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ANNOTATION

Many materials used in machine building display anisotropy, 1.e.,
dependence of mechanical properties on the orientation of forces with
respect to the structural pattern. Ppressure worked metals and alloys,
plastics reinforced with fibers, filaments or cloth (fiberglass plas-
tics.ctextolites) and laminated wood plastics are such materials.

The results of experimental studl:s of the anisotropy of the
elastic properties and strength of various structural materials are
collected and classified in the book. One of the most important ques-
tions of the strength of materials, strength criteria under complex
stresses, 4g considered as applied to anisotropic materials.

The took is intended for design engineers, technologists and
investigators working in the field of machine building, as well as in
other fields which require increased knowledge of the strength and
mechanical propertles of structural materlals.
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FOREWORD

As & result of the development of modern teehnology, the parameters _
of machines have increased and, therefore, the mechanical propertiqs
.and especlally the strength of structural material requirements have
‘been increased. Obtaining high strength materials is connected with
the order of thelr micro- and macrostructures. Such materials include
oriented films of crystalline polymers, polymers reinforced with fiber-
%1assﬁcloth, paper or wood veneer, and crystal fiber reinforced metals

1, 2.

The mechanlcal properties c¢f these materials differ in different
structural directions, 1.e., the materials are anisotropic.

This monograph 1s an attempt to correlate data from study of the
anisotropy of materials of various physical natures, based on a unified
phenomenological approach. This leads to some practical conclusions,
which are important in the design of machine “~..vs and 1n development
of their production technology.

In mechanics, the hypothesis of a uniform, continuous medium,
which is the basis of the classital theory of elasticity and the the-
orles of plasticity and creep, 1s widely applied in mechanics. In this
work, this hypothesis is used in discussion of both plastic properties
and strength of anisotropic materials. In this case, the physical as-
pects of the failure of anisoiropic substances are not considered. This
(phenomenological) approach to questions of the strength of anisotroplc

_solidsl (including solids of nonhomogeneous structure) is similar to

the standard consideration of polycrystalline steel as a uniform, con-
tinuous, 1sotropic medium.

The results of study of the principles of change in strength of
anisotropic materials of varied physical nature as a function of the
orientation of the main stresses to the axes of structural symmetry of
the materlal are present2d in this work. Here, data of the correspond-
ing experiments to determine the mechanical property characteristics,
tests of variously oriented samples of anisotropic materials as a whole,
are used, whether they are rolled metal alloys or such composite hetero-
geneous materlals as fiberglass.

In principle, another approach 1s possible. It is the study of
mechanical properties cof 2 material as a function of the properties of
its component structural elements (for example, in fiberglass the binder
and glass fibers separately). The experiment then has to be set up
differently.

Both approaches have their problems and their flelds of use. The
sacond approach 1s not considered in this work, since the physical
nature of the failure of anisotropic substances 1s not considered.

1See also [52].
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It 1s important to designers and technologists working in the field
of machine building to know how to estimate the strength of a finished
part from the results of mechanical tests of samples of the structural
material, precisely what types of tests are necessary for anisotropic
materlals, and how to test the effect of the anisotropy of a material
on the strength of the part.

To estimate the strength of an isotropic material, it 1is sufficient
to determine one strength characteristic, by which the permissible stress
is selected but, for anisotropic materials, an entire set of mechanical
strength characteristics 1s necessary. These characteristics are de-
termined erperimentally, with varied orientation of the external forces
to the structural patterns in the material (for example, to the direc-
tion of rolling of a metal sheet or to the direction of preferred place-
ment of the fibers in fiberglass). Determination of the required number
of characteristics and of those properties by which the anisotropy sys-
tem of the material differs 1s one of the basic tasks of this book.

In the first chapter, the selection of an anisotropy calculation
scheme 1s substantiated for the materials most used in machine build-
ing, and data are presented on the elastic proverties of bodles of
varied elastic symmetry. As one of the most impertant applicaticns of
this theory, the features of straln gauge determinncion of stresses in
parts made of anisotropic materials are discussed in Secticn 12,

Theories of strength or criteria of equally dangerous stresses are
among the most controversial and, at the same time, important problems
of the strength of materials, and it is further complicated for
anisotropic bodies. The second chapter deals with this problem. 1In it,
two phenomenological criteria of equally dangerous stresses are pro-
posed. The first criterion 1is a correlation of plasticity conditions,
formulated for crystals by R. Mises in 1928. The second criterion
differs from the first in higher fourth order terms but, in cases of
practical importance, it results in simpler and more convenient for-
mulas, which have been experimentally confirmed for a broader class of
materials.

In the third chapter, experimental data on the anisotropy character-
istics of the strength of metals and nonmetaliic materials, in single
static (machine) loading and under dynamic lcads, are correlatec. These
data were processed in accordance with the theoretical assumptions of
Chapter 2 and the requirements of engineering calculations of the
strength of anisotropic materials.

One of the most important conclusions for the practice is the in-
admissibility of estimating the anisotropy of a sheet material, based
only on study of 1ts properties in two mutually perpendicular directions,
longitudinal and transverse. In many cases, the dlagonal directlion is
most characteristic. In order to be sure of the lack of anisotropy,
the properties of sheet material must be investigated in these three
directions.

Anisotropy can develop in machine parts as a result of a certailn

production technology. Anisotropy of metal parts cut after pressure
working can turn out to be especially hazardous. The design of critical

iv




parts without taking into account the development of anisotropy in them
for some reason can lead to serious errors. More than that, testing of
variously oriented samples cut from a finished part to estimate its
degree of anisotropy is difficult practically. Nondestructive methods,
the so called pulse method in particular, can be used to monitor the
degree of anisotropy of the material of a finished part. The features
of this application are explained briefly in Section 12.

The methods of application of nondestructive methods to a more
detailed estimation of the elastic properties and strength of aniso-
tropic materials are not considered in this book.

The book is intended for persons with mathematical training in a
higher technical school. It has no detalled presentation of mathematical
conclusions, and the principal attention 1s given to explanation of the
method of use of all the formulas presented. Derivation of the formulas
can be found in books listed in the references.

The author thanks honored scientist and engineer Prof. V.A. Gastev
and Prof. Ya.B. Fridman, for valuable advice on the basic conclusions
of the book.
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ANISOTROPY OF MACHINE BUILDING MATERIALS
Ye.K. Ashkenazi

CHAPTER 1. SYMMETRY OF ELASTIC PROPERTIES

l. Anisctropy Calculation Schemes

Anisotropy arises 1n materials, in connection with the primary VA A
orientations of their structural elements. In ferrous and nonferrous
metal products, such orientation usually is a result of pressure work-
ing but, in structural plastics, it is due to the oriented arrangement
of the reinforcing fibers.

Crystals, which have diverse forms of symmetry, are distinguished
by considerable anisotropy of all properties. Therefore, great prog-
ress in study of the symmetry of physical properties and structure of
anlsotroplc bodies has been made in crystal physics. The science of
symmetry, extensively used in crystal physics, can be applied in the
mechanics of anisotroplc materials, finding new possibilities for study
of the mechanical properties of anisotropic bodies and for correlation
ci’ test results.

The symmetry of crystals is due to their regular internal structure.
Therefore, both the shape and properties of crystals are symmetrical.
Symmetry of the mechanical properties usually is attributed to a con-
tinuous medium, in which different structural directions are not equiv-
alent, and the structure can be considered uniform.

A change in the characteristics of any property as a function of
direction and its symmetry can be studied, by analysis of the symmetry
of a geometric figure which represents this change.

From an arbitrary coordinate origin, we plot radius vectors which
represent the magnitude of some mechanical characteristic of the ma-
terial in the corresponding direction. The resulting geometric figure
represents the change of the characteristic under consideration as a
function of the direction of the force in the material. As an example,
the figure of the change in modulus of elasticity of resonant spruce
timber, plotted from the data of [3], 1s shown in Fig. 1. The x, y and
z axes are coincident with the three axes of structural symmetry of the
timber: =z with the fiber direction, x with the radial and y with the
tangential directlions.

A figure which can be coincident with itself as it rotates around
the axis of symmetry or when it 1s reflected in the plane of symmetry, L§
l.e., by the so called symmetrical transformations, customarily is

¥Numbers in the margin indicate pagination in the forelgn text.
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called symmetrical. If rotation of the figure
itself is replaced by rotation of the coordinate
axes system, the symmetrical transformation can be
represented mathematically as the change in the
characteristic under consideration upon rotation
of the coordinate axes.

The properties of anisotropic solids which
have symmetry in the sense indicated above can
be characterized quantitatively by mathematical
quantities, the transformation of which upon ro-
tation of the coordinate axes will occur accord-
ing to specific linear relationships. 1In this
casze, quantities which are transformed by differ-
ent relationships but have common characteristic
features can correspond to different properties

\
\
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\
\
|
|
|
)
|
I
]
|
I
|
|
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|
~\\h {/,, of the same medium.
yJ,// x Let a symmetrical figure which represents

a characteristic of the properties of a material
be placed in a rectangular x, y, z coordinate

Fig. 1. Three system, the origin of which coincides with the
dimensional fig- center of this figure. We replace the old x, vy,
ure of anisotropy z coordinate system with a new one (also rectan=.
of modulus of gular), x', y', z', with the coordinate origin
elasticity E of left in place. In this case, the coordinate axes
resonant spruce rotate, but the figure itself remains stationary.
wood. :

We consider the mutual locaticn of the figure
and the coordinate system. Rotation of the axes gives the same results
as rotation of the figure itself with the coordinate system stationary.

Transformation of the coordinates of points of the figure is dJde-
termined by the angles between the 0ld and new axes. Not the angles
themselves, but their cosines usually are given. They are designated
by the letter C with two subscripts, the first of which corresponds to
the number of the new axis and the second, to the number of the old
axis.l For example:

Cy, = cos(x', z).

13

The angles between the pocsitive directions of the axes can change
from 6 to 180°, i1.e., each value of the cosine unambiguously definet
an angle. The complete system (matrix) of the cosine in rotation of
the axes 18 given in Table 1.

The known relationships between the cosines in Table 1 flow from
the conditions of mutual perpendicularity of the axes in the rectangular
coordinate system:

1Subscripts {1 aitd k successively take the values 1, 2 and 3, in which
the first 1s considered here to be the x axis, the second the y and the
third the z.

r
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1. The sum of the squares of the cosines in one line or in one /9
colum. 1s one; for example:

Ch-kc%-+C&-=|
Chi+ClhiChmt

(first column);

(second line);

2. The sum of the products of cosines of the same group in
two different lines or in two different columns is zero; for example:

C,,C,,*+C 0

11612%€21C25%€3103, =
(first two columns);

C C,~*C, .C

11%31%c12 33°0

(lines one and three).

32 713

TABLE 1. DIRECTING COSINES

!
X Cn Gy i Cu
’ Cn " Cn: Cn
2 Csy Cyy | Cyy
]

The formulas for linear transformation of the coordinates of points
of a figure can contain the products of two, three or a larger number
of cosines, depending on the nature of the figure representing given
properties of the material, ths nature of these properties or, in other
words, the order of the tensor< which corresponds tc the property of the
anisotropic material under consideration.

The symmetries of such quantities as stress and elastic deformation
at a point in any continuum correspond to transformation of components
of a second order tensor in rotation of a rectangular coordinate system,
This transformation 1s reduced to summaticn of products which contain
multiples of two cosines of the angles of rotation of the coordinate
axes. The elastic constants of anisotropic media are components of a
fourth order tensor in tliree d!mensional space, and theilr transformation
upon rotation of the coordinate axes requires summation of the products

2Tensors are mathematical quantities whl!ch transform according to specitic
linear relationships upon rotation of the coordinate axes, and which have
a series of properties common to all these quantities. For more detail,
see I.Ye. Taranov and A.I. Borisenko, Vektor analiz i nachalo tenzornogc
ischisleniya [Vector Analysis and the Basls of Tensor Caiculus),

Vysshaya Shkolar Press, Moscow, 19€3, or A.J. MacConnel, Vvedeniye v
tenzornyyanaliz [Introduction to Tensor Analysis)], Ficmatglz Press,
Moscow, l19¢3.
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which contain multiples of four cosines of the angles of rotation of the
axes L]

Tensors which describe properties of an anisotropic body (for ex-
ample, the elastic constant tensor) and tensors, the symmetry of whic~
is independent of the properties of the body (for example, the stress
tensor) should be differentiated.

Stress can be isotropic, for example, in the case of hydrostatic
pressure. If a body is isotropic, elastic deformations under this /10
stress will be the same in all directions (elastic decrease in volume
with constant shape). In an anisotropic body subjected to all round
compression, the decrease in dimensions in different directions wili
not be the same. Therefore, the shape of the body changes.

In anisotropic materials in general, normal stresses in an arbitrary
direction cause both linear and angular deformations and, in turn, tan-
gential stresses can be the cause of both angular and linear deforma-
tions. It follows from this that tne lack of change in angle between
two mutually perpendicular surfaces does not mean the absence of tan-
gential stresses on these asurfaces, i.e.,, the direction of the main
deformations in anisotropic materials does not coincide with the direc-
tion of the main stresses. This was shown by M.F., Okatov as long ago
as 1865. He noted that the axis of an ellipsoid of deformation coincides
with the axes of the stress ellipsoid in an anisotropic material, only
in the event the main stresses act along the axes of elastic symmetry
of the material. With any other orientation, these ellipsoids are 1ot
coaxial.

Before studying the mechanical properties of a material, the cal-
culation scheme of its anisotropy must be established.

The basic assumption introduced in consideration of all mechanical
properties of an anisotropic material is that, instead of an actual,
usually highly nonuniform materisl, some 1dealized, continuous, uniforz
medium is considered, which has symmetry of structure and symmetry of
properties. The characteristics of the properties are determined ex-
perimentally on samples of the actual material, but the number of re-
quired characteristics 1s determined, according to the assumev symmetry
of the medium (anisotropy calculation scheme).

Materials mc3t often are found in industry to which, with a suf-
ficient degree of accuracy, the presence of three mutually perpendicular
planes of symmetry of mechanical properties can be assigned 1n each
unit volume. Such materials are called orthotropic or orthogonally
anisotropic, and the axes of mutual intersection of the planes of
symmetry are called the priucipal axes of symmetry of the properties
of the material. ,

In crystal physics, the zonnection between the symmetry of the
crystal and the symmetry of physical properties 1s censidered, on the
basis that the symmetry of a physical proverty should be higher than
the symmetry of the crystal (Neyman principle).
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In 1944, V.L. German proved the following theorem, which generalizes
the Neyman principie to the case of continuous anisotropic media: "If
a medium has an axis of structural symmetry of order n, it is axially
isotropic relative to this axis for all physical properties, the char- /11
acteristice of which are destermined by tensors of order r, if r 1s less
than n (r<n). Thus, for example, for elastic properties (r=4), with a
fifth order axis of symmetry3 (n=5), the plane perpendicular to this
axis will be the plane of 1isctropy."

