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ABSTRACT

A computer program based on state-of-the-art compressor
and structural analysis technologies applied to bladed shrouded
discs is described. It is operational in NASTRAN Level 16.

Problems encompassed include aeroelastic analyses, modes,
flutter and approaches to forced vibration.

Mathematical extensions from the tuned disc to mistuned

disc analyses are presented.
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SUMMARY

The objective of the work described herein was the delivery
and demonstration of a computer program for the analysis of
aeroelastic and dynamic properties of tuned and mistuned bladed
discs.

The scope was defined as:

0 aerothermoelastic "design", "analysis" and

transient characteristics of tuned bladed

discs.

0 modes, flutter, subcritical roots and forced

vibration of tuned bladed discs.

0 modes, flutter, subcritical roots and forced

vibration of mistuned bladed discs.

The program was to use state-of-the-art structural and
aerodynamic technologies, be coded and delivered in NASTRAN Level
16 and demonstrated on the UNIVAC 1100 System at NASA/Lewis.

"The currently delivered program accomplishes -

0 aerothermoelastic "design" and "analysis" of tuned i

!

bladed discs.

0 modes, flutter and subcritical roots of tuned
bladed discs.
Mathematical formulations of modes of mistuned bladed discs
were developed but not programmed. Approaches to flutter and
forced vibration of mistuned discs, and transient aerothermo-

elasticity were also formulated.
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The bases of the current capabilities use three aerodynamic

theories:

0 a three-dimensional axial flow compressor code.
0 a subsonic two-dimensional unsteady cascade theory.
0 a supersonic two-dimensional unsteady cascade theory.

Additionally, three existing Rigid Formats in the NASTRAN
general purpose structural analysis program have been used:

0 Statics with Differential Stiffness
0 Normal Modes Using Cyclic Symmetry

0 Modal Flutter Analysis
The program consists of three principal parts:
0 Blade-mesh generator,

0 A Rigid Format 16 for Static Aerothermoelastic Analysis.
0 A Rigid Format 9 for Cyclic Modal Flutter Analysis.

Program documentation consists of updates to NASTRAN Theoretical,
User, Programmer and Demonstration Example Manuals. In addition,
aeroelastic, modal and flutter analyses of a NASA/Lewis Rotor

12 were performed.

Limitations of current cascade theories related to mistuned

systems are discussed.
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INTRODUCTION

The jet engine designer, striving for improved performance
of turbomachinery components is finding, as did the aircraft
designer, that aeroelastic effects on performance, stability
and 1ife are of ever-increasing significance. In seeking
higher thrust to weight and volume ratios, Tower specific
fuel consumption and longer l1ife, he is using higher tip
speeds, temperatures and pressure ratios, fewer and larger
stages, thinner components and exotic materials. His problems
are further compounded by the complex aerodynamics of the axial
flow machine, the deviations (mistuning) from perfection of the
jdeal cyclic structure, and the interactions of multiple stages.

There is little wonder that, compared with the systematic
approaches routinely exercised for flight vehicle aeroelastic
analyses, the engine field exhibits a high degree of empiricism
and a relatively piecemeal approach. The panel discussion
terminating the workshop of Reference 1, illustrates -this well
with comments from panel members such as:

- "What this field of aeroelasticity is all about"...

- "No longer able to decouple modes from aerodynamics".

- "A well-described structural model...as part of a

series of aeroelastic calculations...".

- "Aerodynamics... and structures linked together (as)

‘one does (in) 1ifting surface theory".
-~ "We're going to be in a business where you really

have to marry elasticity in all its complications



with aerodynamics and a good deal of its complications”.

Progress in the analysis of turbomachinery aeroelastics
(static and dynamic) is principally constrained by the fluid
dynamics aspect. Reference 1 was heayily weighted with
papers on steady and unsteady, unstalled and stalled, transonic
and other flow regimes. Since then, reviews such as those of
References 2-6 have concentrated largely on this aspect.

In November 1978, NASA/Lewis conducted the workshop introducing
the establishment and program of the new Internal Computational
Fluid Mechanics Group. This has far reaching plans for the
analytical development and experimental evaluation of fluid
mechanics and its application in turbomachinery design and
analysis methodology. ‘

| However, the tremendous strides made in finite element
techniques of structural mechanics (and eventually of fluid
mechanics?) are directly applicable to the required methodology.
General purpose finite element structural programs are legion
and will be typified for obvious reasons by the NASA sponsored
NASTRAN Program {(Reference 7).

From both fluid and structural aspects, the cyclic geometrit
nature of bladed discs is one feature affording some analysis
simplification. Indeed the NASTRAN program jtself (Reference 7),

has special capability in this respect. Later
developments of a related nature were References 8 énd 9.
Advantages of this feature should be retained in a general
purpose capability. Even here, however, structural and geometric

tolerances result in significant deviations in sector-to-sector



dynamic properties, the so-called MISTUNING effect.

This has received attention (References 10-18) mostly in
the context of modal analysis and forced mechanical vibration.
No significant literature appears to exist on the flutter
of mistuned systems per se, though the problem is very real.

This report discusses the details and application of a
computer program based within the NASTRAN Level 16 capability
for analyzing aeroelastic problems of bladed shrouded discs
in compressible flows. It was evolved under NASA/Lewis Contract
NAS3-20382 for "Finite Element Modal Analysis 0f A Bladed Shrouded
Disc".

NASA recognized a need to properly couple structural and
aerodynamic aspects of the system for the study of static and
dynamic (flutter) stability, and modal and subcritical forced
vibration characteristics in a practical computer program,

While generally constraining the program to étate—of-the-art
aerodynamics (2 dimensional linear cascade theories),

structural and aeroelastic techniques, NASA alsoq required that the
mistuning problem, in general, be addressed. The work encompassed
definition, development, documentation, delivery and demonstration
of a computer program suitable for systematic studies of
aeroelastic phenomena of bladed discs.

The generic problem spectrum consists of three (3) groups:

(1) “Steady" aeroelastic performance .

(2) Dynamics of ideal cyclic (tuned) systems.

(3) Dynamics of real cyclic (mistuned) systems.



In (1) the elasticity of the system causes changes 1in
geometry and, hence, in performance, with differential effects
on the system stiffness, which can affect problem groups (2)
and (3). Thus static aeroelastic solutions should precede and
contribute to tuned system dynamics studies. The mistuned
systems (3) are perturbations of the tuned system (2). Proper
understanding of tuned system behavior should guide approaches
to and understanding of problem group (3).

This interdependence makes it desirable to construct a
computer program approach that can progress logically through
the whole spectrum.

At the same time, as specific facets of the problem will
develop, such as cascade theories, a modular program architecture
is desirable to enable easy updating, improvement and expansion
of the program. |

The basic steps necessary are then;

(1) Adequate mathematical formulations of flow dynamics,
elasticity and vibration and thermal conduction
processes in an appropriate integro-differential
continuum form.

(2) Discretization of (1) in space and time.

(3) Algorithm definition and computer program creation
for practical (time, cost) solutions.

Two assumptions generally acceptable in these problems are

retained:

(1) That aerothermoelastic problems may be satisfactorily

solved assuming constant speed.



(2)

That vibration and flutter problems may be
satisfactorily solved at constant speed and mass flow

rate about mean steady state properties,

The present capability has been formulated within NASA

constraints and guidelines principally related to:

(1)
(2)

(3)

(4)
(5)
(6)
(7)

In the

Use of state-of-the-art techniques.
Linearized two-~dimens$ional steady and unsteady
cascade theories (the steady theory implemented

1s actually three-dimensional),

Use of substructuring techniques (as contrained

by NASTRAN Level 16).

Unconstrained bladed disc modal spectra.
Perturbations in blade dynamic properties,
Simplified thermal considerations.

Initial operational capability within the NASA/Lewis
NASTRAN Level 16 Program on the UNIVAC 1100/40
Computer, |

main text of this report, details of the problem

spectrum and formulation are given, The integration of current

features of NASTRAN with available steady and unsteady cascade

and forced

~aerodynamic ‘theories for application to aerocelastic, flutter

vibration problems is discussed, Developments in

mistuned modal analyses are outlined with details in Appendix E.



Results of some specific applications to a NASA rotor example

are deécribed although the rotor is too stiff to exhibit large
aeroelastic effects. Finally, the current status of the program

is related to desirable additional capabilities and recommendations

for further work are made.



General Approach

The principal objective of this work was to provide a
coherent computational capability for the solution of practical
bladed disc aeroelastic ("“static") and dynamic problems. NASA
recognized particularly flutter and engine order forced vibra-
tion, but required that aerodynamic, structural and thermal
technologies be integrated into a practical computer program
for general aeroelastic problems, State-of-the-art aerodynamics
and structures analytical techniques were to be implemented.
The program was to be delivered for operation on the NASA
UNIVAC 1100/40.

In particular, the following guidelines were suggested:

0 Aerodynamic steady and unsteady pressures would
be based on existing linearized two-dimensional

cascade theories used in a strip theory manner

0 The "mistuned" nature of real bladed discs was
to be recognized, in that the dynamic properties,
sector to sector, might vary because of minor

geometric and material randomness

o The program would include automatic finite

element mesh generation

o No boundary layer heat transfer was to be
considered (equal local flow and blade

surface temperatures could be assumed)



o Comprehensive input data including mesh,
material, element types, temperatures and

connections would be possible

o Various permitted boundary conditions of

shroud and blade root should be considered

0 Grayity, inertial, centrifugal, pressure and

temperature (equivalent) loading was possible

o Comprehensive numerical and pictorial output

was required;

o The program would be applied to a NASA

specified rotor example

o Comprehensive documentation and demonstration
of the program at a NASA three day seminar were

specified,.

Subsequent to proposal submission, it was determined that
the program would be accomplished by the development of appro-
priate updates to the NASTRAN Level 16 Program. Relevant items
listed in the guidelines above such as element definitions and

output options were constrained to that version.



Problem Spectrum

In solving the range of problems including static aero-
elastic, modal, stability and forced yibration of tuned and
mistuned systems it was recognized that certain interdepen-
dencies existed. These led to the definition of a logical
progression of problems and a related sequence of computational
algorithms.

Figure 1 illustrates the problem spectrum in terms of
three major groups of subproblems and the main thread of
interdependence.

Group A, the Aerothermoelastic problems, consists of three

problems in which structural dynamics and mistuning play no part.

The first problem Al, is that of designing a blade which,
under load, will exhibit a specified performance at a single
design point on the compressor map under equilibrium thermal
conditions,

The second problem A2, is "off-design" analysis
of the performance in terms of pressure ratio (PR) and mass
flow rate 1@) of the e]gsjic blade along constant speed charac-
tefistics.:

Strictly, two "elastic" maps are definable, one for a
"cold" blade and one for a thermally equilibrated blade. These
will generally be very similar,

In cases where they are not, a third problem, A3, may be
of significance in defining the transient performance during

thermal equilibration,
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FIGURE 1+ MAIN PROBLEM SPECTRUM

Aerothermoelastic Tuncd System Mistuned Systems
Problems ' Dynamics Dynamics
(Constant Speed) (Constant Speed, Pressure (Constant Speed, Pressure
Ratio and Flcow Rate ) Ratio and Flow Rate)
A.1 "As Manufactured" > ™1 T.1 In-Vacuo Modal Analysis| * ~—» M.l In Vocuo Modal ]
Shape at the Desigr Point Analysis
- . T.2 "Running" Modal ¥ _
A.2 O0ff-Design Point Analysis . M.2 "Running" Modal . 8
Performance Analysis : Analysis
, ‘T.3 Flutter Boundaries *
A.3 Transient A ’ M.3 Flutter Boundaries . ¢}
Aerothermoelastic T.4 Sub-critical *
Performance ' Eigenvalues M.4 Sub-critical 6
Eigenvalues
T.5 Forced Vibration )
Response : : M.5 Forced Vibration Response ?
Elastic and geometric | Basis for Perturbation
(differential) stiffness and Fourier Expansion  —————d
effects. Techniques
NOTES:
1. After design point A.1, A.2 gives 2. T.1, 1.2, are functions of 6. M.1, M.2 use the modal
the elastic system *Map" within selected operating points infornation from (.1, 7.2,
aerodynamic program limitations on the Compressor Map. 7. M.3, M.4 use T.3 harwonic
3, T.3 uses modes from T.2. aerodynamics and Fourier
expansion techniques.
4, ¥;gnu%e§ harmonic aerodynamics (Cascade theories limit
bohese validity)
5. T.5 uses complex eigenvalues 8. M.5 uses complex eigenvalues

from T.4. from M.4.
: 9, * - Operational
€ - Methods Formulated
A - Approach Conceptualized.



This transient aerothermoelastic problem capability is
not currently operational and is of uncertain practical
significance,

The second major group (T) of subproblems, contains the
dynamics problems of perfectly tuned cyclic bladed disc
assemblies. Elastic and differential stiffness properties
developed from Group A problems are utilized in this group.

The first prob]ém T1, relates to in-vacuo modal analysis
requiring the consideration of vibrational inertia terms and
centrifugal stiffening effects (the latter from Group A).

The second problem, T2, the “running" modal analysis involves
a set of "pseudo-modes" and frequencies which form a suitable
basis for subsequent problems T3-5, In these “running" modes,
the stiffness effects of thermal and differential pressure
loads are included in the eigenvalue problem. Unsteady
aerodynamic terms are omitted.

The modes from T2 are used as a basis for problem T3, in
which unstalled flutter boundaries are determined., This
involves the use of existing unsteady cascade theories for the
compilation of generalized air forces as a function of
reference reduced frequencies, Mach numbers and interblade phase
angles, Actual flutter boundary determination involves an |
interpolation process on output results, The complexity of
this process is dependent on the-mass ratio of blade to air.
For “high mass ratio" compressor stages, little interpolation

is necessary since the modal frequencies change 1ittle over



the map. Flutter of "Tow mass ratio" stages (e.g. Targe
high by-pass fans) may resemble wing flutter and require
significant interpolation.

A Timitation on the validity of most two-dimensional
cascade theories must be mentioned here. They are usually
developed in terms of spacing, stagger, Mach number, and reduced
frequency and interblade phase angle for various chord "modes".
These modes generally include rigid body heave and pitch, and
flexible chordwise motions. However, the theories generally

assume that all chords perform equal amplitudes of motion.

This, howeyer, is only true for bladed disc modes of zero
circumferential harmonic number. Their use for flutter of
modes of non-zero harmonic number is not strictly justified,
However, in Appendix E, a plausible argument is given for
extending the applicability of current theories in a simple
manner to account approximately for non-zero harmonic number,
This approximation could be adequate until studies show the
necessity or otherwise of formal extensions of the theories.

At subcritical conditions, cascade theories may be used
to find subcritical eigenvalues (T4) and define complex
aerodynamic transfer functions for ﬁse in periodic or random
forced vibfation problems.

The postulation of external forcing functions and the
generalization to the tuned system modes is a prerequisite
to the forced vibration response problem T5. For periodic or
random forcing,valid subcritical eigenvalue bases may be

deduced from T4, For transient forcing, such eigenvalues
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are not strictly valid but may be used as a reasonable
approximation. (The strictly correct approach,not.programmed,
is to determine the complete subcritical transfer function in
the frequency domain and then use Fourier Integral Trans-

formation and Convolution or Duhamel integral techniques.,)

The prbper posing, development, solution and understanding

of tuned system problems is regarded as a prerequisite to the
posing of the same problems for mistuned systems. Any real
bladed disc assembly is a "perturbed" tuned assembly. By
"perturbed" is meanta state in which the characteristics of
individual sections of the real assemb]y vary by a "small
magnitude" from the mean characteristics of all sections.
In the mathematical sense, this means that characteristics
of the tuned system are a good basis for estimating the
characteristics of the mistuned system, Such an approach
has very large advantages,some of which are as follows:

o Standard mathematical techniques of spectral |

analysis and Fourier expansion may be used for

structural and aerodynamic features

o Standard cascade aerodynamic theories may be

exploited (within 1imits - see Appendix E)

o Smaller and more economical modal and flutter

analyses may be posed

o Possible advantages of specific types of mistuning

arrangement can be more easily explored and exploited

13



from flutter and forced vibration points of view.

