may also be accomplished between the

Rl/RD81-120
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r

pump exit stage and an intermediate pump stage like the inducer stage exit to

reduce the pressure losses and thus lower the amount of vapor in the flow.

Erne System Pressure Drop Reduction. To increase the stability of the engine

pumps, the engine operating line (head vs flow) must be to the right of the

zero-slope pump curve in Fig. 6. One way of achieving this is to reduce

engine system pressure drop at constant thrust and in that manner reduce pump

head and speed. The engine kitting involved in this case consists of removing

the turbine inlet orifice used to obtain a system pressure drop margin at full

thrust. This action lowers the pump power demands and for the same system flow-

rates allows the turbines to operate at lower pressure ratios. The latter

results in lower pump discharge pressures and speeds as needed for stable

operation. Thus, stable engine operating conditions can be maintained at

2011 l.bf thrust and 5.40 engine mixture ratio as in Case 5 in Fig. 6 and

Table 2.	 The mixture ratio-time trace (Figure 10) for this case is stable.

The reduced pump discharge pressure reduces the TBV pressure drop and flowrate.

To maintain thrust at a level of 2000 lb as in Case 3, the turbine bypass valve

(TBV) must be opened to the limit of its control range (90% open). To

increase mixture ratio above that of Case 3, the MOV and OTBV also must 	 be

exercised to the limit of their control ranges; 100% open and 0% open, respec-

tively. Thus, for Case 5 a mixture ratio of 5.4 represents the limit in mixture

ratio attainable since no mixture ratio control remains.

Pump Recirculation and System Pressure Drop Reduction. Pump recirculation

results in large flow vapor fractions while removal of the system pressure drop

margin orifice reduces the thrust and mixture ratio controlability. Less recir-

culation than in Case 4 is desirable if combined with system pressure drop reduc-

tion as in Case 5.

Engine dynamic studies indicate that stable engine operation can be maintained

at 2032 lbf thrust and 5.12 mixture ratio, with 10% pump recirculation. The

RI/RD81-1.20
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engine operating point is plotted in the H-Q pump map (Figure 6) for this case

(Case 6). However. as in Case 5, no mixture ratio control margin is left and

engine mixture ratios higher than 5.12 are not possible with the engine confi-

guration as defined so far.

A new orifice and line inserted between the hydrogen feed line to the turbines

and the main oxidizer turbine (Figure 11) provides increased flow to the oxi-

dizer turbine which, if bypassed at the oxidizer turbine bypass valve, allows

that valve to open and regain control. The orifice also bypasses flow around

the fuel turbine and returns thrust control to the turbine bypass valve.

Case 7 in Figure 6 is the fuel pump H-Q conditions for such a case. Pump sta-

bility and valve control are thus achieved with less pump recirculation and

lower system pressure drops. The improved pump suction conditions for this

case are indicated in Table 3.

15K-Engine Operation at 3000 lb

Dynamic studies were conducted at 3000 lbf thrust for the baseline expander

cycle configuration (Figure 5). Open loop controls of TBV, MOV and OTBV were

employed in order to achieve desired thrust and mixture ratio levels. Results

show satisfactory engine operating conditions can be maintained at 2985 lbf

thrust and 6.06 engine mixture ratio. The fuel pump operating point is also

shown In its H-Q map (Case 8 in Figure 6) for this case.

Stable engine operation can also be expected at 5000 and 7000 lbf thrust and

6:1 mixture ratio. This is because the Nigher fuel flow requirements at these

thrust levels will provide better pump stability than in the case of the

3000 lbf thrust level.
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15K Engine Operation at Other Thrusts

The steady-state expander cycle off-design code was used to investigate engine

balance points at engine mixture ratio of 6:1 and thrusts of 3000 lb and above

for a design thrust of 15,000 lb engine. The steady-state code was used for

the higher levels of intermediate thrust due to its smaller cost per case and

because detailed examination of transient balances indicated no instability

problems at thrust levels above 3000 lb. The 3000-1b thrust level was also

examined with the steady-state model to provide a case for comparison with the

transient balance results.

Important data resulting from steady-state balances at intermediate thrust

levels included pump operating points, flowrates, engine performance, and con-

trol inputs required. Table 4	 presents a summary of important operating

parameters predicted at each intermediate thrust level, along with the design

values for comparison.

Control Requirements. Control valve position and resistance requirements for

achieving each intermediate thrust level are shown in Table 5 .

TABLE 4 . CONTROL VALVE POSITION REQUIREMENTS

THRUST

MFV
POSITION

%

MOV
POSITION

R	 % R

TBV
POSITION

% R

OTBV
POSITION

% R

2000* 100 1.0 80.9 .995 83.5 .006 77.0 1.50

3000 100 1.0 78.2 1.299 80.2 0.009 64.9 6.57

5000 100 1.0 80.7 0.983 74.9 0.017 65.3 6.30

7000 100 1.0 83.2 0.666 69.7 0.031 65.7 5.951

NOTE: R	 Valve Resistance
Valve Design Resistance

*Using 20% recirculation of hydrogen
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TABLE 5

THRUST
PARAMETER	 LEVEL

DESIGN
15,000 2000* 3000* 5000 7000

Engine Specific Impu_3e 480.8 452.7 456.9	 465.7 469.2

Engine Mixture Ratio 6.0 6.0 6.0	 6.0 6.0

Chamber Pressur	 psis 1,540 215 320	 520.5 728

Throat Area, in 4.697 4.697 4.697	 4.697 4.697

Area Ratio 625 625 625	 625 625

Thrust Chamber Thrust, lb 14,807 1984 2973	 4923 6897

Dump Coolant Thrust, lb 193 16 27	 X77 103

Thrust Chamber MR 6.59 E.33	 1 6.38	 6.67 6.64

Thrust Chamber Isp 481.2 453.2	 1 457.4	 1465.9 469.5

Inject. Fuel Flowrate, lb/sec 4.05 0.597 1 1.3770.880 1.923

Injector Oxid. Flowrate, lb/sec 26.71 3.781 5.62	 9.189 12.77

Fuel Pump Speed, RPM 110,000 35,329 42,233 54,435 65,189

Fuel Pump Efficiency 0.64 0.52 0.55	 f 0.60 0.63

Fuel Pump Horsepower 1,585 39 65.7	 155 291

Fuel Pump Pressure Rise, psi 4,597 508 682.3	 1 1,138 1,623

Oxid. Pump Speed, RPM 52,837 14,401 18,155 24,000 29,936

Oxid. Pump Efficiency 0.666 0.52 0.57	 0.628 0.55

Oxid. Pump Horsepower 384 6.1 12.9	 132.15 65.1

Oxid. I!mp Pressure Rise, psi 2,562 222.8 i	 349	 1588 890

Fuel Turbine Inlet Temp., R 875 890 1873	 841 808

Fuel Turbine Flowrate, lb/sec 3.64 0.35 0.39	 0.73 1.17

Fuel Turbine Pressure Ratite 1.72 1.31 1.30	 1.36 1.41

Fuel Turbine Efficienc y 0.636 0.379 0.532	 0.599 0.642

Oxid. Turbine Inlet Temp, R 797 865 839	 799 761

Oxid. Turbine Flowrate, lb/sec 2.99 0.267 0.34	 ,0.64 1.02

Oxid. Turbine Pressure Ratio 1.21 1..06 1.071.09 1.11

Owid. Turbine Efficiency 0.629 0.326 0.448	 0.517 0.572

*F - 2000 modeled with transient code; F = 3000 modeled with both steady-
state and transient codes.
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Note that the 2000-1b case utilized hydrogen recirculation. This causes con-

trol requirements for this thrust to depart from the general trend shown by the

other thrust levels, in which increasing thrust results in progressive opening

of the OTBV and MOV. In all cases, increasing thrust requires closing of the

main turbine bypass valve (TBV), which is the principal thrust control valve.