This theorem has an important practical application in analysis of
the symmetry of properties of multilayer materials composec¢ of ortho-
tropic layers, for example, wood veneer or laminated fiberglas~ ./ ~et.
All directions in the plane of a sheet of sucn a material wili @2 'ulv-
alent to each other with respect to elastic properties, 1f the ¢ ‘
between the direction of the r'ibers in adjacent layers is lcas than 2°.
Thus, for example, in a laminated material in which the angle between
the fiders in adjacent layers is 60 or 45°, all directions in the plane
of the sheet should be equivalent to each other. In this case, the
plane of the sheet is the plane of isotropy, and the axis perpendicular
to it 1s an axis of symmetry of infinite order. Such a material cus-
tomarily is called transversely (axially) isotropic or transtropic.

Such laminated transversely isotropic materials iriclude, for example,
sheets made of wood veneer or laminated fiberglass, in which the direc-
tion of the fibers in adjacent layers are rotatec with respect to each
other by some uniform angle. In thils case, the laminated material as
a whole has a star structure. The fibers in fiderglass plastic sheets
are oriented in three directicns at angle a=€0° to each other. F=60
aviation plywood is such a material [4]. DSP-G laminated wood plastic,
in which the fibe, directions in adjacent layers of the veneer are at
angle o=30°, 1s widely used for the production of gears, bushings,
friction pulleys and cther parts [5].

Laminated wood chip board with oriented fibers in the layers,
sometimes also have a star structure with q=60°. Keylwerth [6] found
that the modulus of shear and strength of such sheets under pure shear
proves to be highe™ than that of sheets with the same fiber orlentation
throughcut.

The aniostropy calculation scheme of laminated sheet material which
consists o an odd number of layers is determined by the flber structure
of the separate layers and their mutual layout.

Sheet material is transversely isotropic, if all the directionse in
the plane of the sheet are equivalent and, therefore, the plane of the
sheet is the plane of isotropy.

The plane of a sheet of laminated material can be the plane of iso- /12

3A fifth order axis of symmetry ‘s that axis, around which it is sufficient
to turn a figure by one fifth of the circumference, i1.e., by angle an®

2n/5=72°, to obtain complete coincidence of all points of the figure with
their initial positions.
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tropy is two cases:

l. 4f the layers are isotropic; then, the anisotropy of the
material is determined only by the difference between its properties 1in
the plane of the suect and Jts properties in the direction perpendicular
to the plane of the sheet; the direction perpendicular to the layers
usually is weaker (under tension), because of the effect of the binder
(the adheaive layers between the layers);

2. if the layers are anisotropic, but are rotated relative
to each other, so that the whole sheet has an axis of symmetry of at
least fifth order.

In laminated fiberglass production, cases of
nonorthogonal stacking of the layers are known, in
which the axis perrendicular to the plane of the
A sheet cannot be considered an axis of symmetry of
infinite order. This results when the fibers are
placed in two directions (x'1 and x'2. Fig. 2) in

the plane of the sheet, so that the argles belween
these directions are not equal (2y#B8). If the
ibers are placed parallel to the x'l and x'2 axes,

the axee of syrmetry are the X, and ¥, axes, in
which the x, axis is a bisector of angle B and the
Xy axis is a bisector of angle 2y. Such a material

Fe 5 Ploer can be considered orthogonally anisotropic (orthc-
digéctions ' tropic), if the layers with the fiberes placed in
1 the x', and x', directions are correctly alternated.

In this case, the planes of symmetry are thc mid-
plane of the sheet and the two planes perpenc.icular
to the first, containing the X, and X, axes.

and x'2 with non-
orthogonal place-
ment .

Considerable anisotropy of mechanical properties occurs in crystal
polymers criented by prestretching. The development of "necks" in
stretching crystal polymer samples is a phase transformaticn of un-
favorably oriented crystal microformations to favorable orientations
to the force field [7]. New samples cut from stretched necks display
strong anisotropy. Upon stretching in the direction coincident with
the direction of the initial stretching, deformation of the sample
proves to be small, and the strength is increased. Samples cut trans-
verse (to the initial stretching) display great deformability and low
strength.

The ordering of pclymer structures during their orientation leads
to anisotropy of mechanical properties of both a quantitative and a /13
qualitative nature. In stretching along the direction of orientation,
the strength is determined by the strengths of the chemical bonds in
the chain molecules, which are more or less parallel and uniform in
this case. During stretching in the transverse direction, the strength
of an oriented polymer is determined only by the strengths of the
intermolecular reactions, and these strengths are considerably less than
the other (7). in this case, the orthogonal anisotropy calculation
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scheme evidently can be used in films.

In wood structure components, the anisotropy calculation scheme is
determined by the shape, dimensions and position of the cross sections
with respect to the wood structure components. With sufficiently large
cross sections and without their correct orientation to the annual rings
(planks, beams, strips), the direction of the wood fibers can be con-
sidered the axis of symmetry of its structure, and the plane perpen-
?éﬁular to this axlis to be the plane of 1sotropy of all its properties

In application of the hypothesis of orthogonal anisotropy to unit
volum:2s of wood, it is better to conform to its structure. This hypoth-
esis corresponds to the results of testing "small, clean" samples
(GOST [All-Union State Standard] 11483-65 to 11499-65), and it is based
on the assumption of the existence of three planes of symmetry in the
unit volume of wood.

Strong anisotropy is characteristic of all kinds of wood. 1Its
modull of elasticity along and across the fibers differ by nearly 20
times and the strengths, by 40 times. Wood derivative n 'terials are
anistropic: plywood, laminated wood plastics (DISP-B, I'3.-V).

In the works of V.A. Kargin [8] and J. Bernal [1], the thought is
developed of the necessity of studying the art of reinforecing structural
materials in nature. Wood and bone are two reinforced anisotropic ma-
terials which, during natural selection, turned out to be adapted by
nature for the best resistance to mechanical loads. In thils sense,
study of the strength of wood acquires new importance, and it becomes
a kind of problem of bionics in the development of high strength, re-
inforced structural materials.

High strength fiberglass reinforced plastics are bheing us§d4m?gf and;

more extensively in industry. In the case of reinforcing with un

_ recti~»al fiberglass (or spun fiberglass), their anisotropy proves to

be extremely great (SVAM, STER, AG-4S, etc.), especially in producing
items by winding. Fiberglass relnforced laminates can be classified as

anisotropic substances, if their mechanical characteristics are determined

by testing samples of the reinforced materilal.

Ansther approach to reinforcing with plastics is possible [9]. The
concent of fiberglass laminates as an essentially heterogeneous com-
posite material leads to the necessity for separate mechanical testing
of specimens of the binder and reinforcing fibers. In this case, some
cases of their combined performance in a materlal, depending on the
fiberglass plastlc production tech.:ology, remain outside the field of
view of the investigator. Thus, for example, it is known that the
strength of laminated plastics depends on the order of alternation of
the layers, and not only on their number and orientation. It 1s easy
to discover such a dependence, by determining the characteristics from
testing samples of the laminated material. It 1s not possible to
calculate the mechanical characteristics on the basls of analysis of
the combined performanc: of the flber and binder, as it 1s not possible
to study the effect of other technological factors on the strength of
laminated fiberglass and wood materlals.

/14




The anisotropy of the mechanical properties of steel frequently is
a consequence of the primary orientation of the crystals after plastic
deformation (drawing, rolling or other pressure working). In this :
case, the assumption of anisotropy of the mechanical properties of i
steel corresponds better to reality than the conventional assumption, :
which considers steel as a quasiisotropic material. Many nonferrous .
metals and alloys also have mechanical property anisotropy. As a rule, i
metals are considerably less anisotropic than fiberglass. laminates or
wood. Besldes, cases of fallure of metal parts are known, the cause of
which 1s the anisotropy of the metal, which was not taken into account
by the designer ([10].

Analysis of metal flow during pressure working (rolling, extrusion,
drawing) permits the proposal that symmetry of the mechanical properties
of semifinished metal products of simple geometric shape 1is close to
the symmetry of orthotropic substances, which have three mutually per-
pendicular planes of symmetry of the properties at each point. In this
sense, the anisotropy of pressure worked metals can be considered by
the same methods as the anisotropy of wood in small volumes.

As early as the work of V.P. Yermakov (1871), it was shown that
"iron wire drawn through a wire drawing die" can be classified as a |
transverse isotropic substance. The concept of transverse isotropic |
substances and the name itself in the Russian language evidently was
first introduced by Yermakov.

In pressure working intermediate products of cylindrical shape with
a circular cross section, the plane perpendicular to the direction of
the cylinder generatrix can be considered the plane of isotropy. 1In
this case, the metal 1s classifled as a transverse lsotroplc substance.

In rolling sheet metal, its properties in two directions perpendicular
to the rolling direction differ qulte highly.

The statistical data presented in [12, 881, on factory monitoring /15
of massive shapes made of pressure worked light alloys, have shown a
32 and 44% decrease in strength in the directions of the thickness and
the width of the product, respectively, compared with the longitudinal
directicn. 1In this case, the orthogonal anisotropy scheme 1s suitable
for description of the symmetries of the properties of the material of
pressure worked products.

In parts of more complicated configurations, after pressure working,
an unusual texture develops, in which the orthogonal anisotropy scheme
can only be applied to wunit volumes of the material, and the entire
part has curvilinear anisotropy. A graphic example of curvilinear
(cylindrical) anisotropy is the wood in a straight grain trunk.

Study of turbine wheels [11] made by forging or stamping has shown
that thelr material is anisotropic after heat treatment. The cylindrical
anisotropy calculation scheme apparently corresponds most closely to
reallity in this case.

Cases in which, besides anisotrony, considerable nonuniformity of
the mechancial properties develops should be speclally considered.
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Thus, for example, forged metal products with a nonuniform degree of
deformation can be distinguished by considerable heterogeneity. 1In this
case, uniformly orlented specimens cut from various places in the item
differ more strongly in thelr properties than differently oriented
samples cut from one place.

In this work, the anisotropy of materials is considered only in
those cases when their nonuniformity 1s negligible.

2. Elastic Constants

Test data permit all structural materials to be considered elastic
and subject to Hooke's law, within certain limits. Hooke's law, 1l.e.,
the law of linear elasticity, can be considered a consequence of the
] simplest hypothesis that the elastic potential 1s a quadratic function
) of the stress components.

The first experimental study of the elastic properties of aniso-
) tropic substances (crystals) was that of V. Foykht [14], whose tests
confirmed the law of linear elasticity for crystals.

For an anisotropic substance, Hooke's law can be written in the
following abbreviated form:

€ix = CtaimTims

(1)

where subscripts 1, k, 2 and m have the values 1, 2 and 3 in successlon; /16

€4k is the relative deformation, linear with i=k and angular with
irk;

9om is the stress, normal with i=k and tangential with 1¥k (for
example, with =1, m=]1, 0y1 designates normal stress in the direc-

tion of the first axls of symmetry of the materilal, l1.e., the x
axls and, with £=2 and m=2, Oso designates the same along the y

axis);

cikzm are the elastic constants which characterize the materials
and are determined experimentally.

It is assumed that, in Eq. (1), summation over the subscript found
twice on the right side of the equation, i.e., over subscripts ¢ and m,
is carried out. In the abbreviated form, the summation symbol 1is
omitted. If Eq. (1) 1s written with the summation symbols, it takes
this form:

3 3
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For a detalled expression for calculations from Eq. (1), for
example, the relative elongation along the x axis, i=k=]1 must be assumed.
The following results in the general case of an anisotropic material:

&y = unon + C1110ys — €m0y — gy Gy - €112, =+
+ CnnOu+ by + €305, + Cl13303y. (2)

In the general case of an anisotropic material, the values of 81
elastic constants Cikzm’ which form a so called fourth order tensor,

are used in calculation of all deformations. A fourth order tensor is

a set of values (component) which, in rotation of the coordinate axes,

change by the following linear relationship, which contains the product
of four cosines of the angles between the new and old directions of the
axes as musvip.lers:

c&'k‘l’m"—: ““mc‘-.‘-ck.kc C

tm'm (3)

Eq. (3) permits calculation of the constants for randomly oriented
directions in the material (new coordinate axes), if their values are
known for some specific directions (old coordinate axes). Eq. (3) 1is
written in abbreviated form, which assumes summation over all the sub-
scripts found twice on the right side. All the subscripts have the
values 1, 2 and 3 in turn. The letters C designate the cosines of the
angles between the c¢ld and new rectangular Carteslian coordinate sys-
tem, in accordance with Table 1.

We consider an orthotropic material, in which there are three
mutually perpendicular rlanes of symmetry of the elastic properties.

In indication of the elastic constant tensor components in the
planes of symmetry, thelr values should not chaage since, for two direc-
tions uniformly inclined to the planes of symmetry, the elastic prop-
erties of an orthotropic material should be the same. Mathematically,
this indication 1s equivalent to transformation of the cocrdinates by
one of the three directing cosine matrices presented in Table 2 (the
general designation is presented in Table 1). It 1s assumed that the
plane of symmetry (in matrix I) is the xz plane,“ the xy plane 1in matrix
II and the yz plane in matrix III.

The existence of three planes of symmetry (orthogonal anisotropy of
the material) requires that the values of the components not change,
in c¢rder to substitute consines C from matrices I, II and III in Eq.
(3). This condition can be satisfied, only by transformation of those
initial components Cypim? in which either all four subscripts are equal

to each other or they are equal in pairs. Actually, if, for example,

uThis matrix corresponds to reversing the direction of the y axis alone:
C22=C05(y'; y)g_l.

10
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TABLE 2. DIRECTING COSINES

&tarpuaa 1 i w1t fMﬁ‘pun. "

xyli xgy:i l'y?l

AP e

|1 owli-go 04" =100

‘ yno-—lmyga;l 0y 01,0
'i0 on’r:o ol=1'2 00l

| AN

Key: a. matrix

component ¢ 1s included on the right side of Eq. (3), with
1123

i'=k'=1, 2'=2 and m'=3, the corresponding term will have the following
product of the cosines as the multiplier: 0211022033. This, when

indicated in the xy plane of symmetry, i.e., C11%1s Cpp=1 and Cgg=-1,

leads tc a change in sign of this term and to a change in the values of
all components but, according to the condition of symmetry of the com-
ponents, they should not change in such a transformation. Consequently,
in the x, y and z axes of symmetry (principal axis), component 01123

s should equal zero. In transformation of those components in which the
subscripts are equal by pairs, negative one is included in the square,
the sign of the term does not change, and the condition of symmetry is
satisfled. Therefore, only those components the subscripts of which
are at least equal by pairs, i.e., a total of 21 components, can be on
nonzerc initial (principal) axes.

Since this equality follows from the equilibrium condition:
C12%0215 0137033 8nd 0,3%0 35,

it happens that elastic constant tensor ¢ does not change upon

ikm
} transposition of the subscripts, i.e., that

Crink = Crniis | (4)
Cixir = Ceint = Coani = Cnige- |

As a result, the elastic constant tensor in the principal x, ¥y
and z axes of symmetry of an orthotropic substance has nine independent
elastic constants, and it can be written in a form (Table 3), in which
the following conventional symbols of the technical elastic constants
are introduced:

~N
—
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where E 1is the tensile or compressive modulus of elasticlty in the

4cay
Cryay = — 7
Casgg = — E,
Can = — -F,;

| direction of the axis specified in the subscript;

G 1s the modulus of shear as a result of tangential stresses
on areas parallel to one and perpendicular to another of the

axes specified in the subscript;

- TABLE 3.
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u is the coefficient of transverse deformation in the direction
of the first of the axes specified in the subscript, as a re-
sult of normal stresses in the direction of the second axls.