With this basis in mind, the third group of subproblems
(Group M, that of the dynamics of mistuned systems) is the
same as that of the tuned system problems (Group T).

Figure 2-A-C gives a qualitative description of the relation-
ship of tuned problems to mistuned problems of modes, flutter
and forced vibration.

The tuned system modes consist of families of
distinct harmonic number "k"., (The kK = o modes are simple,
the k # o modes are double roots.)

The modal frequencies are asymptotically related to
"disc alone" and "blade alone" frequencies as sketched in
Figure 2-A, (See Reference 14.) The distribution of a
particular aspect of mistuning (e.g. a local blade mass or
stiffness coefficient) may itself be expressed as a circumferen-
tial harmonic series. |

Ewins, (Reference 14) has shown thaflany component of
such a series is capable of splitting thg roots of two associated
harmonic families of the tuned system, F}gure 2-A gives an
example of the root splitting of a 30 blade disc by mistuning
orders of 2, 4, 6......14. Each mistuned mode will be closely
expressible as some combination of tuned modes of similar
frequency. While this is useful explanatory knowledge, it is
of limited practical significance because in a real mistuned
system, the multiplicity of mistuning aspects (i.e.sector
local masses and/or sector local stiffnesses) will all have their

own spectral distribution.

14
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b. FLUTTER & SUBCRITICAL ROOTS |

TUNED SYSTEMS

1. Only modes of the same harmonic number can coup]e
to cause flutter.

2. High harmonic number flutter is probably less
significant than low harmonic number? (See Appendix E)

3. Current unsteady aero theories (cascade) are valid
only for k = 0.

4, Current theories are probably reasonable provided

k. 1. (Adjacent blade motions are of approximately

the same amplitude.)

5. A plausible approach to extending the use of current
theories to general k # 0 is given in Appendix E.

6. The plausibility of subcritical dampings depends on
the proximity of the roots to the flutter boundary.

MISTUNED SYSTEMS

1. Generalized aerodynamic force coup11ng can only arise
from 1like harmonic components (k) in each mode, i.e,
takes the form

0s = > T (2, podg
Blade

Blacles

Terms from . by orthogonality,

Z . .
k)l 'k, J

2. Valid only for harmonlc components such that k.
(but see Appendix E) n

‘3. Subsequent flutter solution is of same form as
for tuned systems,

4. Should aeros be developed for k $ 0 - see
general discussion.

FIGHRE 2 - CONTINUED 16



c. FORCED RESPONSE
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Thus, in general, all tuned modes will be split by the
cumulative effects of the many different mistuning distributions.
Further discussion of the exploitation of these cﬁaracter-
istics is reserved for Appendix F , in which the mathematical
formulation of the mistuned modal problem is posed.
Thus mistuned modes problems M1 and 2, are developable
in. terms of tuned mode combinations. The flutter problem for
mistuned modes M3 may now exploit generalized aerodynamic forces
calculated for tuned system flutter using the superposition
principle on the unsteady aerodynamic coefficients for various
harmonic numbers, (Limitations on the validity of such non-
zero harmonic number aerodynamics were mentioned earlier.) (Figure 2B)
Again, for periodic and random forcing, valid subcritical
eigenvalues (M4) may be determined as a basis for forced
vibration estimates (M5). Transient forcing response could
be approximately determined assuming such subcritical eigenva]ues
were valid, or much more complex Fourier integra]/Duhame] |
techniques would have to be developed (as mentioned earlier
for tuned systems). |
The more complex characteristic of mistuned disc forced
vibration is illustrated in Figure 2c. Since each mistuned
mode may contain many harmonic orders of motion, any mode may
be excited effectively by more than a single engine order
of harmonic excitation. (Reference 14,) Again, however,
the use of superposition principles are admissible,
In summary, a logical sequence of aeroelastic, and tuned
and mistuned dynamics problems, and approaches to their solution

has been qualitatively described.
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The relation of structural, aerodynamic and program

ingrédients to NASTRAN is related in the next section.
Program Basis

The essential ingredients for the required capability |
are:
*0 An established finite element structural
program capable of modification and

expansion

o A steady-state compressor stage analysis

program
0 Aeroelastic solution algorithms.

o Subsonic and supersonic two-dimensional

cascade theories

*o Modal, flutter, and forced vibration

algorithms
o A practical "mistuning” problem formulation.

NASTRAN offered the (*) capabilities with the additional
advantage of a cyclic structure analysis capability. It was,
therefore, proposed and approved as a basis at Level 16, which
was the current NASA Lewis operational version,

Reviews of available compressor stage and cascade analysis

programs were made (Table 1 ). (References 19-25,)

19



NAME ' TYPE ORIGINATOR SOURCE REMARKS/REF.
1. NASTRAN Level 16 General Purpose R. H. MacNeal COSMIC NASA Lewis Level 16.
Structural R. G, Schwendler Implemented at Bell
Analysis et.al- Ref. 7.
2. - Axial Compressor R. M. Hearsey N.T.I.S.: Reference 19.
Design A. J. Wennerstrom
3. MERIDL, Axial Flow T. Katsanis NASA/Lewis No Pressures.
TSONIC Calculations W. D. McNally NASA-TN D-7343
" Ref. 20.
4, ROTOR Blade Transonic J. W. Kurzrock WPAFB & AFAPL-TR-73-69
Flow Analysis and A. S. Novick pDAD of V.I&II
G.M, Ref., 21
5, JONES Unsteady B. M, Rao Texas Completed con-
MRULE Subsonic 2-D W. P. Jones AM U, currently with
Cascade this work.
Ref., 22
6. UCAS Unsteady J., J. Adamczyk NASA/Lewis Completed con-
Supersonic 2-D currently with
Cascade this work,
Ref. 23,
7. - Unsteady R. A. Delaney D.D.A. of Cascade Research
Characteristics P. Kavanogh Gen. Motors Program., Ref. 24.
See Trans ASME, July
1976. Volume 98,Series
8. - Unsteady J. M. Verdon P & W AIAA Journal, V. 12,
Supersonic No. 2, Feb, 1975,
2-D Cascade Ref., 25,
Table 1. Extant Technology Programs
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In attempting to select suitable approaches/programs it became
obvious that a number of candidates in the literature were of

a proprietary nature, others suffered from inadequate documenta-
tion problems or were likely to be incompatible with the constraints
imposed. Those finally selected and approved were Reference 19

for steady aerodynamics and References 22 and 23 respectively

for unsteady subsonic and-supersonic cascade aerodynamics.

General literature reviews of tuned and mistuned system
dynamics were conducted (References 8-18.) No Satisfactory
general development for mistuned problems existed. It was,
therefore, developed and is described both quantitatively and
in detail in Appendix F.

Finally, a mesh generation capability suitable for interfacing
with the front of the program was selected from the "Analytic
Meanline Section” of the program of Reference 19,

The basic structure of the overall program was now definable
in terms of these elements and the problem spectrum previously
described.

The genaral features are indicated in Figure 3. Blade mesh
generation and steady state analysis are abstracted from Reference
19. When these capabilities are combined with the NASTRAN Rigid
Format No. 4,"Statics with Differential Stiffness", a modified Rigid
Format to conduct aeroelastic design and analysis is constructed.
This contributes a differential stiffness matrix to the NASTRAN
cyclic modal analysis capability, which becomes part of é second

Rigid Format covering Modes & Flutter. The two cascade theories are
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used to determine chordwise "Strfp Theory" generalized matrices
for heave, pitch and Fourier series modes. These are transformed
appropriately at each spanwise station to local mode chordwise
forces which are then integrated spanwise for structural mode
generalized aerodynamic forces. The tuned flutter problem is now
formulated and solved using modifications to the existing NASTRAN
Flutter Rigid Format.

External to this Rigid Format, subcritical modes can be used
with suiﬁab]y developed generalized forcing functions in the existing
NASTRAN forced vibration Rigid Format.

Mathematical development of mistuned system modes'is presented
in Appendix F based on tuned mode expansions of different harmonic
numbers. Appropriate quadratic transformations of tuned system
mode unsteady aerodynamics may then be used to determine generalized
forces for mistuned flutter calculations. These can use the same
algorithm used for tuned flutter. Similarly, external forces

generalized for tuned modes can be transformed for mistuned modes

“and the forced vibration problem similarly attacked.

It will be recalled that aeroelastic analysis and tuned dynamics
are all operational, transient aeroelastic in abeyance, and mistuned
dynamics genera]]y developed but not programmed.

With respect to the guidelines listed ear11er, the following
observations are made:

o A more sophisticated steady analysis program
than cascade theory has been incorporated.
o The required ranges of input and output options

and loading and boundary conditions are accommo-

dated.
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A11 necessary mistuning analyses have

been developed.

A plausible approach to using current cascade
theories for non-zero harmonic modes and mistuned
dynamics has been proposed.

Documentation and demonstration have been

accomplished.

24



TUNED SYSTENMS

General

Bladed discs of axial flow compressors and turbines
in which geometry, mass, stiffness and damping properties repeat
exactly from representative sector to sector‘are defined as
tuned systems. The problem/solution formulation for the static
and dynamic (natural and forced) response of these tuned structures
is greatly simplified by this "cyclic symmetry" (see Appendix B ),
from both aspects of finite element idealization and computational

efforts.

As discussed previously, the solution of tuned system
problems forms a good basis for thé solution and understanding of
similar problems of real (mistuned) systems.

The discussion that follows is devoted to the problems of tuned
b]ade? discs, and deals specifically with;

1. Static aerothermoelastic'design/analysis of

compressors |

2. Cyclic normal modes analysis of compressors

and turbines

3. Flutter and subcritical roots analysis of

compressors and turbines

4. Forced vibration analysis of compressor and

turbines, and

5. Transient aerothermoelastic analysis of

compressors,
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Static Aerothermoelastic Design/Analysis

The bladed discs of axial flow compressors, under steady
operating conditions, are subjected to centrifugal, thermal
and aerodynamic loads. These loads depend on the operating
conditions and the shape of the bladed disc, and cause deforma-
tion of the elastic structure. This interdependence of geometry
and loads defines a (non-linear) problem of determiring the
equilibrium deformation and operating conditions of the flexible
bladed disc.

Two distinct problems can be stated:

1. The problem of arriving at an "as manufactured" blade

shape to produce a desired, design pressure ratio at given

design point fiow rate and rotational speed. This will be called

the 'design' problem. (It is not strictly "well-posed".)

2. The subsequent problem of analyzing the performance
of the "as manufactured" geometry at off-design operating
conditions of flow rate and speed. This will be called the
'analysis' problem.

An operating point on a compressor map defines a distribution
of centrifugal and aerodynamic pressure and temperature loads
on the bladed disc. Under the action of these non-aerodynamic
and aerodynamic loads, an iterative approach to the bladed

disc 'design' and 'analysis' problems can be expressed by

(ke + i, k4 (u)1 1wy = PMy + PR ()1, (1)

where i3 = 31 represents the 'design' and 'analysis' problems

respectively.
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The non-linear dependence of aerodynamic loads {PA} and
differential stiffness [Kd] on the elastic deformation in
equation (1) requires an iterative soluticn procedure with
the differential stiffness matrix [Kd] and the aerodynamic
load vector'{PA} being redefined as functions of the preceding
sb]ution step.

A solution procedure closest to the one required has been
the basis of the NASTRAN Level 16 Displacement Approach Rigid
Format 4, "Static Analysis with Differential Stiffness" (Ref. 7),
with the express limitations being,

1. i;= +1, and

(2)
2. P (u)1 = {0}

These limitations have been removed in designing and
developing a new Displacement Approach Rigid Format 16 (see
Section 3.21, Ref. 27). A user-determined parameter (SIGN) has
been defined based on the value of i,, thus selecting the 'design'
or 'analysis' problem.

The computation of the aerodynamic pressure and temperature
loads has been accomplished by adapting and implementing the
computer code of Reference 19 in the NASTRAN Functional Module
ALG. A detailed description of the module ALG is given in
Section 4.149 of Reference 28,wh{1e aerodynamic data pertaining
to the blade.geometry and operating conditions for the generation
of airloads are described in Section.1.15 of Reference 27.

The overall (and simplified) solution flow for both 'design'
and 'analysis’ problems is outlined in Figure 4 while the salient

steps in the associated algorithm are shown in Figure 5,
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1. Compressor bladed-disc sector geometry, constraints,
stiffness matrix, non-aerodynamic loads and operating

point (flow rate, speed, loss parameters, e;c.).

A
Pressure 1/ a. "Rigid blade operating
Ratto /ﬂ b pressure ratio.
// 2
// b. "Flexible" hlade operat-
ing pressure ratio to be
/ determined.
] -
Flow Rate
2: Aerodynamic pressure and temperature loads,
{PgA} on undeformed blade, ALG
Y
3. Total loads {Pg} (Aerodynamic
and non-aerodynamic)
\
4, Independent displacements {u,}

{1inear solution)

5. Dependent displacements, stresses, etc,
(linear solution) | C)

" Figure 4, simplified Solution Flow for Static Aerothermoelastic
' ""Design/Analysis" Rigid Format for Axial Flow Compressors
including Differential Stiffness Effects. (continued)



I ®

6. Differential stiffnéss matrix [Kggj
Y

7. Total stiffness matrix [K:L]
A

8. Aerodynamic pressure and temperature

loads {PgA} on deformed blade, ALG

r
9. Total 1oads'{P92} {Aeraodynamic

and non-aerodynamic)

10. Indepéndent displacements {u’}
(Non~1inear Solution)
OUTER INNER
LOOP , LOOP
1. "Dependent displacements, stresses, etc.

"(Non=1inear Solution)

12. No No
Convergenc
——Adjustment to [Kgg] Checks, DSCHK No change in [Kgg]
necessary

&

Figure 4. simplified Solution Flow for Static Aerothermoelastic
"Design/Analysis™ Rigid Format for Axial Flow Compressors

including Differential Stiffness Effects. (continued)

29



13.

I

!

!

Fiqure 4.

| ®

Final disp]acemtnts'{u:}, deformed

blade geometry, stress, etc, + e Point b on the map

operating point pressure ratio and

other flow parameters,

1

( Exit )

Simplified Solution Algorithm for Static Aerothermoelastic
"Design/Analysis” Rigid Format for Axial Flow Compressors

including Differential Stiffness Effects. (concluded) '
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4,

6.

F{PQA} '_

Enter, after the application of constraints and partitioning
to the stiffness matrix and the generation and transformation

of the non-aerodynamic load vectors (centrifugal, etc.), with

p NA

Kaa’ g , G

n’ GO, etc.

Aerodynamic Load Generator

(pressure and temperature)
. ¢p NA, A
{Pg} {Pg } +{Pg }

{Pz} constrain {Pg}

partition

. L -1
{u} = [Kaa] {p,}

ecover .
{ug}JL———————— {“z}
[GmJ! [Go]g etc.

[Kd ] generate [Kgg ({"g})]

99
______ —® OUTER LOOP begins

= (pNA
{Pg} = {Pg }

{Pg]} ='{Pg}
[Kga] consfr?in [Kd ]
partition 99
[ng] = [Kaa] + [Kga]’ (+#) for "analysi" mode of the rigid format

(=) for "design" mode of the rigid format

fPgo} = (P} + Lo}

N Y _ A
{Ug} = {Ug} .....