Pump Operation. Pump required head rise and volumetric flow is tabulated in

Table 6 for each thrust level.

Table 6 . Pump Required Head and Flow

FUEL PUMP	 OXIDIZER PUMP

	

SPEED	 FLOW	 HEAD	 EFFI-	 SPEED	 FLOW	 HEAD	 EFFI-

THRUST	 RPM	 GPM	 FEET	 CIENCY	 RPM	 RPM	 FEET	 CIENCY

15,000 1110,000	 1420.3 1134,6351 0.640 1 53,0001	 170	 1 5170 J 0.6"

2,000* 35,329 (	 75.6 16,675 0.537 14,400 23.7 451.9 0.508
3,000 42,233 92.8 21,931 0.551 18,155 36.2 707.5 0.569
5,000 55,875 155.1 37,857 0.609 24,000 58.7 1194 0.628
7,000 67,806 216.3 54,671 0.631 29,936 81.43 1805 0.650

*Using 20% Hydrogen Recirculation

These points are plotted on pump maps in Fig.12 through 15 . The maps shown

correspond exactly to the analytical pump characteristics contained within the

engine balance models used.

The high pressure fuel pump operating points are shown in Fig. 12 and 13 .

The data points for the 3000, 5000, and 7000 lb thrust levels and engine mixture

ratio of 6:1 are all in the stable region, although the 3000-1b thrust point

lies rather close to the zero slope point. A 2000-1b thrust point is shown for

a case employing 20 percent recirculation and is also within the stable region.

Also shown is a point representing 2000-1b thrust without hydrogen recirculation.

This point is in the positive-slope region, indicating instability. Transient

model runs of this case exhibit oscillatory instability as expected and pre-

viously discussed.
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The high pressure oxidizer pump operating points are shown in Fig. 14 for all

the thrust levels investigated at an engine mixture ratio of 6:1. The pump

operation is stable in the range of interest 2000 - 15,000 lb. The pump is

well within the stable H-Q region at the lowest thrust of 2000 lb as was also

shown to be the case in the transient model runs.

Engine Design Thrust Levels of 10K and 20K

For each of the engine design thrust levels of 10K, 15K, and 20K, the fixed set

of intermediate thrusts chosen ( 2K, 3K, 5K, 7K) represent a different fraction

of design thrust (F/FD). For a 10,000-1b design thrust level, for example, the

2000-1b intermediate thrust represents F/F D - 0.2. For FD s 20,000 lb, the 2K

thrust is only at F / FD a 0 . 10. Because fuel pump volumetric flow is nearly

linear in thrust at fixed MK , it can be seen that a design thrust of 20,000 lb

represents the "worst case" with respect to stable low thrust operation, and

10,000 lb the best case.

in the 15,000- 1b design case, F/FD values above .20 were found to be stable

without engine modification. Using this thrust fraction as a stability guide,

it would be expected that all intermediate thrust levels will be stable without

modifications for the design thrust level of 10 , 000 lb and that the 5000- and

7000-1b thrust cases will be stable for the 20 , 000-1b design. Thrusts below
4000 lb (F/F D - 0.2) will require kitting to assure stability at the 20,000-1b

thrust design level.

This reasoning is confirmed by referring, to Fig. 15 and 16 which show the H-Q

maps for the high pres s,-,re fuel pump at thrusts of 10K and 20K. The pump design
parameters are summarized in Table 7. Figure 15 shoes that all thrust levels

from 2K to 7K are within the stable region for a mixture ratio of 6.0 and a de-

sign thrust of lOK without recirculation of hydrogen. The plot in Fig. 16

illustrate the situation for the 20K design thrust. li()th the 2K and 3K points
are seen to lie in the positive -slope ( unstable) region of the pump map, and
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therefore will require recirculation to increase the flowrate so as to place

the operating points in the stable region. It is estimated that 20 to 25 per-

cent of the hydrogen flow would have to be recirculated for these thrust levels

in order to achieve stability, with other modifications made to the system to

reduce engine system pressure drop. The vapor fractions resulting from this

amount of recirculation can be reduced somewhat by the use of a ,jet pump or

recirculation between high-pressure stages.

Oxygen pump stability is not a problem at any of the design intermediate thrusts

examined for the 1OK and 20K design thrust level engines.

TABLE 7. EXPANDER FUEL PUMP DESIGNS FOR IOK
TO 20K THRUST

THRUST P	 ,	 PSIA
PUMP SPEED HEAD RISE FLOW RATE

EFFICIENCYc RPM rEET GPM

10,000 1415 135,000 123,140 276.5 0.63

15,000 1540 110,000 134,675 420.3 0.64

20,000 1650 95,000 143,903 561.1 0.66

Injector Performance at Low _Thrust

Analysis of the OTV-type injectors with the coaxial injector combustion model

(CICM) computer code has shown that at 10 percent of design flows a loss in

injector vaporization efficiency of approximately 1.64 points is to be exricted.

This loss is attributed to the low pressure drop across the oxidizer element and

.onsequent low velocity of oxidizer injection. Reduction of the inside diameter

)f the rigimesh plate retainer nut, which also forms the injector element fuel

!up, increases the fuel velocity and provides added momentum exchange to the

)xygen at the lower flows. The increased velocity difterence between the two

RI/111)81-120 1
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streams increases the injector performance at the lower thrusts. All the

Intermediate thrust engines will require this simple modification to optimize

injector performance.

Low oxidizer injector pressure drop could also lead to engi-ie system coupled

instability of the "chug" type. With a relatively high pressure drop in the

oxidizer valve mounted in close proximity to the injector manifolds, the

chugging problem should be eliminated.

Combustor and Nozzle Cooling Requirements at Low Thrust

Thermal 3n:alysis of combustor, fixed nozzle, and extendable nozzle of OW

engine candidates has indicated that enoukh coolant is available at the low

thrusts to effect MR - 6 cooling of all three components. With mainstage com-

ponent coolant allocations, however, the combustor receives more than ample

cooling at the lower thrusts, and the nozzles receive inadequate amounts. A

coolant control valve needs to be installed in the system to regulate the dump

coolant flow and obtain the optimum coolant split at each of the intermediate

thrusts.

Conclusions resulting from Expander Cycle Engine Studies

The following conclusions are drawn from the intermediate thrust operation

studies for the OTV expander cycle engine. Refer also to Table 	 8, a summary

of all engine modific&'ions required.

1. At 13 percent of design thrust, the engine must be kitted for

operation at an engine mixture ratio above 4.35. Otherwise,

fuel pump discharge flow rnd pressure instability for the

baseline expander engine cycle will result.
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1

2. Pump recirculation in the amount of 10 percent is recommended

for the expander cycle engine to reduce pump instability. This

requires the fuel pump to be kitted with a recirculation line

and throttling valve.

3. Pump recirculation must be augmented with system pressure drop

reduction through removal of calibrated orifice used for

pressure drop margin present in full thrust 15K baseline.

4. An orifice installed in the oxidizer turbine circuit as in

Fig. 11 is required to recover valve control lost in modifi-

cation (3).

5. No engine pump kitting is necessary to maintain stable operating

conditions at 6:1 mixture ratio and thrust fractions above 13%

of design.

6. Main injector modification is required at all intermediate thrust

levels to obtain maximum combustion efficiency at all thrust

levels. Modification consists of re-orifi.cit,g of injector fuel

sleeve, accessible from the injector face. 	 P

7. Dump-coolant valve control needs modification to provide coolant-

flow split control between combustor, fixed :II 
ozzle and dump-

cooled nozzle,at each of the intermediate thrusts.

