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Billion electron volts
Oxide capacitance per unit area
Energy
Electron Charge
Weight fraction of element j
Radiation fluence
Metal-Semiconductor work function
Voltage drop in p-type material
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Recombination damage constant
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Million electron volts
Carrier mobility
Proton fluence
Acceptor concentration
Total number nf defects
Total number of preirradiation defects

Interface charge per unit area
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Final Report

Characterization and Modeling of Radiation Effects on 5 2
NASA/MSFC Semiconductor Devices

SUMMARY

This work consisted of two phases. The first phase involved a ]

detailed review of the literature on space radiation environments; the

i
E

| ments likely to be encountered on space missicns and on ways of simulating

study was directed toward understanding the nature of radiation environ-

such an environment in the laboratory. Justification was developed

- T

for the use of 2MEV protons as the radiation source.

The second phase of this work was experimental, and involved

irradiating CMOS devices with protons and recording their performance |
degradation. Three device technologies were evaluated, bulk silicon : §
CMOS fabricated at RCA, bulk silicon CMOS fabricated at NASA/MSFC, and
, CMOS-SOS fabricated at RCA. Data is presented and summarized, and
recommencations for improved hardness made. This study is unique in

that 2MEV protons were used as the radiation source.
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I. INTRODUCTION

This program involves the study of the space radiation environment,
and its simulation in the laboratory to assess the radiation hardness of
various CMOS structures and processes. The radiation environments
examined in the first phase of this work are the near earth trapped
radiation of the Van Allen Radiation Belts, the radiation environment
within our solar system resulting from the solar wind, and the cosmic
radiation levels J>f deep space.

It was determined that a reasonable simulation of space radiation,
particularly the earth orbital environment, could be achieved in the
laboratory by proton bombardment. The Dynamitron 3 MeV proton accelera-
or located at Auburn University was used to proton irradiate CMOS inte-
grated circuits fabricated by three different processes.

The three types were bulk silicon CMOS inverter arrays fabricated
by RCA (RCA 4007), Silicon on Sapphire CMOS inverter arrays fabricated
by RCA (RCA TCS-071), and a bulk silicon CMOS inverter IC fabricated by
NASA/Marshall Space Flight Center at Huntsville (MSFC-C-015).

Samples of these circuits were biased during irradiation in one of
three configurations, gate tied to +V (input high), gate tied to ground
(input Tow), or all terminals grounded (passive). The +V power supply
was set at +10 volts in all cases. Active bias during irradiation was
applied because there is considerable evidence that the extent of radiation
induced damage is bias dependent, and this work reexamined this postulate.

The dita recorded consisted of the drain (supply) current and output
1
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voltage for each inverter as the input voltage was swept from zero to
ten volts after each successive irradiation. From this data pertinent
device parameters can be extracted. Probable damage mechanisms are
discussed, and recommendations for improved radiation hardness suggested.
Because of the large amount of data required in characterizing
each inverter after each of several irradiations, the device population
used was not large. While this is typical of most radiation damage
studies, it does not represent a limitation of this type approach. This

will be discussed in a later section.
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II. SURVEY OF SPACE RADIATION ENVIRONAENTS

A.  Background
With the launch of the Explorer ! satellite on January 31, 1958,

and its sensing of radiation by an on-bcard Geiger counter developed by
Professor Van Allen of lowa, the notion that space can pose a radiation
hazard was born. The processing of the initial data from this experi- ]
ment lead Ernie Ray of Van Allen's laboratory to make his classic remark,

“My God, space is radioactive."

0 ST e i s IR AR S5

Subsequent Explorer satellite probes heiped map the bands of
trapped radiation encirclina the earth, which have come to be known as
the Van Allen Radiatiun Belts,

There are other sources of radiation to be dealt with in space.
Within our solar system there is a constant stream of radiation emanating
from the sun and diverging radially from it. This radiation stream,
known as the solar wind can represent a significant radiation exposure
over time intervals required for interplanatary travel. Within deep
space, the cosmic radiation measured has indicated the presence of

radiation of very high energy, but relatively low fluence levels.

B. The Van Allen Belts

The most serious radiation threat to electronics in earth orbit is
the trapped radiation of the Van Allen Radiation Belts. The early
Explorer satellites, followed by the Pioneer Spacecrafts, began the task

of mapping the nature of these bands of radiation encircling the earth.
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The P‘oneer 111 Spacecraft, intended to be a lunar probe, carried two
Gieger counters. Part of its mission was to further characterize the
trapped radiation discovered on Explorer 1. By combining the data from
Explorer IV and Pioneer III, the first complete map of the trapped radia-
tion was produced. (See Figure 1). This early picture lead to the con-
cept of inner and outer radiation zones - a concept useful qualitatively,
but of 1imited merit [2].

We now have a fairly complete picture of these radfation belts, as
a result of years of effort and numerous satellite radiation mapping
programs. The belts are composed of charged particles, almost exclusivu'y
protons and electrons trapped in toroidal shaped bands about the earth
by the earth's magnetic field.

The high intensity "inner" belt is now known to be composed of

high energy protons. A density map of these high energy protons (Ep > 30 MeV)

{s shown in Figure 2, Complete mappings of the proton fluxes, and

energies of the inner belt have been compiled by Vette [3].

