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PREDICTION OF FATIGUE~CRACK GROWTH UNDER VARIABLE-AMPLITUDE AND
SPECTRUM LOADING USING A CLOSURE MOOEL
J. C. Newman, Jr.
NASA Langley Research Center
Hampton, Virginia 23665
ABSTRACT

The present paper is concerned with the application of an a2xisting
analyvtical croack-closure model to study crack growth under varisus load his-
tories. The model was based cn a concept like the Dugdale model, but modified
to leave plastically-deformed material in the wake of the advancing crack tip.

The model was used to correlate crack-growth rates under constant-amplitude
loading, and to pr-dict crack growth under variable-umplitude and aircraft-
spectrunm leading on 2219-T851 aluminum alloy sheet material. The predicted
crack-growth lives agreed well with experimental data. For 80 crack-growth
tests subjected to various load histories, the ratio of predicted-to-expevimental
lives (NP/NT) ranged from 0.5 to 1.8. The mean value of NP/NT was 0.97 and

the standard deviation was 0.27.
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SYMBOLS
material crack-growth constants (k = 1,5)
half-length of crack, m
half-length of final crack, m
half-length of initial crack, m

half-length of starter notch, m

half-length of crack plus tensile plastic zone, m

boundary-correction factor on stress intensity

2
maximum stress-intensity factor, MPa - ml/

elastic-plastic fracture toughness, MPa - m

fracture toughness parameter

number of cycles

number of crack-growth delay cycles

number of cycles predicted from analysis

number of cycles from test specimen

styess ratio (Smin/smax)

applied stress, MPa

maximum applied stress, MPa

minimum applied stress, MPa

crack-opening stress, MPa

specimen thickness, m

specimen width, m

corstraint factor, x =1 for plane stress
and & = 3 for plane strain

. . 2
stress—-intensitv factor range, MPa - ml/2

effective stress-intensity factor range, MPa - m

1/2
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&K, effective threshold stresa-intengity factor range, MPa - n]'/ 2
&Ko threshold stress-intensity factor range, MPa - ml/ 2

ASgfs effective stress range, MPa

P length of tensile plastic zomne, m

PoL plastic-zone size calculated from overload, m

9%, flow stress (average between Oys and ou), MPa

Oyg yield stress (0.2 percent offset), MPa

Oy ultimate tensile strength, MPa

W length of compressive plastic zone, m

INTRODUCTION

Fatigue cracks remain closed during part of the load cycle under fatigue
loading. The crack-closure concept has been used to correlate crack-growth
rates under constant-amplitude loading (1,2] and is a significant factor in
causing load-interaction effects on crack-growth rates (retardation and
acceleration) under variable-amplitude loading. Fatigue-crack closure is
caused by residual plastic deformations remaining in the wake of an advancing
crack.

The crack-closure phenomenon has been analyzed using two-~dimensional,
elastic-plastic, finite~element methods [3-6]. The finite-element analyses
were shown to be quite accurate, but were very complicated and required large
computing facilities, There nave also been several attempts to develop simple
analytical models of crack closure [3,7-12]. All of these r)dels were based on
a concept similar to the Dugdale model [13] or strip-yield model, but modified
to leave plastically-deformed material in the wake of the crack. Newman [3],

Budiansky and Hutchinson [8], and F:hrtng and Seeger [10,11] studied only the
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crack-closure behavior. But, Dill and Saff [7], Hardrath, Newman, Elber and
Poe [9], and Newman [12] used the crack-opening stresses from the models to
predict crack growth under spectrur loading.

The purpose of the present paper is to apply an existing analytical crack-
closure model [12], which simulates ylane-stress and plane-strain conditions,
to crack growth under various load histories, The model was baseld on the
Dugdale model [13], but modified to leave plastically-deformed material along
the crack surfaces as the crack advances. Plane-stress and plane-strain condi-
tions vere simulated by using a "constraint" factor on tensile yielding.