Figure 5, sSimplified Solution Algorithm for Static Aerothermoelastic

"Desing/Analysis" Rigid Format for Axial Flow Compressors
including Differential Stiffness Effects. (continued)

’

<«———— Undeformed blade geometry +
operating point (flow rate,

speed, loss parameters, etc.)
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_______ Inngr Loop begins
8. {PgA} <——- <«— Deformed blade geometry, revised with

'{ugA}. + operating point.
9. {p.,} = {P_ .} +{p M}
g2 gl g

{pb} constrain P .}

L partition 92
roby = rpb g-1 b
10. {uz} = [Kzgl {Pi}
.. ~¢.by . recover “gnb
11, {ug} - fuy}

[6,1, [6,1s etc.

‘e Ay _igob
tu "t = {ug)

b
e d aip 3 L 3
{ug }= {ug} {ug}

d enerate d ,;.dyyq
[6Kyy] ~<£F——————- Loxgg (Lughld

: d b
Py} = [eKgD fug} + {Pyo)

Ay

v-12. Convergence checks <—— -— {sz}'."{PgIZ}, {ug}

Differential Stiffness Checks

'{Pgl]} +'{Pg

Exit with

a. '{ug}, stresses, etc.

l:igllre 5. Simplified Solution Algorithm for Static Aerothermoelastic
"Design/Analysis" Rigid Format for Axial Flgow Compressors
including Differential Stiffness Effects. (continued)
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b. Final deformed blade geometry-—><::::::>———-{PgA} + operating

+ operating point (flow rate, " pressure ratio and

speed, loss parameters, etc.). other flow parameters.
OR 2. € > g, and adjustment to K;g not necessary.

Shift to the beg{nnihg'df Inner Loop with

a. g} = 1P ) o

OR 3. e » e_ and adjustment to Kgg necessary.

o_—
Shift to the beginning of OQuter Loop with

. . b
a. {ug} ="{ug}

d 5 rod d e :
b. [Kggl = [Kggl - LéKgel

I:igljre 5. Simplified Solution Algorithm for Static Aerothermoelastic

"Design/Analysis" Rigid Format for Axial Flow Compressors
including Differential Stiffness Effects. (concluded)

33



Solution flow (Figure 4) involves the following steps:
1. The geometry of the compressor bladed-disc sector,

its material properties and the applied constraints are used to

~generate and partition the elastic stiffness matrix. Non-

aerodynamic load vectors are formed and operating point flow
rate, speed, loss parameters, etc. are selected.

2. Based on the undeformed blade geometry and the operating
point aerodynamic parameters, the functional module ALG génerates
the aerodynamic load vector.

3. Total loads are defined as a combination of aerodynamic
and non-aerodynamic loads.

4. A linear solution for independent displacements is
obtained based on the elastic stiffness and the total loads.

5. Omitted and constrained disp]acements are recovered,
and stresses, reactions, etc., are obtained.

6. A differential stiffness matrix is derived as a function
of the grid point displacements.

7. A total stiffness matrix is now defined as a sum
(or difference) of the elastic and geometric (differential)
stiffness matrices for the ‘'analysis' (or 'design) problem.

8. The 1inear displacements obtained earlier are used
to revise the blade geometry and a revised aerodynamic load
vector is obtained.

9. Again, the a;rodynamic and non-aerodynamic load
vectors are combined to define the total load vector,

10. A non-linear solution for independent displacements

is obtained based on the total stiffness and the total loads.
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11. Dependent displacements are obtained and data such
as stresses, reactions, etc., are recovered.
12, Convergence of the solution is based on the parameter

e defined by

b

u. {p - P .}
€ = d b gIZ 92 <& (3)
ug {sz}

Upon convergence, the final displacements, loads, and
deformed blade geometry, etc., are output. Otherwise, further
iterations are performed.

A decision to update the differential stiffness matrix
requires a shift to the outer Toop. Only the load vector is
revised in the inner loop iterations.

13. The final pass, upon convergence, through the
functional module ALG yields the "flexible" operating point
pressure ratio (among other aerodynamic data), which can be
relocated on the compressor map.

In the solution algorithm (Figure 5), based on the updated

blade geometry, the aerodynamic loads are computed before, within,

and after the differential stiffness loops. The revision of the
blade geometry, necessitated by the elastic deformations due
to applied loads, is carried out by updating a selected set of
variables that form a Tlist of partial aerodynamic input used to
define the blade geometry. The variables and their revisions
are described in Appendix D. |

It should be noted that the 'design' problem is defined

only at the design operating point of the compressor. It is
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a two-step procedure in that having 'designed' the blade shape,
ji.e., the 'as mhnufactured' shape, it should be 'analyzed' at
the same operating point to confirm the design point pressure
ratio. The 'analysis' problem is a one-step procedure. The
'designed' blade is 'analyzed' at selected operating points
over the compressor map, one at a time, to generate the
'flexible' performance characteristics of the compressor.

For very stiff compressors, the difference in the 'rigid'
and the 'flexible’ performancés and the contributions of the
differential stiffness matrix to the total stiffness matrix
may not be appreciable. However, for low pressure ratio
high flow rate machines such as high bypass fans the
aeroelastic effects are important enough to aiter the
performance significantly. The differential stiffness may
also significantly affect the natural frequencies (and mode
shapes) and, hence, the forced response of such flexible
structures. Accordingly, provision has been made in the new
Rigid Format 16 to save the total stiffness matrix, including
the differential stiffness matrix, for subsequent use in
dynamic analyses.

Examples illustrating the 'design/analysis' problem
and the solution using the newly developed capability are

presented and the results discussed in a later section.
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Cyclic Modal Analysis

The normal modes bf'cyclically symmetric structures are
grouped into harmonic subsets of uncoupled modes. The tuned
bladed discs of turbomachines, due to their cyclic symmetry,
exhibit such modal characteristics. The norma]imodes analysis
of such structures is discussed in Section 4.5 of Reference 7,
and hence, only a summary of cyclic modal analysis, with emphasis
on specific application to bladed discs, is presented here,

The degrees of freedom in any cyclic segment n of the
bladed disc, Figure 6 , may be expanded in a finite Fourier

series as

"w o -3% e . Vs . ) !
{LL’} = {—\Iﬁ + Z iai Cos (W:-' )’-"v) + {E} Siwm (7\_:7 ‘UZ-) + ) '—a'd/ (4)
)2:)

rd

These degrees of freedom can be further classified as being
either within the cyclic sector boundaries, or on the boundaries.
The displacements on the two sides of the sector are related,
in pairs, by the intersegment continuity/compatibility conditions.
An independent set of degrees of freedom {G}K, is, therefore,
defined which, for a givén harmonic number analysis, consists
of both the cosine and the sine symmetric components,'{a}, of
the internal and the side l—only"degrees of freedom in the sector.
The equations of motion in terms of the {G}K set are derived
in Appendix B. The cyclic modal analysis problem of the bladed

disc is then addressed via the real eigenvalue problem,

Corad s TR0 5% o3 (5)
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CYCLIC SECTOR

| - _#7 Internal
Degrees /of
| . ¢t Freedo

Blade

FIGURE 6: CYCLIC SECTOR -INTERNAL AND

BOUNDARY FREEDOMS
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where the mass [P_/l]K and the stiffness [E]K matrices are as
defined in Appendix B. For non-zero harmonic numbers, repeated
eigenvalues of multiplicity two are obtained, and the corres-

ponding mode shapes expressed by the cosine and the sine modal

matrices, [$]kc, and [$]kS (see Appendix B).

The modal columns of [5]kc’ and [5]kS are self and jointly
orthogonal and can be combined to describe the'physical' mode

th

shape of any segment n in the k harmonic motion as

—_" ke s
L] = [(b' Cos (w—l )Lo\.) ¥ [gf] Sinm (’7":. )La)

The bladed disc of a turbomachine normally operates under
significant centrifugal and aerodynamic pressure and thermal
loads. The total stiffness of such structures, including the

elastic and geometric stiffness, therefoﬁe, changes with the

operating point. A more representative set of modal characteristics

is, therefore, obtained with the inclusion of the differential
stiffness (based on the operating point loads) in the cyclic
modal analysis of the bladed discs.

In the present development, this is accomplished by saving
the (operating point) total stiffness matrix at the end of a
static aerothermoelastic analysis.
The saved stiffness matrix is used in the cyclic modal analysis
of the bladed disc at the same operating point.

The effects of the (operating point dependent) differential
stiffness on the natural frequencies and mode shapes of a very

stiff, high pressure ratio compressor or turbine disc may not be

(6)
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appreciable. However, they do assume significance in the

case of flexible, low pressure ratio, high-flow bypass fans.
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Cyclic Flutter Analyses

The problem of determining the complete, unstalled
flutter boundaries of a cyclically symmetric compressor or
turbine bladed disc involves each member set of the series of
harmonic families of its modes, and the effects of permissibie
interblade phase angle, over an adequate set of operating
points (flow rates, speeds, pressure ratios, implied Mach
numbers, etc,) of the performance map. In view of the large
number of variables influencing the definition of the flutter
boundaries, a thorough parametric study requiresia systematic

effective solution procedure,

A capability, therefore, has been introduced in NASTRAN
which, with repeated exercises over the range of variables
involved, will enable determination of the flutter boundaries.
The existing features of NASTRAN for Normal Modes Analysis using
Cyclic Symmetry (Section 3,16, Reference_ 7)and Modal Flutter
Analysis (Section 3.20, Reference 7) have been suitably
combined for the cyclic modal, flutter and subcritical roots
analyses in a new Rigid Format 9, Approach AER@. Provision is
a]so‘made'to include the differential stiffness effects by
using the total stiffness matrix saved from the Static Aero-

thermoelastic Analysis.
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In a compressor or turbine, an operating point
implies an equilibrium of flow properties such as density,
velocity, Mach number, flow angle, etc., that vary across the
blade span. Blade properties such as the blade angle, stagger
angle, chord, etc., also, in general, change from the blade
root to the tip. The resulting spanwise variation in the local
reduced frequency and the relative Mach number must be accounted
for in estimating the chordwise generalized aerodynamic forces
per unit span at each streamline, Integration of these forces
over the blade span yields the blade generalized aerodynamic
force matrix. Since the relative Mach number varies along the
blade span, two two-dimensional, linearized, harmonic cascade
theories QRef, 22 & 23) one each for subsonic and supersonic
flow have been implemented in a strip theory manner along the
blade span, The chordwise aerodynamic matrices for streamlines
with transonic inflow are derived by linear interpolation between

those on adjacent (subsonic and supersonic) streamlines.

The generation of the generalized air force matrices
is an expensive operation and should be judiciously controlled.
In the present development, the aerodynamic matrices are computed

at a few reduced frequencies and interblade phase angles, and

interpolated for others. Additionally, the chordwise generalized

air force matrices are first computed for "aerodynamic modes"

(see Appendix A). The matrices for chordwise structural
modes are then determined from bilinear transformations along
each streamline prior to the spanwise integration to obtain

the complete blade generalized aerodynamic matrix. This permits

42



a change in the structural mode shapéS 0f the same or a different

harmonic number to be included in the flutter analysis without

having to recompute the modal aerodynamic matrices for aerodynamic

modes.

The fb]]owing remarks apply to the simplified problem
flow shown in Figure 7. In this figure, a compressor bladed
disc performance map is shown; although the analysis is equally

applicable to both compressors and turbines.

1. The geometry and the material properties of
the bladed disc sector are defined along with the applicable
constraints. An operating .point is selected near the expected

location of the flutter boundary. The solution procedure examines

if this operating point is a flutter point.

2. Flutter parameters such as densities, interblade

phase angles and reduced frequencies are selected.

3. The chosen operating point implies a certain

spanwise variation of blade and flow properties.

4, A harmonic number is selected for the cyclic modal
analysis. Grid point mass and stiffness matrices are generated.
The stiffness matrix saved from a previous Static Aerothermo-
elastic Analysis can be used instead, and would include the

differential stiffness effects at the steady state operating

point-under consideration.
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FIGURE 7 SIMPLIFIED PROBLEM FLOW:

L 0y @ 4K) ]

CYCLIC MODAL FLUTTER

ANALYSIS OF BLADED DISCS (continued).
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21.1Select or Interpolate

[Q (oK) 1]
hh

v

22, |Formulate Flutter Eqn.%

[th ]

v

23.|Complex e/values and
e/vectors

24,

FIGURE 7.

Harmonic
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sequence:
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Note: These plots
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.examine if the oper-

ating point being
considered is on the
flutter boundary.

CYCLIC MODAL
FLUTTER ANALYSIS OF BLADED DISCS (CONCLUDED).
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5. Constraints and partitioning yield the analysis

set mass and stiffness matrices.

6. Forward cyclic transformation results in the solu-
tion set mass and stiffness matrices for the cyclic eigenvalue

problem, -

7. Eigenvalues and eigenvectors in the solution set

are obtained,

8. Symmetric components eigenvectors are derived by

a backward cyclic transformation.

9. Symmetric components eigenvectors are augmented
by recovering the dependent components, and are prepared for

output if desired.

10. For a non-zero harmonic number, the symmetric
component eigenvectors are partitioned to separate the cosine

and sine components,

11. Based on the number of modes selected for flutter

analysis the modal mass matrix is computed,

12,13. Direct inpdt mass, stiffness and damping matrices,
if necessary, and the constraints thereon define these matrices

for further analysis.

14. The augmented eigenvectors, including any.extra
(or scalar) points introduced for dynamic analysis,are formed

and used to define the new generalized mass, stiffness and
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damping matrices.

15. The streamline generalized aerodynamic matrices

for chordwise aerodynamic modes are generated. The variation

of the relative Mach number from streamline to streamline
dictates the use of either of the subsonic and supersonic

harmonic cascade theories. Such matrices for the streamlines

. with transonic inflow are interpolated. No transonic flow

theory has been currently included.

16, The structural modes are introduced via bilinear

transformations along each streamline to define the chordwise

generalized air force matrices.

17. The blade generalized aerodynamic matrix is derived

by a spanwise integration of the chordwise aerodynamic matrices

for structural modes.

18 —20, The analysis loops through the user-selected

combinations of density, interblade phase angle and reduced

frequency.

21. Based on the (o,k) combination, the appropriate
blade aerodynamic matrix is chosen for the flutter equation.

Linear or surface interpolation, at user's option, is used if

necessary.

22. The generalized mass, stiffness and damping matrices
of Step 14 and the generalized air force matrix of Step 21 are

used to define the modal flutter equations.
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23. The solution to the flutter equations is

sought in the form of complex eigenvalues and eigenvectors.

24, The velocity-damping and velocity-frequency
curves output for each (p,o,k) group are interpreted to

identify flutter points.

25. Based on the relative stiffnesses of the blade and

the hub of the bladed disc sector, a series of harmonic numbers

are investigated before arriving at the flutter boundaries.

Presently, the solution rigid format is designed to accept

one harmonic number at a time,
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Forced Vibration Response

Having solved for the complex eigenvalues of the dynamic

system at some stable operating point, the forced vibration

equations of motion may be expressed as

ME +DE +Kg = F(t) | - (7)
whefe the D matrix represents some form of assumed structural
damping.
A complete formulation of the solution approach will depend

on the source of F(t) which could arise from

0 Specified distributed pressures on the

blade and disc
0 Specified inflow velocity perturbations

0 Mechanical forcing of the disc by specified
forces or displacements.

In addition, the form of any of these sources may be

0 transient
0 periodic
0 random (and here assumed stationary and ergodic)

The solutions of the equations for all such forms of input
are well established and commonly practiced in such areas as
aircraft gust response and are out]ined in Table 2. See for
example Ref, 30.