The outer zone is more complex is actually composed of a superposition

of Yower energy protons and electrons. A toroid of protons in the 1.0 to
5.0 MeV range at fluxes as large as 108/cm2-sec are illustrated in Figure
3 [4].

Electron fluxes are much less for electron energies greater than
1.6 MeV, showing maximums in the 104/cm2-sec. as shown in Figure 4,
There is a fairly large flux of low energy electrons indicated by Figure
5 where flux density of electrons with energies greater than 40 KeV

are mapped.
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Figure 1. Van Allen's First Map of the Radiation
Belts showing relative radiation in density
t in arbitrary units. (after Hess)
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Preceding the discovery of the natural radiation belts various , 5
laboratories suggested that charged particles could be artifictally |
injected and trapped in the earth's magnetic field. After Van Allen's
discovery, experiments were devised to further study this idea, such as

the Project Argus nuclear explosions in 1958, and the Starfish and L g

similar explosions by the Soviet Union in 1962 [5].

The 1.4 megaton Starfish explosion increased the number and average

I

E ’ energy of trapped electrons by several orders of magnitude. [6]. These
. electrons did not fully decay to the natural levels until approxi- . a
‘ mately 1970 [7]. Thus, the flux and energy distributions of particles . ?
within the Van Allen Belts are dynamic quantities, changing with time, f
and often influenced by solar activity or nuclear events.

One natural mechanism for the generation of Van Allen Belt particles a
involves the interaction of higk-energy cosmic protons with the earth's
upper atmosphere. The protons collide with the nuclei of atmospheric
oxygen and nitrogen. The resultant neutrons decay into protons and
electrons in approximately 1000 seconds [5].

- When any charged particle enters a uniform magnetic field, it spirals.

The radius of curvature of the resultant helix is directly proportional

e e o e .

to the momentum of the particle and inversely proportional to the | {
strength of the magnetic field [8]. Therefore if the radius is very ) é

large or small, the particles will not remain in the earth's curved field

for long. Only at intermediate energies will the particles become trapped

(i.e., have long lifetimes) and help form the Van Allen Belts.

Any planet possessing a magnetic field therefore captures charged
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particles of particular energv ranges. The field acts as a leaky bucket
whereby particles are continually entering and escaping [5].

The intensity of the particles depends on the strength of the field.
For example, in late 1973, Pioneer 10 found that Jupiter has a magnetic
field some twelve times stronger than Earth's at cloud top levels [9].
On Pioneer 10's missfon 1% w2: found that the flux of electrons (E > 3 MeV)
was 5 x loalcm-sec. and the : ux of protons (E > 30 MeV) was 4 x IOG/cm-sec
[10]. In contrast the maximum electron (E > 3 MeV) flux in the earth's
Van Allen Belts is on the order of los/cm-sec and the maximum flux of
protons (E > 30 MeV) is on the order of 5 x !04/cm-sec [6]. Therefore
the Pioneer flyby registered particle encounters some one hundred times

the maximum intensities found about the earth.

C. Sclar Wind

The sun is an emitter of both particle and electromagnetic radiation.
Solar electron magnetic radiation wavelengths vary from the low millimeter
range (radio waves) down to below 1A° (gamma rays) [11]. Particle
radiation manifests itself as solar wind (supersonic electrons and protons)
and solar flare protons.

Solar wind particle energies are low - proton energies typically
1 keV - and electron energies much less with intensities on the order of
1-2 x 108/cm-sec [5,8] in the vicinity of the earth's orbit. Solar pro-
ton events (solar flares) typically last a few days with particle energies
up to 100 MeV or greater and with intensities as high as 5 x 105/cm-sec.
(E > 300 kev). [5.8].

The sun has also followed an eleven-year cycle whereby its magnetic
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field reverses polarity [11]. This results in a periodicity in its
activity. Varfations occur in solar wind intensity as well as in the
magnitude and frequency of solar proton events [5].

During solar maximum (to occur agatin in 1980 or 1981) solar wind
intensity may increase twofold. Solar proton events may typically occur
two, three or more tines per year and produce high proton intensities
(discussed eariier) [11].

D. Cosmic Radiation

The compositior of cosmic particle radiation is primarily high-
energy protons (90%) and alpha particles (10%). Energies typically range
from one to ten billion electron volts (1 BeV < E < 10 BeV) [12] with
intensities ranging from 1.5/cm-sec during solar maximum to 4/cm-sec
during solar minimum [5]. Variations in intensities result from scattering
of cosmic particles by the variations in the solar magnetic field strength.
The solar magnetic field, effectively carried by the solar wind, acts as
a downstream "current" which the cosmic particles must "swim" agai.st.

This typically results in a smaller (i.e., 1.5/cm-sec) cosmic flux {5, 8].

E. Summary
A comparative summary of the various particle radiation environments

is illustrated in Table I. The table compares some representative particle
counts and their respective energy spectra. A complete model of these
radiation environments is difficult to achieve for several reasons.