The crack-closure model, developed in reference 12, was for a central
crack in a finite-width plate that was subjected to a uniformly applied stress.
To calculate Elber's effective stress-intensity factor range [2], crack-opening
stresses were calculated from the model under constant-amplitude loading at
various applied stress levels and stress ratios. Experimental crack-growth rate
data from 2219-T851 aluminum alloy sheet material under constant-amplitude
loading {14] were correlated with the effective stress-intensity factor range
for a wide range of stress levels and stress ratios. An equation relating
crack-growth rate to effective stress-inteasity factor range, threshold stress-
intensity factor range, and fracture toughness, developed in reference 12, was
applied herein over the total range of crack-growth rates, The closure model
was then used to predict crack growth in 2219-T851 aluminum alloy sheet

material under variable-amplitude and aircraft-spectrum loading [14].

ANALYTICAL CRACK-CLOSURE MODEL
The following section is a brief description of the analytical crack-

closure model developed in reference 12,
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To calculate crack-closure and crack-opening stresses during crack propaga-
tion, the elastic-plastic solution for stresses and displacements in a cracked
body must be known. Because there are no closed-form solutions to elastic-
plastic cracked bodies, simple approximations must be used. The Dugdale model
(13] is one such approximation. The crack-surface displacements, which are used
to calculate contact (or closure) stresses under cyclic loading, are influenced
by plastic yielding at the crack tip and residuai deformations left in the wake
of the advancing crack. The applied stress level at which the crack surfaces
become fully open (no surface contact) is directly related to contact stresses.
This stress is called the "crack-opening stress."

The model was developed for a central crack in a finite-width specimen sub-
jected to uniform applied stress, as shown in figure 1. The model was based on
the Dugdale model but modified to leave plastically-deformed material in the
wake of the crack. The primary advantage in using this model is thct the
plastic-zone size and crack-surface displacements are obtained ' superposition
of two elastic problems: a crack in a finite-width plate subjected to (1) a
remote uniform stress, S, or (2) a uniform stress, ©, applied over a segment
of the crack surface. The stress—-intensity factor and crack-surface displace-
ment equaticns for these loading conditions are given in reference 12.

Figure 2 shows a schematic of the model at maximum and minimum applied
stresses. The model was composed of three regions: (1) a lirear elastic region
containing a ficritious crack of half-length ¢ + p, (2) a plastic region of
length ¢, and (3) a residual plastic deformation region along the crack :ur-
faces. The physical crack is of half-length c¢. The compressive plastic zone
is w. Region 1 was treated as an elastic continuum, and the crack-surface

displacements under variius loading conditions are given in reference 12.
8
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Regions 2 and 3 were composed of rigid-perfectly plastic (constant stress) bar
elements with a flow stress, 0,, which is the average between the yield

stress, Oyg, and the ultimate tensile strength, o,. The shaded regions

in rigure 2(a) and 2(b) indicate material which is in a plastic state. At any
.pplied struss level, the bar elements are either intact (in the plastic zone)
or broken (residual plastic deformation). The broken elements carry compressive

loads only, and then only if they are in contact. The elements in contact yield

in compression when the contact stress reaches =0, Those elements that are

not in contact do not effect the calculation of crack-surface displacements.

To account for the effects of state-of-stress on plastic-zone size a constraint

factor o was used to elevate the tensile flow stress for the intact elements
in the plastic zone. The effective flow stress a0, under simulated plane-
stress conditions was 0, and under simulated plane- train conditions

was 30,. The constraint factor is a lower bound for plane stress and an

approximate upper hound for plane strain, These constraint factors were veri-
fied using elastic-plastic finite-element analyses of cracked bodies under plane

stress [6] and plane-strain conditions. The procedure used to establish the

constraint factor (®) used herein is discussed later.

The analytical crack~closure model, discussed in detail in reference 12,
was used to calculate crack-opening stresses, S,, as a function of crack length
and load history. 1In turn, the crack-opening stress was used to calculate the
effective stress-intensity factor range, as proposed by Elber, and, consequently,

the crack-growth rates.