IMPACT ON ENGINE DESIGN - STAGED COMBUSTION CYCLE

The OTV engine digital computer transient model was used to investigate the

staged combustion cycle engine operation at low thrust conditions. Pump

operation and feed system stability were examined using the OTV engine start

transient model. [feat exchanger flowrate requirements and thrust chamber

RI/RD81-120
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coolant flowrate requirements were established analytically. LOX injector flow-

rate requirements for stability and thrust chamber combustion performance were

assessed using ASE and .1-2S test experience.

The objectives of the OTV computer model runs (Table 9 ) were to establish

steady state chamber pressure and mixture ratio conditions, valve scheduling

and valve positioning required for efficient combustion of propellants in the

chamber and for stable system operation. The pumps were assumed to be therm-

ally conditioned to saturated propellant temperatures of 162.7 R for the LOX

and 37.8 R for the hydrogen. Propellants were made available at tank pressure

corresponding to NPSN values of 2 and 15 for the oxygen and hydrogen, respec-

tively, at temperatures prescribed above. These conditions are all based on

an assumed period of tank head idle mode operation prior to the low thrust

operation.

TALiLI? 9. SYSTEM OPERATION AND STABILITY, OBJECTIVES
AND CONDITIONS - OTV START MODEL RUNS

OBJECTIVES

Attainable steady-state chamber pressure

Attainable steady-state mixture ratio

Effect of main oxidizer valve (MOV) opening
on mixture ratio

Effect of pump N/Q map characteristics

Effect of fuel pump recirculation

Effect of turbine bypass for thrust control

OTV ENGINE START CONDITIONS

Propellants in tanks at saturated conditions

Pumps thermally conditioned to cryogenic temperature

LOX heat exchanger flow and temperature modeled

Injector/dome heat transfer not modeled
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The results of the study of extended low thrust operation of the OTV staged

combustion engine indicate that long life, high performance operation of the

engine in the low thrust mode can be achieved with minimum modification

(kitting) of the engine.

Required modifications to the high-thrust staged-combustion engines are listed

below and tabulated for each intermediate thrust in Table 10.

1. For low engine thrust levels (approximately 13 percent of design

thrust) removal of the preburner is required, since the engine

can be operated in an expander cycle mode and a preburner would

require extreme deep throttling. Removal of the preburner injec-

tor increases the available turbine inlet pressure to drive the

turbines. The preburner LOX line and valve can be removed in

order to simplify the system.

2. For thrust levels between 13 and 50 percent of design thrust,

the preburner requires injector modification to insure adequate

injector pressure drops and preburner combustion stability.

Above 50 percent of design thrust, no preburner modification is

required. Modification of the main injector is required to

Increase the fuel side velocity and in that manner offset the

low oxidizer side pressure drop and attendant lower perform-

ance. As discussed previously for the expander cycle thrust

chamber injector, the increased momentum exchange between fuel

and oxidizer will maximize injector performance at all Inter-

mediate thrusts.

3. The use of fuel pump recirculation is required to avoid the positive

slope region of the pump H-Q curve. This modification would add

a line and valve from the pump discharge to the pump inlet in

order to recirculate hydrogen and keep the pump at a higher
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flowrate. Computer model studies have indicated that this is

an effective method to avoid pump instability problems when

operating at low flow conditions. The computer modeling has

included the effect of propellant heating which occurs when

pump recirculation is used. The resulting increased flow vapor

fraction is maintained low by reducing recirculation to low

values and augmenting this procedure by reducing system pressure

drops as explained for the expander cycle engine.

4. To effect proper cooling of combustor, nozzle, and retractable

nozzle, a modified dump-coolant control valve is used to vary

coolant split at each intermediate thrust level.

The major modifications which are recommended for kitting of the OTV staged

combustion engines are: (1) removal or modification of the preburner injector.

(2) modification of the main injector to improve combustion efficiency,

(3) the use of fuel pump recirculation to avoid fuel pump operation in the

positive slop region of the H-Q map, and (4) the use of a modulated dump

coolant control valve. A jet pump added in the fuel pump recirculation cir-

cuit will reduce the problems arising from high vapor fractions in the flow.

Flow instabilities were not present in the oxidizer system during simulation of

low thrust operation and, based upon the computer simulation, no changes to

the oxidizer pump and feed system are recommended.

20K Staged Combustion Engine Operation Near 2000 I.b.

The digital computer transient model was used to examine 20K staged combustion

engine operation at thrusts near 2000 lb. Results of these studies were used

to provide recommendations for other intermediate thrust levels and other

design thrusts. Low thrust operation of the staged combustion engine was

accomplished in a pump-idle mode where the engine was operated as a pump-fed
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expander cycle system. The basic staged combustion 20K engine is shown schem-

atically in Fig. 17. This engine resulted from the OTV Phase A contract

NAS 8-32996 studies and is discussed in detail in Rocketdyne Report RI/RD79-1912-

2, dated 9 July 1979. Modifications to the OTV engine to make it suitable for

extended operation at low thrust are the removal of the preburner for the 200-1b-

thrust level and the addition of a fuel pump recirculation line and valve.

Prior to pump-fed low- thrust operation, the engine is thermally conditioned by

tank-fed idle mode operation where the pumps are inoperative and the thrust

chamber is operated under tank head pressures. To initiate low thrust mode pump-

fed operation from tank head idle, the put.p brakes are released. initially,

sufficient energy to transition-to-pump feed idle is provided by the residual

heat in the combustion chamber hardware. The hydrogen coolant is directed to

the high pressure turbines since the prehurner has been removed. The main oxi-

dizer valve is opened to partially provide oxygen to the main chamber where it

is combusted with the hydrogen exhausting from the main turbines. As the pumps

increase speed, chamber pressure increases to the nominal steady-state value.

The computer model used to simulate the engine operation incl.sdes detailed com-

ponent descriptions of the engine components. Propellant heating effects of

fuel pump recirculation were accounted for in the calculation of pump available

NPSH and vapor fraction in the flow. Results obtained near the 2000-16 thrust

level are shown in Fig. 19. Tho preburnur has beers removed from the power cycle.

The turbines are powered by the thrust-chamber-heated hydrogen. To prevent

pump instability, pump recirculation is performed beyond a mixture ratio of 2:1.

With the engine schematic as indicated in Fig. 17 (with parallel turbines

arrangement, the maximum chamber pressure obtained with the turbine bypass

valve closed is 200 psia at a mixture ratio of 2:1. The limited hydrogen cool-

ant heating, the parallel turbine arrangement, and the system pressure drop

limit the chamber pressure to 200 psia. Pump recirculation for higher mixture

ratios reduces the chamber pressure capabilities by absorbing higher pump power

at the fuel pump.
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This expander cycle mode of operation is required at the low thrusts (near 2000)

because the preburner injector throttling required is deeper thar that of the

thrust chamber. The deeper throttling would lead to preburner instability.

The attainable thrust level can be improved through use of series turbines

and reduction of system pressure drop. System pressure drop reduction is also

required to allow the turbine bypass valve to open jnd regain some controlla-

bility of thrust.

Available NPSH to the pump and vapor conditions at the pump inlet resulting

from recirculation are indicated in Table 11, a list of system parameters for

two mixture ratio runs bracketing the desired mixture ratio of 6:1. For the

existing NPSH conditions at the oxidizer and fuel tanks, 2 feet and 15 feet,

respectively, the result of main fuel pump recirculation is to create a 5 -

30 percent vapor (by volume) condition at the pump inlet (Table 11). The

vapor fraction can be reduced by using a jet pump, or performing the recircul-i-

tion between higher Pressure stages. Reduction of system pressure drop will

also reduce the amount of recirculation required and thus the vapor fraction.