First is the degree of complexity of the environments. For example,

the particle count about the earth varies with position, time, particle
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energy, and particle type [4, 13, 14]. Particle counts at higher
geomagnetic latitudes versus equatorial fluxes may differ substantially.
Likewise proton ¢ unts may dominate in one region, electron counts in
another. At the same time attempts to describe intensities without also
defining the particle energies as well is meaningless; low-energ  particles
may be in abundance and high-energy particles relatively scarce. Further-
more, the particle counts often fluctuate dramatically with time. Periods
of high solar activity thermally expand the earth's upper atmosphere.
Low altitude Van Allen particle encounters with the intruding atmosphere
increases, thus decreasing the population of charged particles. Moreover
the time of day influences the shape of the belts, causing a shift in the
isoflux contours [15]. Despite these complexities, detailed models of
the Van Allen Belts have been devised {13], which provide the spacecraft
designer with a reasonable approximation of the radiation expected to be
encountered for a given orbit. This model has been computerized so that
orbital information can be input directly and radiation parameters received
as output.

Outside the Van Allen Belts, little radiation information is avail-

able. For example, Jupiter's radiation belts are relatively unexplored.
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III. RADIATION DAMAGE CONCEPTS

A. Types of Radiation Damage
There are only four principal types of radiation used in the bulk

\‘ of the studies regarding radiation damage [16]. These four are protons,
neutrons, electrons, and gamma rays. The proton and the neutron have
almost the same mass but, the proton has a charge of +1.6 x 10"9
coulombs, whereas the neutron, as its name implies, has no charge. The
electron has considerably less mass than the proton or neutron, but has
a charge equal in magnitude to that of the proton but with the opposite
sign. Gamma rays are simply electromagnetic waves of rather high

} frequency, usually above the frequency of X-rays. The bombardment of any

r device or material with any of the three particles just m:ntioned or

‘ with gamma rays is termed irradiation.

In discussing radiation-induced damage in solid state devices, it

is useful to investigate the effects of this radiation on semiconductor
materials, usually either silicon or silicon dioxide. Understanding
the nature of the defects produced by the radiation in the material aids
f in a prediction of the effects on the device [17].
The effects of radiation on semiconductor materials can be divided
into two types, ionization damage and displacement damage, although
someiimes a third type called surface damage also resulting from joniza-

tion is also included [16]. lonization occurs by the radiation knocking

fi' : valance electrons from atoms in the semiconductor, forming ions in the

material. According to the band theory this would be represented by the
13
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excitation of a valence band electron into the conduction band. This

can be a temporary effect, as when the radfation is removed, after some
time delay, the 1iberated electrons will again return to their orbits
around the fons. If, however, this ionization occurs in an insulating
material (such as silicon dioxide) the time delay involved may be long
enough for the effect to be considered permanent. This latter effect is
often called surface damage, referred to later. Displacement damage 1is

a permanent type of damage. This is the result of the radiation actually
displacing atoms in the semiconductor lattice from their original position
to some new position, usually an interstitial position. As this mechanism
actually disrupts the normal order of atoms in the semiconductor crystal,
this 1s sometimes called "bulk" damage.. In 1949, Seitz [18] presented

his work On the Disordering of Solids by Action of Fast Massive Particles,
which was the earliest estimate of the energy required to displace an atom
by a nuclear collision with a fast particle.

The so-called surface effects referred to earlier are semipermarent
changes in the electrical behavior of a device due to ionization near the
surface, or charge collection and migration in insulating or passivating
layers. These changes can persist for a period of years after the
radiation exposure, yet are fundamentally different than the changes as
a result of displacement damage. For these reasons it has been suggested

that the term “permanent" be avoided when speaking of radiation damage.

B. Effects of Radiation on Semiconductor Devices
Irradiation exposure by gamma rays produces predominantly ionization

(and surface) type damage. Most of the literature on radiation effects

PR,
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on semiconductors utilizes this type of source. The reasons for this are .

two-fold. First, Cobalt 60 gamma radiation sources are generally more

reacily available than are neutron sources or particle accelerators. §

Secondly, much of the radiation damage work has been supported by the

military with their primary interest in the area of nuclear explosion

] effects. A nuclear blast produces large amounts of radiation in the form
of gamma rays and neutrons. It should be pointed out that this is a
totally different environment than that seen in space radiation - which

is principally electrons and protons. ;

High energy charged particle radiation, electrons and protons can

; produce both ionization damage and displacement damage. High energy

e s R e e Lt

neutrons can also produce both types, but because of the lack of coulombic

interaction (uncharged particle) by far the dominant neutron damage effect

e

is displacement damage.

There are two major changes in silicon resulting from displacement
damage which effect the electrical characteristics of the semiconductor,
namely, the recombination rate and the carrier removal rate.

Consider the first of these, a change in the carrier recombination
rate. In an intrinsic semicunductor the valance band and the conduction band

are separated by the band gap, an energy interval of 1.11 eV in silicon.

Carriers can be excited into the conduction band by thermal agitation,
and the rate with which this occurs is called the generation rate.