FATIGUE~CRACK GROWTH RATE EGUATION

The crack-growth equation proposed by Elber [2] states that the crack=-

AR ppein s

growth rate is a power function of the effective stress-intcnsity factor range
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only. Later, Hardrath, Newman, Elber, and Poe [9] showed that the power law
was inadequate at high growth rates approaching fracture. The results presented
in reference 12 showed that it was also inadequate at low growth rates
approaching threshold. To account for these effects, the power law was modified

in reference 12 to

( = )2
1 - [e)
de | oo a2 8K £s W
aN 1 “Feff 2
1 _(Kmax)
Cg
where
, So
max
Knax = Smax /e F 3
and
BKysp = (smax - so‘; /e F (4)

The crack-opening stresses, S,, were calculated from the analytical closure
model. Equation (1) gives the "sigmoidal" shape commonly observed when fatigue
crack-growth rate data is plotted against stress-intensity factor range. In
the intermediate range of crack-growth rates, equation (1) is basically Elber's
proposed power law, C; Axegf. The constants C; to Cg5 were determined to
best fit experimental data under constant-amplitude loading.

The coefficients C3 and C, were determined from threshold data on the

2219~T851 aluminum alloy sheet material from reference {15]. The effective
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threshold stress-intensity factor range, A4K,, was determined from the threshold

stress-intensity factor range, 4K, as

So

1 -

S
By = U BRyp, = ——2 MKy, (5)

The coefficient Cg 1is the elastic stress-intensity factor at failure or
cyclic fracture toughness. The coefficient Cg5 was chosen to be
77 MFa - ml/2 (70 ksi - inllz) on the basis of the crack-growth tests in
reference [14]. (See ref. 12.)

The coefficients C; and Cp were found from constant-amplitude rate
data [14], after Cy, Gy and Cg were determined, by using a least-squares
regression analysis. The constant-amplitude correlations were made using Sg
values computed from the model with various constraint factors. It was found
that an o of about 1.9 would give a good correlation under constant-amplitude
loading. The procedure used to obtain o will be discussed later., A summary
of the coefficic..ls used to correlate the constant-amplitude data with o = 1,9

are as follows:

cy = 2.486 x 10710 (314 x 1078 )

Cp = 3.115

Cy = 2.97 MPa - ml/? (2.7 ksi - 1nl/2) ? (6)
C, = 0.8

C5 = 77 Wa - nl/2 (70 ket - 1nl/2) |
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When SI units are used, AK .. and K . are given in MPa - /2 and de/dN
is given in m/cycle. When U.S. Customury units are used, AKgfs and Kpoo
are given in ksi - in}/2 and dc/dN 1is given in in./cycle.

Figure 3 shows a plot of AK against dc/dN for several R ratios for
2219-T851 aluminum alloy sheet material to illustrate the sigmoidal shape of
equation (1). The experimental data were obtained from reference [15] and the
curves were calculated from equatior (1). The R = -1 data were obtained
from a small center-crack tension specimen (W = 76,2 mm) and the other data were
obtained from small compact specimens (W = 50.8 mm). The crack-growth coef-
ficients (Cl, C», C3, and CQ) used to calculate the curves were identical to
those shown in equations (6). However, the coefficient Cg for the small com-

1/2

pact specimens was 38.5 MPa - m and for the small center-crack specimen

was 55 MPa - ml/Z. The coefficients (Cg) were calculated from the Two-Parameter
Fracture Criterion [16] using KF = 550 MPa -~ mllz and m = 1, These values

of KF ana m were obtained from the final crack lengths and maximum stress
levels used in the constant~amplitude tests from reference [14]. (See ref. 12.)

The crack-growth rate curves in figure 3 are in good agreement with the experi-

mental data.