TECHN.LCAL ELASTIC CONSTANTS IN XYZ AXES OF
SYMMETRY OF ORTHOTROPIC MATERIAL

(5)

(6)




Thus, if the x, y and z axes are the axes of symmetry of an ortho-
tropic material, the following should be placed in Eq. (2)

€1113%%11217¢1123%1131%¢1132=°
Then, Eq. (2) takes the following form

€117¢1111912%1122922%¢11 33933:

With Eq. (5) and (6) taken into account, together with Eq. (1),
we obtain

o
g, :—L—._L" L 0'_ Max 0.;

Es E, Ez
= — My Oy My ..
& 0, + E, Fe O
Haz By a
4 -— — .
= Ex Oy -_E-,L o, + —E—:-;
Ty
Yy = T—t” '
v (7)
T
Yoo = ”G:‘:‘

To determine the relative linear deformation in the direction of /19
an axis randomly oriented in an orthotropic material, Eq. (2) should
be used, in which the elastic constants are calculated by Eq. (3),
based on the experimentally determined values of the elastic constants
in the axes of symmetry of the material (see Table 3). The values of
the elastic constants in the directions of the axes of symmetry of an
orthotropic material in Table 3 are expressed ty the technical elastic
constants according to Eqs. (5) and (6). Numrical data on the values
of these characteristics of some structural materials are presented 1n
Section 3.

To determlne the entlre set of nine elastic constants of wood, it
is sufficient to test the uniaxial compression or (better) tensior of
six types of samples (Fig. 3) [15, 16]. Longitudinal resistance sen-
sors for measurement of the defcrmations in these samples are positioned
differently with respect to the axes of symmetry of the wood (Fig. 3).
The force 1s applied to all samples along the axis parallel to the
longer side of the parallelipiped. The samples shown in Fig. 3a, b and
c are used to determine the values of E and u in the principal directions
of symmetry, and the samples shown in ¥Fig. 34, e and f, to determine
them in the diagonal directicns. For example, from the results of test-
ing the sample shown in Fig. 3f, the modulus of shear 1s determined

13
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Fig. 3. Samples for determination of set of
elastic constants of wood by means of strain gauges.

The method of determination of the elastic consténts of any ortho=-
tropic material can be the same as for wood.

Unfortunately, the complete set of elastic constants has been
determined experimentally for few anisotropic structural materlals,
although the method of determination has been quite well developed.
These data are required in order to estimate the effect of anisotropy
of the elastic properties of a materis' on the pattern of stress dis-
tribution in a part, by using the formulas of the theory of elasticity
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of an anisotropic material (17]. The effect of anisotropy can some- /21
times be very noticeable. For example, in stretching a sheet along the
axis of greatest rigidity, the coefficient of stress concentration

around a circular opening increases with increase in the degree of
anisotropy of the material, but it decreases when stretched in the trans-
verse direction. The results of study of the change in the coefficient

of concentration for this case are presented in (9], as a function of

the coefficient of reinforcing and the degree of anisotropy of fiber-
glass. laminates.

ORI
B P R I I U ¥ P e S

The modulus of elasticity E x! and modulus of shear G x'y! for ran-

domly oriented directions in an orthotropic material are determined LA
the following formulas, which arise from Eq. (3):

1 4 |
NI B T T RS P
E, T T :: N C, E, ( 8)
4 1 1 Em? 4 1 PN 29
—_ — e ——\ 6m e e
S st ) i+ (g =g~ )
l . (nl’l + Iint)’ + (llmﬁ + m]")' + ‘m.n, + ﬂ"",)‘ —
G,y Gy Gp G
Amhngly  Ahmbm,  dmynymeng ) . (9)

(45) - (45) 145
G*H le Gu'

For simplification, instead of the cosine notation (Table 1), ’
the notation presented in Table 4 1s used in these formulas.

TABLE 4. SIMPLIFIED DIRECTING
COSINE NOTATION

X [’} 2
o
x n L, I om
s
ol k] m
! ! ny ly my
|

For the two dimensional problem, the elastic properties of an
orthotropic sheet are determined with four constants. If the ex-
perimentally determined values EotEx, 590=Ey and Eus are adopted as

the initial values, the formulas for the elastic constants at angle
a to the axes of symmetry can be written [18]:

E,

I,:.‘?=cos‘a3é-bsm=2,-¢,m.,' (10) %
Es _1+c, L.
where b= F— =i €= g
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Here, all the elastic constants are determined for uniaxial stresses
and pure shear in the planes of symmetry of an orthotropic material.

a% ¥

Fig. 4. Orientation of tangential stresses in
determination of modulus of shear: a. GO in xy
plane; b. th in xy plane; c. GO in yz plane.

-

Tangential stress 1 orientation diagrams in pure shear, which /22
correspond to different moduli of shear determined by Eqs. (12) and
(13), are shown in Fig. 4. 1In shear along the planes of symmetry
parallel to the x and y axes (Fig. 4a), modulus GO in the xy plane 1s

determined by Eq. (12). In shear along planes at a 45° angle to the
x and y axes of symmetry (Fig. 4b), modulus Gu5 in the xy plane is

determined by Egq. (13). Here, for example, the rolling direction of e
steel sheet or the direction of the fibers of a laminated fiberglass
lining can be selected as the x axils.

If angle a¥45°, the tangential stress orientation scheme (Fig. Ub)
corresponds to the quantity Ga’ determined by Eq. (11). If the pure

shearing stress turns around the y axis, so *rat one area of action of
tangential stresses always remains parallel to the y axls, after rotat-
ing the scheme shown in Fig. 4a by 90°. another scheme (Fig. lc) re-
sults, which corresponds to modulus Gy~' When rotating the scheme

“~

(Fig. 4a) around the y axis to any angle B, the modulus of shear is
determined by the formula

|
cwfa  sn‘a’ 1
Ll W ol e 38 }
oo Lo (14)
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Graphs of change of modulus of elasticity Ex' of some pressure

worked nonferrous and ferrous metals, plotted from experimental data,
are shown in [12, 13]. These graphs confirm the suitability of Eq. (8)
and, consequently, cf the calculation scheme of the orthogonal aniso-
tropy of elastic properties to these materials.

Experimental data confirm the practical suitability of the assump-
tion that both metals and such materials of nonuniform structure as
wood and wood materials [3, 5, 18], textolites and fiberglass laminates

(19, 20] are orthotropic, uniform, continuous media with respect to
elastic properties.

Only a material, the modull of elasticity of which are the same
(in the case of sheet material) in three directions (the directions of
greatest rigidity, that perpendicular to it and the diagonal; see

Eqs. (8) and (10)) can be considered isotropic with respect to elastic
properties.

Monitoring the isotropy of a sheet from mc urements of the de-
formations in two mutually perpendicular directions alone can lead to
mistakes, since it often turns out that the diagonal i1s most indicative
in estimation of the anisotropy expressly in those cases when it is
not very strongly expressed.

The elastic properties of a transversely isotropic material are
determined by five independent characteristics in the axes of symmetry.
The corresponding formulas are easy to obtain if, for example, all sub-
scripts y are replaced by x in the formulas for an orthotropic material,
with consideration that the properties in the xy plane are the same in
all directions. In other words, for a transversely isctropic material,
the following must be used in Teable 3 (if z is an axis of symmetry of
infinite order):

(15)
(16)

For cubic system crystals, which include monocrystais of the pure
metals aluminum, nickel, copper, airon (see Table 6), three elastic
property characteristics are independent. For such a case of symmetry,
the following must be used in Table 3

Ciynn = Caayg = Cyanyl
Cr1ga = Coazy = Cuannd l (17)
€2z = Caan = Gy
or else S S l
ll E' El e
Wys Wre

(18)
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In daistinction from isotropic and transversely isotropic materials, /2
there is no symmetry relationship (16) in this case.

With this relationship, a total of two elastic constants dbecone
independent, and the material is isotropic. Thus, the three relation- :
sh*ps (18) and obligatory relationship (16) are used as 1sotropy criteria.

For an isotropic material, the figures

5 which represent the change

in moduli of elasticity E and G should revert to spherical surfaces.
Consequently, a material, the moduli of elasticity E and G of which are
the same, not only in the x, y and 2z direztions, but in diagonal direc-
tions, is isotropic. For isotropic materials and for cubic system

(45) p(45)
E Xy E'
for the latter, no.-

y

x-EMS)zx but, for the former, E(u5}-E(°) and

3. _Some Experimental Data on Elastic Froperty Anisotropy

Curves of change of the modulus of elasticity in the planes of
sheets of different materials, tc which orthogonal symmetry of the
elastic properties 1is sttributed, are shown in polar diagrams (Fig. 5
6). The curves presen::d in Fig. 5 were plotted from the data of [215,
and the curves shown i Fig. 6, from the data of [22]. For comparison,
a diagram of the change of modulus of elasticity E of resonant spruce
wood, a material with the strongest anisotropy [3], is presented in

Fig. 7.

Fig. 5. Polar diagram of modulus -

of elasticiiy E of rolled metals:
1. copper; 2. 1iron.

Key: a. E, kg/cm2

In all these materials, in
the plane for which the diagrams
were plotted, there are two axes
of symmetry of the figures which
represent the change in modulus of
elasticity. The digrams confirm that
the degree of anisotropy cannot bde
decided only by comparison of the
value of E in the x and y axes of

symmetry. -

The curves cof change of modull
E and G vs. direction are approximated
well by Eq. (8) and (9). As a rule,
modulus of shear G has the highest
value for the three orientations
which correspond to the lowest values
of modulus E. This regularity 1is
characteristic of metallic mono-
crystals and strongly anisotropic
nonmetallic materials.

The surfaces of change of
modulus E (Fig. 8) and modulus of

5For an anisotropic material, such figures are shown in Fig. 8 and 9.
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R shear @ (Fig. 9) glctted by 1
: Goens and Shmid [26]
illustrate this regularity
for an iron monocrystal, the
symmetry of which is that of
the cubic system (see Section
2). These surfaces confirm 4
that, with equal moduli in
the directions of the three
axes of symmetry, the material
cannot be isotropic, if its
moduli have other values in 4
the diagonal directions than
on the axes cof symmetry. b
Moduli G for an iron mono- /27
crystal has & higher value
in those directions in :
which moduli E are smaller. !

This principle remains {
valid for pressure worked
retal alloys. To decide on
the isotropy of rolled sheet,

¥ not only the longitudinal .
and transverse but, without
Fig. 6. Polar diagram of modulus of fail, the diagonal direction
elasticity E of 10 mm thick 9-ply aviation must be investigated. The L
plywood (x. direction of lining fibers). latter frequently proves !

P to be the most characteristic.
Key: a. E, kg/cm

Modulus of elasticity E of rolled metal
alloyes displays comparatively small aniso-
tropy. The diagonal direction, which
makes a 45° angle with the roliing direc-
tiorn in the plane of the sheet, is the y
most characteristic of it. It was noted =
in (12, 13, 23) that, for rclled metals,
modulus Eus in the diagonal direction proves i

to be the smallest but, after annealing i
1

and recrystallization of the nmeteals, EMS

1.5-2 times (Fig. 10-12). Anisotropy of

[4
. the elastic properties, determined f{rom
, the EO:Ego ratic is almoat absent in these
Fig. 7. Polar dlagram cases, and the diagonal direction displays
of modulus of elasticity a different type of anisotropy of the same
¢ E of resonant spruce metal in different states.
i wood (x. fiber direc=-

tion). To some extent, anisctropy develcps
in all metals after pressure working and,

exceeds modull E, and E90’ sometimec by ‘
‘
as a rule, 1t is not eliminated by annealing. ;

19
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figure of anisotropy of

modulus of elasticity E of
a~iron moriocrystal
symmetry of crystal shown by

straight lincs).

Fig. 9. Three dimensional

figure of anisotropy of

20

modulus of shear G of a-
iron morocrystal (axes of
symretry of crystal shown
by straight lines).

I

(axes of

Metals, the crystal lattics of which

has hexagonal symmetry, develop greater
anisotropy after cold rolling than metals
with a cudbic lattice. The anisotropy of
metals depends on the method of rolling,
the degree of cold working and the method
and temperature of the interoperation

and final annealing [%6].

Table 5 presents experimental data
on v..e technical elastic .onstants of
ort..otropic nonmetallic materials, of
which considerable anisotropy of the
elaatic properties 1s characteristic, /28
The elaatic constants of metallic
monocrrstals presented in Table 6 were
calculated from the data of [26]. 1In-
formation is assembled in these tables
on the complete set of elastic constants
in the axes of symmetry which, unfore
tunately, is avallable for only a limit-
ed number of materials.

A large amount of experimental data
on the elastic constants of various
crystals 1s presented in [27], where
surfaces and curves of change vs. ori-
entation toward the axes of elastic
symmetry were plotted for them.

The elastic properties of wood
materials, fiberglass laminates and
laminated materials in general are dis-
tinguished by a lower modulus of shear
sz than modulus of elasticity Ex‘ Thus,

for sacin weave fiberglass cloth plastics,
in the plare of the layers with mutually
perpendicular placement of the clocth

i 1/7
layers, this ratio sz/Ex'I7T3 but, with
the longitudinal-diagonal reinforcing
system used in shipbuillding, sz/Ex- /2

%é% {25). Therefore, calculation of

(Ve

the elastic deformations and natural
oscillations in bdending of fiberglass
plastics should be carried out, with
verification of the effect of shear on
the magnitude of the defliesctlion required.
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Fig. 10. Anisotropy

of modulus of elas-
ticity E (angle

between rolling direc-
tion and sanple axis
plotted on abscissa):

l, 2. sheets of iron and
copper in rolled state;
3. copper sheets after
recrystallization.

Key: a. E'th, kg/mm2

Qg0 fun?
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l/?‘k
Y0 80,39
Fig. 11. Anisotropy
of modulus of elas-
ticity E of Fe-Ni
alloy in rolled state
(curve 1) and after
recrystallization
(curve 2).

Key: a. E'lOu, kg/mm2

Fig. 12. Anisotropy
of modulus of elas-
ticity E of molybdenum
sheet rolled in twe
alternate directions
and annealed.u

Key: a. E+«10°7, Kg/mme

It 1s characteristic of reinforced
materials that, with mutually perpen-
dicular placement of the reinforcing
fibers, modulus of elasticity E in the
Xy plane turns out to be the least under
diagonal tension, for which the modulus
of shear usually 1is the greatest (Fig.
13). Diagonal placement of part of the
reinforcing lncreases the modulus of
shear G of the reinforced material. If
the same number of reinfcrcing fibers
are placed in the longitudinal, trans-
verse and two diagonal directions, the
sheet material can be considered iso-
tropic in the plane of the sheet
(transversely isotropic). In this case,
modulus of shear G,=G 5 turns out higher
[6] than with mutugll§ perpendicular
placement of the reinforcing fibers.

Fig. 13. Anisotropy of
elastic properties of
fiberglas plastics: 1.
modulus of elasticity E

of SVAM with 1:1 fiber
ratio; 2. modulus of shear
G of SVAM with 1:1 fiber
ratio; 3. modulus of
elasticity E of PN-1
binder fiberglass cloth

plastic.

5

Key: a. E*107, kg/cm2
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| TABLE 5. ELASTIC CONSTANTS OF ORTHOTROPIC NONMETALS
“ .
48 b .