Similarly, electrons can give up energy and return to the valance band at

a rate termed the recombination rate. § ;
The irradiation of the silicon creates defects (or defect complexes)

in the crystal which introduce energy levels in tine "forbidden" gap. These

o
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levuels can act as recombination centers, according to the Shockley-Read-
Hall theory of hole-electron recombinations [19, 20]. With these recombina-
tion centers present, the probability for a carrier recombination 1s
greatly increased, and the observed recombination rate increases accordingly.
Recombination can now occur in a two step process, from the conduction band
via the trap to the valance band, as illustrated in Figure 6, rather
than the less probable band-to-band transistion.

It 1s generally assumed that in a semiconductor, the number of bulk
defects produced by the irradiation is directly proportional to the total

radiation exposure, that is:
ND = C]Q + NO (3-])

where

total number of defects

total number of pre-irradiation defects
total radfation exposure

constant

o =
— e 0O
] [} "

This is a reasonable assumption, if the dominant damage mechanism
is bulk displacement damage. The total particle radiation exposure, ¢,
is termed particle fluence, and represents the total number of particles
impinging on the semicorductor surface normal to a unit area. A more
detailed description of fluence and fluence measurements will be given in
a following section.

Further the recombination rate per carrier (the average number of

times a carrier recombines per second) is directly proportional to the
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Figure 6. Carrier Reconbination via Reconbination
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number of defects in the semiconductor. This can be expressed as
Rﬂ = CzND ( 3'2)

where

R = electron recombination rate per carrier
in p-type material (minority carrier
recombination rate).

c2 = constant

Gombining (3-1) 2nd (3-2) we have:
Ry = Cy (C1 ¢+ No)
Ry = K 0+ Ry (3-3)
where
Ro - CZNo = pre-irradiation recombination per carrier
Kq = constant = recombination damage constant
Equation (3-3) is often written as:
Ry = Ry =Kgo (3-4)

Similar equations could be written for holes in n-type silicon.
From this latter equation it can be seen that the change in recombina-
tion rate is directly proportional to particle fluence, ¢, a characteristic

of bulk displacement damage.
The recombination rate per carri2r, previously defined as the average
number of times a carrier recombines per second, is the inverse of a i

quantity which expresses the mean time interval between carrier recombination.
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This time is called the corrier 1ifetime x. In a p-type material the
average time an electron .pends in the conduction band before recombina-

tion 1s called the minority carrier lifetime, « ™ is the same quantity

n*
for holes in n-type materfal. Thus,

]
R B wovvm— (3‘5)
noot,
From equations (3-4) and (3-5) we obtain

L.l . 3
T e (3-6)

where L pre-irradiation carrier lifetime.

Therefore, the change in the reciprocal of the minority carrier lifetime
is seen to be directly proportional to the radiation exposure, ¢, by a
damage constant, Ko. More correctly, this Ky should be called a coeffi-
cient, not a constant, as its value does depend upon a number of factors,
such as the temperature, type of radiation carrier concentration, etc.
Equation (3-6) is of extreme value in studying the effects of displacement
radiation on semiconductor devices.

A second important result of the displacement irradiation cf silicon
is the induced change in carrier concentration. The defects introduced
into silicon by irradiation a. : such that, whether the material is n-type
or p-type, it becomes more intrinsic by compensation from the addition of
both n and p type defects. The irradiation has the effect of removing
carriers or reducing the carrier concentration at a rate called the

carrier removal rate. If N is the carrier concentration then:

N =N, - %% o (3-7)

e+ vt S
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where No = pre-irradiation carrier density

%%-- carric= remova) rate

This effect explains the cbserved changes in tha resistivity (or conduc-
tivity) of silicon after irradiation. Consider an n-type silicon speciman

with an electron concentration of N at room temperature. Then the

conductivity, u, is given by
o=Nqu, (3-8)
where

Mo i{s the electron mobility.

Mobility changes as a result of irradiation are of lesser importance, and
thus My will be considered a constant [21]. As N is reduced by the radia-
tion according to equation (3-7), the value of o by equation (3-8) is
also reduced.
The radiation thus results in a lowering of the conductivity, or
inversely, an increase in the resistivity of the silicon, be it n-type
or p-type. This will find application in examining the effect of radia-
tion on the bulk resistances of device structures, and in particular
in the change of base resistance in junction bipolar transistors.
Displacement damage in silicon primarily affects the performance of
bipolar structures because of its direct affect on altering carrier life-
times and concentrations. This, however, is not to say that in studying

radiation effects on MOS IC's that displacement damage can be ignored.
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Most MOS civcuits have protection diodes on input gates, and in bulk sili-

con technologies, junction isolation is standard. These junctions, not to

mention the channel vegion itself, are subject to displacement damage

effects and a compizte characterization must include these possibilities.