APPLICATION OF THE CRACK-CLOSURE MODEL AND RATE EQUATION

The analytical crack-closure model [12] and crack-growth program (FAST -
Fatigue Crack Growth Analysis of Structures) was applied to constant-amplitude,
variable-amplitude and aircraft-spectrum loading on 2219-T851 alum' = alloy
sheet material,

Under constant-amplitude loading, the model was exercised under simulated
plane stress, plane strain, and ccuditions between these limits. The particular
constraint factor (o) used herein, to approximate the state-~of-stress, was

9
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obtained from the constant-amplitude crack-growth rate data, The crack-growth
rate equation (eq. (1)) was also determined from the constant-amplitude data.
The same constraint factor was also used to predict crack growth under
variable-amplitude and aircraft-spectrum loading. The crack-opening stre. .o
were calculated from the model as a function of crack length and load his:uory,
and the crack-growth rates were predicted from equation (1). The predicted

crack-growth lives are compared with experimental data in the following sections.

CONSTANT~AMPLITUDE LOADING

Crack—~opening stresses.— Reference 12 showed that the calculated crack-

opening stresses under constant-amplitude loading were independent of the con-
straint factor for stress rati s (R) greater than about 0.7 and were equal to
the minimum applied stress. Thus, OAKg¢f 1s equal to AK for R 2 0.7.

Using crack-growth rate data from references 14 and 15 for R 2 0.7, the crack-
growth constants C; and C; were determined to best fit the high R wvalue
data only. Basically, this crack-growth rate equation (eq. (1)) depicts the
relation between Axeff and crack-growth rate. If Axeff and dc/dN are
unique, then the crack-growth rates for tests at R ratio less than 0.7 should
indicate the experimental AKeff and, consequently, the expecrimental value

of S,. This value of S, is referred to as the "semi-empirical" rack-opening
stress. For each test, e semi~empirical S, value was .~sumed to be constant
and was determined from a least-squares regression analysis, These crack-
opening stresses, normalized by the maximum applied stress, are shown in fig-
ure 4 as a function of the R ratio (symbols). The open symbols and the solid
circular symbol are results from center-crack tension (CCT) specimens [14,15].

The solid triangular symbols are results from compact specimens [15]. These

10
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results indicate S, values that correlate crack-growth rate data at various
R ratios with the results at R 2> 0.7, The dashed line indicates where S, 1s
equal to S . ~or where &K er 1s equal to K.

For R ratios less than 0.7, the calculated crack-opening stresses from
the closure model are a function of the constraint factor. The semi-empirical
results at R = 0 were used to estimate the constraint factor. A value of
1.9 was found to give good agreement between the calculated and semi-empirical
values. The solid curves show calculations from the closure model with a = 1,9
for various applied stress levels. The overall agreement between the calcu-
lated and semi-empirical values was considered reasonable.

Crack-growth calculations.- The crack~closure model with o = 1,9 was

used to calculate the crack-growth lives from the initial crack length cy to
the final crack length c¢g¢ for the constant-amplitude tests [14] used in
figure 4, The ratio of predicted-to-experimental lives (Np/N ranged from 0.6
to 1.8, The mean value of Np/Np tas 1.0l and the standard deviation was 0,32.
These calculations were considered reasonable, in view of the scatter that

occurs in fatigue-crack growth rate tests.

VARIABLE~AMPLITUDE LOADING

Crack—openiqgjstresses.— The closure model (a = 1,9) was used to study the

crack-opening stresses under various load histories. The calculated crack-
opening stresses under single~-spike and two-level loading are shown in figure 5
as a function of crack length, Under spikc loading, S, takes a sudden drop
when the crack-tip region blunts due to the spike loading, As the crack grows
into the overload plastic zone (QOL), the S, values rapidly increase until
they reach a maximum value at about one-half of PeLe This is the point of

minimum crack-growth rate. The S, values then drop and approach the

Q

11



e

¥

MR ey e e

stabilized crack-opening stress (dashed line) for the low-level constant-
amplitude loading, The retardation effects (S, greater than dashed line) are
nearly eliminated when the crack has grown about one overload plastic-zona
size. In contrast, under two-level loading the high load was applied from the
initial crack length (c; = 3 mm) for about 2500 cycles. Again, the S, values
rapidly increase as the crack grows into the overload plastic zone, but they
reach higher values than those occurring vnder the single-spike loading. Thus,
retardation effects are much stronger after multi-overloads than after single-
spike loading.