The most significant additional requirement to curfent
computations is the need for the "sinusoidal" gust function over

the complete range of "gust" reduced frequency, or the equivalent
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vKussner function"for the step gust transient induced aerodynamics

for subsonic and supersonic cascades. Such a capability already

exists in the UCAS subroutine, but not in the CASCADES subroutine.

The latter would have to be extended.

Some related solution a]gorithms for the transient problem
exist in NASTRAN Level 17.5 although when 1ndicial effects are
present the current capabilities are somewhat limited. The
Fourier Transform approach, an alternative to direct numerical
integration, is also available with limitations in Level 17.5.

Although equation forms and solution approaches are well
formulated, specific sources of excitation must be put into
appropriate form. No programming for forced vibration has so far

been incorporated.
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TABLE 2.

EQUATION FORMULATION - FORCED RESPONSE

Pressure (space, t) }

Velocities (spacé, t)

Forces or Displace-
ments as f(space, time)

Solution
Technique

p(t) is weighted with
mode shapes.

Appropriate Harmonic
"Gust" Functions are
weighted.with mode

Forces - same as pressures

Displacements - must de-

Periodic Output
is product of
Transfer Func-

' Aerodynamic Matrix)

Transform of Unsteady

pressure source,

Periodic Response is periodic so rive equivalent forces A
g shapes. ; LTI tion and Input,
:gggscg?glsg]?gbcr1tlcal Otherwise, same as then generalize similarly. over input
° pressure source. spectrum,
Disturbance spatial correlation characteristics are used i Qutput Spectra]
Random to generalize forcing fields with respect to mode shapes. Appropriate : Density is
; Transfer functions must be determined. product of
. _ | IT.F.12 and
Solution then follows - see right, -+ Input Spectral
{ Density
1
p(t)is weighted with Indicial Gust Forces - same as pressures§a) Numerical
' mode shapes. Function is weighted . - _ it Integration of
o with velocities and Displacements - must de- 7y, 0000 piffer-
Indicial response mode shapes rive equivalent forces { ential Equa-
integral necessary. Pes. including indicial terms  tions 03
. { .
Transient (Inverse Fourier Otherwise, same as where appropriate. %

b) Via Laplace
¢t Transform and
sInverse Transe
: form Techniques,
: numerically
t handled.

e e
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Transient Aerothermoelasticity

This effect is relevant, for example, to very high tempera-
ture flexible turbine stages, although the practical significance
is not clear. If static aeroelastic analyses of bladed discs at
the beginning and the end of thermal equilibration showed
significantly different results, then the equilibration process
itself (an aero~thermo-elastic transient event) could be worthy
of solution,

Although this capability has not been programmed, a concept-
ual process is outlined, and an annotated flow diagram of the
transient aerothermoelastic analysis is presented in Figure 8.

1. The auxiliary aerodynamic data and blade mesh generator
can be used to generate element connection (CTRIA2), element
property (PTRIA2), and coordinate (GRID) bulk data cards defininé
the blade geometry. It would also generate aerodynamic streamline
data on STREAML cards and aerodynamic data that can be incorporated
into the input for the aerodynamic 1oad generator (ALG) module in
NASTRAN., (References 26-29.)

2. A steady aerothermoelastic analysis, would 1nitiaily
be executed and aerodynamic temperature 16ads would be punched
on TEMP bulk data cards. These temperatures would represent the

surface temperatures on the blade,

3. The aerodynamic blade surface temperatures must be used
as prescribed temperatures for the transient heat transfer analysis.
To do fhis a large scalar conductor element, Ko’ would be connected
to the blade surface grid point to be enforced and a thermal load

P=TKo applied to the grid point, where T is the desired temperature.
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Auxiliary
Aerodynamic Data
and Blade Mesh
Generator

GRID

CTRIA2 BULK
PTRIA2 DATA
STREAML CARDS

{

Aerodynamic
Data (LOG-5)|

2. STEADY

AEROTHERMOELASTIC
ANALYSIS (R.F.16 )

TEMP BULK
DATA CARDS

.| TRANSIENT

AEROTHERMOELASTIC
ANALYSIS
(HEAT R.F.9)

y

TEMP BULK DATA
CARDS FOR TOTAL
BLADE AT SELECTED
TIME STEPS

TEMP
CONVERGENCE
?

NO

MODIFY STEADY
AEROTHERMOELASTIC
ANALYSIS TO SELECT
TRANSIENT HEAT
TEMPERATURES AS
STATIC LOADS

-

y

3. | GENERATE
CELAS4 AND
DAREA CARDS

OUTRUT NASTRAN TEMP
BULK®* DATA CARDS FOPR
BLADE SURFACE
AERODYNAMIC TEMPERATURES

CELAS4 BULK| _ __| PRESCRIBED TEMPERATURES
DAREA DATA ON THE BLADE SURFACE
TEMP BULK ———| INITIAL CONDITIONS
DATA CARDS SELECTED BY IC FOR
x BLADE INTERIOR NODES
I
'
|
__________ —d

FIGURE 8 Conceptual Approach to Transient Aerothermoelasticity
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The scalar elements would be modeled with CELAS4 elements
and the prescribed temperature would be generated on DAREA
cards,

4, A transient heat transfer analysis, using HEAT rigid
format 9 would then be performed. Input would consist of the
enforced blade surface temperatures via CELAS4 and DAREA bulk
data cards as generated in paragraph 3 and a set of initial
conditions selected by IC on TEMP bulk data cards. The initial
condition temperatures would be on TEMP cards punched from the
last iteration through the transient heat transfer analyses.
Only temperature data for nodes not on the blade surface would
be specif{ed since surface temperatures would be prescribed,.

Output from the transient ana]ysés would be total"
temperatures on the bladed shrouded disk for a set of user
selected time points. These temperatures would be punched
on TEMP bulk data cards by requesting THERMAL (PRINT, PUNCH) in

the case control deck.

5. If the temperatures have converged then the transient

aerothermoelastic analysis is complete.

6. If the temperatures have not converged then a new steady
“aerothermoelastic analysis would be executed. The user would
decide which time step temperatures, from the transient heat
analyses, he wants to use and input them into the steady aero-
thermoelastic analysis and select them in the first static

subcase,
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MISTUNED SYSTEMS

General Discussion

The-cyclic structural nature of a tuned bladed disc
considerably simplifies problem formulation and solution, enables
many existing NASTRAN features to be used, reduces computational
effort and gives basic insight into .the characteristics of such
discs in operation,

No practical b]aded disc is perfectly cyclic, due mainly
to manufacturing tolerances in blades and their attachments.
This can strongly affect dynamic stability and forced response,
particularly when isolated disc and blade frequencies are
similar.

The analysis of mistuned systems is, therefore, necessary
because such systems typify practical assemblies. Their
dynamic, stability and response characteristics must be formu-
lated, analyzed and understood. Mistuning may be even exploited
through selective installation to achieve "optimum" stability
or forced vibration,

Before discussing potential approaches to mistuned system
analysis, a qualitative discussion of mistuning effects on
modes, flutter and forced vibration is desirable,

A tuned (cyclic) system possesses families of modes
distinguished by harmonic number "k" (the number of nodal
diameters) see Figure 2(A)Modes. Such mbdes occur 1in pairs
of equal frequency for k # 0 (double eigenva]ues). As the

harmonic number increases, the frequencies tend asymptotically
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to the blade root-fixed frequencies.

Mistuning destroys the cyclic dynamics character of the
assembly and its modes,by coupling together the harmonic
families of the tuned system, The detailed effect depends on

the specific mistuning distribution. For modest mistuning

_levels the effect is to couple together modes of similar

frequency and different harmonic number into distinct modes
and frequencies. The double eigenvalues of the tuned assembly
are, in general, separated by mistuning.

For mistuning circumferential distributions of a single
harmonic component, it has been shown (Ref. 14 ) that mistuning
of the form cos 2ke will split double eigenvalues only of
order k and g - k where N (or N+1) is the number of blades.
An example of this is given in Figure 2(A) Modes. For a
general multiparameter mistuning all mistuned harmonic components
are likely to be present, and all double roots are likely to
be split. Each mistuned mode may still be characterized as a
vector or "“spectrum" of harmonic components, the sum of which
represents the complete mistuned mode shape. Note that very
flexible mistuned blades on a stiff disc will tend to act
almost independently. Very stiff mistuned b]édes on a very
f]exib]e disc (unusual?) would show little mistuning effect
for some lower range of modal frequencies.

The notions of tuned harmonic families, mistuning

harmonic spectra, double root splitting, and mistuned modes

‘spectra are valuable as an aid to understanding and formulation

of mistuning problems and effects, and the interpretation of

laboratory modal test results of real assemblies.
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In a tuned system with harmonic families of modes, only
modes of the same harmonic family can couple aerodynamically
to ine a flutter problem., Modes of different harmonic number
cannot couple because of circular function orthogonality.
Flutter aerodynamics is generally formulated using cascade
fheories, some Timitations of which are noted in Appendix E.
We assume that, until proved otherwise, the suggestions of
Appendix E for the determination of non-zero harmonic number
cascade aerodynamics are acceptable,

As discussed earlier, mistuned modes can be expressed as
a vector consisting of modal components of various harmonic
numbers. The generalized unsteady aerodynamic forces for
mistuned mode sets may now be determined using this vector

and the assumptions of Appendix E .

In the total generalized aerodynamic force expression

QA,FZ . fw;,PJ.AS‘
4 blades blade
in which~u-= disp]acement, p = pressure, only Tike
harmonic components ot u and p w11] contribute
non-zero terms,

Thus, the decoﬁposition of mistuned modes into harmonic
components will enable the use of all tuned system analyses to
contribute to mistuned system flutter analysis. The mistuned
flutter problem solution is thé same in principle as for tuned

systems.
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The flutter stability and subcritical roots of a mistuned
assembly having been determined, the forced vibration problem
can be proper]yfpgsed. Note that for harmonic or periodic forcing
which results in harmonic or periodic response, cascade theories
are valid for the determination of aerodynamic damping and
stiffness coefficients of mistuned systems (within limitations
discussed above).

Subcritical damping coefficients determined during flutter
calculations could also be used for transient response calcula-
tions with the same qualifications already mentioned for tuned
systems,

Tuned system response studies are frequently guided by
the usual "interference diagram", Adequate descriptions of
external forcing functions are necessary to predict quantitative
response features (amplitude, stress, etc.); see Figure 2(C).

Each mistuned system mode will contain several circum-
ferential harmonic displacement components, so that different
engine order excitations may produce vibration in that mode
as speed varies. Vibration intensity will depend on the
spectral distribution of the mistuned modal decomposition
and the effectiveness of engine forcing term components in
doing work in the corresponding mode shape component,

Figure 2(C).

Potential approaches to mistuned dynamics problems should
solve practical problems, build on the knowledge of tuned system
dynamics, and exploit current computer program features in the

mode, flutter and response problem area as much as possible,

58



Mistuned Dynamics Approach

The stability, strength and 1ife of a real mistuned
assembly are the ends to be assured in thé analyses under
discussion., The modes of a mistuned assembly are significant
but still only a means to understanding the behavior of the
system and the attainment of the ends.

Mistuning must be adequately described to enable analyses
to proceed., The form of this definition is important. The
method of solving for the mode shapes of a mistuned assembly
must obviously be compatible with the form of definition of the
mistuning. ‘

The modal analysis results can be used for warious purposes:

1. As a basis for subsequent flutter and forced

response calculations,

2. As an aid to the interpretation of experimental
studies of modes of blades, discs, and mistuned
assemblies. (Note: Experimental blade
characteristics give a‘"measured" mistuning
characteristic - a "sample" of a large set of

possihilities,)

3. For mathematical studies of the influence of
prescribed mistuning distribut ions on the modal
results and subsequent flutter and response
results.

How mistuning is characterized can affect the approach

to the modal analysis. Four plausible characterizations are

as follows:
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Note that 1-3 are basically samples of a random process,

Simple measures such as differences in blade mass,
and overall behding and torsional stiffness

parameters.

Dynamic properties such as the measurement of
the ‘"root-fixed" blade modal frequencies and
generalized masses, (and perhaps, mode shapes

as well).

Some measure of blade dimensional differences.

Some prescribed mistuning distribution (very
valuable for analytical studies of mistuning

effects).

4 could be of a 'deterministic! or random nature.

The eigenvalue formulation itself for the mistuning

problem can also take various forms which should be considered

in relation to the mistuning characterizations listed above.

A.
B-

Finite element idealizations of disc and blade.
Mixed idealization of disc finite elements and
blade individual normal modes.

Substructure and normal modal idealization

for disc and individual blades.

In Table 3, eigenvalue formulations and mistuning

characterizations are related in terms of the compatibility

of various combinations in promising practical computational

approaches,
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It is obvious that two formulations are desirable:

1. A formulation (2B, 4B) which uses (measured) blade
modes directly. This would be particularly applicable to
studies paralleling actual tests of discs, blades and assemblies,

2. A formulation (4R, B) using prescribed forms of
mistuning either as blade properties or analytical distributions
of mistuning. This would be particularly applicable to
theoretical studies of the effects of mistuning distributdons
and of ways to ameliorate flutter and forced response
characteristics by selective blade installation.

In both methods, the potential should be studied for
reducing the eigenvalue problem to one involying expansion of
the mistuned eigenfunctions in terms of the eigenfunctions
(harmonic families) of the "averaged tuned" system. This can
reduce the problem to manageable proportions and more clearly
i11u§trate cause-effect relations of specific mistuned types.

Mathematical devedopments of these two formulations are

described in Appendix F.
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MISTUNING CHARACTERIZATION

29

EIGENYALUE FORMULATION

A. A1l Finite
Elements

B. Disc Finite -0OR- (., Disc Modes

Elements & Blade
Mode Sets

& Blade
Mode Sets

Comments

Blade Mass,
plus overall
bending &
torsional
stiffness

No reliable way of
apportioning mass
mistune. Could
crudely factor
stiffness matrices
but might lead to
conditioning -~
problems.

N/A

Characterization not
helpful. Basically
inadequate.

A11 blade
mode sets.
(At least
frequencies
& general-
ized mass &
stiffness.)
A11 Mode
shapes?

Difficult System
identification
problem to yrelate

‘M, K for grid

points.
Conditioning
problems certain.
NOT COMPATIBLE.

Feasible provided experimental data

is accurate,

Couple disc to blade

modes using cyclic structure method
with blade modes represented as
"scalar points™. (See NASTRAN

iTheory 14.1, Reference 7.)
!Can further use perturbation

theory and cyclic mode.

" Information usable at two

levels of completeness.
1. w's, M's, K's

2, w, M's, K's and all
mode shape variations.
Use of 2 complicated
& possibly unnecessary.

Detailed
geometry
measurements
of all
blades.

Could roughly modify
element densities &
moduli for each
blade to approxi-
mate mass & stiff-
ness variations,
Feasible but not
very practical.

Requires calculation of all blade
mode sets with variations dependent
on measurement acguracy - Not

practical.

Measurement adequacy
doubtful as a practical
proposition.

Prescribed
mistuning in
mass and/or
stiffness..

~ment.

Incorporate

directly into
element properties.

* See Appendix F for

theoretical develop-

i

Use directly for blade and/or disc

_modes. See Appendix F for method.

Valuable for studying the
effects of known or
tontrolled mistuning.

Can be a guide to the
advantages of selective
mistuning arrangements

in minimizing response,

Table 3. APPROACHES TO MISTUNED MODES



NUMERICAL RESULTS AND DISCUSSION

Demonstrations of the current program capability are of
two types:
0 The usual "demonstration" examples included
for completeness in the documentation of

NASTRAN capabilities. (Ref. 29)

0 Specific examples on a research rotor known

as Rotor 12 at NASA/Lewis, (Dwg. CF 848322).