MOS semiconductor devices will undergo a shift in threshold voltage

and loss of transconductance due to displacement radiation damage intro-

ducing carrier-removal sites [22]. This, however, is secondary to the

|

i g § principle radiation degradation mechanism in MOS devices which is surface

, | damage from ionizing radiation. lonizing radiation degrades MOS transistor
|

performance by causing a build-up of strongly trapped positive charges in

the gate insulator. The result of the positive charge accumulation is a 3%

shift in the threshold voltages of both n and p channel MOS transistors

toward more negative voltages. To a first approximation this charge

build-up can be modeled as directly proportional to the number of ion
pairs created in the oxide, which in turn is proportional to the energy
deposited in the oxide. (This is measured in units of rads.)
The most generally accepted model of this ionization radiation
, induced positive charge build-up is that the radiation creates electron-
hole pairs in the silicon dioxide. The electrons are mobile and will
drift out under the influence of a field (usually resulting from gate

bias) until they either recombine with a hole or escape from the oxide i

at the metal-oxide interface. The holes, on the other hand, are much

less mobile and get trapped almost immediately. For each electron that

escapes, a trapped hole with positive charge is left locked in the oxide
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The larger the electric field in the oxide during irradiation, the more
electrons escape, and thus the larger the build-up of positive charge,
which occurs primarily at the silicon-silicon dioxide interface. The
increased positive charge in the oxide implies a more negative voltage
must be applied at the gate to offset it, and consequently a shift in
threshold voltage to more negative values results.

It can be seen that controlling charge build-up in the oxide of MOS
devices is of critical importance in controlling their radiation hardness;
improved rad-hard devices require development of an insulating layer which
does not show appreciable charge trapping.

Numerous authors have contributed to the development of theoretical
f expressions for FET performance based on physical parameters. For example,
} Muller and Kamins in their book, "Device Electronics for Integrated Cir-

cuits", summarize the pertinent FET equations including the following

expression for threshold voltage, VT’ for an n channel device
' Vp = Veg * Ve + 2lel

1
; + ccl,x 2 Ss e Na(2I¢pT+ VC - VB)

| = . .
o nlhe?‘e VFB = QMS - t‘l— Cl X p(x)dx

and

-
L

= chanrel voltage

©
u

voltage drop in p-type material

[
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€. = oxide capacitance per unit area

€. = dielectric pemmittivity of silicon
VB = body or substrate voltage

VFB = flat-band voltage

¥yg * metal semiconductor work function
Qés = {nterface charge per unit area

Xox = oxide thickness

o{x) = oxide charge distribution

From these expressions it can be seen that device threshold voltage
is theoretically directly proportional to flat-band voltage, VFB’ Veg
is related to the integral of the oxide charge distribution times the
position (depth) of this charge in the oxide. The radiation induces
trapped charge in the oxide, and it is this charge distribution, €(x),
that determines the effect of ionizing radiation on threshold voltage.
Since this charge distribution is generally not uniform, and depends
on many factors including bias, it is difficult to obtain a meaningful
analytical expression.

The displacement damage can also alter the acceptor concentration of
the substrate and affect the forth term in the expression for VT; this
however, is generally a much smaller effect than the accumulation of

oxide charge.

C. Radiation Terminology and Dosimetry
Previous sections have shown that the radiation environments seen by

electronics is generally either electromagnetic radiation or particle
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bombardment by either electron, protons or neutrons. In considering the
radiation dose delivered by each type of radiation, first a distinction
must be made between exposure dose, and absorbed dose. Exposure dose is
a measure of the radiation field to which a material is exposed, whereas
absorbed dose refers to energy imparted to tne irradiated material [23].

Exposure dose has been defined for gamma radiation fields by the
"Roentgen".

ROENTGEN: The amount of electromagnetic radiaticn which deposits
a giver quantity of energy into a standard reference
material, usually air.

For partial srradiation exposure dose can be measured in terms of
the particle flux, particle fluence, and particle energy.

PARTICLE FLUX: The intensity of particle radiation given in
encounters per second per square centimeter.

(e.q., protons/cmz-sec)

PARTICLE FLUENCE: The time integral of flux, or the total number
of p?rtigles per square centimeter from time zero
to time T.

T
Fluence = jf (flux) dt
0

(e.q., protons/cmz)

PARTICLE ENERGY: The kinetic energy of the particle usually
measured in electron volts. Both energy and
flux information must be given to characterize
the radiation.

The absorbed dose depends on the type of material being irradiated;

given the same exposure dose various materials absorb more or less energy.

The unit of absorbed dose is generally the Rad.
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RAD: The amount of radiation which deposits 100 ergs of energy
into one gram of the material under consideration.

The material generally used in semiconductor radiation studies is
silicon. It can be seen that in considering ionization damage, where the
amount of deposited energy can be related to number of electron-kole pairs
created, the Rad is a useful dosage indicator.

For reasons that will be described later protons were selected as
the radiation source to be used in these experiments. In order to calcu-
late the Rads (absorbed dose) produced by a particular proton fluence,
the following calculation was undertaken.

The stopping power, S, for a given particle traveling through a
given target material is defined as the average energy loss per unit
path length.

s= &

The high energy behavior of the stopping power can be described by

the Bethe-formula [24].
) ane’z,%z,

2
Sz £ n (2mV ) + 2n ( 1 . 82 - &
mall L

where .
Z] and Zz are atomic numbers of projectile and target i

respectively
V is a projectile velocity {
e is electron charge :
m is the mass of electron

B = V/c where ¢ is the speed of light
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The parameter [ 1s generally estimated by Block's rule as
I=(10 eV)Z2 .