The calculated crack-cpening stresses under compression-tension and

tension-compression spike loading are shown in figure 6 as a function of crack
length, The horizontal line is the crack-opening stress for the high R ratio
(0.5) constant-amplitude loading. Under compression-tension spike loading,
the "compressive underload" (single downward load excursion) had no influence
on the subsequent S, values. Bu. the tensile overload caused the S, values
to drop immediately, then rapidly rise above those from the steady
state constant-amplitude loading (dashed line) for about one overload plastic-
zone size. If the rompressive underload is applied immediately after the
tensilv verload, the S, values are considerably lower than those from the
compression-tension spike loading. Thus, the compressive underload after the
spike eliminates some of the retardation effects due to the tensile overload.
A larger compressive underlcad after the spike causes a larger reduction in
the SD values, but did not completely eliminate the retardation effect due
to the tensile overload.

Figure 7 shows the calculated crack-~opening stresses during repeated

compression-tension spike loading as a function of crack ! .gth. The first

12
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load level (i = 1) was applied for 2500 cycles. The compression-tension spike
(i = 2) was then applied. These load sequences were repeated until the speci-
men failed. The dashed line shows the stabilized crack-opening stress (S,;)
for level 1 only. The dash-dot line shows the stabilized crack-opening stress
if level 2 only was applied. These results show that the interaction between
levels 1 and 2 cause S, values to increase slightly during the compressive
underload, drop abruptly during the tensile overload and rapidly increase
during the application of the 2500 cycles. Again, the S, values reach a
maximum as the crack grows into the plastic zone caused by the tensile over-
load. The S, values would approach Sol if the temsile overload was not
repeated.

Crack~growth predictions.- The crack-growth rate, at each load cycle, was

computed from equation (1), using the current values of Smax* Smins anc So'
Equation (1) predicts retardatior (or acceleration) if S, is larger (or
smaller) than the crack-opening stress that would have been produced under

constant-amplitude loading at § and S

max min® IO demonstrate how crack-

grovth rates were calculated under variable-amplitude loading, an example is
given. Figure 8 shows a typical variable~amplitude load histroy. The growth

rate was computed from equation (1) using

wuere &Seffk is the effective stress range on the kth cycle. The growth

increment per cycle is

! \
bo = (] (8)
k
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On the first and second tensile load excursion, smink to S .

maxy

8Segf, = Smaxy ~ So
where k = 1 or 2, respectively. This equation was proposed by Elber [2].

However, on the third tensile load excursion, is greater than S,

smin3
therefore the effective stress range was assumed to be

1

C2 Co EZ
ASeff, = [(smaxk -8) - (smink - S,) (10)

where k = 3 and C); is the power on the growth law. Thus, the growth

increment, Ac, + Acq, is slightly larger than 4cy, if S =S The
2 3 y 1 ma

x) maxjy*
use of equation (10) was neces.ary because no crack-growth law, when expressed
in terms of a power function (CZ # 1), would sum to the correct growth incre-
ment under variable-amplitude loading. For instance, if the load excursion
Smax2 to Smin3 was extremely small, then the sum of growth increments Acy
and Acj should be equal to the growth increment Ac;. If Sm1n3 was less
than Sy then the growth increment AC3 <hould be equal to the growth incre-
ment Ac;. Equation (10) accounts for these limiting behaviors. Equation (10)

is applied only when S is greater than S and only when the current

ming
maximum appiried stress is higher than the highest maximum stress occurring
since a stress excursion crossed S,. On the fourth excursion, ASeff was,
again, corouted from equation (9). The effective stress range on the 5th

and 7th excursion were, again, computed from equation (10). But on the 6th,

8th, and 9th excursion,
Aseffk = Smaxk - Smink (11)

14
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where k = 6, 8, or 9, respectively., Note that snax6 < Equation (11)

Snaxs‘
was also proposed by Elber [2].