PROCRAMMATICS FOR INTERMEDIATE THRUST OPERATION

The cost and schedule impacts of kitting OTV engines for intermediate thrusts

were determined as increments with respect to cost and schedule information

,resented in RI/RD 79-191-2, Vol. II -B (20K lb thrust staged combustion engine)

and in RIND 80-155-2, Vol. I1-B (10K lb thrust expander engine). Table 12

shows the required engin+- modifications to enable intermediate thrust operation

(2K to 7K lb thrusc) of the expander cycle and staged combustion cycle engines.

The baseline engines are designed for rated thrust levels of 10K, 15K and 20K 1b.

All engines require kitting; ,.s a minimum, a main injector modification (con-

sisting of installing a different rigimesh r.late retainer nut into the LOX post
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TABLE 11.	 20K STAGED COMBUSTION ENGINE PERFORMANCE AT LOW THRUST
WITH PUMP RECIRCULATION

MR - 5.82 MR - 6.5

Thrust (lbf) 1640 1610

Main Chamber Pressure (lb/in. 2 ) 178.2 154.3

Specific Impulse (sec) 458.0 451.0

Pump

Main Pump Speed (rpm)

Fuel 19677 17961

Oxidizer 17766 16243

Boost Pump Speed (rpm)

Fuel 13640 127 LO

Oxidizer A2 3091

Main Pump Discharge Press.	 (psia)

Fuel 289.9 245

Oxidizer 377.4 314.3

Boost Pump Discharge Press.	 (psia)

Fuel 30.81 29.27

Oxidizer 37.7 33.72

Main Pump Flowrate (lb/sec)

Fuel .8657 .7911

Oxidizer, 3.208 2.904

Preburner

Gas Temp, R 617.2 661.9

Preburner Pr (psia) 212.8 182.4

Turbine

Main Turbine Flowrate (lb/sec)

Fuel .339 .139

Oxidizer .172 .274
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TABLE 11.	 20K STAGED COMBUSTION ENGINE PERFORMANCE AT LOW THRUST
WITH PUMP RECIRCULATION ,continued)

MR - 5.9? MR - 6.5

Turbine

Boost Turbine Flowrate (lb/sec)

Fuel .0308 .0248

Oxidizer .0257 .0206

Valves

MOV (% open) 56 56

Fuel Pump Feedback Valve

AP across Valve (psia) 259.1 215.7

Flowrate thru Valve (lb/sec) .315 .346

Turbine Bypass Valve Closed Closed

Suction Conditions

NPSP (ft) 0 0

Fuel	 Tank Pressure, psia 19 19

Oxidizer Tank Pressure, psia 17 17

Vapor Fraction in H2 Flow, % Vol. 5.6 30.2

ends) and a fuel dump valve control modification (increased valve movement

steps) are needed.

All cost estimates are based on the following groundrules:

1. The intermediate thrust

ceded by the full Bevel,

,he intermediate thrust

on the basis of a rated

istics have been firmly

engine tests.

engine development is assumed to be pre-

3pment of a rated high thrust engine.

engine development therefore will build

thrust engine whose operating character-

established by detailed component and
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2. Engine conversion from rated to intermediate thrust is performed

by modifying (kitting) existing engine components as detailed in

Table 12 .

3. ".'he intermediate thrust engine will be tested following near com-

pletion of all rated thrust engine system development tests.

The OTV main engine incremental ROM costs for intermediate thrust level kitting

were determined for each WBS element of the 20K lb staged combustion engine,

and of the 10K lb expander engine. For all other rated thrust levels the DDT&E,

production and operat:(on costs were interpolated using the two detailed cost

estimates as reference points. Table 13 shows the ROM incremental cost estimate

breakdown by WBS element for the 20K lb staged combustor and the 10K lb expander.

Major DDT&E costs are incurred due to the substantial amount of required engine

system testing (300 tests). This cost item is independent of engine cycle or

thrust level. The production cost increment for a staged combustion engine

kitted for intermediate thrust is practically zero when the preburner is elimi-

nated, since preburner deletion cost savings (indicated in brackets) offset the

other engine modification costs.

Table 14 is a summary of the total DDT&E, production and operations delta

costs for both staged combustor and expander, with design thrust levels of 10K,

15K, and 20K lb, for four intermediate thrust levels. Depending on the inter-

mediate thrust level, the DDT&E delta costs are in the range of about 10 to

13 M. Production first unit delta cost changes range from about 2 K$ decrease

to 64 K$ increase, depending on engine cycle and thrust level. Operational

cost increases are estimated to about 16 K$ per engine per year, independent of

thrust level or engine cycle.

The schedule for intermediate thrust engine availability is based on the ground-

rule that the development program for the raced OTV engine precedes that of the

intermediate thrust engine. Under this assumption, the pacing schedule item is
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TABLE 13. ROM DELTA COSTS FOR ENGINE KITTING
(in FY 1979 $)

20K LB THRUST	 lOK LB THRUST
WBS ELEMENT STAGED COMBUSTOR EXPANDER

DDT&E

1.1.1.1 Main Fuel Pump 2.25 M 2.19 M

1.1.2.1 Main Combustion Chamber Injector 1.05 M 1.02 M

1.1.3.1 Preburner	 Injector 0.50 M -

1.1.5.2 Control Valves 0.65 M 0.63 M

1.1.10 Engine Tests 7.8 M 7.8 M

1.1.11 System Engineering b Integration 0.8 M 0.8 M

1.1.12 Project Management 0.4 M 0.4 M

PRODUCTION	 (per engine)

1.2.1.2 Combustion Devices (47.7)1K 10.8 K

1.2.1.3 Controls 10.2 K 9.4 K

1.2.1.6 Engine Assy,	 initial	 Accept. 23.5 K 21.8 K
Testing

1.2.4 Sustaining Engineering 9.3 K 8.6 K

1.2.5 Project Management 3.0 K 2.8 K

OPERATIONS

1.3 Operations	 (per engine,	 per year) 16.0 K 16.0 K

Notes
1 Without preburner

With preburner modification: 	 18.1 K
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engine system testing, as shown in Fig. 20 . This figure shows a typical OTV

expander engine development test schedule. The schedule is independent of the

rated thrust level in the 10 to 20 K lb range and is very similar to that of a

staged combustion cycle engine. Out of 300 required additional engine system

tests for intermediate thrust kitting, 130 can be performed on two Rocketdyne

test stands each (COCA lA and 1B) following the end of the rated thrust engine

system test_ program. Forty tests need to be performed at altitude conditions;

these tests will be run at a government test facility. With the test schedule

shown in Fig. 20, the initial operational capability (IOC) of an intermediate

thrust expander or staged/combustor OTV engine is 13 months following the I0C

date of the rated thrust OTV engine.
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TASK 16 - ENGINE OPERATION FOR AN AEROBRAKING OTV (ABOTV)

The requirement under this task was to provide an assessment of el ►gine operation

in idle mode,with the nozzle retracted while in the upper atmosphere during an

OTV vehicle aerobraking maneuver. The assessment was based on the Advanced

Expander Cycle Engine baselined in Task S of NAS 8-32996 and the recommended

Staged Combustion Cycle Engine of the initial OTV Engine Phase A studies. The

main engine operation concern was whether the fixed nozzle flow separates,creat-

ing pressure and heat transfer fields damaging to the nozzle.

During the aerobraking maneuver, a large disposable ballute is inflated around

the ABOTV vehicle and, as the body is returning such that the nozzle is in

front, the engine is retrofired. The large ballute provides adaitional surface

area to increase the drag from both the atmosphere and the exhaust gases, as

shown in Fig. 21, thus decreasing the velocity of the body. The firing of the

engine also acts to slow down the uody. As the body reenters, a complex shock

system is set up and, depending upon the operation of the engine, will result in

different slipstream-nozzle flow fields.