This sectioh will not discuss the former examples which
are adequately covered in Program Documentation (Ref. 29 ).

For the latter examples, NASA required that the first five
resonant frequencies of the rotor would bevdetermined at three
specified operating conditions.

The actual results obtained have exceeded this requirement
in that the progressive ana]ysis of Rotor 12 through the
aeroelastic, modal and flutter algorithm has yielded both
performance and dynamics data. Specifica]]y, NASA requested
aeroelastic analysis of the "rigid" Rotor 12 characteristics at _
the three operating points shown on Figure 9, of which point
310 is the design point.

Finite Element Model

The finite element model/grid used for Rotor 12 analyses
is f11u§trated in Figures 10 & 11, and is based on 8 streamlines
and 5 computing stations on the bladed sector. This, with the

shroud and hub modeling results in a total of 68 plate elements
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Figure 11. NASA LEWIS ROTOR 12

FINITE ELEMENT MODEL FOR AEROQELASTIC &

MODAL ANALYSIS
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(blade, 64; shroud, 4) and 12 solid elements (hub).
Aeroelastic "DESIGN" And "ANALYSIS"

The values of parameters to be input to the ALG (Hearsey)
analyses have not been supplied by NASA but guessed by Bell at

this writing, It was intended to rerun these analyses with

NASA _-determined input at the final program seminar at NASA/Lewis,

but this was not possible,
The basic aeroe]astic results are presented on Figure 12,
(computer tabulations of flow details are not included here),
and compared with "rigid"rotor and test resulits. Note, that
since Rotor 12 already exists, Point 310 was actually "analyzed".
Point 310 |
Rigid rotor "ALG" P.R. of 1,725 compares with
test P.R., of 1,705 and aercelastic P.R. of 1.810.

Point 311

Rigid P.R. of 1.745 agrees with test value, and
aeroelastic analysis value,

Point 305

Rigid P.R. of 1.785 agrees with test value but
aeroeTastic value is 1,910,

It is obvioué that these results are not satisfactory because
of the "out-of-sequence" order of the AP increments. This is
currently attributed to inappropriate values of input parameters
selected by Bell. Repeated analyses at NASA with more representa-

tive inputs are intended to see the effect on these results.
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Modal Analyses

-Results for the first five tuned modes at the three operating
points for zero harmonic number, and the first four modes for
point 310 for the 28th harmonic number are presented in Table 4 .
The effects of operating point are quite small as expected since
Rotor 12 is quite stiff. Hence, modal plots for point 310 only
are presented for harmonic numbers zero and 28 in Figures 13 to
15 . Results at harmonic number 28 for point 310 do not vary

th harmonic number results for the

significantly from the zero
first three modes indicating that hub stiffness is relatively
great.

‘It is obvious that the modes of 2113 Hz and 2214 Hz for
point 310 are not orthogonal and represent the same mode. The
NASTRAN eigenvalue algorithm used here was the FEER Method .
Similarly Mode 3 for Harmonic Number 28 of 2303 Hz appears
very similar to mode 5 of H.N. zero at 2534 Hz. Suppression
of Modes 3 and 4 as harmonic number increases may account for
the appearance of an apparent double value at zero harmonic
number and its non-appearance for H.N. 28.

Flutter Analyses

These have only been carried out for one operating point

310 and zero harmonic number in terms of the "pseudo" flutter

roots at that point. This is because the disc is very stiff
and the effects of operating point and harmonic number on modes
and frequencies are small., Actual compressor map flutter

boundaries have not been determined.
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TABLE 4 - MODAL RESULTS ROTOR 12
FREQUENCIES IN HERTZ

OPERATING 310 ' 311 305
CONDITIONS (DESIGN POINT)

HARMONIC NO. 0 28 0 0
MODE 1 785 799 786 780
MODE 2 - | 1830 1981 1831 1826
MODE 3 2113], | 2303 21141? 2112§?
MODE 4 2214 3406 2214 2214
MODE 5 2534 - 2535 2530
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Flutter loops were conducted for a single interblade phase
angle of 180°, five reduced frequencies based on reference tip
chord, tip speed and modal .frequency spread, and actual, X2
and X3 reference density.

Complex eigenvalue plots are presented in Figure 16.

The high b]ade/air'density ratio means that results are
dominated by aerodynamic damping effects. Thus, mode frequencies
are almost unchanged and all modal dampings are roughly proportional
to the input air density. Note that no structural damping was
included.

Bending modes 1, 2 are reasonably well damped, while torsional
mode 4 exhibits negative damping (only -.002 at the correct
density).

A complete exercise, of course, requires coverage of the
compressor map for permissible sets of interb]adé phase angle
and harmonic number, each analysis including adequate ranges of
reduced frequency in the standard NASTRAN flutter algorithm.

In the course of rerunning the analysis at NASA/Lewis with
changed aeroelastic input, it is not expected that modal and
flutter resu]és will change significantly.

It may be noted that CPU time on the IBM370/3031 at Bell
for a11'f1utter results was 1785 seconds, of which 1440 seconds~
were absorbed by unsteady aerodynamic calculations, of which
1400 seconds were for the four out of five streamlines requiring

supersonic cascade calculations by the UCAS subroutines.
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CONCLUSIONS

'The complete objectives of the original program which
principally required the ability to predict the forced response
of mistuned ("real") bladed discs have not yet been reached.

- However, a formal basis for reaching those objectives has
been fully defined and largely established. This basis itself
rests on two theses:

0 That "mistuned" analyses should be based on the
view of a mistuned system as a perturbed tuned
system, and that complete understanding of and
the ability to analyze tuned systems is a

prerequisite .

0 That analysis of tuned and mistuned systems must be
approached through a logical progression of aero-
elastic, modal, f]ﬁtter (stability) and forced
response for genuine results to be achieved.

The capability for tuned systems to the stability step has
been created, with a final forced vibration stage stiil to be
fully defined. Mathematical formulations for mistuned modes
have been defined together with the bases for using these
in stability and forced response ca]cﬁ]ations.

There is a need for continuing improvement and utilization
of steady and unsteady aerodynamic theories from physical, mathemati-

cal and computer programming viewpoints.
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RECOMMENDATIONS

These can be divided into use, improvement and extension
of the current capability.

Use

The delivered program must be thoroughly exercised to prove

and appreciate its value. Not only must the assumptions relating

to its logical format be validated, but its technical value should

be established by applying to problems in which aeroelastic and
stability effects are expected to be really significant. This
is not the case with the current examples on Rotor 12. Thus
application to, say, a large by-pass fan will be more valuable
in demonstrating the technical/design feedback potential.

It is, therefore, strongly recommended that the program
be put to an extensive test by broad-band coverage of the map

of a relatively flexible stage or a large by-pass fan.
Improvements

See Table 5.

From a structural point of view, the current program is
strong, and can easily take advantages of NASTRAN finite e]ehent
improvements as they develop. Likewise it is felt that the
solution algorithms are more than adequate at this stage.
However, the steady and unsteady aerodynamic subroutines will
probably always be capable of improvement and the modular design
of the program will facilitate updating to better methods.

It may be recalled that the actual Tist of unsteady

cascade theories available to Bell was somewhat 1imited by
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proprietary and other considerations, Thus, if establishments
other than NASA make use of the program, there is potential

for its improvement if they have superior in-house subroutines.

In particular (Ref. 23 ) for unsteady supersonic cascades
was originally coded as a research tool for the comparison and
evaluation of the results of other cascade programs which
were unavailable to Bell. See Table 5 . The method should be
recoded as a production program to reduce the very large running
time. The program is run very many times in a flutter evaluation,
for sets of cascade stagger and spacings, Mach numbers, reduced
frequencies, interblade phase angles and mode shapes.

Many improvements can be made such as the following:

(1) It was noted that computations of several expressions
are recalculated hundreds of times in the program. These
expressions may instead be calculated once, stored, and
then used wherever required from the single storage.

(2) Many variables were typed as complex when in reality,
they were real. These expressions not only required more
storage than necessary but also required the use of complex
arithmetic when real arithmetic would have sufficed.

(3) The present coding has instances where expressions
which were constant within a Fortran loop were calculated
within the loop rather than just computed once.

(4) Criteria of error and convergence used in this program
should be analyzed in order to determine the minimum values
necessary to maintain a sufficient degree of accuracy in the

final answers,
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Alternatively, the whole theoretical basis of the
UCAS method could be recoded from scratch with the intention
of producing an "optimum production" program.

The program was delivered in NASTRAN Level 16, and it is
recommended that it be periodically updated to Tater, more
versatile Levels. To begin with, this level could be Level
17 or Level 17.5. We understand that NASTRAN Level 17.5 has
been changed to work under the new UNIVAC Toader and, therefore,
recommend Level 17.5. The additional substructure capability

in Level 17.5 should be a further advantage.

Extensions

See Table 5,

These may be classified as essential, desirable, and possible

and are "priority rated" respectively 1, 2 or 3 in Table 5,

Tuned Forced Vibration.

Given a set of mode shapes, current NASTRAN capabilities
can determine the forced vibration resulting from a variety of

forcing function types, However, the current format takes no

advantage of cyclic structural geometry. Such advantage should

be developed, programmed and exercised in a suitably modified
Rigid Format for specific types of forcing function of interest
to NASA. Such forcing functions may include transient, periodic

or random force distributions arising from incident pressure

or velocity fluctuations, or from resonance or unbalance testing.
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Mistuned Modes

Engineering definition of approaches to mistuned modes
for research ("analysis") and test purposes has been presented.

See Appendix F. These should be coded, exercised and incorporated

as additional Rigid Formats.

Mistuned Flutter & Subcritical Roots

An approach has been outiined for a plausible use of current
unsteady cascade theories to enable the estimation of aero-
dynamic coefficients for arbitrary circumferential harmonic number
(Appendix E ). This will enable tuned non-zero harmonic flutter
to be studied. Fourier expansion techniques may then be used
for the estimation of unsteady aerodynamics of mistuned modes and
their flutter stability. |

These capabilities should be coded, exercised and incorporated

as additional Rigid Formats.

Mistuned Forced Vibration
Forced vibration arising from defined external pressure-or
velocity- related forcing functions, implied in resonance testing,

or arising from unbalance should be developed taking maximum

’advantage of the cyclic geometry and previous developments.

Beating phenomena such as may arise on forced unbalanced rotating

discs should be treatable.

Transonic Unsteady Aerodynamics
If a suitable cascade theory emerges, its use should be
considered in order to improve the interpolation of unsteady

aerodynamics along the blade. This would improve flutter,
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subcritical root and forced vibration estimates for tuned and

mistuned systems.

It is not necessary for current operations.

Replace Compressor Code

Some 'discomfort' has been expressed by NASA personnel from
time to time with the use of the Hearsey Code (Ref. 19) as an
aerodynamic tool in the aeroelastic anaiyses.

If NASA has a preferred code, this could be substituted for
the Hearsey Code.

Automate Transient Aerothermoelasticity (TATE)

Full TATE automation was not accomplished. It is not
regarded as a serious shortcoming. Indeed practical results
using initial and final blade temperatures migh show sufficiently
small differences that the transient capability could be delayed
(indefinitely?).

If required, it would be necessary to knit together featurés
of the SATE Design/Analysis and Heat Transfer Rigid Formats and
cycle between these two in terms of deformation/flow and tempera-

ture jterations.

Non-Zero Harmonic Cascade Theory (k>o)
In the strict sense this is necessary for:
a. Correct definition and study of tuned system
non-zero harmonic flutter,
b. Correct formulation of overall unsteady generalized
airforces for mistuned flutter problems.
It can be argued that the use of current cascade theories

. Harmonic No. <<]1 . .
1 [ ]
s reasonable for No. of Blades and conservative otherwise
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If studies show that tuned non-iero harmonic flutter is
of practical design significance, such developments should then
be undertaken since the implication is that mistuned flutter
would be inadequately evaluated by current cascade theories.
However, a decision on this should await the results of
tuned non-zero harmonic and miétuned flutter studies using

the suggestions of Appendix E.
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and Subcritical
Roots

Technique to Modal and (Harmonic
number, inter-blade phase),
Aerodynamic definitions.

TABLE 5
ITEM COMMENT PRIORITY
1. Change NASTRAN To 17 or 17.5? (Level 17.5 is 1
Level UNIVAC Compatible.)
2. Recode "UCAS" (a) Improve coding of existing 1
program,
(b) Recode theory entirely for use 1,2
as a production program.
3. Tuned Forced Current NASTRAN capability should 1
Vibration be formally extended to take
: advantage of cyclic structure.
4, Mistuned Modes Finalize and code existing develop- 1
ments. See Appendix F.
5. Mistuned Flutter } Incorporate Fourier Expansion 1

Mistuned Forced
Vibration

Include capability for In-Vacuo

& Operating "Resonance Tests"

and unbalance effect. NASA to
define other specific types of
forcing functions to be considered.

7. Transonic Un- Review literature for possible
steady Aeros improvement to current approximation. 2

8. Rép]ace Hearsey Would be based on a NASA preference 2
Steady Aeros for an existing or commonly used

method.

9. Automate Current status requires manual in- 3
Transient tervention between aeroelastic and
Aerothermo- Heat Transfer Rigid Formats,
elasticity

10. Develop Unsteady ! Should follow flutter studies using 3
: Cascade Theories suggestions of Appendix E.
for K # 0
Table 5 POTENTIAL PROGRAM IMPROVEMENTS & EXTENSIONS
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APPENDIX A.

BLADE MODAL AIRFORCE MATRIX [Q]

The generalized aerodynamic force matrik [Qij] for the
blade modes, (i,j =1, 2, «.,1) is derived. The biade motion
is described in terms of the displacements at streamline -
computing station intersections shown in Figure A-1. The blade
aerodynamic forces are determined by spanwise integration
of the forces per unit span on each streamline. Based on the
relative flow at the leading edge, two-dimensional subsonic or
supersonic aerodynamic cascade theory for harmonic oscillations
is used to calculate the pressure distribution on each streamline.

In the process of locating the flutter boundaries on a
compressor map, a series of operating points is investigated.
At eaéh of these candidate flutter operating points, a range of
combiﬁations of flutter parameters such as interblade phase
ang]e'and reduced frequency is considered. A substantial portion
of this extensive effort is expended towards computing the general-
ized airforce matrices for ranges of Mach number, reduced
frequency, interblade phase angle and chordwise mode shape.

In the present development, therefore, modal generalized
airforce matrices are first defined for prescribed aerodynamic
mode shapes (see Section A.2) for each streamline, These matrices
are independent of the structural mode shapes which are subsequently
introduced through Fourier matching for each streamline. An
added advantage of this procedure is reflected in the flexibility

of the flutter computational algorithm (Figure 7 ) to suppliement
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or replace the existing aerodynamic cascade theories and the
use of the same Fourier series aerodynamics for different

mode shapes or sets.

A.1 Blade Degrees O0f Freedom

Let {u} represent the total degrees of freedom in
any cyclic sector of the bladed-shrouded disc (Figure A-3).
The degrees of freedom on the blade and the rest of sector

structure (disc, shroud, etc.) can be partitioned and written

iy = {0 Lo

The blade is spanned by S streamlines with G structural

as

grid points on each streamline (Figure A-1). Therefore, the

blade degrees of freedom can be further partitioned as

f“m .\

L
bz

{LLB?I - <—:ﬂ_r A (2)

f— . —

u"bs

——— —

— — —

L
e bs‘ ’

where .
i u'bs{ W

w
hs2

— -

- J - - | A(3)
N I

- -

L Mbsaj
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{ugSg represents the degrees of freedom at grid point g on
streamline s on the blade.