. Marepuan Moxyaw ynpyrocras, xI'/eat-10¢ %5:&:23;::‘::: }
5 Ex | B, | B | Ony | 9pe | Gax | Bay | Wye | Bu ?
! 2
Jp%;ccuua pe- | 10,3 ] 0,77 {0,395 0,524 1 0,354 | 0,421 0,031 0,248 10,441 |-
30HancHoRt ean ) :
: 13 .

e JCH-B 15, 2411 32,7 7.1 46 | 1,21 1198 | 252! 0,07 { 0,30 | 0,36
£ ICBAM, 1:15]| 46 | 16 } 11,2{565!3301 435003 036|030
(10 JaHHBIN . .
C. M. Tanekans- '
¢Koro) : :
gl BAM 11 [ 26 | 2 |78 45130 [30013] 002 02
(no RarubIM ¢
C. M. Mepexais- .
CKOro) :
h [Crexaorexcroanr) 12,5 § 13,1 | 530 | 2,82 { 238 | 2,34 | 0,10 } 0,17 {0,229].
CANTHHOBOIO :
repenietexns 3
Ba cmone MNH.3 -
(N0 J3aHHKN K
M. B. Tepw- 3
Gepra) e
+

i Notes: 1. Subscripts x and z designate axes of symmetry of greatest
and least rigidity.

: 2. First subscript of factcr u designates the direction of

! deformation and the second, the direction of active stress.

' Key: a. Material f. SVAM, 1:15 (from data of S.M.
b. Modulys o elasticity, Perekal'skiy)
kg/cme. g. SVAM, 1:1 (from data of S.M.
C. Transver°e deformation Perekal'skiy)
factor u h. Satin weave PN-3 resin fiber-

d. Resonant spruce wood glass laminate (from data of .

e A anan S AT RIS e

e. DSF-B

TABLE 6. ELAST

M.V. Gershberg)

- T
% ! g
£ icd

a r 5 =

Mareprnaa R -’

z :

. | % E

o R
[ | l

Aoy d ! ¢.64 ‘0 355, 0.9

Hrots € i 039”‘ 1.2i

Meay r i303}0416.0.77

LRI & ‘l 1,35 iOS..: 1.18

Key: a. Material
b. B,°105, kg/cm?
C. G y 06, kg/cme
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d. Aluminum
e, Nickel
f. Copper

g.

IC CONSTANTS OF MONOCRYSTALS OF PURE CUBIC SYSTEM METALS
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CHAPTER 2. STRENGTH CRITERIA

4, Strength of Anisotropic Materials

The majority of machine parts operate under complex biaxial and /30
triaxial stresses, for which strength testing of an anisotropic ma-
terial has peculiarities, which consist primarily of the need for
experimental determinatlion of an entire set of mechanical character-
istics.

For isotropic materials, the strength usually is expressed by an
equation which connects the three principal stresses with a single
strength characteristic of the materlial. For anisotroplic materials,
such an equation does not solve the problem, since a hazardous state
depends on both the principal stresses and their orlentation towards
the axes of symmetry of the material, Therefore, the equation of
equally hazardous stresses of orthotropic materials should not contain
three, but six quantities, for example, the three principal stresses
and three directing ccsines, which record their orientation towards the
three axes of symmetry of the material.

The ecuation of equa’ly hazardous conditions for orthotropic ma-
terlals has a simpler and more symmetrical form, 1f it does not 1include
the principal stresses, but the stresses on areas perpendicular to the
X, ¥y and z axes of symmetry of the material. 1In this case, the strength
characteristics are determined in the axes of symmetry of the material.
The entire set of strength characteristics which 1is included in the
equation cof equally hazardous states can be determined experimentally.

If the three principal stresses are randomly orlented towards the
three x, y and z axes of symmetry of an orthotropic material, the
stresses on areas perpendicular to the axes of symmetry can be calculated
easily from the known strength of materials formulas, Just as in the
case of random orientation of these areas. Designation of these stresses
with letter and number subscripts is presented in Table 7. Designa-
tions with numerical subscripts are more convenient for shortening the
writing down of the formulas. Here, as before, the number 1 means the
x axis, the number 2, the y axis and the number 3, the z axis. For

example, stresses designated by the symbol o, or 094 are normal stresses

on an area perpendicular to the first axis of symmetry of the materlal
X. In abbreviated notation, stress is designated by the symbol O4k> in /31

which subscripts 1 and k have the values 1, 2 and 3 in succession.
The stresses, the designations of which are presented 1n Table 7,

combine into the following sums, the values of which do not change upon
rotation of the coordinate axes and, therefore, are called lnvariants:

Iy = ayd, = (19)
a0, oy
| =00, —0.—: 0, i Gz“t‘
EEITSRI RS -0,
’ (20)
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TABLE T.
OF SYMMETRY OF ORTHOTROPIC MATERIAL

NOTATION FOR STRESSES ALONG AREAS

BComasennn ¢ Gyn- Py ooInzsenna ¢ uk-
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Key: a. Letter subscript notation
b. Numerical subscript notation
In these formulas, the abbreviated notation
of invariant sums I, and I2 is given first and,
I A then, the detailed notation. In the abbreviated
-— notation, subscripts i1 and k should be given the
o values 1, 2 and 3 in succession, and summation
L over these subscripts should be carried out. The
f“ ;,‘ X value.of §,, should be one if i=k and zero, if
‘_’r“ 7’,;_’\‘5‘ “1*6 i#ko
: }'ff >y ™ Eow stresses g, oy and Txy act with planar
-{ '?ﬁi?;V_; stress In the xy plane of symmetry of the ma-
-4 5 |~ terial, with fixed princlpal stresses o4 and 4 .
L—,____.__.. -

(the x axis 1s coincident with the direction of
the fibers), is shown in Fig. 14,

The equally hazardous stress functions
should be invariant, in the sense of Eq. (19) and
(20). Upon rotation of the coordinate axes, the

14. Stresses

nd i
y and t,, in

Filg.
02 O

twe dimensional
stress in xy planes
of symmetry of ma-

values of the stress components and of the ma-
terial constants change, but the values of the
functions should not change. Two types of these
functions will be considered in Section 5 and

terial (in Table 7). Section 6. Eq. (19) and {20) are used in des-

ignation of the criteria in Section 6.

Stresses in which transition of the material from one mechanical
state to another occurs are considered to be equally hazardous (maximum)
stresses. This can be a transition from the elastic state elther to
the plastic state or directly to failure.

The criteria of limiting states of isctropic materials are assumed
to differ in the case of development of plastic deformations (then,
this criterion is called the plasticity condition) and in the case of
brittle failure (strength condition). If the plasticity condition and
brittle failure criterion are formulated differently for an anlsotropic
material, the orientation in which a given stress should apply one
condition and that in which 1t should apply the other condlition must
be known beforehand.
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It is known that the behavior of an anisotropic material can be
brittle or plastic, all other conditions being equal, only because of
different orientation of a given stress. Thus, for example, wood de-
forms plasticly (it is rqueezed together) under radial compression, but
it undergoes brittle shearing, if the direction of the compressive force

" makes an angle of U45° to the fiber direction and lies in the radial

plane. It 1s similar in crystals: the form of disruption of strength
depends on the orientation of the force to the so called cleavage
plane.

The demarcations between the brittle and plastic forms of hazardous
states 1s not very distinct, even for isotropic materials [32].

A genera_.ized understanding of a hazardous state of anisotropic
materials is possible. Either birittle failure (i1f plastic deformation
did not precede it), or the appearance of noticeable inelastic deforma-
tion (if it is a hazard to performance of the part) can be considered
hazardous.

It is customarily considered that hydrostatic pressure does not
affect the strength of isotropic materlals and does not change the
shape of the material. The equally hazardous stress functions (strength
criterion or plasticity condition) for isotropic substances usually are
written in a form, in which the addition of equal all around compression
or tension does not change the value of these functlons.

It follows from this that, in itself, hydrostatic pressure or
equal all around tension cannot change an isotropic material to a
hazardous condition. Thils situation is not evident, and it is ques-
tioned by many authors. Thus, in the works of N.K. Snitko [25], it
was pointed out that, if the atomic structure of the material is con-
sidered, unlimited resistance to uniform all around tension of any
magnitude should be recognized as improbatle. It 1s clear that some
limiting resistance to all around tension should exist, in which the
bonds between separate particles-should be disrupted.

A similar ccnclusion can be reached for the deformation of aniso-
tropic materials under equal all around compression. Further, the
tests of A. Fepple showed that, for example, for such an anisotropic
material as wood, the effect of hydrocstatic pressure cannot be dis-
regarded. Feppl subjected wooden cubes to equal all around compres-
sion, and they squeezed together and acquired an irregular shape [25].
The shape of any strongly anisotropic material charnges as a result of /33
hydrostatic pressure, since the decrease in dimensions does not occur
uniformly in different directicns. If these changes remain after re-
moval of the load, it 1s evident that the hydrostatic pressure can
result in plastic deformation, i.e., a hazardous state, of the aniso-
troplic material. The effect of hydrostatic pressure can te especlally
significant in the case of strong anisotropy. For polymers, it is
found even in the absence of anistropy [30].

There are very few data in the literature on the effect of hydro-
statlic pressure on the behavior of anisotropic materilals.
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The shape of a pine ball, which was photo-
graphed by A.L. Rabinovich [15] affer exposure
to hydrostatic pressure p=60 kg/mm€, is shown
in Fig. 15. 1It 1s clearly evident in the fig-
ure that uniform pressure on all sides changed
the shape of the ball. It suffered residua
deformation across the fibers and was changed
into an ellipsoid. Thus, hydrostatic pressure
may be the cause of a hazardous condition of
the wood. Bridgman [31] reazhed similar con-
clusions, in study of the effect of hydro-
static pressure on the yleld stress of quartg.

The equally hazardous stress functions
for anisotropic bodies should conform to this
gifi :?éersgiggsﬁﬁepége characteristic of it and take hydrostatic
hydrostatic pressure. pressure into account.

5. Quadratic Criterion of Equally Hazardous |
Stresses |

In 1928, in his clussic work on the plasticity of crystals [33],
Mises proposed the plasticity condition in the form of an equation,
which connects six components of stress (Table 7) with the yield stress
under uniaxial stress and under pure shear in different crystallographic

directions.

The plasticity condition can be considered a special case of the
equation of equally hazardous states. We investigate the plasticity
function proposed by Mises, for its suitabllity as a general equation
of equally hazardous stresses (strength criterion).

The plasticity function was proposed by Mises 1in the form of a L_ﬂ
uniform polynomial of the second degree. Initially, he wrote this
quadratic function without introduction of the assumption of inde~
pendence of the yield stress of crystals from hydrostatic pressure,

For a material with a general type of anisotropy, the Mises plasticity
condition ([33], p. 163) has the following form in our notation:

A0 A Apn0; + Ay, 0} + 1A%, + 44,00, + 4‘421:1‘3.; +

+ 2411200,0, + 24,3:350,0, + 244y,0.0, + 24,15:0,7,, +

- 2'4 lll&orr.\'l - 2‘4"\201le -:" QAzgcaayTw + 2-‘122‘30”11: + ( 21)
240ty - 250.0,1,, 4 2444,50,7,, + 244,,0,1,, +
- 4'43;‘1:{7:; LIV 4"‘.“!:':"-11 - 4'41123t!yr7: =L

In this equation, coefflicients A are constants of the material,

ikgm
the number of which 1s 21 in the general case of anisotropy.

If the x, y and z axes coincide with the axes of symmetry cof an
orthotropic material, on symmetry considerations, all terms which
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contain tangential stresses in the first degree and the products of
different tangential stresses should be discarded, since these terms
can change sign upon reflection in the planes of symmetry of the ma-

terial (see Section 1l).

Eq. (21), in the axes of symmetry of an orthotropic material, will
contain nine constants A'klm’ and it takes the following form

'4nu°i + A::::“i + As.m03 + 2‘4||::°;°u + 2'4'.‘:140,0. +
+ 2‘44!11010: "L 4'41113131 f- 4‘4.\’.‘3.“£y + 4"‘212!‘5! - l ( 22)
In this expression, the relationships between coefficients Aiknm

can be selected so that the addition of hydrostatic pressure, 1.e.,
of invariant I1 (see Section U4) does not change the value of Eq. (22).

Then, function (22) will comply with the special assumption of Mises,
of the insensitivity of the plasticity condition to hydrostatic pressure.

By using the stress designations (Table 7), we write quadratic func-
tion (22) in abbreviated form [37, 11]

Aykem®1k%am=1 (23)
We write the relationships between the material constants Aiklm’

in which the addition of I, does not change the value of Eq. (23), thus

(24)

AygamS1k=0"

For an orthotropic material, relationship (24) can be derived from
the condition of invariability of Eq. (22), by substitution in it of

g, =0, —p;
0“=U;—p;
0, = 0, — p; (25)

Ty =T =Ty = 0.

By making the coefficients in terms which contaln the hydrostatic
pressure intensity p in the first degree e :1l to zero, from Eq. (22),

we obtain
A+ Ay + A5 = 0

Qo+ Aun + A =0
(26)

Agszs + Ajayy + Aggee = 0.

N
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By making the coefficient with p2 egual to zero, we obtain a con-
dition which is a consequence of Eq. (26)

A +2A

1121*R2222+43333%2A7729*245533%2A 34,0 (27)

We write condition (27) in abbreviated form

Aiklmcikclm-o (28)

We investigate quadratic function (22), which is sensitive to
hydrostatic pressure, as an equation of equally hazardous stresses of
anisotropic materials, without taking relationships (24)-(28) into
account.

In plane stress which is randomly oriented in the xy plane of
symmetry of the material, from formula (22), we obtain

2 ,
-“nuOc us A.‘r::oz T 2.4,,2_.010" s 4.4’_::1’;‘ - | ( 29 )

To determlne coefficients Aiklm’ we consider particular cases of

limiting stresses:

l. we set oy=rxy=0 and ox=go (00 is the ultimate strength

under uniaxial tension along the x axis of symmetry); then, from
formula (29), we obtain

2 I
Amog=1 or A4, = —;
T

(30)

2. with 0 =0 and °y=°90 (090 is the tensile strength

Y
along the y axis)

o (31)

3. with oxq3y=0 and Txy“O (rO is the ultimate strength under
pure shear along the areas of symmetry of the material),

4"1121::—‘ (32)

. I

T

Cus
. with o X’Oy-'\' xy‘T (OUS

at an angle of 45° with the x and y axes of symmetry in the xy plane),

is the "diagonal" tensile strength

NG
)
=
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2A"g==?;—';:;—-;‘;——‘.;-' (33)

5. with the use of another stress, pure shear along the same
diagonal areas, in which 6, =+T )55 Oy==Tys» Txy'O (Ths is the ultimate

strength under pure shear along the diagonal areas), we obtain

L
24,10 ';3"‘?-?;—?3. (34)

For the two dimensional problem, expression (29) takes the follow-
ing form

2 2 2
c, , O, T "4 1 | |
‘%f;%+‘?+°ﬂ«—r——?——r—'7)=‘ (35)
ag 0 T o 9% T %
or 2 ) 2
oy 9, Tew 1 1 1
— +=F+ 5 +00, (—,—*——— =]
o L) T % %0 s

(36)

Both of these alternate versions of the strength criterion (formulas
(35) and (36)) contain four constants of the material for the two dimen-
sional problem. They are determined from uniaxial stress and pure
shear tests.