Figure 9 shows the effect of the number of overload cycles on predicted
crack-growth delay. Crack-growth delay is the additional number of cycles
required to grow the crack to failure, following an overload, over the number
required to grow the crack to failure under constant-amplitude loading oanly
(level 3). The predicted results (symbols) show that delay or retardation is
longer for larger number of overload cycles. These results are in quantitative
agreement with experimental observations [17]. Other retardation models
account for the effect of the number of overload cycles on crack-growth retarda-
tion empirically [18], or do not account for it at all [19,20].

A comparison between experimental and predicted crack-length-against-
cycles curves during two-level loading is shown in figure 10. The load sequence
is shown in the insert. The high load (level 1) was a factor-of-2 larger than
lavel 2. The predicted results (solid curve) were calculated from equation (1)
using the S, values computed from the closure model. The maximum computed

value of S_, during the application of level 2, was about 115 MPa and the

o’
minimum crack-growth rate was about 1.4 X 107 m/cycle. The predicted life
was about one-half of the experimental life (symbols). The dash-dot curve
shows the predicted results using no load interaction.

Figure 11 shows a comparison of experimental and predicted crack-~length-
against-cycles curves for repeated tension-compression and compression-tension
spike loading. The locad sequences applied are shown in the inserts. The
experimental results (symbols) and the predicted results (solid curves) show

that the compressive underload applied after the tensile overload causes the

crack to grow faster than when the compressive underload occurs before the

15



tensile overload. Although the predicted results show a stronger effect of
the compressive underload than the experimental data, the agreements between
the predicted and experimental data are considered good.

A comparison of experimental (symbols) and predicted (solid curve) crack-
length-against-cycles curves for a repeated block loading sequence is shown in
figure 12, The load sequence is shown in the insert. In contrast to the
previous case, fifty cycle. of the tensile overload were applied before the
compressive underload. The predicted results are in good agreement with the

experimentai data.

SPECTRUM LOADING

Crack-opening stresses.- The variation of crack-opening stress with crack

length for a typical spectrum loading test is shown in figure 13. The half-
length of the elox notch (c,) was 3.2 mm. The specimen was cycled under
constant-amplitude loading (Sp,x = 69 MPa) at R = 0 until the crack grew to
a crack half-length (cj) of 3.8 mm. Next, a typical fighter aircraft spectrum
was applied to the specimen. The maximum stress was about 183 MPa and the
minimum stress was about -30 MPa., The particular spectrum loads applied are
given in referen. [14) under test MI91. The calculated crack-opening stresses
plotted in figure 13 show only 4 small fraction of the number of values computed
from the model., The crack-opening stresses follow a very irregular pattern
while the cyclic loads are applied; even so, they tend to oscillate about a
mean value,

The use of an "equivalent" crack-opening stress concept would greatly
reduce the computer times required to complete a simulated test, The use ~{

an equivalent stress is justified because, at low to medium stress levels, the

16
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crack-opening stresses stabilize under constant-amplitude loading. Tley also

tend to oscillate about a mean value under spectrum loading. The equation for

he equivalent crack-opening stress, S,, wvas

_S. Z(SO Ac)k

o L Acg Q2)

where the summation was performed over the crack extension increment

cj + 3 Pmax to ¢ + 10 Pmax+ TIhe maximum plastic-~zone sfze, Ppax® ¥Was
calculated using the maximum stress in the spectrum. (For extremely high stress
levels and low R ratios, where S, values do not stabilize, the simulated
test specimen may fail before the equivalent crack-opening stress routine isg
activateu.) The dashed line in figure 13 shows the calculated equivalent
crack~opening stress. The predicted crack-growth life using §6 was 3.5 per-
cent less than the predicted life using So’ but the computer time was only
about one-half as large (2.6 minutes to 5.6 minutes).