Two types of flow fields are possible during this type of maneuver. In the case

where the nozzle exit pressure (P E
)is much greater than the separated slipstream

flow pressure (P B
)in Fig. 21, the shock system stands well off the nozzle, this

distance being referred to as the shock standoff distance. The other case is

when the nozzle exit pressure is well below P B , which results in nozzle flow

separation, unsteady sideloads, and higher rates of heat transfer to the nozzle.

The analysis performed consisted of calculation of the shock standoff distance,

an evaluation of nozzle flow separation, and assessment of the heating of the

retracted portion of the nozzle due to recirculation of the nozzle propellants.

4
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EXPANDER CYCLE ENGINE OPERATING CONDITIONS

Table 15• presents OTV expander engine operation conditions as well as the slip

-stream flow characteristics. As shown in the table, the base pressure (P B ) is

dependent upon the impact pressure which is defined as follows:

Pimpact ` 
1.84 q

where q is the average dynamic pressure shown in Table 15.

TABLE 1 5 . OPERATING CONDITIONS DURING ABOTV MANEUVERP
EXPANDED. CYCLE ENGINE

P C ALTITUDE MACH AV.	 DYNAMIC
P 

OPERATING MODE (PSIA) (FT) NO. PRESS.,	 PSF —

H 2	(only) 7.0 400K 25 0.5 1/2
Pimpact

Tank Lead	 Idle 7.0 292K 36 5.0 1/2
Pimpact

Pumped	 Idle 203 265K 34 10.0 0.2
Pimpact

Pumped	 Idle 203 262K 33 15.0 0.2
Pimpact

Shock Standoff Distance

Figure 21 depicts the model assumed for calculating the shock standoff distance

(L). Note the stagnation point along the dividing streamline. As the super-

sonic air flow approaches this stagnation point, it passes through a normal

shock. Similarly the rocket nozzle flow passes through a normal shock before

reaching the stagnation point. Since the stagnation point is common to both

flows, the total pressure behind each normal shock mist be matched.
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P
impac t is 

the stagnation pressure behind each shock in Fig. 21. It was ob-

tained from the average dynamic pressure provided by the vehicle contractor and

Listed in Table 15. The ratio of P 
impact 

to the nozzle stagnation pressure Pc

and the normal shock relations are used to determine the nozzle flow Mach num-

ber, "11, and area ratio, E, can be obtained. From this area ratio, the distance

to the shock can be approximated by assuming source flow and using spherical

areas. Table 16 presents the normal shock results along with the distance from

the nozzle throat to the shock.

Nozzle

E

M.

P02 Pimpact

Figure 21. Floor Model of Shock System
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TABLE 16 . NORMAL SHOCK °aSULTS

Pot SHOCK STANDOFF
OPERATING PC Pimpa.t Po M DISTANCE	 (L)

MODE (PSF) (PSF) I I (IN.	 FROM THROAT)

H2	 (only) 1.0x103 0.92 9.2x10 4 12.88 104

Tankhead 1.0x103 9.? 9.2x10 3 1.84 32.4
Idle

Pumped 2 . °2x 104 18.4 6.3x 10 4 13.94 '26
Idle

Pumped 2.92x104 27.6 9.45x10 4 12.80 102
Idle

Note that in all cases except the tankhead idle case (THI), the shock is well

downstream of the nozzle exit (30 inches from the throat). In the THI mode,

the shock is very close to the nozzle exit.

In the above calculations, it was necessary to assume continuum mechanics for

the nozzle flow only since all. other properties were provided. This assumption

was verified by using a Method of Characteristics solution of the nozzle flow

field out to a Right Running Characteristic (RRC) line from the nozzle exit.

The assumption is valid as long as the radius of the spherical core (L) is

within this RCC.

It was assumed to obtain a solution in the case of idle mode with uncombusted

hydrogen flow in the main chamber that the hydrogen is heated in the coolant

jackets to a steady state tempera y.ure of 530 R by absorbing residual. heat in

the hardware. The hardware residual heat depends on the environmental heat

transferred to the thrust chamber during reentry. A hydrogen cooling-off trend

will be established upon start of the hydrogen flow in the chamber. Depending,

on the heat transferred to the nozzle in the slipstreari-nozzle interaction flow
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1

field, the steady state hydrogen equilibrium temperature might reach low enough

levels to collapse the nozzle flow field leading to eventual separation.

Nozzle Flow Separat!.on

In order to both check the above calculations as well as estimate nozzle side-

loads, it is necessary to check each case for flow separation. The criterion

used to predict whether the nozzle flow separates is

PIri

r	
> 3.0 to 5.0

W

where P14 is the nozzle wall pressure. Once the above condition has been reacfzd,

the flow will separate from t he wall and unsteady sideloads and higher rates of

heat transfer to the wall will result.

Table 17 represents a stmimary of conditions for each of the cases analyzed.

As indicated in the table, separation occurs at the THI conditions only which

a3rees with the previously discussed shock standoff distance results. The point

at which flow separation occurs during the THI case can be estimated by using

Fig. 23 and determining the point at which PB> 
3.0. 

This occurs at X/RT = 8.0

or an expansion area ratio of e = 53. In P 	 order to estimate the side load

amplitude, it is assumed that only ha:.f the flow separates at P  = 3.0 while the

rest separates at P  = 5.0 as shown in Fig. 24.	 PW

	

P	 '
W

Using this approach results in an asymmetric loading of the nozzle, a portion

of the outer wall having a greater pressure than the inner wall. This approach

results in a resultant horizontal sideload. Taking the difference between the

average wall pressure over the region of loading and the ambient pressure, the

side force can be estimated as:

	

F	 APA
s	 — 2.5 lbf horizontal side force.
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REGION OF

LOADING

E=104

08LIQUE
SHOCK

FLOW
SEPARATION	 NOPMAL

SHOCK

TABLE 17. ABOTV NOZZLE FLOW SEPARATION STUDY

Separated

P	 P

B	 BOPERATING PC PB PW 3.0
PW	

P MODE (PSIA) (PSF) (PSF)

H 2 7.0 0.46 0.45 1.02	 No

Tankhead 7.0 4.6 0.45 0.2	 Yes

Idle

Pumped	 Idle 203 3.68 13.15 0.28	 No

Pumped	 Idle 203 5.52 13.15 0.42	 No

*Based on full flowing nozzle

c=53

1 1gure 23 . Schematic Showing, Side Load Mechanism
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This separation can be expected to act at an area ratio of e - 70, thereby pro-

viding a significant moment arm. Note that Fig. 24 helps to qualify the shock

standoff distance discussed previously. Although the normal portion of the

shock its standing, just outside the nozzle, it is known that the upstream oblique

shock will be significantly further upstream.

A large amount of side load data is available for the SSME which experiences

side loads during start/stop engine transients. The maximum values have been

found to be approximately 1/22 of the thrust. Using this thrust fraction as a

basis and alternate procedure, a 3.3 lbf side load force is estimated for the

OTV operating conditions being examined.

Nozzle Flow Separation Heat Transfer

As the flow separates during the THI mode of operation, the portion of the wall

downstream of the shock will experience increased heat load due to the loss of

the boundary layer. The separated heat transfer coefficient, h Sep , is related

to the attached heat transfer coefficient h
att by

h	
P )0.8

a	 = 2.4
hatt	 PW

Figure 25 shows the results of the thermal analysis using the thrust chamber

regenerative cooling analysis code for a chamber pressure of 7.22 psia, T c =

4858 R, MR = 3..1, and a coolant flowrate of w e = 0.03 lbm/sec. The figure

shows a maximum wall temperature of 513 F, or approximately 140 F greater than

the full flowing case. This condition should create no prublem in the ooling

of the nozzle.
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Heating of Retracted Nozzle Extension

During the ABOTV maneuver, the retracted portion of the nozzle experiences heat-

ing due to the recirculating exhaust Rases. This area of heating, has been

investigated and an approximate analysis has been carried out as follows.