In order to define the blade motion normal to a local
chord, a rectangular streamline coordinate system is Tocated
at each streamiine (Figure A-1). With the origin at the leading
edge, the x-axis passes through the trailing edge, and the
y-axis lies parallel to the basic XY-plane. Displacements in
the y-direction, therefore, represent the local motion,

A.2 Chordwise Aerodynamic Modes and
Pressure Distribution

The normal displacement at any point x on the stream-
1ine s can be expressed as a linear combination of the aerodynamic
mode shapes shown in Figure A-3, In the local streamline

coordinate system, this can be written as
&
W =0 2 & (x) = x) |
Snc%) s 9: sg 'L) -Y)s'? - /QS L isgc {’752’% A’(4)

where

PENSE

x . (32T ) . (G- T

s

the aerodynamic modal participation vector is given by

g

A (6)

_ L
nj=g
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It should be noted that the total number of
aerodynamic modes considered on a streamline is equal to the
number of structural grid points on the streamline enabling
transformation between the aerodynamic and the structural
degrees of freedom (see Section A-4).

In a similar manner, the éhordwise aerodynamic
pressure differential across the blade at any point x on the

streamline s can be derived from an appropriate theory as

+ & ' N
%) = 3 v, P () = 4 \/ NE?
A”SS ) = > %% s QZ_—‘-' 55( ) ")59 = '7_/2 f LXI;QC ) {7)593 A (7)

where'{’Lg} is given by equationA(6). The differential

pressure,l@g, at the point x in the mode g is further expanded

in series form in order to properly account for the leading
edge singularity while integrating the pressure forces along

the bladed chord in subsonic flow, i.e.,

'\f ("') Cg1 Cg?_ .. Cgt) . J TT (:32 A (8)

where

{TTe = s (Fir= ‘r | A(9)
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In a given mode, the subsonic theory determines the
aerodynamic differential pressures at P locations along the
blade chord.

For similarity, and hence, computational efficiency,
a similar distribution is defined for supersonic flow also,
with ' ’ A

2/
. T-2 W
Sin </__—2—C; )
{ﬂ'(%?} . . A (10)
, S0P, (?_1' ﬂ'”")

“"(_)’iéwx‘J .

The number of Tocations, P, at which differential
pressures are calculated on the blade chord in supersonic flow

may, in general, differ from that in the subsonic case.

Now, equationA(8) written for all modes at the point

X yields

13- 16 31N T A (11)
e sep,

The chordwise differential pressure distribution

can, therefore, be repeated as

A LT’C&)J[ {V)S;S ] A(12)

3

oS
L
i

v -
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A.3 Generalized Airforce Matrix For
Chordwise Aerodynamic Modes

In a virtual displacement gb%n(x), the total virtual

work done on the blade chord per unit span is given by
24,

5\/\/5/5\93" jF(X)cfw (x) dx A (13)
2
= l/’fof f& L J{EmiLmese 3T{*)7M(i)
s s 2 s5 59 2 ar g N

ny. \/jﬁ MJf{eE ’rLHJJ< )EC,, 17 7;

59 o
2 7,- | T
= LAV 4 &Lvsgj f%ﬂifgﬂ {")%i A (14)

The integrals defining the elements of the matrix
[{ér] for both subsonic and supersonic flow are discussed in
Appendix C,

The aerodynamic generalized force per unit span

for streamline s is, therefore, given by

SW_; Sran
Ay 4

Ty
. 2 2 . " '
= Ji ’osVS 'Q’S [ Ié;’,,j rcgy,j 3 53}

= [A,] {“153§ A (15)
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whereby the generalized airforce matrix per unit

span for chordwise aerodynamic modes is expressed by

: 2 2 T
(A, J=3AVa 4 T 00 ACie)

T & . .
The matrix [ﬁ%j in the above equation is evaluated
from equationAll as follows. Transposing both sides of

equationA11,

LY,

and for all points P on the blade chord at which aerodynamic

T

differential pressures are estimated, we have

[, 3 = [, Tlo]

and, therefore,

[CthT = Urwj [ %, )

A7)
A.4 Transformation Between Aerodynamic &
Structural Modal Coordinates
2

Referring to Figure A.1, if {Ulsg } represents the
3 translational dofs at any grid point g along the streamline
s, expressed in the local streamline coordinate system, we can
write the normal displacement

w = o | o_j 3w /4

'-”Sgh L { bsg}
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i-e.
w - , bl
= Lo | o_J [ r="7] {ubsg

— 4 192 by -"T 3 - ( bg—'_-__ \aa—?‘
=Lo ) oJlT T ;_,{u,byg} ‘ [7%]) = J/

(&

For all the grid points on the streamline s,

therefore,

(0 1 o] '1T:¢f- ]
L bl — ’, - ¥ 4
{Mb:gh} - ', [TS s "} "] [T;gjr {u‘bs;K

O g
7 [ AU9)
[ o o] Z_ {1;QJ_A

= (6,1, 7 A(z0)

bscjw

The normal disp]acements'{“bggn} can also be

expressed as linear combinations of structural and aerodynamic

mode shapes. (See Figure A.2)

£ 3 ?
{u’bsghzs = [;fs rH,j {{ } _ ’2 [ 599 %:7)535 > A(Z])
(i structural modes) (g aerodynamic modes)
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where
£ : 8
[2° 2=10,J02..] A(22)
sgra ? > |
T2 T, . éjﬁ;fjﬂ ]
ri 2;-‘! $in( ;esx) - 5‘"( 2€s )

x . -2 T, . G-2 AT,
1 =z T Swn o - s\n
‘e_s ’Lﬂs 22.‘

.

' Toz T %y . (éi:l ?3%9
X . - sin
g7- |+ 2 (5
Erj

; : A(23)

I TR G-2 T *g
Gt (T (5
] 2L, St

and'{’kz} is given by equationA(6).

From equationA(Z]), therefore, we have

% -+ (8,0 04" 533

sgvul

= js [-G‘gl‘]{%/;} > A (24)

where

. | -l |
[G'gi:l = [5{559_] [¢bighéj A(25)

defines the transformation from the aerodynamic to the structural

modes.,



A.5 Generalized Airforce Matrix for
" Chordwise Structural Modes

(x), the total

In a virtual displacement gugn

virtual work done on the blade chord s per unit span is
expressed by equationA(14). Substituting for 7£9 from

equationA(24), the virtual work becomes
i | g T
EW, fspan = L AV, 2. 4 L3, {Gngﬂ Elé;ﬁ[%ij [ngi‘) {g&} )
S

which, by equationA(16), can be written as

T ”;
= 13 10g) ‘_é‘q.[Asggj [Gb . 113
“ s - A(26)
The generalized aerodynamic force pér unit span for

streamline s 'is, therefore given as

SWS/SJ)an
{QSL} - 5?‘:

T }
—Te V15 TA.T )06 7833 |
= 16,.] Qs[ ga) g A(27)

and the generalized airforce matrix, per unit span, for chordwise

structural modes on streamline s is given by

-
[q.)- [ng:] (?f’wfﬁﬂ (5.3 , A (28)
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5

These chordwise aerodynamic matrices are calculated
for streamlines with subsonic or supersonic inflow, and inter-

polated for other streamlines with transonic inflow.

A.6 Blade Generalized Airforce Matrix

The virtual work done by the airforces on the entire
blade is the integral of the virtual work done on all the

streamlines across the blade span, i.e.,

Rt
SW, = f d;‘Ws/S}aan.oln
R

blade
"

L
=&L1% 1 f [Qg]dn {Zvi
A Rh, A A )

(By equationsA(26)andA@8))

whence the aerodynamic force vector for the blade becomes

{Q,‘; i = gwblade/&i;,
Ry

- ’25 (g, 4§53

= [G%;J{%Lg .

The generalized airforce matrix for the entire blade is,

therefore, given by

R, S
Q.3 = _{ [Qj dn = E_T[Qsj An
AL \Z_y s,l-_b Sz AL

(55 LQ;|uJ W] %LQ::«:‘ iwg - %LQ‘snIJ -{W}
% L&D {W} %LQSL’LJ Wi - 5’;:' LR, 1 {Wi
e .

L§ La, 13w ;LQ,CI_LJ fwi - ZLq t{w}

A (29)

a (30)

97



- 7

where , for the trapezoidal rule of integration across

the blade span, the integration matrix {W()} is given

by
R,- R,
R3- R
Ra— B,
W = 2 "
{ ( } z RS—H - ‘ZS‘—-)
Rg —Rgy
Ky - Rs‘-—;

A(31)
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APPENDIX B.

EQUATIONS OF MOTION FOR CYCLIC MODAL AND FLUTTER ANALYSES

The equations of motion of a bladed-shrouded disc for

cyclic modal and flutter analyses are derived via the Lagrange

formulation,

4 /27 2U  _ oW .
At aﬂi’;) T o, T e, SRS ERAR B(1)
“£ E <

where the 9, represent the total degrees of freedom considered
in the problem. This form and notation of the equations developed
is compatible with that described in Section 4.5 of Reference 7

B.1 Independent Solution Degrees of Freedom

Consider a bladed-shrouded disc with N cyclically
symmetric segments as shown in Figure A-3, Appendix A. In any

segment n, the physical displacements are given by

" 0 by ke ., ks, 'n—law/z_ v
(T = 87+ T gFeon(7 k) » 5F (TR 2E0 ST
where k is the harmonic number, n the segment being considered,
and a=2w/N . The last term of equationB(2) exists only
when N is even. The upper limit of the harmonic numbers con-

sidered, kL, is given by

o= (802, for N even,
B(3)
and :(N,q)/z , for N odd

For a given harmonic number k, equation B(2) can be

written as

nk _ ke - s
{LL} = {l«h§ ces (n—!km) + {Eg siw(ﬁ"_—f M) ) 8(4)
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In a cyclic sector, each of the total degrees of
freedom can be described as being on either of the two
boundaries of the sector, or within the sector. The degrees
of freedom on the sector boundaries are also required to observe
the inter-segment compatibility constraints (see Section 4.5,
Ref. 7 ). An independent solution set,'{a}K, comprising the
degrees of freedom within, and on one of the boundaries of the

sector, therefore, is defined as

[ (0] 13"

B (5)

. | Ys _ 'S
and {U‘E = [sth(l@j{%}

where each row of the transformation matrices Gck or Gsk contains
only one or two non-zero terms (see Section 4.5, Ref, 7 ).
In terms of the independent solution degrees of freedom,

equation (4), therefore, can be restated as

%w};\lh: [:[Gckj cosém ka) + tG.,S}’:} Sin (T\":t ka)] {QEK

. B (6)

B.2 ~Bladed Disc Kinetic Energy

The kinetic energy in segment n for harmonic k

motion can be written as

T e e

=

w-

P : B.(7)

which, by equationB(6), becomes

TR ! Lit I [[@ 31—[Mj L6 Jces{7 ka) + Eq "~ Emj{a Jsin? (77 kat)

+16,] [M’_}[c, Jeos (771 kal). sin (771 k)
+ [, JTMIT6, Jeos (71 ke) sim (W kc-)]{w , 8 (8)
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Summing over all the segments, the bladed-disc
kinetic energy in the kth harmonic motion can be expressed as
N -
TR = T

" e T caf
=41 ,ﬂ‘[[acg [+ (6, T cos (7 k) + [ ) (D [5 D Z sin (7= tees)

I\

T
+ 16, TG, T cos 77 ka)- sim (7= ke
' .0 .K
T e e
e T Lo 5 cox (k- sin (T ke [ 223
By the orthogonality relation between the-sine and the cosine

functions, this simplifies to

N L e

where

K _ T T
tw) = 1q,Jtmia) + e 3 mile,) B(10)

B.3 ~'Bladed Disc Strain Energy

The sum total of strain energy in all the cyclic
segments N of the bladed-~disc represents the total strain
energy in the bladed-disc. Therefore, by reasoning on lines
similar to those used for the kinetic energy term, the strain

energy is expressed as

1= 3 | B(11)
with K T T (12)
[ET = (6,3 (K116, T + (6,0 (k363 . B
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B.4 - Virtual Work Done On The Bladed-Disc

The oscillatory external forces acting on the blades
of a bladed-disc of an axial flow turbomachine are those due
to the compressible airflow past the oscillating blades. These
aerodynamic forces per unit generalized displacement, [Q], de-
pend upon the operating point of the turbomachine (flowrate, ro-
tational speed, etc.) and the flow parameters (Mach No., inter-
blade phase angle, reduced frequency, etc.).

The virtual work done by the airforces in any
segment 0 and harmonic k motion, in a virtual displacement

(8
s {s, therefore, given by

" " W,k
sWhP  sLui QI {3
Y\,\Z. “’/k
:Q,ovl) SLtwld [l {w? B (13)
Yef, * .
The virtual work done on the entire bladed-disc,
therefore, becomes n R
sWh = = &W"
K, o "4
| — z N gL Q') (T
| =(1ev ),,?14 {gras [ A ~ B(14)
where X T T
[277 = (a0 CaIley) T D [a316) B(15)

B.5 ~Equations Of Motion

Substitution of the expressions for the kinetic
energy (equationB9), strain energy (equationR11) and the virtual
work (equationB14) in the Lagrange formulation (equationB1)

with Kv;unresults in the equationsof motion as

K K X & K X
LAY {8y« 4 [R) a3 = 4 (3v [T B0o)
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or K

2) arqFec
0 581 (200 - 1V TRTERT = 3 ey

B.6 Cyclic Modal Analysis

" For the kth harmonic motion of the bladed-disc, the
equations of motion, equationB17, are reduced to the eigenvalue

probiem ,

__X _¥X___ ¥k
Eﬂ)[ﬂj + LT Jiw} = {o} . R(18)

. K T
The K eigenvalues A (}w »c) and the associated
eigenvectors Dﬁ]K represent the modal characteristics of the
btaded-disc in the kth harmonic. The cosine and sine components

) — K
of the eigenvectors [#] are recovered as

— ke —
31 = [a, (I8 & (19)

—-K
nd rE7™ s Te, 0]0E)

B.7 Cyclic Modal Flutter Analysis

As a result of the cyclic modal analysis (Section
B.6 above), the independent solution degrees of freedom'{ﬁ}K can

be expfessed as
_ ¥ B SEDENE §
w = :
=3 = 7)1y B (20)
Substituting for {01K in equationf(17), and premultiplying

-k T .
by [&] , results in

,L—V-T-_'K._\(. _'T_K’_)L 2 KT X K __k )
Fsle Tt 0 1 e tar (3 V) 17 T[R9 17 555 103 pen
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If the expressions for [M]K (equationBi0), [E]K
(equationb12) and [ﬁjK (equationpl5) are now introduced into

.equationﬁ(Zl)'above, the result is

- _X
[ (3906, 3 0 leed (73 891,00 I E77 1V, 9 Bl ISIOR I

-0 (8906, ) 016, 31734 [ 559 6,3 T304, 187"

N
_(l/oV>[¢J[ fﬁji@fgwj]{“ {e¥ B(22)

By equationB(19), this can be restated as
[ L7t Itg 3+ 07t 17" v, Tetes Twa raae ] £33 "

ks T — kg Z K
F L [ e ™ s i Tara s (L), 13 T3t 4 {7315 e

In equation®(23), the cosine eigenvectors [;Z:]kc
and the sine eigenvectors [&Ffw are both self and jointly
orthogonal and the mode shapes represented by’[&jfc and [5jks
are identical up to a constant spatial phase difference between
them. Therefore, either the sine or cosine parts of the
equationB(23) can be independently used for cyclic modal
flutter analysis., That is, a sufficient set of equations

of motion for flutter analysis is

’ ke T, —- ke —kC 2 he T o he e .
[__wm[q)kj [Mj{‘fj + [¢‘LJ [}thgp:]h__ (—%_/’V)leprﬁb J{ij(ﬁj J{i} ’g"ﬁ) 3(24-)

or

——

W T
[, “1¢ j[,ﬂwj’“ N [ys j[k')[cﬂ- /ov) L7771 [&7(7] ]{g} —{g B(25)
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“'APPENDIX C.