This relation describes the stopping fairly well for particle energies

above 1 MeV, however the error increases rapidly for lower energies. :

The experiment described in this work utilized 2 MeV protons; this Y
energy is on the useful edge of the validity of the Bethe formula. To ‘%
avoid the complexity and error of this calculation a compilation of ;I

experimentally determined stopping powers for hydrogen (protons) in
every element was used [25]. The referenced publication has stopping
power plotted as a function of particle energy, as shown in Figure 7 j
for silicon, Figure 8 for aluminum, and Figure 9 for oxygen.

For these elements the stopping power of 2 MeV protons was calculated

as follows:

1) Silicon = 25.8 KeV/micron

2) Aluminum = 30.1 KeV/micron

3) Oxygen = 15.0 KeV/micren

The first two elements above are directly applicable to an MOS
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silicon dioxide, Braggs activity rule for compounds can be used to first

approximation [26]
3’5'%"3 %53
where € is the weight fraction of element j in the compound.
Thus
Silicon dioxide = (.533) 15 keV/micron + (.466) 25.8 keV/micron
= 20.0 keV/micron
The materials of interest all have similar stopping powers ranging from

20 to 30 keV/micron.
The MOS devices fabricated in the NASA/MSFC laboratory have a cross

section drawn to scale as shown in Figure 10 [27]. Notice that the entire

active device structure is in the top 2 or 3 microns of the device
structure. If the rate of energy loss for an incoming 2 MeV particle is
only 20 - 30 keV/micron, it is a reasonable &zpproximation to assume 2 MeV
particles suffer a negligible energy loss and thus dE/dx is constant as
a particle passes through the active device region. This simplifies the
following calculation.

Let n equal proton fluence (protons/cmz) that impinge on an area,
A, of silicon surface. Assume a depth, x, small enough so that the above
approximation is valid, and now it is possible to compute the energy

deposited in the volume, V = Ax, of silicon

tons 2, 25 keV
Energy deposited = n(EEQ—i-—) A{em™) ( ) x (cm)
cm 1074 cm-protons

= 2.5  10° nA x keV

L s T SPTNY, 13
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Dose (Rads Silicon) = &ner mag: osited

Assuming the density of s’licon = 2.4g/cm3
Dose (Rads Silicon) = (1.57 x 10°%) x n(protors/cn®)

or

n(protons/cmz) = (6.0 x 105) x Dose (Rads Silicon)

These conversions can be employed to relate proton irradiation

l
i exposure in protons/cm2 to absorbed radiation dosage in rads silicon.
|
|
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IV. SIMULATION OF THE SPACE RADIATION ENVIRONMENT

The radiation environment of space is very complex, as described
in Section II. It varies substantially witl position, time, and in
addition, there is a wide spectrum of particle en¢rgies present. To
simulate all those conditions in the laboratory would be impossible,
and thus simplifying assumptions based on sound engineering judgment
are called for,

Referring again to Section II, it can be seen that the
cosmic radfation, although high in energy, is of such low flux as to
relegate it to a position of lesser importance. Electron and proton
damage are the principle sources to be dealt with in space.

The Figures of Section Il show that within the Van Allen belts the
higher energy electron flux (Ee > 1.6 MeV) is at a relatively low level
of about 104/cm2-sec maximum, and the higher electron flux occurs at low
energfes; these electrons are fairly easily shielded. The proton flux, on
the other hand, is intense, and of high energy, requiring much more
shielding to achieve the same equivalent radiation of flux level. Thus
it becomes apparent that proton radiation is the limiting radiation factor
in spacecraft design.

This conclusion has been supported by other researchers. For example,
a study of the radiation belts by the Explorer 51 satellite revealed that
the radiation dosage in rads is dominated by proton damage for an aluminum
shield thickness of anything over about 50 mils thickness. The total
dosage obtained during one year in orbit as a function of aluminum shield

33
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thickness is shown in Figure 11 [28]. A similar result was obtained on
Explorer 55, which shows in Figure 12 the total radiation dosage obtained
using various thicknesses of aluminum shields after 139 days in orbit [29].
Agein there is a strong domination of proton damage over most of the curve.
Proton damage has been shown to be the radiation source to the
reckoned with in space. It 1s interesting, therefore that most radiation
effects on MOS semiconductor studies use gamma irradiation as the source.
The assumption implicity made in these studies is that the dominant
degradation mechanism {s ionization damage, which can be imparted by either
gamma irradiation or protons. This is probably a valid assumption in most
cases, and it is true in these cases that it makes )’ttle difference
whether the rad {s delivered by a photon or a proton. There is a physical
difference, however, in that the proton is also capable of doing displace-
ment damage in the silicon crystal, and this is to be expected in space.
If displacement damage effects become significant for a particular device
$*ructure, it would never be detected using a Cubalt 60 gamma radiation
source. In this work, however, proton irradiation was selected, and this
is thcught to more ac.urately represent the environment seen by the

electrorics of a spacecraft.
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V. DESCRIPTION OF EXPERIMENT

A. Irradiation Facility and Fixture

The proton {rradiations for the experimental phase of this project
were done at the Leach Nuclear Science Center on the campus of Auburn
University. This facility houses a 3-million volt Dynamitron particle
accelerator (shown in Figure 13) configured for proton acceleration.
The target chamber is shown in Figure 14, and is large enough to house
a rotatable disk shown in Figure 15. This disk was a special fixture
designed for holding up to 9 CMOS devices under proper bias, and
allowing each one to be successively rotated under'the proton beam for

irradiation without breaking vacuum.