The exhaust for the PI mode (worst case) was expanded to P  (one-dimensionally)

to provide PV at these conditions and a fraction of this value taken for the

external heating calculation. Based upon this conserviative estimate, a dry

wall temperature of 1130 F would be obtained. A more detailed analysis of the

recirculation flow and resultant heating should be carried out; however, the

above temperature is conservative and, based on the assumptions made, the

actual wall temperature would be lower.

r,,.... 1... 4  ­

The analysis showed that for the given operating, condition, the shock standoff

distance is well downstream of the nozzle exit in all cases except for the tank-

head idle case. In this case it was shown that the flow actually separates

from the nozzle wall. The analysis showed a side load of approximately 5 lbf

and an increase in wall Zemperature of 140 F could be expected to result from

this separation. As noted earlier, the side load acting on the nozzle could

result in possibly significant moments due to the distance from the throat at

which the force acts.

The abbreviated analysis carried out to estimate the effects due to hot exhaust

gas recirculation near the retracted portion of the nozzle indicated a conserva-

tive wall temperature of 1130 F. However, it should be noted that recirculation

heating is present.
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STAGED COMBUSTION ENGINE OPERATING CONDITIONS

The operating conditions for the staged combustion cycle engine recommended in

NAS 8-32996 initial Phase A studies are indicated in Table 18.

TABLE 18. OPERATING CONDITIONS DURING ABOTV MANEUVER,
STAGED COMBUSTION CYCLE ENGINE

Pc ALTITUDE MACH AVE.	 DYNAMICS BASE PRESSURE
OPERATING MODE (PSIA) (FT) NO. PRESSURE	 (PSF) PB

H 2 Only 9.7 400K 25 0.5 1/2
Pimpact

Tank Head	 Idle 9.7 292K 36 5.0 1/2
Pimpact

Pumped	 Idle 209 265K 34 10.0 0.2
Pimpact

Pumped	 Idle 209 262K 33 15.0 0.2
Pimpact

An analysis similar to that of the expander cycle for calculating the shock

standoff distance was carried out for the staged combustor cycle. The differ-

ence in chamber pressures and nozzle contour warranted the analysis. Table 19

presents the results of the analysis.

As can be seen from the table, the shock standoff distance is increased for all

cases. During the expander cycle mode of operation, the tankhead idle experi-

enced flow separation. A similar analysis was carried out for the staged com-

bustion cycle. The results of these calculations are shown in Table 20. Note

that no flow separation is predicted for this cycle. This is due to both the

higher chamber pressure as well as the lower expansion area ratio, resulting in

higher wall pressures. However, it should be noted that the tankhead idle case

may be close to separating since the oxit pressure ratio is close to the
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j	 separation pressure ratio.

k

TABLE 19. RESULTS OF STAGED COMBUSTION CYCLE SHOCK STANDOFF DISTANCE

OPERATING MODE
PC

(PSIA)
P0,
pZ
O1

M1
R

(INCHES)

H 2 9.7 6.58 x 10-4 13.83 145

Tankhead Idle 9.7 6.58 x 10-3 8.47 45.8

-4Pumped Idle 209 6.11 x 10 14.01 150

Pumped Idle 209 9.17 x 10-4 12.85 121

TABLE 20. NOZZLE FLOW SEPARATION RESULTS FOR STAGED COMPUSTION CYCLE

OPERATING MODE

P S

(PSF)

PW*

(1,SF)

P

BP
W

SEPARATOD

PB
P	

? 3.0

W)--
H2 .46 1.75 .263 No

Tankhead idle 4.6 1.75 2.63 No

Pumped Idle 3.68 37.75 0.097 No

Pumped Idle 5.52 37.75 0.146 No
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APPENDIX A. OTV PUMP NPSH CAPABILITIES

The original suction requiremento that the OTV boost pumps were designed to

accommodate are summarized in Table 7-26. The Net Positive Suction Head (NPSH)

values are finite and positive, and the boost pumps will operate at these

values without vapor in the flow.

TABLE 7-26. ORIGINAL OTV SUCTION REQUIREMENT5

Propellant	 112	 02

Tank Vapor Pressure, psia	 18.4	 15.6

Pump Inlet NPS11, Ft.	 15	 2

This means that the pump inlets were sized so that the NPSH's supplied at the

pump inlets are equal to, or greater than, the inlet flow velocity head. How-

ever, it is also true that pumps designed to this criteron will often operate

satisfactorily at zero tank NPSH, which is a two-phase (vapor-liquid) operat-

ing condition at the pump inlet (1Wf.7-3,7-6,7-7,& 7-8. This is an advantage

because it eliminates the constraint of having to pressurize the tanks.

Therefore, an analysis was conducted to determine the tank vapor pressures

under which those boost pumps would operate at zero tank NPS11.

Because unpressurized tanks are the ultimate goal of zero tank NPSH, the

analysis must begin with saturated liquid in the tanks (which is zero tank

NPSH by definition), and must include a treatment of the vehicle accelerations,

the inlet line flow accelerations, and the inlet line losses. The assumed

inlet line geometries are summarized in Table 7-27 and the method for calcula-

	

ting inlet line pressure drops is summarized in Table *7-28.	 It must be noted

that this inlet line analysis is approximate because (1) the geometries in

Table 7-27 are a function of the vehicle, which is not fully defined at this

time, and (2) as implied in Table 7-?8 , tht pressure drop calculations were
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simplified considerably by using constant values of liquid d-nsity, which

produces results that are slightly optimistic. However, the results are close

enough to give a good evaluation of potential capabilities,

For the existing preliminary designs of the OTV boost pumps, the pump inlet

geometries, and the operating conditions at both full thrust and pump idle modes,

are summarized in Table 7-29. This zero NPSH evaluation was conducted for both

operating modes, because both are contractual requirements. As discussed in

detail below, the results of the analysis indicate that 0. 	 designs will

operate at zero tank NPSH with little or no modifications -Lf the tank vapor

pressures are equal to, or greater than, those shown in Table 7-26. If the

tank vapor pressures are reduced to a very low value of 10 psis, relatively

minor design modifications would be required. These modifications are: (1) on

the LOX side, a 20% increase in inlet line and boost pump inlet tip diameters

in orde r to accommodate full thrust operation, and (2) on the L11 2 side, a 25w

decrease in rotational speed when operating at pump idle mode. No modifications

are required to operate the Ili 2 boost pump at full thrust, or the LOX boost

pump at pump idle mode.

TABLE 7-27, FEED LINE GEOMETRIES

Propellant	 H2	 02

Line Lengths, Ft. 	 18-20	 3-4

Acceleration, G's (Full Thrust) 	 .1-.2	 .1-.2
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I

TABLE 7-28. ASSUMPTIONS iOR PREDICTING PUMP INLET CONDITIONS

Line Diameter = Pump inlet tip diameter

Line Losses:

One bell mouthed inlet, KL 	 .04

Two vaned mitered elbows, KL	.2/elbow

Pipe friction

Acceleration:

Flow accelerates to operating point in 5 sec.