" 'CHORDWISE WEIGHTING FACTORS

The chordwise weighting matrix [ng] (Appendix A)

is defined as

[ 20 = f {éc«.)} LTG0 ) d (w/20) cm

L"V‘sup J
where {4.5 (X)} ]__TT (>f>__\ and LT’chu are given by
$Uf
equations (A5 ), (A9 ) and (A10 ), respectively in Appendix A.

For subsonic flow, [I%] can be expressed as

—

I L L. - Lee-n),
Ixr L Tea B Ix.(P—l).
Ih"’ 14-1 L2 - I1.(P—1) .
[5,]) = |5 L, L, . I c(2)
%50\0. * _ * 2 (P-4
1 1
Lﬁg"l}-f‘ G-».1 G T {G—v).(f-g

and for supersonic flow, [L%] is given by
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2 2 1 L I(P—z)
2 8/3 Ix.] Y. Ix.(?—'z,)
I -
1 L Lo Ii2 Ly (p-) c (3)
[I[ = I’l . Iz-x Izl I'L?— I
i i
I g )& I A
[ (@-2).  (G-2).x 621 G2 G-D-(P-2)
where
— 285 —X%
0= T a(w/e)
o
I,‘.. = MRLIES 5 fr:‘)’ll-”
0

I 3: Jzz;_;—_ %/,
Z) 4(e) -
= (% D,

I, {T z ’ - cl Cx/ﬂf) v=1,7,

IY.: §S1V\ AL x) 5"'(4 )A(x/‘eZ) )T’Sz-\)'l/.—.

Each of the integrals of equation{4) is evaluated

as foj]ows:

) |
1. I(_: i)‘zﬂ;—% d (x/%&)
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Substituting

2. r, - g Sim (Y;ZTLX)CJQC/&) L 7=
g .[1_ -0
3. Ix. S;(/ej) 522 S <x/’€3>
Substituting X = €,<;+ € 6)
/
1x{~ = T/,
4,

X:£S<1+ Cc:!e)
I ’\T

2

Tor = f:(g 5'“(”‘ 24 (x/e) |

Integrating by parts

- 4
le": - (~‘>

Iy =S -r:&x> {»ﬁs = A2/ =i

Substituting x= 2.25(1,3)

X

\

Ref.31l, Section 3.768 gives

I =

T

inesem [ (3,2,

fifff—(f—l)g@ )[‘ ’ ?; ,2 *»’“’)

26y

=

2
L
T = -—-’LCDS(‘Y‘T\')‘E\I{—%S‘ S?w(f]‘ry)ab,d_

25,0

1.;7 )“vb_\")’)j

Fq (:35_ r l/—‘é]-h')]
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Ref.31, Section 9.210 gives | F, (%,%,4 )= €(%,7,3)
7

the degenerate hypergeometric function in series form

o0b s
§(x,7,y) = 19 I 2D (asd 7
fz0 T (F+1) oo (¥45) F]

Algebraic reduction results in
2k

I Z ( ) (‘HZ I)‘ (T'Y)
W s 2 CZh—I)L (2he—1)) (20))

which is rapidly convergent, having monotonically decreasing

terms of alternating sign.

6.' fg...(* = "> Sin (

R V=5

)A(x/ﬁ:) ey,

)\
—

= ©° )Tf_;

These integrals completely define all the elements of

both subsonic and supersonic [ L %] weighting matrices.




APPENDIX D.

REVISION OF BLADE GEOMETRY IN STATIC ANALYSIS

The blade geometry is constantly revised during the
differential stiffness loops of the static Aerothermoelastic
(SATE) Design/Analysis of the bladed-shrouded disc.

The blade geometry is defined in terms of a set of variables
including the blade mesh point coordinates (streamline-comput-
ing station intersections, Figure A-1), blade angles, blade chords
etc. (See Analytic Meanline Blade Section of Ref. |19 ). The re-
vision of the principal variéb1es such as the blade mesh
coordinates and the blade angles, as a result of the elastic
deformation of the blade during the SATE design/analysis is
described iﬁ this section,

With reference to Figure A-1, consider a blade mesh point .
defined by the intersection of the streamline s and the computing
station g. Now, if the elastic deformations along.the basic
X, Y and Z directions are respectively given by ubng’ ungY
and ubng’ the revised basic coordinates of the mesh point can

be written as

< Y = Y + Ay ‘FY u'brgY r D(1)
VA yA .
- vevised Pfevfc v —FZ u‘bsg Z' -

where, for ‘analysis’',
L, = +1

and for 'design'

P4

&>

y =— 1 )
<.

o< ;X ;FY,'£Z <1
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- a
(5}, @bs i

The factors fi have been introduced to aid the SATE Design

proéedure by controlling the amount of "untwist" in the blade

necessary to arrive at the "as manufactured" shape.

~The X- and Z- rotations at the blade 1eading and trailing

edges are used to revise the inlet and the exit blade angles

as (see Figure A-1).

st .

172

Cls@z (is@, L

'fﬁviScd k-/ev{cvg

~

9‘:511

O

where i] = +1 for SATE analysis,

.= =1 for SATE design,

-0

bs1X

12 = +1 for compressor disc rotation

'o o) ._‘ Co.s”hs*
Sin 2‘i’s1 (2)

Ce> ’!)956;

6 -8 .
bsGZ  bsoX ] 15776

about +X axis, Right

= -1 for compressor disc rotation about -X axis, hand ruile

and the meridional streamline angle at the blade Teading and the

trailing edge is given by

Poct - <Z"5'Z—_ ZB“>/<xbg’z- sz:)

ot a

P2

b5y | <starzu@-,>7/ (K66

D (3)
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APPENDIX E

ON CASCADE AERODYNAMICS FOR NON-ZERO HARMONIC
AND MISTUNED FLUTTER STUDIES

Cascade aerodynamic theories exist for various Mach number
regimes but are generally restricted to identical blade motions
with inter-blade phase angle ¢ as a variable. Since blades
undergo identical motion only in the case of zero circumferential
harmonic number, (k = 0), existing cascade theories are not
applicable to k # 0. Mistuned bladed~-disc modés may be expanded
in terms of a sum of a harmonic spectrum, and, therefore, appear
to require the extension of cascade théories to non-zero
harmonic number. |

Consider a bladed-disc with N blades, with harmonic number
denoted by k and interblade phase angle denoted byo .

Suppose blades perform vibration denoted by a generalized
coordinate u, then for the n'th Biade,

w {4é1<rj = bb/¢%oéﬁff441—/ Uﬁ. Cwoél—‘)2£5g

e

Thus for zero'th harmonic (k = 0) motion,

Un(0,7) o oo (vt v =T )
w,

/ o
and for % th harmonic motion,

(E-1)

E-2)

(E-3)
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For all n, the following relations hold at the denoted

values of k and o for the motion u:

N O ";_E o '?z‘t 2 etc

0 Cod W Cn(w’tf—f-m?—;) C") e o€ u;(u’t +W§ir) cof e

B ot ot é'c}',(wcfm{) vt |DeafiTi] O et

It is seen that motions u are the same for all blades

at (k, 0) combinations of:

\/

(1) (o0,2w) and
.(2) (O,T) and

(
(
3) (p, E) and (X
&3

\
\—/ \_,

p)Z, Iz ""2 I\’)Z.

H#
—

(4) (0)327? and
(3) and (4) may be found by expanding the corrésponding

expressions.

These relations may be illustrated as follows:

“d)Q Wa ar 3/ 2}7 e o

o i . B \
Indicates (k,0)
combinations at
which blade motions
are identical

N L

4 v

It is seen that modes of harmonic number % have the same
motions as modes of harmonic number zero, when the interblade
phase.angle is increased b%ﬁr compared with the interblade
phase. angle for k = 0. |

Now the unsteady aerodynamic coefficients may be determined

with existing theories along the k = 0 axis, and, therefore, we
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line by_trénélating the curve

(S}~

may imply them along the k =

,by7ralong the gaxis.

Furthermore for a given o, we may expect that the variation
of any coefficient with harmonic number will be monotonic and
smooth from k = 0 to g (and to tend to zero for k very large,
though this is not very :elevant).

Therefore, the vafiation.with k may be assumed with reason-
able justification to be linear. With this assumption, a plausible

variation of cascade aerodynamics with both harmonic number and

interblade angle becomes definable. This may be used as a tool

for the study of the significance of non-zero harmonic number
flutter, and the spectral composition of unsteady aerodynamics
for mistuned modes. (See Figure 51);

These studies can then form a basis for a decision on the

necessity of formally expanding cascade theories to non-zero

harmonic number.
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(i.TC shift from )
k = 0 Curve

SKETCH OF PLAUSIBLE VARIATION OF UNSTEADY -
AERODYNAMIC COEFFICIENT WITH k and ¢

‘'FIGURE ET1
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APPENDIX F

" EIGENVALUE PROBLEM OF CYCLIC
STRUCTURES _WITH PRESCRIBED MISTUNING

Structures exhibiting geometric cyclicity with rotational
symmetry are considered. Each cyclic segment is permitted a
prescribed mistuning in its mass and stiffness properties. The
resulting equations of motion of the mistuned structure are
expressed in terms of a set of "symmetric components". For a
modal formulation, the symmetric components are expanded as a
linear combination of the normal modes of the tuned structure
for a set of harmonic numbers. The transformed motion equations
vield a reduced eigenvalue problem, the degree of reduction being

dependent upon the number of tuned normal modes and the harmonic

numbers selected. Linearized perturbation theory can be used at

this stage to express the eigenvalues of the mistuned structure
as a function of those of the tuned structure with small per-
turbations. If this step is followed, the reduced eigenvalue
problem evolves into a set of linear, algebraic equations in the
unknown perturbations implying great savings in computational

efforts.

F.1 Notation

N No. of segments (V\=1,L,~>”)
k. Harmonic number (jk:on,m,”,kL, and N/2 for N even)
hL = (N-2)/2 for N even; = (N-1)/2 fov N odd.
[m) :[Mag , mass matrix for the tuned cyclic segment
[N{r' Perturbation mass matrix for segment n, size axa
[Lj :[Kag , stiffness matrix for the tuned cyclic segment
[bxj\ Perturbation stiffness matrix for segment n, size axa
{uﬁn = {wdr, displacement d.o.f. in the nth, segment,
size axl _ }
{E&* Symmetric components; X=o0,(1c,1s), -- ,(hffhts),hvm
size axl :
{G{; ~ Independent symmetric components for harmonic k,

i.e., symmetric components after the intersegment
compatibility constraints are applied. Size
(internal d.o.f. + side 1 d.o0.f.) x 1 = K x 1
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F2 Eigenvalue Formulation

Equations of motion for the mistuned nth.segment are

Cre o {EF + [k + 87JE0F = {o} F (1)

In order to introduce the symmetric components, consider

the sum over the segments,
» N (2] w b
S {TnaIL8Y 4 Tes 20T oo 5o
nzj :
Rearranging,

[ Z B 5 g‘:[mﬂ“{i’ff » [ fuy + Z.DK'J“ 343 = 1o} , F(2)

By the definition of the symmetric components in terms of
{qﬁ“', (see NASTRAN THEORY, 4.5-2 Egn. (2)), EquationsF(2)

become

oo Ry Reoc o he ks, oc ce RS X ..
INDm) » 08P 3 565 # E_([Af"\j sy 4 [om] " {&d
: =1

_Jl‘,’i,oc. oo ';—)- e _b "
4+ Lanm 3" K- by =
L 1 ms {o} , F(3)
where
0'06 'J n
(am]) = Z- CTand
n=|

hC,Oc
2T

EbT’\] - z Co_s[(n—t)b.c\:} tbm’)ﬂcfs(,cn")'o;o‘-')) 5 Ce = T\l-
n

oc

B, _ .
and  Ts@Y = S (0 Taed |
o A n
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Similarly, for a given Harmonic No. H (21:2,":hu ) form

the sum ‘
N n o Vv 12) n
5 (CUJE(n-»)HA][[,ﬂ"’ prrJ LT 4 T s J{ud 1 = 1°3

Nnz=1

Reafrangement and introduction of the symmetric components and

{u&“’ definitions result in

ke |18
o,He o . ke, He .. b _hsHe .k
Camd18Y + 3 [am) . 1¥3T 4 ¥ (R gEy
k=1 _ k=)
CH)

| | 'ré‘—l He oo % w K . v {
- m + - L€ rmSs — [4)
+ [aR) e’ 5, .
where ) o,Ho ] “
LAF) - p rAMj Ccf[(nfi) Ha] ,
: nzy

— h<ly\o.

[am]) = S Cos[(v\—t)h“][f)fﬂ“cos[(n—l)Ha.j] ,

Rs, He : "
[b?’lj S,H_ - Z\,\' [siu L(V\—l) ka—) ['Aﬂ—) Co¢ [(n-\))«\aj:) ,

L, He

and | [l_\?‘—\ = Z [(—\';‘—.EBM:\“COS[(V\—))H G:J)
) 4 ‘

A set of equations similar toF(4) is obtained when H - N/

for even N, and we have

N

O,%c ov ,© o - h‘/&,“' o e — \Li, € oo s
[Aﬁj Tud + 2 Lom) v {wi + [l\t"\—) {Wg
k=) .
Lo oo, oo 2 o . .
"‘" N[MJ + Ebﬁ]v’ v ]%aat 4 K’teymg - {o'i (5)
’ J
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a - - .

. OJ
th 9,3¢
" CAR) = 2. L’AM’J Cos [(n DR cﬂ

= Z(—n) [Mﬂ ,

s [CO,U‘V\,M&} Caeen )

[8a] = L Lam{omord Iam) e

2

N V- Y nl"»'
and [ At Z_ E(‘") ’mej 1) )

ne

Y

T [am)

The intersegment compatibility constraints are unchanged from
NASTRAN THEORY 4.5-6 Eqgn. (15), and are

s EG(M?{wi
= - (@gw}&a%’
T (&, (&) {a?f’h
N/ K N
and 158 = [ (9)iat "’

= (6)
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Introducing the constraint EquationsF(6) into Equations

F(3), F(4) andF(5) yields, respectively,

o~
—

LNEMD + EAT’]] J Lo u-)]{w

hL c \2 oc i ao_K/k
¥ (m‘«] L (o) + [ARD E’G.(h)J) 3
h:\ ck ‘ S

o {o% , ( H:(}) i E(7)

L o, He : ee ¥ o bL o Kk
[2P) Lo leni=s” + 2 [om” Lo, () TE3"
(H)
R b, e K b (k=1e Me K h
+ 7 [sm]) ' G,(kJ 13 [N L) e, (\4)} [ o) La; (n)] 13
Hc ’r\!
+ Ebt"’\] clz. =] {LL *
b Ketems =03 (Metz, e R) F(8)
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Ve Ye "-'c. ks Re ¥,k
+ T ae 7 2 ) . ' N v i - 2 ’
Z_l Lbom) [(,,Ck(n)] F{an] [—(kwgh)’}) {ql

F(9)

Now, the following steps complete the definition of the
equations of motion for the mistuned cyclic structure in the

symmetric components.
(1) Premultiply Equations F(7), F(8) and [9) by
T ' 1T and T ti
£2%h903 r (6 (W) an ékn<2)3 , #espec ively.
(2) With the use of terms like sin[(nq)H aj instead

of cos[@w—ﬂ}h@] , obtain results similar to those

of step (1) above.