C- ck~growth predictions.- In reference 14 crack-growth tests were con-

ducted on center-crack tension specimens subjected to five basic aircraft-type
load spectra. Three of the spectra were each applied at three different scale
factors (same shape spectrum with different scaling of the stresses), and the
other tv - spectra were each applied at two different scale factors. There
wer~ _hirteen different spectrum loading tests.

Figure 14 compares predicted and experimental crack-length-against-cycles
curves for a typical fighter spectrum., The specimens were subjected to the
same spec=cum, but with three different scale factors (0.2, 0.3, and 0.4). The
preiicted results using o = 1.9 (solid curves) are in good agreement with the

experimental data (symbols). However, for all spectrum tests conducted at a

17
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low-stress level (scale factor = 0.2), the predicted results gave longer lives
than the experimental data. At the low-stress level, the plastic-zone sizes
are small compared to thickness and plane-strain conditions may prevail. The
dashed curve shows calculated results using a constrain factor of 2.7 (plane
strain) and the results are in excellent agreement with the experimental data,
whereas, at the high-stress level, the predicted results gave shorter lives
than the experimental data. At the high-stress level, the plastic-zone sizes
are about a factor-of-4 larger than the low-stress level case, and plane-stress
conditions may prevail. The dash-dot curve was calculated using an a = 1,15.
The calculated resultc are in better agreement with the experimental data than
the results with an o = 1.9, These results indicate that the constraint

factor may vary with stress level and crack length.

COMPARISON OF EXPERIMENTAL AND PREDICTED LIVES
Figure 15 compares experimental (Np) and predicted (Np) lives for
18 constant-amplitude load tests, 49 variable-amplitude load tests, and
13 spectrum-load tests. The crack-closure model with o = 1.9 was used to
predict crack-growth lives from the initial crack length c¢j to the final
crack length c.. The ratio of predicted-tc-experimental life (Np/Np) ranged
from 0.5 tc 1.8. The mean value of Np/Np was 0.97 and the standard deviation

was 0,27,

CONCLUDING REMARKS
An existing analytical crack-closure model (FAST) was used to correlate

crack-growth rate data under constant-amplitude loading, and to predict crack

growth under variable-amplitude and aircraft-spectrum loading, The model was

based on the Dugdale model, but modified to leave plastically-deformed material

18
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in the wake of the advancing crack tip. The model was used to calculate the
crack-opening stresses as a function of crack length and load history under
simulated plane-stress and plane-strain conditioms.

A previously developed crack-growth rate equation, in terms of Elber's
effective stress-intensity factor range, threshold stress-intemsity factor
range, and fracture toughness, was used to correlate constant-amplitude rate
data. The rate equation gives the "sigmoidal' shape commonly observed when
fatigue crack-growth rate data is plotted against stress-intensity factor range.
The five crack-growth constants in this equation were determined from constant-
amplitude data on 2219-T851 aluminum alloy sheet material. The equation cor-
related the constant-amplitude data over a wide range of stress ratios and
stress levels quite well.

The analvtical closure model with a constraint factor of 1.9 and the rate
equation were used to predict crack growth under variable-amplitude and
aircraft-spectrum loading on the 2219-T851 aluminum alloy material. The proper
constraint factor was determined from the constant-amplitude data. The model
predicts the effects of load interaction, such as retardation and acceleration.
The ratio of predicted~to—experimental crack-growth lives (Np/NT) ranged
from 0.5 to 1.8 in sixty-two variable-amplitude and spectrum load tests. The
mean of NP/NI was 0.97 and the standard deviation was 0.27., Thus, the
analytical crack-closure model and the proposed crack-growth law predicted

crack growth behavior in all tests quite well.
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FIG. 1 - Center-~crack tension specimen with Dugdale plastic zones
and residual plastic deformations.
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FIG. 3 - Comparison of experimental crack-growth rates and rate

equatirn for 2219-T851 aluminum alloy at various R ratios.
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FIG. 15 ~ Comparison of experimental {14] and predicted cycles to failure
for 2219~T851 aluminum alloy material under constant-amplitude,
variable-amplitude, and spectrum lecading.
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