We assume that safety factor k is the same in different direc-
tions in the material, in the first approximation. Then, for practical
verification of the strength, the strength condition i1s obtained from
the quadratic criterion (formula (35)), in this form

o 2-3 2.2 f
' O.+"O. +d1l, T'soloy‘\: OO]v

where [oo]=oo/k is the permissible longitudinal stress (usually, this
is the direction of greatest strength);

(oY Ty
C BE — S s ® . S __ 2 T . O
Tog * W S 4a c—d—-|: a_o—“;

B and oy are the normal stresses in the part along the areas of
symmetry of the material (ox along the x axls and cy along the y axis,

in which the x axis coincides with the direction of greatest strength
of the material); Tay is the tangential stresses on the part (in the

same place as stresses Oy and oy), along areas perpendicular to the
x and y axes.
In work already mentioned [33)], a characteristic of anisotropic

materials was noted for the first time, which permits testing the suit-
ability of the plasticity criterion (and, consequently, strength) by
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the results of uniaxial tensile testing of variously oriented samples.

From expression (29), we obtain a formula for calculation of the
tensile strength g in random direction of x', as a function of orien-

tation of the x' axis, determined according to Table 8.

TABLE 8. DIRECTING COSINES

x v F
x ' cosa sina | 0
v —sin a cosa | 0
f & ‘i 0o ! o | 1

|

For this, we substitute the following stress values in formula
(35):

T, == 0,08 sinx;
0, = 0,c08*a;

(37)
0, = 0,sin%qa
and we obtain
1 cosba | sinta | 1 s 4 1 1
- = —— + ——— Lsintacos?a [ —— — —— — — )
o, % a, ( o @ 0n (38)

We now derive a formula from expression (36), which determines the
pure shearing strength Tb’ in which tangential stresses act along an

area normal to x' parallel to the y' axis. For this, we substitute the
following stress values in formula (36):

T,y = T,C0%2a;
kg = W {39)
0, = 1,8in 2a. I
6, = —1,8in2a
and we obtain 1 cos? 2a sint 21
—_—= Syl .
: ¢ 1 L
i 0 - |
(L0)

Formulas (38) and (40) can be written in this more convenient form
for practical use and comparison with experimental results:

T

% YetarBsmilasdinia (41)
_ % p_a_1+S 6.
(where c¢=g%; B=ua —: a “"),
T, = — L — (42)
’ cos® 2 4 ( :'--) sin?2a
30 »
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It is easy to see that, in the general case of bulk stress, the
following formulas for strength on and Tps randomly oriented toward the

three x, y and z axes of symmetry of the material, follow from formula
(22) (for comparison, see formulas (8) and (9)):

": l m‘

1
o MRCAC :°')*
+ mihy

i LI
[ )2 (o“ .): (n"’)

" S ‘ ‘
B} [ bz — ey — =i
+ zml[ 0:’:3) e (0('0)). ("cm,.

1 (nyly + I,n,)’ L (I,m,-Lm,I,i' . (m,n,rn. ma)?

- : - 0
‘3 ( 1«:} (‘w) 2 (1' )

(43)

4-,I,n,l, _ 4'lm,!.m, i ,n‘m,n,

(('A:) ('u) - (u» ® (UU)

where x, y, 2z are the principal axes of symmetiry of the orthotroplc
material; °g is the strength in uniaxial tensil: or compressive stress

along the x' axis, randomly oriented in the material; T is the pure
shearing strength, when tangential stresses act along the y' axis 1in an
area normal to x'

The direction of the provisicnal x', y' and z' axes to the principal
x, y and 2 axcs of symmetry of the material is determined by Table 9.

TABLE 9. DIRECTING COSINES

v ny I my

. |
v ny l, | ry
|

The tensile (compressive) strengths in the axes of symmetry in Ea.

" ), 0, (0, o (0) 5 (03 4ng

(43), (44), 0 » Oy o, and, in the directions in EQ? planei of

symmetry at an angle of 45° to the axes of symmetry, o ,( "%, @ ( )
(45) i yz

The pure shearing strengt.s along areas garallel to the B%anes of /39
symmetry of the material are designated Txy( and,

along areas at a 45° angle with two axes of symmetry and perpendicular
to the third T (ur) (u‘}} TJ"-)
third,

T “’, The lower subscripte show the
xy ’ :‘. z ’ 77X

3]




axes of the areaus of action of the stress which form a 45° angle.

Surfaces are presented in Fig. 16 and 17, which show the change in
compressive strength op of pine weod samples [34) and fiberglass plas-

ttc cloth (from E.V. Ganov data [35]). Both surfaces were plotted from
experimental data.

2 It was shown experimentallx in [36, 37,
. 41] that expressions (43) and (44), whieh
determine the strength On and Ta of aniso-

tropic materials vs. sample orientation to
the axes of structural symmetry, approximate
well the results of testing slightly aniso-
tropic metals and some fiberglassz laminates,’
but contradict tests of such strongly aniso-
tropic materials as wood. The difference

in shapes of the Og surfaces of these ma-

\ terials are shown in Fig. 16 and 17.
R .
S
.o~ In equal biaxial compression, the
g T\\\\\ql strength op can be calculated, if the values
. = -
:-: 0, "0,0p and T_ =0 are substituted in formula
.-- (35):
== 0= —otle
. (4 % S
\\U | 450 (45)

{

For plywood and fiberglass plastics,
this formula gives values which are close
to experimental values [36].

Fig. 16. Surface of

change in compressive For materials with low shearing strength
strength op wood vs. (wood), relationship T0<Ou5/2 [39] 18 pos-
orientation toward sible, in which formula (45) gives imaginary
fiber z, radial y and values of Ope

tangential x directions.
With hydrostatic pressure p, it follows
from formula (22) that

!
Po= G 7= (46)

im' it

A pine ball (Fig. 15) was photographed at p=60 kg/cmé [18]. Pressure
Pg at which irreversible changes in shape of the pine ball boegan were

not indicated in [18]. It obviously was lesm than 60 kg/cmz.

Calculations by formula (L6) gave po-ls kg/cm2 for pine wood. /40

Thus, it does not contradict test data, as applied to plastic deforma-
tion of pine wood under hydrostatic pressure.
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¥ig. 17. Surface of change
in compressive strength Og of

fiberglass cloth plastic vs.
orientation toward direction
perpendicular to layers x,
warp fibers z and woof fibers
y of cloth.

It should be noted that Mises
assumed the tensile and compressive
strength to be the same (symmetry inver-
sion of the material characteristics).
For many meterials used in practice, the
anisotropy of which is substantial (wood,
fiberglass plastics), the difference
between the tensile and compressive
strengths in the same direction turns
out to be appreciable. For plane stress,
the Mises equation c¢a: be used for such 41;
materials with the use of the "piece-
wise approximation" method. For all
stresses 1in which only tensile stresses

Oy and oy act along the areas of sym-

metry or one of them is compr-ssive,
but less than the second, tensile, in
absolute value, it should be considered
that ~cefficients Aiklm are determined

by tension and shear. For those plane
stresses in which either both stresses

Oy and oy are compressive or the com-

pressive streas In greater than the
tensile, Aikln ghculd be determined by

compression and shear. In (36, 373,

this formulation of the question is
called the plecewise approximation, and
it becomes clear in a graphical rerre-
sentation of the maximum planar stress
surfaces in the 0, °y and Tx coordinate

y
axes (see Section 7).

€. Equation of Equally Hazardous Stresses
in the Forir of a Polynomial of the Fourth

Degree

It was shown in [22, 3¢-41) tha* experimental data on strength, with
variously oriented uniaxial and pure shearing stresses, are approximated
well by formulas for conversion c¢f fourth order tensor cormponents, con-
structed bty analogy with the forrmulas c¢f change in the elastic constants
upen rotation of the coordinate axes. These formulas, called tensorial
in (22, 36=-41], differ from formulas (42) anc (44}, which follow from
the quadratic strength criterion, they are simpler, and they correspond
to the experimental data for a brcacer class of materilals.

With the use of the notaticn used in formulas (43) and (44), we
cbtaln tensorial formulzs in this form (for comparisorn, sce formulas

(8) ana (9)):

(0
(W8]
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111 tﬁ s .

For slightly anisotropic materials (metals, fiberglass glastics), 42

Eq. (47) and (48) give results which practically coincide with the

results of calculation by Eq. (43) and (44). For strongly anisotroplc
wood, where Eq. (43) contradicts test results, the tensorial {ormulas

do not lead to such contradictions. For slightly anisotropic materials,
Eq. (47) and (48) also conform well to tests, like Eg. (43) and (44)

but, for strongly anisotropic materials, they conform considerably better.
The surfaces presented in Fig. 16 and 17 are approximated well by Eq.

(47).

In the special case of uniaxial stress, for which the quadratic
criterion leads to Eq. (41), a simpler expression follows from Eq. (47),
which permits calculaticn of the strength at angles a to the axes of
symmetry of the material (see Tible 8):

» (49)
T ta L banila cwnda
R 00__, A [\ . 1<-¢
where emgl G= ot bma— -

¥or pure shear, the following is obtained from Eg. (48):

o

N L ¥ v ' -
Cosila <. =t yuiog (50}
1,

Because of their relative simplicity, Eg. (49) anc (50) have fcund
practical applicaticn both in wood science and in machine bullding.
Estirmaticn cf the degree ¢f an‘sotropy which develops in metal rparts
after pressurec working were carried out by threse fervulas in the work
of 1.C. Miklayev ard Ya.B. ¥ridman {12, 13, t&8]. VYor fiberglass plastics,
these fcrmulas proved to bte useful in resolving question: of the effect
of cress graln, which arises for techrological reasons, on the strength

-
oy

characteristics in production of & ship hull (25, &I, Eg. (43) was
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corroborated in estimation of the anisotropy of the fatigue strength of
wood [43], fiberglass plastics [44] and metals [66]. In [45], Eq. (49)
was applied to study of a problem of wood science. Based on deformation
assumptions, in 1946, A.L. Rabinovich [18, 90] obtained and experimental-
ly confirmed special Eq. (49). A formula for shearing similar to Eq.

(49) was presented without derivation in Kollman [U46], where she also
confirmed it experimentally {see Section 9). All the experiments men-
ticned w:re performed on flat specimens.

It shoulc t:e noted that the tests of Ya.S. Sidorin [29, u47], per-
formed or. flat specimens and on fiterglass plastic tubes, showed that
Eq. (49) and {(50) conform to the results of such tests, although the
absolute values of characteristics Iy5 and Tygs obtained on tubular

specimens, were consliderably higher than on the flat ones.

We furnish ¢ .ruoblem: +o find the invariant function of six stress /43

v——

components (Table 7), which would lead to experimentally confirmed ten-
sorial Eq. (47) and (48) for randomly oriented uniaxial and pure shear-
ing stresses. We study this function as an equation of equally hazard-
ous stresses or (by using the geometric representation [48, 87]) a
strength surface equation.

We consider two dimensional stress in the xy plane.

From Eq. (47), we obtain (see Tables 8 and 9)

| iz snla '<w*aa5°a( ki )
Os Oy ' O | Gis Oy Os /' (51)

In the xy plane, Eq. (48) gives
— cest ‘.’a_ N sin® 22 (52)

1
Ta To

where, as before (see %ection 5), for the xy planes of symmetry of the
(0)_ 0) i (45)_

94 oy 90 and ny -045.

In Section 5, analogous Eg. (38) and (40) corresonded to the two
dimensional problem. A distinctive feature of them was that all the
strength characteristics there were squared and not to the first power,
as in Eq. (51) anéd (52).

material, Oy =qg

From Eq. (51) and (52), we oobtain eguations for curves through
which the strength surface should pass (see Section 7, Fig. 19-21). For

this, we change to the LI cy and Txy coordinate system, 1n which the
strength criteria can be represented geometrically in the form of some

1imit surface.

After jointly solving Eq. (51) ané (37), we obtain equatlons for
the P or C curve, which reflects the results of uniaxial tensile or
compressive testing of variously oriented samples 1n Oy cy and Txy

coordinates:
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% “_6; + Ogy + Lo (\ Oy Ty Gye l
. «= 0
15,— 0,0, =0 ‘ (53)
Oy = G, 4+ 0Oy

From Eq. (52) and (39), we obtain equations for the T curve, which
reflects the results of pure shear testing of variously oriented samples
in Gys @ and Txy ccordinates:

y
2 2
AT I S
= N
g, +0, =0, (54)

i L
L=Voo —1,

or, more briefly, for the P and C curves: /44
. (55)
o,
v (41 ]
gy ! 0“+ xy(o“ Oe a”)~ox+0yn
v, —0.0,=0,
for the T curve:
oy Sy T
T T w00,
0, + 0, =0. (56)

The P, C and T curves are presented in Fig. 19 b and 20 b.

We complle a strength surface equation in the form of a polynomial,
which would contain Eq. (55) and (56), which follow from the tensorial
formulas and are consistent with test data for a broad class of crtho-
tropic¢ materials.

To decide from the first of Eq. (5€), this polynomial should have
fourth and second power terms for the stresses.

Thus, experimentally verified Eq. (47) and (U8) lead to equally
hazargous stress functions, in the form of a fourth power polynomial
(86, 8717.

We write the desired polynomial in abbreviated form

aik.‘-::a".u;\rcxl‘oimonaopr ’T' €inim 0400 = 0 ( 57 )

36

- P W S ey & P 1 oy Al




or in expanded form with two dimensional stress (see stress notation
in Table 7)

2 2 2 ? o 3
dinOn + @0 + 162121201 + 2211182210516 + 4071203103 +

. 3 b N 2 2
T 4@118nn0110. -+ 4a112:0:2:01,001 = &mnamccudx‘: -+

(58)

2 2 2 .
-+ 802002012120 2:07: + 162112:812120110.205s + €10k + €03 +

L]
+ €100 + e o0 = 0.

Here, symmetry of the coefficients which corresponds to orthogonal
symmetry of the material and was presented in detail in [87], is
assumed.

To find the coefficients of polynomial (58), we substitute the

D
relatlonship o“1q=011022, which follows from the second equation of

system (55), and we raise the first equaticn of system (55) to the
second power, and we compare the coefficients with the same powers of
similar stresses. Then, we substitute ¢,,=~0,,, from the second equa-

tion of system (56), in Eq. (58), and we compare the result with the
squared first equation of system (56). As a result, we obtain

| .
Qun = 53 .
Qonen = 1.
w = g
g o ! .
e = Ty .
4% (59)
)a :..._‘__—-..!..._,._I_._._.l_ —--_l_ ! ! ,
L Ue Oy T o, ' Oy Tys
ana ' fln <= e B Oy 2= Oy == — 1
232 213 nn :
: . (60)
Then, Eq. (58) takes the following form:
1 4 4 .
.a‘ < _ﬁ;‘i- - T'"‘ + 0'-' 02 (,2_., (_f_. — _1.. -l_ *L>‘} +
o by T * ¥ { OyOug Oss U o To
a at 201
— 2g.0. \_ x4 U.) A N S _‘_,) R A VA
VA 0 Os0 [ \ Uy g O T/ ' GTa ] (61)
B 2 '
LTy 0T 4] 1 1)
T ot T\ e Go Tho T, .
e (08— A% e et
Ox Oy O.ry Tx; =
or
1 2 2
Yo oa oo S (4 _ 4 ! l) (62)
| Y Ugg =~ Ty | FF ( Ous To Oso To
w0;—0)—0,0 —1 =0
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With Eq. (60) kept in mind, in place of Eq. (57), we write the
follcwing expression:

(Om‘u)'. = %l _ 0.

a; 2mnoprC1401m0n o0 o — o)

(63)

Eq. (63) 1s an invariant expression of the equally hazardous stress
functions written in abbreviated (tensor) form in the form of a fourth
power polynomial. In particular cases of uniaxial and pure shearing
stresses, randomly oriented to the x, y and z axes of symmetry of an
orthotropic material, from this strength criterion, tensorial Eq. (47),
(48), (49) and (50) follow, which approxiate test results well.