Entire line length is in direction of motion

Pressure Drop:

C	
w

m pA

2

OP	
144	 2m (I + 

KL ) + L	 - aV
$	 8	 g

TABLE 7-29. OTV BOOST PUMP OPERATING CONDITIONS

Operating
Mode Parameter

it 
02

All DIT'	 In. 3.14 3.6

DIR ,	 In. 1.57 1.25

Full Thrust w,	 Lb/Sec 4.45 26.71

lI,	 tom 28,490 6475

Idle w,	 Lb/Sec 0.76 3.02

14,	 RPM 11,780 784
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LQUATION 1 NPSH - Pi'_'Sli 0 - TSH
2

,I

Cavitation Evaluation

Because operation at zero lank NPSI, usually results iu two-phase flow at t1 ►e

pump inlet, the first condition to assess is the effect of cavitation wi ►en

these uperatinl; conditions are being approached. If cavitation effects are

negligible, the analysis need only consider two-Please flow. However, if cavi-

tation effects :ire considerable under some conditions, the analysis must also

consider cavitation effects on pumping capability.

The impact of cavitation was assessed by Predicting the NPSII required at 2%

loss in mead due to cavitation. ;'•,is is done by deducting the thermodynamic

suppression head (TS11) from the NP31I in cold water (iIP Ali 1 L ) , as shown in

L'quat ion 1:	 2

9

3

The LAPSE in ~.rater is the NPSH required at 2". head loss in water and the TSh

i5 the correction in the subject propellant that, when deducted from the water

I;P`,11, ,)roduces the LOSE that would give the same vapor cavity size and, con-

sequently, the same head loss in the subject ,)ropellant (Leferencea 4, 5, and

6). Based on correlations made at Rocketdyne, the TS11's are expressed by

F(juations 2 and 3 for Lli 2 and L02 , respectively.

f:LUATIt )I 2

.000691 (J/'L) ' 16 U* 85 tan 2Q( '3	 )
T^1^	 11YD1ZOGLiJ

Lh2

L U AT I i ^;: 3

Tsh10 = .0986 
(d/2) .16 U.85 6 L

2	 2
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Where:

d	 - inducer inlet tip diameter, in.

z	 - number of inducer blades at inlet

U	 - inducer inlet tip speed, ft/sec

,3	 - inducer blade angle at inlet tip, degrees

0	 - inducer inlet tip flog coefficient, Cm/U
L 

in	
- floe axial velocity entering; inducer, ft/sec

HYDROGEN  . thermal factor for liquid hydrogen

L0	 - thermal fat-tor for liquid oxygen
2

The two thermal factors, ^'y	 .►nd, are purely a function of the pro-
HYDROGEN	 111Lo2

pellant physical properties and are shown in Fig;. 7-15as a function of propel-

lant vapor pressure. These NPS11's were calculated for the operating conditions

shown in Table 7-29 at byth the design vapor pressures (Table 7-26) and at the

low vapor pressures of 10 psia. The results are summarized in Table 7-30. In

all cases, the thermodynamic suppression head is considerably greater than the

NPSI{ capability in water, which means that the inducer vapor cavities are

small under the anticipated flow conditions. Therefore, cavitation would have

little impact on the performances of these pumps under these operating condi-

tions. As a result, cavitation limits can lie ignored and the pumping limits

and capabilities are bavurned primarily by two-phase flow phenomena.

Two-Phase EvaluaLlon

The two-prase flow pumping capability oas evaluated by first estimating the

floe conditions at the pump inlet, and then comparing those flow conditions

with the flok. conditions at the two-pica.;e pumpinS limits. These activities

are discussed separately keiuw.
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d

Pump Inlet Conditions. As discussed earlier, the inlet line assumptions used

in predicting the pump inlet conditions are summarized in Table 7-28. The first

one was used to relate the line velocity to the pump inlet velocity. It is

reasonable because (1) the line size should be minimized in order to minimize

weight, and (2) the line cross sectional area should be at least as large as

the pump inlet area in order to minimize losses and (in two phase flow) avoid

choking.

Also shown in Table 7-28 is that the line losses are the sum of the line comp-

onent and the friction losses. With the inlet line geometries indicated in

Tables 7-27, 7-28 and 7-29, the total inlet line loss coefficients are 1.4 In

hydrogen and .67 in oxygen.

Two accelerations are involved in the calculations, the flow acceleration rela-

tive to the vehicle (which drops the pump inlet pressure) and the vehicle

acceleration itself (which tends to increase the pump inlet pressure). The

first acceleration, assumption was determined from typical start transients

predicted for the OTC' engine. The second acceleration assumption indicates the

amount of the inlet line that the vehicle acceleration acts on. The vehicle

acceleration itself was assumed to be .1 G (minimum was selected from Table 7-27

in order to be conservative) for full thrust operation, which was ratioed down

by the tlowrates in order to get the pump ifl.le mode value of .0121 G.

Finally, the indicated equations were used to estimate the inlet line pressure

drop. Liquid flow density was assumed in ., r to simplify the calculation.

'ri.is is somewhat optimistic because, for a given weight flowrate, the inlet

line pressure Otop wo:ild be (roughly) inversel y proportional to average flow

c±ens i t v.

As indicated in Table 7-2 ,3, the four components of inlet line pressure drop are

the initial expansion to the line velocity, the inlet line losses, the value

that accelerates the flow in the inlet line, and the pressure head value

caused by vehicle acceleration. The first three decrease the pressure, and
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the last increase it. Thecae four components were assumed to be additive be-

cause the constant ecttropy lines on the temperature-entrk.py charts are almost

parallel to the constant enthalpy lines at low vapor weight fractions. As a

result, a pressure drop along a constant enthalpy line (which represents a

loss) results in about the same amount of vapor as the same pressure drop

along a constant entropy line (which represents an ideal expansion to a finite

velocity). As a result, very little error is introduced by adding the pressure

drops and determining the vapor- fraction along a constant entropy line. This

greatly simplifies thy: calculation.

This procedure was used to estimate Gie inlet line pressure drops. The liquid

flow densities were obtained from Ref. 7-4 and 7-5	 and are shown as a function

of vapor pressure in Fig. 7-16. The line pressure drop and the differential

change of quality with pressure at constant entropy (FiF.7-17, derived from

Ref, 7-4 and 7-5 were used in Lquation 4 to estimate the vapor weight fraction

at the pump inlet.

EQUATION 4	
X = I	 3P ^ s 1 

11P

This and the vapor to liqui( + density ratio (Fig,7-18) were then used to

estimate the vapor volume fraction at the pump inlet (Equation 5).

EQUATION 5
1

a =	 i1 \ X -1 + 1

The resulting p rimp inlet CLow conditions (static pressure, vapor volume fraction

supplied, and flow velocity) are summarized in Tables 7-31 and 7-32 at the full

thrust and the pump idle modes, respectively.

Wo-Phase Limits. The parameters that permit the evaluation of the two phase

pumping limits were then determined to indicate the feasibility of the predicted

RI/RD81-120

80



4.

4.

4.

4.

4.

4.

4.

SA1IRATION PRESSURE, Pv l , PSIA

MH

p^qQ+

ra
75

w
to4

74
w

n 73

A 72ANaa
a 71

70

69

68

67

66

Figure 7-16. Liquid Flow Densities

RI/RD81-120

81



.002

.001

0 L--
0 10 20 30 40 50

a
w
N
a:
(o

x

a.
aa

0
tA

a
H

a
OGw
a
w

U
z0
HU
w
Hx
WH3
tY.
pO,^

6
7

wwwNa

.00 S

.00

.00

.00

.0

.00

.003

Figure 7-17. Vapor Fraction Differential Changes

For Isentropic Expansions from a Saturated Liquid

RI/RD81-120

82



0	 10	 20	 30	 40	 50

f

.07

.06

a
a

a'	 . 05

0H
F

.04

HN
W
A

A	 .03

cH
.a
0

.02
x
0

01

U

SATURATION PRESSURE, Pv, PSIA

Figure 7-18. Vapor to Liquid Density Ratios

RIAID81-120

83



RL/RD81-120

84

r

z0
H
H
Az
OU

^-1
A

R:W
Az

z0
FdA

w
Uz

a

w
vy^

x
a

0

a

00
00

0

M
1
n

wa



R1/RD81-120

IL

J

t
V	 w N

C14

^'•^

C14

v r• LA

^`9 @ O
O
.4 z
w

w U

u N 00 00 It M
3 M \ 1 M

19 119

r-1 O W M M

v
> U^

C >,
O v u
L/ m U

A. * *n1 00 O*
► .^ cp M M

G+, i^4 U

>
►+ r•1 N V1

0. 0. O O
^ O ^
> cn

u
L cC 00 00 ^°+ •—+
cd	 • r+ M Q) D OL	 fo
V)	 0. 00 M O

a
v	 w

u -4	 fo N N N N

t u u 0 0 0 C
v u

W u
u v

U V)

Lf1 t!'1 V'1 Lrl
3 d
O E
,4	 -,4

fs. F

a

u	 U:
u	 co 7 7 r

U

0.