(3) Note that Sin[kh—ﬂ)AéJ = 0 for H:p and N/_, N even.

Note also that [G‘Sh,(O)J o 2 [C-',Sh( 0] |

g

(4) Add the corresponding results (same H) of steps (1)
and (2) above.

(5) The result is the complete equations of motion for
the mistuned cyclic structure in terms of the
independent symmetric components, i.e.,
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Equations F(10) illustrate the coupling between the
independent symmetric components of various harmonic numbers
in a mistuned cyclic structure. The coupling may be seen to
depend only on the mass and stiffness perturbations, and these
equations degenerate into the sets of harmonically decoupled

equations in the symmetric components for a tuned cyclic system.

w3 Mistuned Solution

‘In their present form, EquationsF(10) imply a huge eigen-
value problem comparable in size to the one that would evolve
if the entire mistuned structure was considered without regard
to its geometric periodicity. However, expansion of the mistuned
modes in terms of subsets of the tuned cyclic system harmonic '
families may be used to greatly reduce the size of the mistuned
eigenvalue problem. Further, if small AM and AK perturbations
are assumed, the eigenvalue problem can be reduced to a set of

algebraic equations in the unknown eigenvalue perturbations.

As the first step towards the solution, Equations F(10) are

written as

= K~_g.‘< = kK ___ K ) .
[m] 183 + Uk) 183 = {3 ) | .

where [ {&%i&’“
ey
= K. ’

s = { ' Vb, i
fics

REl |

-, K = K . -
Introducing i}z} ;i[]} §w¢ into EquationsF(1l) results

in

oy _ k=% . o
{_ww—[::,j‘l [k.J'“J{Uf = 1of | F2)
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where o~ are the eigenvalues of the mistuned system and

r..l_.a_-?’l(lv “
— ¥,
1Us
_ K '
LUt = 1 >
Dok,
oy’
{“(’J}K’!%’
L Y
| Kk
We now expand 'i[f} as a l;near combination of subsets of

tuned normal modes of various harmonic numbers. That is,

_ K,h; — Ko _xe A I Y B Kk
{Lfi = [?gwdinih + L¢;) 14§k o ¥ [¢%] Wih

=Kk
Note here that each {ﬂ}h_ may be of arbitrary order, generally

<<a, Then,

= K = kK _ ¥ :
0 =[] o Fas

)

where
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Substituting EquationsF(l3) into Equations F(12), and pre-

multiplying by [%KJT , a reduced eigenvalue problem results,

?

' -'E.K‘ __E K = K | :
[_w””LH] + Le] J’ﬁ} = 407 . F (14)
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A())':'):: r*w:L = — W

= = T K

where = K = .= K

[m) = [£]0n] (2]

. v and
N ’:K T = . _o= K
=€ T [x][E]

are the generalized

mass and stiffness matrices. This may be solved by standard

means.

Alternatively, perturbation techniques using the tuned

system results can provide another approach to mistuned solutions.

If the Equations F(14) represent a pth.order system, the

associated characteristic equation can be written as

-

, b _ b ' .
\),Q(wz) n bp,.(‘"}) Fooe 4 b (W) b b o= o F (15)

We now assume that an eigenvalue of the perturbed system is

a small change from that of the unperturbed system, i.e.

2
upb a% *.b(u%) e w?(1A+t¢) 5 r-4<1‘ F(lm

EquationF(16) is substituted into EquationF(15) and the
first order terms are retained in the expansion of (1+r) in

integral powers of p. Collecting terms in Y“ , we obtain

F(17)

A

) ” P " -1 e
\9() + br(,wg ) + \9}'-|(b_)u ou e .{-- b' (_wu )‘
S T TD RN ST O

Equations F(17), F(16) and F(14) yield the desired eigen-
values and the eigenvectors for the mistuned cyclic structure,

and would be solved separately for each.

In'summary, a method is developed and shown to syétem—
atically reduce the huge problem of determining the eigenvalues

and eigenfunctions of a mistuned cyclic structure to a
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substantially smaller, practical and computationally efficient

set of algebraic equations. The accuracy of the method would
largely be governed by

a) the experience of the user in the qualitative and the
quantitative selection of the tuned normal modes of various

harmonic numbers to represent the mistuned motion, and,

b) the degree of mass and stiffness mistuning in the light
of the use of linearized perturbation theory.

Two guides to the selection of the 7;3 to be retained in
Equations F(13) are

(1) the bandwidth over which mistuned system eigenvalues

are required,

(2) the spectrum of the particular distribution of A M

and A K considered in the perturbation.
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F.4 The Use of Measured Modes
Section 14 of the NASTRAN Theoretical Manual describes

methods whereby representation of part of a structure by its

orthogonal vibration modes is permitted in analyzing the modes
of the whole structure. This feature can be effectively used
for the analysis of mistuned cyclic structures such as bladed

discs.

Laboratory measurements of individual blade natural
frequencies and mode shapes, (and perhaps those of the disc)
are used to define the genefalized mass and stiffness matrices
assoc1ated with the normal modal coordinates. Multipoint
constralnts between the degrees of freedom at the blade-disc
attachment then complete the definition of the mistuned bladed

disc assembly.

In NASTRAN, the generallzed modal propertles of the
"substructure" are assigned to "scalar elements 'connected
appropriately to represent that portion of the structure.

In a similarly modelled bladed disc, the mass and stiffness
matrices of the total structure are used to derive the LAﬁAj
and Dﬁkj“berturbations in each segment. This forms the input
to the analysis presented in the previous section wherein such

mistuning is prescribed.

Thus, the use of the measured modes (blade modes and disc
finite element model, or, both blade and disc modes) can be
made compatible with the method developed for prescribed -
mistuning in bladed discs with rotational cyclic symmetry.

F.5 Closure
_ In practice the differences in the two approaches may be

summarized as:
1. Prescribed Mistuning
. Relatively many degrees of freedom in the blades,

put controllable mistuning spectrum.
2. Measured Modes
Relatively few degrees of freedom in the problem but

in general) the mistuning spectrum will be "broadband random"
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SYMBOLS - i

Fourier coefficients

Generalized airforce matrix for aerodynamic modes
Matrix of modal pressure coefficients

Assumed structural dampina

Blade geometry revision factors in static analysis
Generalized forcing function

Transformation matfix, grid points/streamline
Transformation matrices (Eq. B5) |

Number of structural modes, chordwise weighting matrix
Reduced frequency,.harmonic number

Stiffness matrix, Number of "independent symmetric
components :

Blade semichord
Mass matrix

Cyclic segment number

Cyclic Segments/b]aded disc

Differential pressure

Load vector, cascade theory pressure points/
streamline

Generalized coordinates

Generalized aerodynamic force matrix

= Q/(1/2 pV2) pa.

Streamiine mean radius

Streamlineyblade

time

Coordinate transformation matrix, kinetic energy
Physical degrees of freedom

"Symmetric components" in cyclic analysis
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SYMBOLS (contd)

U Strain energy

) Free stream velocity

W Virtual work, spanwise integration vector
XsYsZ Streamline rebtangu]ar coordinates
X,Y,Z Basic rectangular coordinates

B Blade angle '

€ Convergence parameter

42 Aerodynamic modal coordinates

] Rotational degrees'of freedom

A Real eigenvalues

v Streamline angle

Structural modal coordinates

Fluid density

Q o oy

Interblade phase angle

) Structural mode shapes

® Aerodynamic mode shapes

y Differential pressure distrihution in aerodynamic
modes

W ‘ Circular frequency

Subscripts

b Blade
o Disc
g ' Grid point on streamline, chordwise aerodynamic mode

on each streamline

i Chordwise structural mode on streamline
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SYMBOLS (contd)

n Normal to local blade chord

p Cascade theory pressure point on streamline
r Blade root

s Streamline

t Blade tip

Superscripts

a Analysis set

A Aerodynamic

b Basic coordinate system

d foferentia]

e Elastic

g Global coordinate system

K Independent solution set in "symmetric components"
] Local (streamline) coordinate system
n Cyclic segment n

NA . Nonaerodynamic

0,kc, Fourier components (Equation B2)
ks,N/2
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ADDENDA TO NASA CR-159728
BAT REPORT NO. D-2536-941001

INTERBLADE PHASE ANGLE ( o ) AND HARMONIC NUMBER (k)
IN TUNED BLADED DISK DYNAMICS

This addendum discusses the discrete values of interblade
phase angle that should be considered in conducting flutter analyses

of tuned bladed disks.

| Consider a disk with N blades exhibiting a harmonic
travelling wave motion in which there are "k" waves round the diék.
Let the oscillatory frequency at any point on the disk be w.

A reference blade, say number one, then performs oscillations with
respect to some suitably chosen time reference,
Lot
u, = Ue
Blade two performs similar oscillations shifted by a phase

'lag i o s

Lot X (2-1)o)
u = Ue

in which +, - denote waves travelling with or against

the blade numbering sense.
Similarly

Yot £ (w-1do)
e
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Since the total phase shift arouhd the disk is + 2.l - No—
2 k - .
+

we must have O = - N.

then

waves:

follows:

If waves of eaual amplitude occur in both directions,

iwt L (n-1)o —1 (n-1)o—
u = Ue (e + e )
n
int .
= 20 e cos (n-1)o
= 2U e ot coé[(n—l), 2nk] ‘
N

This is a standing wave of harmonic order 'k',

Two features distinguish standing waves from travelling

1. No interblade phase angle occurs on standing
waves, but does on travelling waves.

2. Maximum blade ampiitude varies from blade to
blade on standing waves but does not on
travelling waves.

On a flexible N-bladed disk, eigenvalues occur as

N .
N even k =0, = - simple eigenvalues
k = 1,2..N=2 - double eigenvalues
2
N _odd k =0 - simple eigenvalues
k =1, 2... ﬂ%l - double eigenvalues
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Travelling wave pairs are associated with double

eigenvalues. For a travelling wave, the local oscillation period

is 2T » in which time the wave travels an angle + 27T,

w .
Thus the angular wave speed is + . rads./second.

Thus, in a flexible bladed disk, the interblade phase

angle is constrained to discrete values o= * 27Tk
N
N even ,

I
o
-
p—
.
.
.

where k : E ,
2

N-1 N odd.

o — 9

2

it
o
-
—_—
.
L]
.

For a "rigid" disk, (which strictly never exists), the
blades are ideally INDEPENDENT. and interblade phase angles could be

arbitrary, subject only to the condition

Z o— = Q'ITP7 F:O)i‘l...

It is assumed that this does not occur in practice., An
arbitrary distribution could however, be expanded as a finite
Fourier series and treated appropriately in terms of "pseudo-harmonic

numbers."
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2. SPURIOUS MODES IN NASTRAN CYCLIC SYMMETRY ANALYSIS OF
AXISYMMETRIC STRUCTURES

In conducting cyclic modai analysis of an axisymmetric

structure using the NASTRAN cyclic symmetry capability, modes of
othér (higher) harmonic numbers than those of the selected harmonic
number are sometimes obtained. ~ This note discusses a probable cause of
these spurious modes and possible remedies.

| With reference to section 4.5 of the NASTRAN Theoretical
Manual, the ‘analysis' set ( '@ ' set) physical degrees of freedom
(dof's) in any section for a given harmonic number "k" are

given by
",k e _ ks | -
EM{L’ = ik} em(2nke=d) + L .fm\(Qnm%_))
n R

The AL include the dof's on the interior and the two boundaries

of the sector.

The corresponding eigenvalue problem for modal analysis is

posed in (an independent) K set dof's consisting of both AL

d

and AL for all the interior and one of the two boundaries,
__ < — kT ¢ =K _ _
IK — M ]2%.{ - §O§

— IC T

K = &

where

. T .
3 K G‘CJQ += G’gk KG—S‘Q

MK = G M G + GieM Gk .
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The transformation matrices G, and Gy define the
intersegment compatibi]ity'conditions for a given harmonic numbef/é .
However, it is observed that both Gy and Gypare actually functions of
(/QAQ ) instead of & alone, suggesting similar (G matrices for
a given /k/hk ratio.

In axisymmetric structures, where the choice of the smallest

representative sector is arbitrary (and hence.the choice of the total
number of sectors N') it is, therefore, possible for a series of C%aﬂd)
pairs to satisfy the same intersegment compatibility condition. Thus,
given enough internal dof's to define mode shapes, modes of harmonic
numbers other than the selected harmonic '3 can manifest themselves.

One possible remedy is to define a representative sector with
only boundary dof's i.e., small enough to eliminate all interior dof's
as suggested in the NASTRAN Theoretical Manual, section 4.5, An alter-
native development for cyclic modal analysis is also discussed briefly
in BAT's original Technical Proposal to NASA LERC, Report no. D2528-
953001, Volume I, June 1976, on Finite Element Modal Ana]jsis of a
Bladed Shrouded Disk.

In cyclic structures as distinct from axisymmetric structures,

this problem should not arise.
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3. ON THE DEFINITION OF BLADE AND FLOW ANGLES

In order to facilitate independent steady state and flutter

analysis of a bladed-shrouded disc, the pertinent definitions have been

grouped as those for

(a) static aerothermoelastic design/analysis
(RF 16, DISP Approach)

(b) modal flutter and subcritical roots analyses
(RF 9, AERn Approach)

It is noted that if data (STREAML1 and STREAMLZ bulk data
cards) for (b) type analyses for a compressor stage are obtained as
partial output of (a) type analysis, the variables are automatically

redefined,if required, to be consistent with (b) type analyses.

Static Aerothermoelastic design/analysis

L

Computing Station B
ot bade Iecu{:ng 943%

MERIDIONAL PLANE

Y X

Axis of rota Ho;—\__\

ComPuHﬂalCtmﬁcn at
blade tvail ing e:\ge
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radial coordinate

axial coordinate

computing station coordinate (zero at bub)

meridional direction
radius of curvature of streamline
station Tean angle

streamline slope angle

radial velocity
axial velocity

meridional velocity

shown positive

Typical Rotor Section on Streanmline

(cannot be drawn in 2-d)

.\\
,\\
N\
Ny
g Axis of
\\ rotatici
N| ‘\
é\ Ve 4 s (4}
@ \ Sufbnr\g (g{;Aﬂgey)
R i c\ngle
v, \
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V absolute (total) velocity
V@ tangential velocity
V&e relative velocity
ﬁ absolute flow angle Note:
A
If the blade section
draw}ng be;ow is maqe in
blad d the (r.8-x) plane, instead
U ade spee of ((.O—m) plane, we get
G:: F . 6 at blade trailing edge "cylindrical plane" angles.
R B

at blade leading edge

7
o

o
+
ta

A relative flow angle
|78
G blade angle shown negative
£
S deviation angle (typical rotor)
1 incidence angle
——t
Blade Blade edge
edge urm DLIlM‘) statien

\Z A
(Iec.uN
l.}ngey\t {e ho.’mal)
blade edge
VIEW A Radial line (fraj(zcted

inte CCM’)U Hv\g <clation

F?ahe, D

\__—F\xis of v‘ota-t'{m_/

E Blarle leClV\ (Awg'e »
' ) } shewa ras»t{\/e
Y Station lean angle ,
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<E> Modal Flutter and Subgcritical ruvots analyses

—
o ‘
_—

.

A1l angles are shown positive.

C blade chord

(72}

blade spacing

] blade speed

A stagger angle

(i relative flow angle

V. cascade inflow relative
velocity

VRe relative flow velocity

0 reference blade

1 first blade

A positive interblade phase

angle & implies the first blade leads the reference hlade by < .
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