Eq. (63) can be written thus: . /46

/’—(;’.ko.‘k)’ 0,50, .

Qi pimGisTim = 2

(64)

In thls form, 1t is more convenient to compare the proposed cri-
terion with the quadratic criterion (3ection 5).
In Eq. (64), to determine coefficlents 4 )am? the same two dimensional

stresses as were used for determination of the coefficients in Eq. (23)
can be used:

I
N a, == == - LI
=0, 0,=05 dyy 0g
) l
2y o= U, g, Gy oaye =8 = s
! e
0 l
O) Uy v Oy == U] T,y = Tg, ';al«l. s _'"o—:
a 4 ! 1 1 (65)
4) 0. =0,=T :-" 2(} yy T mr—— i e e e een
X ¥ Ay 2 11 Tgs T Oy T, »
- 1 H 1
O 8= =0y =Tyl Ty =00 2y = o g

The numbering of these equaticns (1-5) corresponds to the special
cases of limiting stresses (see pp. 27=28).

From Eq. (64), for the two dimensional problem, we obtain

Lo Toslo | =
e (%0 L W gy L Mo (66)
g 1 1 1 N 1 n:{ 1 :‘D ] ,u
o« v
or 1L fpp 040 | =
: 2
- <.°.1. e 19_,_3_*»_),0,, o M s e (67)
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© “
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If it 1s assumed again that the gsafety <factors (see Section 5)
are approximately the same for different directions in the material,
for practical application, the following strength condition is ob-
tained from the fourth power criterion in two dimensional stress:
Oi-‘»_v_o;_: gofo' + d‘iu

G 3 —===_= =1 {0
' °i+0;?t;0‘1_0‘°”§[ 0'0 (68)

where [00]=co/k is the permissible longitudinal stress coincident with /Ui

the x axis of symmetry of the material (the axls of greatest strength);
Oyr oy, Txy are the normal and tangential stresses at the same place

(at one point) of the part, in areas perpendicular to the x and y axes
of symmetry of the material;

Jp .
Cos -2 pmda—c—de ] g = . g O
U'po 4 ¢ d ]1 a= 0‘5 ' d te .

Examples of the application ¢t strength condition (68) are presented
in Section 14.

Eq. (66) is obtained from Eg. (4.17) of [36], 1f the following 1s
assumed in the latter:

9
y R 2
S T T
LR ST ogte * g==0,

i.e., third power stress terms are excluded [87].

Fourth power strength criteria which do not contain third power
terms, the advisability of study of which was shown (on other considera-
tions) in [48], contain four strength characteristics of an orthotropic
material in the case of the two dimensional problem tut, in the general
case of six dimensional stress space (Eq. (64)), nine such characteristics.

The criteria can be generalized to materials of differing tensile
and compresive strengths, 1f the plecewise approximation method presented
in detaill in Section 7 1is used. Without the use of the plecewlse ap-
proximation, Eg. (64) only fits material with complete inversion sym-
metries of the strength characteristics, Just as in Eq. (23). In the
piecewlse approximaticn method, the equaticn 1s written twlce: sep-
arately for that part of the strength surface (see Section 7) which is
on one side of the diagonal plane passing vertically through curve T
and separately for the other part of the surface.

Eq. (60) or (67) describes the surface in the Oxs» Oys T,, cocrdinate

system. In this equation, the strength surface has an isolated singular
point, the coordinate origin., The 1soclaticn of this point can be shown
analytically, 1f the surface intersection curve is analyzed (see Eq.
(¢€)), from a coordinate plane for which o_=0. The equation of this
curve has the followlng form: y

: 2oad, »
/-_~_~.‘j1__'14__?"&(_&_0;__0;:0. (69)
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It is easy to see that both partial derivatives of this function
with variable Oy and Txy revert to zero at ox-rxy-o. For proof of the

isolation, it 1s sufficient to show that the expression for A has a
negative value at the singular point:

A= G- L2
- oaxa‘xy E—a?;y-.

Simple calculations show that A=-4 at cx=rxy=0, i.e., the coordinate

origin is an 1solated singular point of the curve plotted from Eq. (69)
and, consequently, the surface plotted from Eq. (66).

There are no experimental data for strongly anisotropic materials
which permit exhaustive testing of the strength criterion. Experimental
data on uniaxial and some biaxial stresses permit Eq. (64) to be con-
sidered a strength criterion which does not contradict test data for

many ant§otrop1c materials under two dimensional stress (see Sections
7 and 14).

Fourth power strength criteria (Eq. (64)) fit a broader class of
materlials than the quadratic criterion (Eq. (23)) and, in simple cases
of practical importance, it results in more convenlent formulas.

For such slightly anisotropic materlals as pressure worked metals
and many fiberglass plastics, calculations by criteria (64) and (23)
glve results very close to each other, although Eq. (64) does not lead
to Eq. (23).

For equal biaxial compression with °x=°y=°d’ cz=0 and Txy=0, there
follows from the fourth power criterion (Eq. (66))

1404 V3
ad = -3?‘0‘-'0‘5 ' (70)

which leads to unlikely values, only when the values of GMS are close
to 410, i.e., in the event rogous/u. This relationship of the strength

characteristics does not occur, even for a materlial with such a low
shearing strength as wood.

Thus, in biaxial compression, the fourth power criterion better
I'its materials with low shearing strength than the quadratic criterion.

In determination of o4 by Eq. (45}, based on the quadratic crite-

rion, 1t had unlikely values, even with TOSOMS/Z‘

As a result of hydrostatic pressure p, from Eq. (64), we obtain

= Ve
Po= AnimOudim *

(71)
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f§ With the same data as in Section 5, calculation by Eq. (71) gives
| p0-18 kg/cm2 for pine wood, 1.e., a value consistent with thecdata of
: (18] and close to the results of the use of the quadratic criterion.

The condition of sensitivity of the strength criterion to equal
all around compression requires that there be some hydrostatic pressure,
which 1is capable of putting the material in hazardous condition, even
in the case of an 1isotropic material.

l We investigate both strength criteria (quadratic and fcurth power),
under conditions of limiting transition to an isotroplc material. 1In
the event the material 1s isotropic, quadratic strength criterion
Eq. (23) changes to the formula

"

(et =

T 215 (72)

where Il and 12 are the invariants of the stress tensor calculated by
Eq. (19) and (20); 0, and T

material under uniaxial and pure shearing stresses. In developed form,
Eq. (72) has the following form

are the hazardous stresses for an 1sotropic

: 0 —g —ag it (TN L L
' (6, +0,=0,) <q)(ne_1i*13_- (73)
—0,0,—0,6,—00,)=a},

Thus, in the case of an isotropic material, the quadratic criterion
requires experimental determination of two constants of the material,
Sy and Tg: A decrease cof the number of constants to one can be produced,

only as a consequence of assuming that the strength criterion is in-
sensitive to the addition of hydrostatic pressure. This assumption
' (Eq. (24})) leads to the known relationshlp between the strength char-
| acteristics of an 1isotropic materlal

which is experimentally confirmed for few isotropic materials. Thus,
for example, it 1s known that, for many rocks [49)] and some homogeneous
plastics [50], there 1s the following relationship

2 o)
With co“=310‘, i.e., on the assumption of insensitivity of the

material tc the addition of hydrostatic pressure, Eq. (72) changes to /50
the equation known by the name of the Mises plasticlity condlition
3, -1}

P 1 3
2 = 0oy

(74)
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or, in developed form in the principal stresses:
(61— 02)' + (0, — 0s)’ + (03 —0.)} = 203 (75)

The fourth power strength criterion (Eq. (64)), upon transition to
an 1sotropic material, has this form:

H /Tar w’¢l*

R A (76)

where | a,

In this nomenclature, 1i.e., I1 and I3, the quadratic criterion

(Eq. (72)) 1s written
R B0y

o mm—
3

6w % (77)

In the speclal case of two dimensiocnal stress, when Gy=0,-sz=sz-0,

from the quadratic criterion sensitive to hydrostatic pressure (Eq.
(73)), we obtain the following expression:

Vo) =a (78)

Two strength characteristics of the material, 9, and Tys 8are in-

cluded in this formula, only because the effect of all around tension
(compression) was taken intc account.

The criteria for testing fatigue strength of steel bars, which
have been confirmed experimentally and 1n practice, usually ere
written in this form.

Thus, in calculation of the fatigue strength of isotropic materials,
strength criteria sensitive to hydrostatic vressure evidently should be

used.

The fourth power criterion (Eg. (7()) for this case glves

lpata are presented in the book of Veybull [78], which experimentally
cont'irm the effect of hydrostatic pressure on fatlgue strength.
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For a graphical representation of the criterion, we plot I1 on the /51
abscissa and I3 on the ordinate. Then, from Eq. (76) and (77), we ob=-

tain the curves presented in Fig. 18. The dependence on the maximum
octahedral tangential stress on hydrostatic pressure can be decided from
this figure. Accordingly, strength criteria sensitive to hydrostatic
pressure (quadratic and fourth power) can be interpreted as a certain
generalization ol the strength theory of Mohr ([92], p. 117).

Fig. 18. Limit curves I3-f(Il) for isotropic material
with various ratios of strength g4 and To (curves 1,

2 and 3 plotted from Eq. (77), based on gquadratic
criterion; curves 4 and 5, from Eq. (76), based on
fourth power criterion): 1 and 5. 00:10=5:3; 2 and

4, 0giTg® [(1llegible]:2; 3. 00:10-/3,

Eq. (76) and (77) can be compared with the results of the com-
pression tests of S.B. Aynbinder, on polymer samples exposed to hydro-
static pressure [30, 50). 1In this case, the values of oo/rO calculated

by Eq. (76) will be higher than the same value calculated by Eq. (77),
and they will correspond quite well with experiments.

7. Strength Surfaces

For two dimensional stress, the stress tensor can represent a
point in an orthogonal ccordinate system, 1f those components of the
tensor which act on the areas of symmetry of the material are laid out
on the axes. If the two dimensional stress is randomly orlented in the
Xy plane of symmetry of the material, the strecsses designated Oy» Oy
and Txy must be lald out on the three coordinate axes. In simple

(proportional) loading, the change in stresses Oys Oy and Txy from the

unloaded state to a hazardous or limiting state is represented by a

ray, 1.e., a straight line, through the coordinate origin. We call 5c
the locus of the points on such rays, which correspond to limiting or
equally haczardous two dimensional stresses, a strength surface. The
strength surface should have such a form that any ray drawn from the
coordinate orlgin can intersect 1t only once.




We consider strength surfaces for orthotropic materials under simple
static load, at constant temperature and with a low rate of brief tests.

It was noted in [48] thet, at the present s“ate of science, the
appearance of the strength surface can only be explained empirically.
A strength surface has to be plotted empirically, based on some amount
of test data, and this surface then has to be described by mathematical
relationships. The cwuse of development and nature of the hazardous
state is not considered in such an approach. The same strength surface
equation can correspond to harardous states of varied physical character.
The well known strength theory of Mohr for isotropic materials and all
of its generalizations are based on approximately the same concepts.

Strength surfaces in two dimensicnal stress have been plotted from
experimental data for several orthotropic materials (36, 37]. The
results of experiments with variously oriented uniaxial and pure shear-
ing and equal biaxial compressive stresses in the xy plane of symmetry
of the material were used as the sources. Two such surfaces are pre-
sented in Fig. 19 ¢ and 20 c, where the letters P and C designate curves
which represent the results of tensile and compressive tests of various-

ly oriented samples in Oys oy and Txy coordinates, and the letter T
designates a curve which represents the results of pure shearing tests
of variously oriented samples.

The strength surface should contain P, C and T curves, which cor-
respori to particular cases of limiting two dimensional stresses.

All the points in Fig. 19 a and 20 a were plotted from average
results of testing variously oriented samples. We 1llustrate the plot-
ting with an example. Let the average tensile strength of the material
og at an angle of 15° to the fibers (to the x axis) be 015. To plot a

point which ¢crresponds to the value of 015, y
dinates of this point must be calculated by Eq. (37), with Op=04c
o

a=15° (see Fig. 1l4). The results of compressive and sheairing tests

of variously oriented samples can be treated analogously. The coor- /54
dinates of all points calculated from experimental data in this way

are shown in Fig. 19 a and 20 a.

T O -
the Oy cy and xy coor
and

Besides, in the negative abscissa region (Fig. 19 a and 20 a), a
point which corresponds to the averaged results of equal biaxial com-
pressive testing, variously oriented in the xy plane, are plotted in
pianes for which Ty =0 [36]. The surfaces presented in Fig. 19 ¢ and

y
20 ¢ are plotted approximately, by graphical extrapolation of experimen-
tal data. ine wood, the surface for which is shown in Fig. 20, can be

considered a model of a strongly anisotropic material with low shear-
ing strength.

Points which fit the strength surface located in the first positive

2An analysis of the experimental errors in producing this stress is
given in [36].

ulQ
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Fig. 19. Equally hazardous stress surface for

cold cured fiberglass cloth plastic made of linen
weave cloth on PN-1 polyester resins.

Key: d. kg/em’

quadrant of the coordinate system were calculated for pine wood by
fourth power Eq. (62). The calculaticns were performed in a Minsk-1l'
digital computer. The initlal data were the same as in plgtting the

-4
)

surfaces (Fig. 20) [36], i.e., 0,%590 kg/cme, ccosut kg/cme, 0, ,.=100
kg/cm” and 10=nh kg/em“. The surface, plotted from 1200 points, the
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coordinates of which were calculated by Eq. (62), showed that the
strength criterion in the form of a fourth power polynomial approximates

the experimental data well, for such a strongly anisotropic material as
wood [89].

JRIGIN Al FAGE 1"
OF POUK (T'A

Fig. 20. Equally hazardous stress surface for pine
wood.

Key: kg/cm2

Part of a strength surface in the positive quadrant was given in
[(51], in which normal stresses 0. and ry retain the same signs (positive).

The surface was plotted from an equation (criterion) proposed by I.I.
Gol'denblatt and V.N. Kopriov [52]. This criterion can be considered a
generalization of the quadratic equally hazardous state function tc a
special type of material, in which there 1s no inversion symmetry ofr
the strength characteristics. Test results presented in [51] showed
better correspondence of the criterion with experimert.

The experimental data of [51)] were used by the authors of [89],
plot a strength surface from the fourth power equation (see Section 6),
and for testing the convergence of thies equation with test data. The
following initial data were used in the calculation [51]: o,=4300

0
kg/em®; 9 go=2800 kg/cm®; 1,=1000 ke/em®; T, 5=2120 kg/eme.