IC G m 00 O ^n O

F >

7 N c^ N N

w

w
O
v

r-I

c
c^

v

ae u
sr

F G
O

rl v

'C
.H Lo
O •rl

v°

a u

u
V)
u

n
O

11

x

II

a
z a

G \^
tC •r4

F ^

^c

z0
HF
¢
O
a

W :oz
C^ O
Z H
H F

R
H
A
Z

w 3
^ o
xwa

W
G A

[ 0
Wa
A

a H

F
V)0
o a
x a
> W
F A
c z

N

M
I

wa
x
¢
F

e.



pump inlet conditions. As shown in Table 7-33 these limit indicating parameters

are the inlet line Mach number under equilibrium flow conditions, the inducer

blade vapor pumping capacity, and the inducer blade inlet liquid flow incidence

to blade ankle ratio.

The inlet line Mach numbers are the ratio of the flow velocity to the acoustic

velocity (Equation 6).

EQUATIO'. (

	

C	 .	 ,
M m	 w 	 w -

c - PL  
PP 

c ~ P L A c(1-a)
1.

It is apparent that the product of the acoustic velocity (c) and one minus the

vapor volume fraction( I -r4 ) are required to make this calculation. Equation 7

Is the expression for acoustic velocity in terms of flow densities, quality,

and the acoustic velocities of the individual phases.

EQUATION 7

pL
C .c	 .._ _ _	 __ _._	 _ _	 _.. 

1-x L x + T

	

c ?	 p 	 cv2	 1^4	 PL - 1 	 P s
 )1.	 &	 Pv	 a

However, treating; the ,apor as a void fraction, and noting that the large single

phase acoustic velocities and the low qualities cause the first two terms in

the denomina,or to be small, Equation % reduces to:

EQUATION 9

	

c(i-ki)	 —	 I —	 —
PL pL	 x

144g	 p - 	 s^
v	 J
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This parameter utilizes fluid physical property data from Fig. 7-16, 7-17 and

7-18• The resulting values are shown in Fig. 7-19. Referring back to Equation

6, it is apparent that the ratio of the liquid flow velocity (the flow veloc-

ity if the flow were a pure liquid) to the acoustic parameter in Figure 7-19

is the approximate inlet line Mach number. Tables 7-31 & 7-32indicate that this

value exceeds 1.0 for only one condition, the oxygen line under full flow con-

ditions at a tank saturation pressure of 10 psis. This indicates that the

inlet line would be choked and, therefore, would have to be enlarged to accom-

modate the flow condition. The inlet line Mach numbers for the other 7 cases

in Tables7-31& 7-32 are all less than 1.0 and,therefore, those inlet lines

are sufficiently large to pass the flow.

The other major two-phase flow limit in Table7-33 is the inducer blade choking

limit which sets the inducer blade vapor pumping capacity. At the flow con-

ditions existing at the leading edges of the inducer blades, very little area

convergence is required to cause choking and, therefore, the inducer blade

choking limit occurs (approximately) when the fluid angle of the two-phase

flow is equal to the blade angle (References 7-h, 7-7 & 7-8). This is the

limit because operation at a larger fluid angle (Larger two-phase inlet flow

coefficient) would result In an area convergence which, as stated earlier,

would result in choking. As a result, the vapor volume fraction pumping capa-

city is proportional to the difference netween the flow coefficient at the

limit and i.e liquid flow coefki(_ient (the flow coefficient if the entering

flow were a pure liquid). With appropriate allowances for boundary layer and

blade thickness, chis is expressed by Equation 9.

EQUATION 9

'ImX	
t - 

-.9 3 tail Ui.r-1.5)

Since the inlet tip blade angles for both OTV boost pumps are around 7
0 .

this resuces to Equation 10.
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EQUATION 10

_ LL
'MAX ' 1	 .0895

The upper limit to this vapor pumping capacity occurs when the ratio of the

liquid angle of attack ( the angle of attack, on the inducer blade leading edge

tips, that the flow would have if it were a pure liquid) to the blade angle

exceeds 0.7. Reference 7-8 indicated that vapor capacity becomes unpredictable

at larger values. Equation 11 is the expression for this ratio.

EQUATION 11

sl ^, - Are Tan 
\ . 9 13 )

17

The vapor capacities of the OTV boost pumps, which are predicted by Equations

10 and 11, are shown in Fig. 7-20 . It should he noted that some vapor capacity

is probable at flow coefficients below .034 (beyond the (i/P) L limit); zero is

indicated because the value is unpredictable and, under some conditions,

appears to approach zero. These vapor capacities are compared with the sup-

plied vapor fractions in Tables 7-31 and?-32,

Evaluation of Results

The changes recommended to obtain zero tank NPSH operation with the GTV boost

pumps are summarized in Table 7-34.They are discussed below at both the OTV

tank vapor pressures (Table 7-36) and 10 psis tank vapor pressures.

y
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OTV Tank Vapor Pressure. As discussed earlier, the inlet line Mach numbers at	 ja
the OTV tank vapor pressures are all less than 1.0 (Tables T-31 and 17-32 ) and,

therefore, the presently anticipated inlet lines are sufficiently large to pass

the flow. As also shown in Table 7-31 , the vapor capacities exceed the supplied

values under all full flow operating conditions at OTV vapor pressure. This is

also true for the 02 boost pump during idle mode (Table 7-32). 11owever, the

angle of attack on the hydrogen boost pump blades during idle mode is beyond the

limit for two-phase flow. This is probably not a problem because the vapor vol-

ume fraction is less than 17, and some vapor capacity is usually possible at

angles of attack beyond he limit (Ref. 7-8 ). It may be concluded that the hy-

drogen boost pump speed ^jring idle mode should be reduced 25% if it can be done

easily without compromising other operating requirements. However, if diffi-

culty is encountered, it would probably be satisfactor y to leave the idle mode

speed as it is.

10 Psia Tank Vapor Pressure. As shown in Table 7-31, the hydrogen inlet line

for full flow operation is sufficiently large because the Mach number is at a

very safely subsonic value of .44. However, this is not true for the oxygen in-

let line because the approximation of inlet line Matti number exceeds 1, which

means that the flow would be choked. Therefore, to avoid this with a safe mar-

gin, the oxygen inlet line diameter and, to be safe, the oxygen boost pump in-

let tip diameter, should both be increased 2n'v in order to operate at full thrust

at a tank saturation pressure of 10 psia.

As far as idle mode is concerned, Table 7-32shows that the situation is almost

identical to that at the OTV tank vapor pressures, i.e., the oxygen side is

satisfactory and the hydrogen side is probably satisfactory but, to be safe, the

speed should be reduced 25% if it can be done easily without seriously c_,mprom-

ising something else.
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