The three types of CMOS inverters characterized were the RCA 4007 A,

bulk silicon device, the RCA TCS-071 SOS device, and the MSFC C-015,

bulk silicon device. For each of these device types, thee bias schemes

were used during irradiation, input high, input low and nc bias, as
shown in Figures 16 - 18.

The effect of gate bias on radiation sensitivity has been alluded

to earlier. The logic state (high or low) of the input determines the

nature of the field seen by the gate oxide in both the n channel and

p channel devices. As shown by Poch [30], the ‘on device has gate field

lines terminating in the channel and uniform from source to drain. The

fields in the gatz insulator of the\Bff”device are not uniform across
the channel, and contain a strong lateral component. These fields are

responsible for the positive charge migration and accumulation that
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causes tiie threshold voltage shifts thus the resulting damage would be
expected to depend on the nature of these bias fields. The exact nature
of this dependence is difficult to predict and renuins a subject of
continued study and interest. The following general observations, however,
can be made. For positive gate bias, threshold shifts are larger, indicating
an increased positive charge build-up; the opposite is true for negetive
gate bias.

A1l {irradiations were done at a proton energy of 2 MeV, and at or
near minimum beam current. This was to ensure that thermal heating of

the device would be minimized, and not a factor in the resulting device

degradation.

8. Characterization Fixture and Method

The devices were characterized before irradiation und after each
succeeding radiation exposur.. The device characterization fixture
provided the capability for sweeping the input voltage from zero to ten
volts, and monitoring the supply current and output voltage. The
schematic of this system is shown in Figure 19. These measurements
enabled plots to be made of the square root of drain current versus input
voltage (from this type plot threshold voltages can be extracted), and
the voltage transfer curves.

A typical example of this type graph is illustrated in Figure 20.

On this plot the extraction of the n channel threshcld voltage, p channel

threshold voltage, and peak current are demonstrated.

w.'iu ‘iﬁ‘ o .
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VI. EXPERIMENTAL RESULTS
Using the experimental apparatus and procedures described in the
previous section, data was recorded before the first radiation exposure
and after each irradiation. As previously stated, this data consisted
of supply current, and output voltage for each inverter; the plots of

this data are given in the Appendix. From these curves both n and p

channel threshold voltages, as well as peak supply current were extracted.

Figure 21 summarizes the threshold voltage data for the RCA CA4007
bulk silicon devices. Two inverters (labeled A and B) on each of three
chips are characterized in this Figure. Notice the p channel device
threshold voltage shows an average increase in magnitude of 15% at a
radiation dose of 5 x 105 RADS; the n-channel device threshold voltage
decreases an average of 24% for the same exposure. The effects of low,
high and no gate bias during irradiation do not seem significant in these
results. An interesting observation is that the B inverter on each chip
shows a relatively large shift in p channel threshold voltage (average
of 0.52 volts) compared with the A inverter (average of 0.23 volts). The
n-channel threshold shifts are comparable on both A and B inverters. The
overall average change in threshold voltage resulting from 5 x 105 RADS
proton irradiation is 0.38 volts for the p-channel device and 0.31 volts
for the n-channel device. The value of the peak current remains approxi-
mately constant throughout the radiation exposure, ind’cating the n and
p channel thresholds are shifting approximately at the same rate. If

the p-charnel threshold shifts faster thah'the n-channel threshold, the
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peak current will increase with radiation exposure, assuming the trans-
<onductance does not change appreciably. The coiverse of this is also
true.

Figure 22 summarizes the threshold voltage data obtained from
measurements on RCA TCS-071 silicon or sapphire devices. Again two
inverters on each of three chips were characterized. The observed
incease in magnitude of the p-channel threshold voltage resulting from
a radiation dose of 5 x 105 RADS is an average of 9%; the corresponding
decrease in n-channel threshold voltage is seen to be 17%. The RCA
silicon-on-sapphire technology appears to offer an improvement in proton
radiation hardness over the RCA bulk silicon technology by a factor of
about 1.5. The average change in n-channel threshold voltage for these
devices at 5 x 105 RADS is 0.20 volts, and for the p-channel device,
0.11 volts. The peak supply current for these SOS inverters was
approximately constant during the radiation exposure, but about 3 times
the magnitude of that for the CD4007. Again, the bias condition during
irradiation appeared to have nenligible effect.

The C-015 devices fabricated by NASA/MSFC using a bulk silicon pro-
cess showed less radiation hardness compared to the RCA devices, but
this was not unexpected, as these devices were never designed with the
intention of utilization in a radiation environment. Two C-015 chips
were irradiated and characterized as shown in Figure 23. The p-channel
devices at 5 x 105 RADS showed an average increase in magnitude of

threshold voltage of 296%; the n-channel threshoid decrzased by 78% at

T T T N T T TR ANt D e tn sttt romasrantnma. b o

a3

the same radiation dosage.

was 1.80 volts, and 4.15 volts for the p-channel device. Other researchers

The average shift in n-channel threshold
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have used the criteria that a shift in threshold voltage of 40% repre-
sents failure of the circuit. Using this guidelire, these C-015 cir-
cuits failed at a total radiation dose of about 5 x 104 RADS.