The coordinates of the points of the strength surface from these
data and from the fourth power equation (Eq. (€7)) were calculated in
the Minsk-14 digital computer at the Military Academy cof Logistics and
Transport. The following notation was introduced for compilation of
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the calculation program: ox-x; oy-Y; rxy-z. Then, the value of Z from
Eq. (67) was expressed by X and Y in the following form:

Zf*"/““‘r‘"’(o.- *?.T -

.- — .

S E ‘/T"" )‘

T

(79)

The machine solution of Eq. (79) consisted of determination of the
values of the ordinate Zi of each point of the strength surface, based

on the assigned abscissas of this point Xi and Yi‘ Values of Xi and
Y1 were fed in at specific uniform intervals (steps), which were
0.0200 on the X axis and 0.02090 on the Y axis.

With 00>Oqﬁ, the region of change in values of Xi which satisfied
Ea. (79) 1s within 05?1<a0, but the values of Y1 can somewhat exceed
990°
? Eq. (79) satisfies four values cof :i' i.e., four roots, of which

two roots can be real numbers of equal absolute value, but oppsite /56
sign, and two can be complex numbers, or all four roots can be complex

numbers. The latter case concerns those values of the Xi and Yi abscis~

sas, for which there are no points on the strength surface described by
Eq. (79). Therefore, the following order was adopted in solution of
' this equation. For each value of the X1 abscissa, in turn over equal

intervals, the Y1 abscissa was changed, and all ordinates of points Zi

were calculated, until four complex roots were obtained. All postive
real roots of Eq. (79) are Z1 ordinates of points on the strength sur-

face. Each pair of real values of Zjy (positive and negative) on the
machine printout corresponds to a pair of numbers which designates the
characteristic and mantissa of the desired value. The number of com-
plex roote of the equation also is indicated on the tape.

f The surface presented in Fig. 21 was plotted in the positive quadrant
from points, the coordinates of which were calculated by the method
indicated above, by the fourth power strength criterion, i.e., by Eq.
(79). The coordinates of 1200 points were calculated for plotting the

ru»face. The portion of the points with the same abscissas Xi-ox was

connected by curved lines. In order to compare the surface plotted by
the fourth power criterion (Eq. (67)) with experimental data, V.D.
Protasov and V.N. Kopnov had tc plot points corresponding to these data

on the surface (Fig. 21). For this, individual values of Xi and Yi were

fed in directly from the keyboard, and the ordinates of points Z,
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required for comparison of the calculated values with the experimental
data of [51] were determined by Eq. (79). Everywhare, these points lay
quite close to the surface plotted by the fourth power criterion.

s,
Kiy o’

fr,.

Fig. 21. Equally hazardous two dimenslonal stress surface for
fiberglass laminate, plotted from fourth power criterion: e. [51]
experimental data.

Key: a. ¥r/cm?

The strength criterion in the form of a fourth power polynomial was
thus confirmed for fiberglass laminates by the experiments of [51].

The strength surfaces shown in Fig. 19 and 20 were plotted from the
results of testing variously oriented flat samples, and the surface
presented in Fig. 21 was plotted from the results of testing tubling.

In determination of the strength characteristics of anisotropic materials
in directions not coincident with the axes of symmetry, both test methods
are used, [28, 47, B84, 65) dealt with comparison of the results of
testing flat and tubular samples.

In comparing Fig. 19 and 21, it can be concluded that the fourth
power polynomial describes the strength surface sufficiently well in
both methods of cobtaining experimental data.

There is interest in examination of the shape of the strength sur- /58
face in the limitirg transition to an isotropic materlal.

The strength surface of an isotropic material should cut out 1den-
tical segments on the coordinate axes on which normal stresses cx and
oy are plotted (Fig. 22). The line of intersection of this surface with
the vertical cocrdinate plane (for example, curve 1 with cy-ﬂ) represents
the Mohr envelop, and the line of intersection of the surface with the
coordinate plane for which t__=C (curve 2) is an elliptical curve (the

Xy
Mises ellipse), in coordinates equal to the principal stresses. Some




idea cf the actual shape of
curve 2 can be obtalned, by
examining the results of bil-
axlal tenslle testing of roll-
ed steel samples. Such a curve
1s plotted 1n Fig. 23 from the

Fig. 22. Equally hazardous two
dimensional stress surface for 1iso-
tropic material (limiting transition).
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Fig. 23. Compariscn of re-
sults of calculation oy
strength criteria and ex-
perimental data of [53]:

e. experimental data; x.
quadratic criterion calcula-
tion (Eq. (81)); curve plot-

64 experimental data of [53] and
the fourth power strength crite-
rion.

Tubular samples of rolled /59
45 steel were tested by V.N.
Bastun and N.I. Chernyak (53],
by combined internal pressure
and axlial loading. The yileld
stress as a result of separate
longitudinal oy and tangential

Oy stresses was determined from
the ci=f(ei) curves, at points correspond-
ing to €g.2° The results of these tests

are presented in Table 10. In these ex-
periments, the principal stresses were in
the x and y axes of symmetry of the ma-
terial.

We compare the experimental data of
[53] with the quadratic strength functions
(see Section 5), for which we again determine
coefficients Aikim in Eq. (29) in the fol-

lowing manner.

After substituting T, =0 in Eq. (29),
we obtain Y

) 21 2
Aoz = A‘.‘i’.‘20y -+ 2-411::Uxo'y =1,

and we then determine the values of coef-
ficlents Aikim from three tests, the data

of which are in Table 10:

ted by fourth power criterion

(Eq. (85)).
Key: a. kg/cm2

No=328=0,; o,=0 Ay, = l,. :”—.‘)l_"',
o

2) Uy=30,5" Jg04 .O‘x'—_‘o; Agnra = T oo
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TABLE 10. HAZARDOUS PRINCIPAL STRESSES IN
TWO DIMENSIONAL STRESS (kg/cm®)

l a l Buiqueae-

Ixcrepurent () i Hie no

i dopuyae
h (8%)

0= 0, ‘ oy =0, i ‘;x=°l
3350 | a 3350
83 ’ 1833 3620
1695 | 3380 1890
250 1 2060 2030
3 i 3110 | 0
3330 { 2580 3320
2510 ; 3283 2330

Key: a. Experiment [53] b. Calculation by Eq. (81)
where a4 is the strength under equal blaxlal tensilon.

After this, Eq. (29) takes this form

a "
o . % 1 1 t )
e T 0,0 — | =]
o O ¥ oy o} o, (80)
or . , ‘
% 4..__(_’:’#__;00 (__l__,,l___.-_l__.~)= .
soer U B0sr ¢ OOu\mer T S T 903 (81)

The results of calculation of 0.0, by Eg. (8l), obtained from the

gquadratic criterion (Eq. (29)), are presented in the third column of
Table 1C¢. In Fig. 23, they are marked by crosses and the experimental
data, by dots. The curve was plotted from the fourth power criterion.
For this, the following were assumed in Eg. (58): 012=0 and

, 1
) 0y =0; 0,,=0,=328, @y = o
o

1
2) 0y = 0; 0y = 0= 30,5 apap = g (82)

}3 1 1

3 g,, = = = " S e e e e
) o, Oz = Gg = 29,0, 2ay,; o Ga  Ose

~
N

|

With 012=O, Eq. (58) will have this form:

2 T, 2 2 p
(allilox = UG, — 20.\0’;.[21'...‘) = 0y + 0121 + 050y

(83)

and, after substitution of the values of the coefflclents from Eq.
(82) in 1t, 1t takes the following form:

50




! % a, 13 1 ! P (84)
; e (G s s v s o e % 4 Oy 4 0y G (o4

“a ) T v "[ () a, n", I Oy + Oy 0.0y
To plot the curve from Eq. (84), we assigned a variable value of

i the ratio of the principal stresses K=ov/ox. By substituting oy=k‘.cx

l in Eq. (84), we obtain the following equation, for finding the hazard-
ous value of o, as a function of K:

(’l 1 l ] A A‘- —_— ———
’ | A? A'l 3 1 | , (95)
LT LA (LN a, n.:
TABLE 11. CALCULATION OF LIMIT CURVE
COORDINATES (FIG. 23) BY EQ. (85)

N . a

- |

0 | 3350

0.25 ! 3690

0.50 60

0.75 | 1345

1.00 | 2960

150 | 0135

2.00 "0

3.00 0

100 | 867 & .

|
l'he results of calculation of o_=0, by Eq. (85) are presented in
o LN
lTable 1), from which the curve of Fig. 23 was plotted. Thls curve 1s
1, good approximation of the test data. The results of calculatlon by
the quadratic criterion (x's) are close to the curve plotted from the
fourth power criterion, i.e., by Eq. (85).
hus, with the principal stresses c_ and o, along the axes of sym-
X )

1 metryv of an orthotropic material with slight anisotropy, the fourth
power criterion gives a curve, the outline of which is close to a Mises
ellipse, although Eq. (84) differs from Eq. (8C). Beth formulas f1it 61
the experimental data well. A characteristic feature of Eq. (80) ana
(84) 1s that not two, but three initlal experimentally determined values
f the characteristi of orthotropic materials, o,, 0,4 and o,, are in-

ied in them. his 1is due t ion that hydrostatic pressure
1{'fects the hazardous stat 1 .
For an isotropic materia), the following equation of 1limit curve
=
’
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Z (Fig. 22) is obtalned from Eq. (80):

‘164 %)l = o %6
g 4 Oy -~ 0,0 “d -— -J = U (‘, )

where S is the hazardous stress in uniaxial and 04 is the hazardous
stress in equal biaxial tersion (or compression).

For an isotropic material, Eq. (84) gives

IR Oy
o) - 0,-+0,0,-<l 3 ~.'_2)

= . (87)

In Eq. (86) and (87), the principal stresses o, and Iy have the

same sign, as applied to the data of [53] and Fig. 23, but for an
isotroplec material.

It is evident that formulas which contain twe initlal values can
better approximate test results than conventicnal fornulas, plotted on
the assumpticn of invariability of the haczardous state functions upon
addition of hydrostatic pressure, and which contain one such value.

The use of Eqg. (8t) and (87) evidently can prove tc be advisable,
in case accurate calculaticns are required. For metals, btoth equatlons
sive approximately the same results, but the second has an advantage
it the material has low shearing strength.
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CHAPTER 3. ANISOIROFY OF STRENGTH CHARACTERISTICS FROM EXPERIMENTAL DATA

8. Strength and Plasticity of Metals

The anisotropy of a pressure worked metal has been known for a very /62
long time [21]. The explanation of the anisotropy of pure metals and
solid solutions 1is that, during plastic deformation, the crystallites
take on the shape of clongated disks, and their crystallographic axes
become parallel to each other. This produces an oriented structure
(texture).

The nature of the anisotropy can vary, depending on the structure
of the metal. A minimum tensile strength at an angle to 45° to the
rolling direction 1s characteristic of rolled copper and aluminum.

The strength of brass decreases gradually away from the rolling direc-
tion, and it reaches a minimum in the transverse direction. The trans-

verse strength of zinc 1s greater than in the rolling direction (Fig.
24).,

Tension 1s the most convenient
method of testing the degree of aniso-
tropy of a metal. Not only the
strength, but the elastic limit and
yield stress, as well as the plasticity
characteristics display anisotropy un-
der tension. In thils case, the degree
of anisotropy differs for different
characteristics, and it can be differ-
ent under tension and compression.

The tensile and compressive strength
characteristics of an aluminum-magnesium
allcy are presented in Table 12 [23].
Almest all the strength characteristics
Fig. 24, Polar diagram of of this alloy are lower under tension
tensile strength o, of and higher under compression in the

B
rolling direction than in the perpen-
dicular direction.

~
~
-
N

rolled nonferrous metal sheet,
plotted from data of [21]: 1.

zine; 2. e copper; 3. brass. . - - <
ine; 2. pure copper; 3. brass Curves (Fig. 25) were plotted from

the data of Table 12 and by Eq. (49),
which show that the nature of anisotropy
of this alloy 1s completely different
under tension and under compression.

Key: a. kg/mm"
b. Rolling direction

Filg. 206 shows curves of the change 1n strength of rolled aluminum
sheet after annealing and recrystallization. The strength along and
across the rolling direction 1s nearly the same but, as a result of
the different texture, the strength of some sheets on the diagonal was
higher and, for others, lower, than 1n the rolling direction.

Data on the anisotropy of the mechanical properties of cold rolled
~ -~ . | - = -
aluminum under tension are rresented in Table 13 [S54)]. In this case,
all the mechanical properties are most characteristic at an angle of




TABLE 12. TENSILE AND COMPRESSIVE STRENGTH
CHARACTERISTICS OF ALUMINUM-MAGNESIUM ALLOY

| ! Pacremenne | ¢ Cwarne &4

\IPANTET HCTHRN NPOYHOCTH, &7 wal? __VTOR € NADPARICNNRM HPORATA, & i
[ o | 4 1 @ | o | i
o5 | 53! o 104 !
ellpere ¥npyrocTH 0.0 | 85| 53 94 104 ) 1
fllpezes TekvuecTH 0o 1 140 10,7 ! 181 203!
I 16,0 | 185 230 + 398

gi Ipedes nposHOCTH O

Key: a. Strength character- e. Elastic limit 99.02

2
istic, kg/mm" f. Yield stress o, ,
b. Tension *
c. Compression
d. Angle to rolling
direction, degrees

g. Strength OB

45° to the rolling axis (see Fig. 24, curve
S ar/=w" 8 - 2, and Fig. 25, curve 6).
ol L LT .
TN S | n The Fig. 27 curves were plotted by /64
ey T 1] Eq. (41) and (49), for Ergal aluminum alloy
0 F————-— [55]. As 1s evident from this figure, both
— L-! LJ equations give practically coincldent results.
__k\i’! - The anisotropies of the ultimate strength
: ~ Og and the yield stress 0g.2 of Avional
, | aluminum alloy are compared in Fig. 28.
‘ Ti..e curves were plotted by Eq. (49), based
'i ,ﬂ_j on the data of [55].
0 4 9 ao
Anisotropy of the ultimate strength
. T - and yleld stress of domestic light alloys
Flg. 25. Anisotropy were investigated in the greatest detail

of tensile (solid
curves) and compressive
(dashed curves) strength
chara ristics of alu-
minum-n.,nesium alloy:

1l and 2. elastic 1limit

in (12, 13, 88). Samples were cut from

hot extruded 42x250 mm cross section strips,
at varilous angles to the axes of symmetry

in the planes of extrusion and in the two
vertical planes of symmetry of the stress.
The ultimate strength o, anisotropy proved

Oy o3 3 and 4. yleld B
U. UL ~
SEVEAN B ot B wnd B to be ngst significant in the plane of the
- o I ) sheet (Fig. 29 a). Through the strip, i.e.,
strength o,. in the planes perpendicular to the sheet and
’ . parallel to the direction of extrusion, con-
Key: a. kg/mm" siderable anisotropy of yleld stress ¢ .

was found (Fig. 29 ¢). o

Eq. (49) was tested by P.G. Miklyayev and Ya.B. Friedman, as applied
to the strength characteristics of light alloys, and it demonstrated good

convergence with the experimental data, i.cluding directions not 1n the
planes of symmetry of the materlal.




Fig. 26. Curves of change
of tensile strength of roll-
ed aluminum sheet after an-
nealing and recrystalliza-
tion, plotted by Eq. (49):

O e A x experimental
data of [23].