The average n and p channel threshold voltage shifts for each
device type at 5 x 105 RADS are summarized in Figure 24. The peak
supply current is plotted as a function of radiation dose for a number
of inverters in Figure 25; the negative slope of the curve for the C-015
indicates the p-channel threshold voltage is changing more rapidly with

radiation than is the n-channel threshold.
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VII. CONCLUSIONS AND RECOMMENDATIONS
The various radiation environments of space were examined, including
the Van Allen Belts, the solar wind, cosmic radiation of deep space, and
the trapped radiation of Jupiter. It was shown that proton radiation
is the dominant type of radiation to be dealt with in space (assuming
minimal shielding to reduce electron flux), and the 1imiting radiation
factor in spacecraft design.

The Dynamitron proton accelerator at Auburn Universiiy was used to

produce a 2 MeV proton radiation environment. Three types of CMOS inverters

were characterized after irradiation,the RCA CDA007, RCA TCS 071, and
NASA/MSFC C-015.

The RCA TCS-071 SOS technology offered about a factor of 1.5
improvement in radiation resistance to proton damage over the RCA bulk
silicon process used for the CD4007. At a proton exposure dose of
5 x 10° RADS the average threshold voltage shifts for the n and p channel
devices for the CD4007 were 24% and 15% respectively; 17% and ¥% for the
TCS-071. These threshold shifts were not enough to render the inverter
inoperative and extrapolation would indicate both these devices would
operate well into the 106 RAD range.

The NASA C-015 device, however, showed substantially less
radiation tolerance. The same exposure dose of 5 x 105 RADS yielded an
average p channel threshold voltage shift of 296%. These inverters were
judged inoperative at a radiation dose of about 5 x 104 RADS. Even with
100 mils of aluminum shielding, this represents the proton dose that would
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have been received by the electronics in the Explorer 51 satellite after
only one year. Clearly, the NASA/MSFC C-015 devices characterized are
not adequately proton radiation resistant, and are not suited for pro-
longed space flight missions. It is reconmended that an effort be under-
taken to improve the rad-hardness of these devices. A study of the
literature has revealed tha. certain processing changes can produce more
radiation tolerant CMOS structures, such as

1) Making the gate oxide thin [31]

2) Cleanliness and contamination control [32)]

3) Using dry oxide [31]

4) Chrome doping of oxide [33]

5) Control of high temperature processes [31]
as well as others.

The present NASA/MSFC process, as detailed in NASA Technical
Memorandum 78188 entitled "The MSFC Complementary Metal Oxide
Semiconductor Process Handbook," was evaluated for steps inconsistent
with radiation hardness. The step considered a principle candidate for
improving the radiation hardness of these devices was determined to be
the gate oxidation.

As mentioned above, gate oxide thickness is a major contributor
to radiation susceptibility. It has been shown (31) that the radiation
degradation is proportional to the cube of the oxide thickness.

Therefore the following specific process modifications are proposed
in an attempt to improve the rad hardness of the MSFC devices:
a) Under section G, number 4, decrease gate oxide thickness from
1100A to 800R. A value of 8008 is about the minimum thickness
consistent with a 15 volt breakdown requirement.

© o v 35 T A
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b) The gate oxidation should be changed to one of the following two
alternatives:
i) Grow oxide in dry oxygen at 1000°C in a tube cleaned in KC1.
or ii) Use existing oxidation process except lower temperature to i
i 8500C. 1
It is recommended that confirmation of the value of these processing ; ;
changes be determined by proton irradiation in the laboratory and ‘
device characterization.
| The structure of CMOS devices designed for rad hardness should
i include guardrings. The circuit design of CMOS devices for rad hard
!
|

applications is generally not different from that for normal applications.
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APPENDIX I

In order to enhance the evaluation of the radiation tolerance of the
NASA/MSFC devices additional data was taken. Nine additiona' C-015
integrated circuits were irradiated with protons and key device para-
meters measured. The change in the n-channel MOS device threshold volt-
age and p channel threshold voltage was evaluated and compared to the
previous measurements (data shown in Figure 23). The change in n-channel
threshold voltage versus radiation for these additional chips for the
cases of no bias, low bias, and high bias conditions are shown in Figure
I-A. Notice that the previous data indicated a decrcase in n channel
threshold voltage of 78% at 5x105 RADS whereas the average reduction in
n channel threshold voltage for this new lot is minus 74% for the case
of low bias. The change in threshold voltage for the case of no bias
is minus 81% and for high bias minus 100%. These changes are very
similar to those values obtained previously and shown in Figure 23.

The changes in p channel threshold voltage with radiation were
measured on the same 9 C-015 chips and this data is shown in Figure I-B.
For the case of low bias the p channel threshold voltage increased 227%;
for the case of no bias the increase was 155%, and for the case of high
bias positive 154%. Again these values are comparable to those shown
in Figure 23.

The p channel devices showed leakage currents less than 0.1 micro-
ampere all the way through 5x105 RADS. The n channel devices however

5 RADS due to the threshold

showed substantial leakage beginning at 10
voltages nearing zero. These data for the 9 additional chips are shown

in Figure I-C.
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