BT A A Y Yt et < -

-
[ 4
Key: a. kg/mm
TABLE 13. TENSILE ANISOTROPY OF MECHANICAL
PROPERTIES OF ALUMINUM
| Yroa e vanpa=~
. | naemmem npoxare,
\ l‘\?,:!:'\;l“f'»:\ ue e {7_:'\)
[ o | 45|
| | 3
C IMpezea 7te- | 3,2 | 2.0 | 2,8
KVuYeCTH O, | ! Bl
N ' .
Mpeseanpou- | 6,8 | 7.8 63
HOCTH O KT wu?| | , 4'
€ Oruocureas- | 20 | 43 | 274
HOEe  \ 11iHe- i f‘_J
nue 8, Y | f l
f Omocurean- 92 | 86 I 9%
HO® C\MWCHHE I | “
v, % | \j‘?
Key: a. Mechanical property
b. Angle with reclling directlcn, degrees
¢c. Yield stress o,, kg/mmc o
d. Ultimate strength opg, kg/mm”
e. Fe‘a*ive el cwcaf;cn §, %
f. Relative waist y, 1
Thus pxperimental data of many authors on the anisotropy of
Thus, the experimental 3
the strength and plasticity characteristics of metals confirm the
applic -%'1*‘5 of Eq. (49), which originated from the fourth power cri- {
terion and permits study of the anisotropy of a material to be limited
to experimental determination of the characteristic under study in three /65
directions: longitudinal, transverse and diagonal.
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Fig. 27. Tensile anilisotropy

of Ergal aluminum alloy:
dashed curves plotted by Eq.
(41), so0lid curves by Eq.
(49); o. average test results.

Key: a. kg/mm2
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Fig. 28, Ultimate strength op
(1) and yleld stress oy o (2)
curves cf Avicnal alumlnum al-

The results of study of the aniso-
tropy of the impact strength of aluminum
alloys were presented in [56]. A
formula similar to Eq. (49) was pro-
posed for this purpose in [41]. It
approximates the curves c¢f change in
impact strength with less accuracy
than the strength characteristic curves
but, practically, this equation is sult-
able for approximate decision on the
anisotropy of the impact strength of a
metal.

The nonmetallic inclusions in the
majority of rolled metals increase
anisotropy and, in the opinion of some
authors, they are its basic cause
(57]. 1In pressure working, the non-
metallic inclusions are elongated and
distributed in the rolled sheet 1in the
form of thin films which form the so
cailled line structure. The nature of
the anisotropy of such a metal 1s near-
ly chat cof laminated materials with
thin interlayers. Its failure i
frequently occurs along the planes
parallel to the plane of the sheet,
i.e., along the "lire."

It 1s characteristic of the line
structure that the ultimate strength
always 1is greatest in the "fiber" direc-
tion of the metal and the least 1in the
transverse directions.

The results of study o¢f the aniso-
tropy of cold rolled line structure
steel with various degrees of cold work-
ing were presented in [58]. The purpose
of this investigation was tc study
the causes of the development of "ears"
(festoons), which result in defective
products in the production of rclled
steel cartridece cases by deep drawlng.
The develcpment of ears 1s assoclated
with the fact that the metal 1is drawn
easier in some directicns and less
easily in others, which characterizes
anisctropy of the plastic properties.
This phencmenon has been noted in cop-
per, copper-nickel alloy, brass and
steel sheet.

£6¢

loy: o©. average test results.
Key: a. kg/mm?
1

by Hill [%91].
50

The deformations resulting in ear formation were studled theoretically
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Fig. 29. Polar diagrams of ultimate strength ) and

yield stress 9y.2 of magnesium allocy vs. sample cut

direction: a. in molding plane; b. in plane perpen-
dicular to sheet; c¢. in plane perpendicular to sheet
and parallel to molding direction; curves plotted by
Eq. (49); o and e. average test results.
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Key: d. kg/mm2

The results of studles by M.

Radvan [58] are presented in polar
coordinates in Fig. 30-32. The angle
between the direction of the ears and
the rolling direction depends on the
extent of preliminary cold working of
the metal., This prompted Radvan to
study experimentally the anisotropy of
mechanlcal properties of cold rolled
steel with various degrees of cold
working. Samples were cut in the planes

£ the sheet, every 15° in seven direc- /67
tions from the rolling direction. The
uniformity of the metal was carefully
monitored, by cutting samnles 1in one
; Fig. 30. Polar diagram of orientation from four different places
ultimate strength op of roll- in the sheet. 1In the initlal state
(befeore rolling), i.e., with 0% cold
working, the sheet had low anlsotropy,
which was noticeable only on the diagram
of relative elongation 6 (Fig. 31).

ed steel vs. degree of cold
working (%), from data of
Radvan; cross hatched strips,
actual scatter of experimental

‘ data. Radvan considers the basic cause

' . of anisotrcpy, especlally with a high

r Key: a. Rolling direction degree of cold working (over 70%) to
be, not the texture, but the fiber structure of the metal, in which
cementite and nonmetalliic inclusicns are separated out on the grain
faces, forming a kind of film separating the filbers. With more than
70% cold working, this fiber or line structure results in failure

of samples, drawn at more than a 45° angle to the directicn of rclling
of the metal, along areas parallel to the fibers, which is charac-
teristic mainly of such strongly anisotropic fibrous materials as wood.
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Fig. 31. Polar diagram

of relative elongation §
of rolled steel vs. degree
of cold working (%).

Key: a. Reclling direction
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Fig. 32. Polar diagram of
relative waist § of cross

section vs. degree of cold
working (%); cross hatched
strips, actual scatter of

experimental data.

Key: a. Rolling direction

With a very high degree of cold work-
ing (85%), the ultimate strength perpen-
dicular to the rolling direction (a=90°)
decreases appreciably (Fig. 30). In this
case, the relative walst also decreases.
The material displays a tendency towards
brittle failure, which is characteristic
of all laminated materials stretched
perpendicular to the layers.

The anisotropy of metals develops
considerably more strongly at reduced test
temperatures than under normal conditions.
Deep cold near absolute zero has a par-
ticularly powerful effect. The curves of
change in ultimate strength and yleld
stress of cold rolled stainless steel
shown in Fig. 33 were plotted from the
experimental data of [60] by Egq. (49),
on the assumption of orthogonal strength
anisotropy (a diagram of samples cut from
the sheet 1s shown at the bottom of the
figure. In plotting the curves, it was
assumed that the strength can differ at
a=45° and a=135°, only because of non-
uniformity of the metal. Therefore, the
value of 0,5 1in Eq. (49) was calculated

as the arithmetic average of the ex-
perimental data presented by the authors,

for angles a=45° and a=135°. As 1s evi-

dent from the figure, a low test temper-

ature increases the anisotropy of the

strength characteristics of rolled steel, /68
without disturbing the orthogonal sym-

metry of the material or increasing che
absolute values of the characteristics.

It was shown in [23, 56, 61, 62] that

anisotropy of impact strength a, can be

very substantial. Thus, according to the
data of [56], the value of a, of samples

of aluminum alloy extruded parallel to
the width is twice that of samples parallel

b. kg/mm¢€ to the thickness and almost four <imes
less than an of specimens parallel to the
length. The anisotropy of the impact strength of rolled steel, with a

line structure due tc nonmetallic inclusions, is still more substantial.
According to the data of [61], the impact strength of transverse samples
of structural steel is only 27.9% of the impact strength of longitudinal

samples.

o
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Curves plotted from the datea
of H. Hoover [62) are presented in
Fig. 34, As is seen from this
figure, the impact strength aniso-
tropy (curve 3) is more significant
than the tensile strength aniso-
tropy (curves 1 and 2). Rolled
steel was tested by H, Hoover in
various directions from the rolling
direction. Part of the steel strips
(batch I) was rolled only longitudi-
nally, in which the length of the
rolled strips was 210 times the
length cf the ingot. The remain-
ing steel strips (batch II) were
obtained by first rolling longi-
tudinally (the slab length was 13
times the length of the ingot) and,
tren, in the perpendicular direc-
tion (the length of the slab in-
creased 19 times). No damage or
defect was found on the surface
of the strips here. The strength
anisotropy of the batch II steel
was low. The critical point of
standard samples co/o90=1.1.

H. Hoover tested arnisotropic
steel strip on specimens in the
form of bars with a deep notch
drilled at the end of the =otch.
These samples were tested at varlous
angles of inclination of the break-
ing force to the rolling direction
of the strip, with the notch always
remaining perrendicular tc the break-
ing force. Two types of material
were tested. Batch I steel under-
went preliminary rolling in one
direction before testing, and batch
II steel differed from the batch I
steel only in that 1t was rollec
in two mutually perpendicular direc-
tions.

The ordinates cf curves 1, 2
anc ? {Fig. 34) were calculated by
Eg. (49), Quite close correspond-
ence was cbtained between the cal-
culaticn and test data. Evidently,
tecause of insignificant aniso-
tropy of the elastic prorerties cof
rolled steel, the differences in
stresses of differently crienteu
samples was negligible in these
tests. The stress concentration

.
v

(Vo)
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factor, which changed the more as a
function of the direction of the
tensile force the greater the differ-
ence in the modull of elasticity E
along and across the rolled product,
remained almost constant in this
case. Therefore, it turned out that
Eq. (49), derived for the stress
characteristics in simple uniform
stresses, is approximately valid in
complex stresses, in which the test
situation hardly changes with change
in orientation of the sample.

[ £}
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The phenomenon of cold short-
ness of steel, which gives metal-
lurgists many troubles, as far as
we know, has not been investigated
in connection with its anisotropy.
Meanwhile, 1in comparing the sharp
reduction in plastic properties
(see Fig. 31) and the decrease in the
transverse impact strength of rolled
sheet (Fig. 34) with the fact that
, low temperatures promote an increase

’.
Fig. 34. Rolled steel strength in anisotropy of the yieid siress
vs. angle a of inclination of

and ultimate strength of steel (Fig.
force to rolling direction (frenm .
LA 33), it can be proposed that aniso-

data of H. Hoover): 1,2. fallure trcpy, especially with a line struc-
force P for batch I and II steel; ’

ture, can be a factor which con-
géegiilure work A for batch I tributes to the cold Shortness of

rolled steel.
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Key: a. F, kg b. A, kg'm It is known [€63] that metals

which crystallize in a simple hexapg-
onal system have mcre cleariy pronounced cold shortness, fer which the
anlsotropy after cold rclling also is displayed most highly [21, 581,
The cold shortness phenomenon has not teen found in pure metals with a
Eubic %%ttice {63]. As a rule, their anisotropy also is negligible
cl, 581.

The hypothesis was expressed in [£3] that cold shortness was absent
in pure metals and that the brittle transition temperature decreased
with decrease in nonmetalllc impurities in rclled steel. VYet, the
anisctropy of steel depends strongly cn the presence of impurities, and
1t decreases with a decrease in impurities [GL, 57]. More than that,
it certalinly would be incorrect to cornsider anisotropy the only cause
of c¢cld shortness. The questicn of the effect ¢f anisotropy, especial- LZl
ly with the line structure, on cold shertness of steel requires thorough
experimental investigaticn.

Cast steel alsc cdisplays recduced impact strength, an elevated cold

shortness threshold temperature [¢3] and anisoctropy of the mechanical
properties. [u5] dealt with study of the anisotropy cf cast steel. The

tu

.
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tendency towards anisotropy of mechanical properties of a cast metal

is observed only with & columnar structure. Anisotropy develops espe-
cially strongly in the plasticity characteristics. Ingots of C27

chrome ferrite steel were studied. Transverse waist y of samples cut
parallel to the direction of growth of the columnar crystals in a round
cross section ingot turned ocut to be almost twice the wailst of specimens
perpendicular to this direction. In the direction of the cylinder
generatrix, walst y was still smaller (by a few percent). The ultimate
strength and yield stress displayed no appreciable anlesotropy. The

true ultimate strength sk (of the fracture neck cross section) dis-

played just as significant anisotropy as the relative transverse waist
v. Annealing had practically no effect on the anisotropy of C27 steel.
For 35 carbon steel, anisotropy of the slab was found !n determination
of the yleld stress, but annealing removed this anlsotropy.

TABLE 14, TENSILZ ANISOTROFY OF MECHAN'CAL
PROPERTIES OF CAST STEEL

S
e ! . .
. a | b Craas X27 . C Urem
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T AL S Y — e t
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i .
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Key: a. Mechanical property d. 1 mm diameter samples,
characteristic ] mm/min strain rate

b, (07 steel e. & mm cdlareter samples,
c. 35 steel “ mm/min straln rate

. kg/nme

Some data frem [65) are presented 4n Table 14, The letters x, vy
and = desipnate the axes cf assurmed symmetry cof mecharical preperties /7°
of a cylindrical ingot. The = exls coincides with the rencratrix cf I
thie cylirder, the x ax!s with the directicrn c¢f the radius cf a circular .
cross section, i.e., with the directic: of yrowth of cclumnar crystuals,
and the y axis with the tangent to the circumference.

the ingct, the y axis
h. To decide Trom
¢lassified aprrexl-
anisctreopy. The mechanical

In the plane of & transverse Ccrcss secs ¢
s perpendicular tc the cirecticn cf crysta Iy
the data of | , his case, cast steel can t
mately as & materis }:ocylindrice
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Properties (especlally ¢y and Sk) differ for the three dirccticns of the
X, Yy and z axes.

Impact strength a, in testing samples, the axis of which (x) is
k

parallel to the crystal growth direction, was approximately twice that
in the case of coincidence cf the axis of the samples with the longitu=-
d*nal z axiz, This difference 18 completely understandable, if the
columnaf sc.ructure is likened to a fibrous structure. The placement of
he fibers along the x axis, i.e., along the radil of the ingot cress
section, makes this direction, the length of which 1s parallel tc the

x axis, the strongest in the sample. In bending perpenaicular to the

x axls, the impact strength proves tc be the highect. The location of
the x axis perpendicular to the axis of btent impact specimens con-
siderably decrecases ay -

9. Strength of Nonmetals

Laminated wood plastics (DEF). The results of ccmpression teste of
three types of plastlic (DSP-B, DSP-V and DSP-G) in different directions
with respect to the outside ply fibers were presented in {©1. TSP-B
rlastic is composed c¢f layers of veneer with the fibers nutually per-
pendicular and 20 times more layers of veneer are stackzd in the out-
side ply fiber direction than perpendicular tc 1t. DOP-V plastlce has
the fibers of all adlacent layers of veneer perpendicular to each other,
i.e., the numbter of longitudineally and creoss stacked layers 1s the same.
DSP-G plastic has a "star" structure, with the fibers in adjacent veneer
layers at an angle of 309 with each other.

The results of compression
ts of L8P are compared with
ves plotted by tenserial Eag.

) in Mg, <4, ¥or DESP-RB plas-
, vhe coincidence of this
curve with test data was even
better than irn plotting the cor-
responding curve bty the ccrrela-
tion eguation obtalined in [5].
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The results of shearing
strength determinaticn in varl-
cusly oriented areas of several
tyres of wood plastic were pre-
sented ‘n the werk of Xollmann

rig, The tests were done by

Fly. 35, Fesults o! laninated wood ?fylue'tb tn & device simlilar (o
plastic compressicn tests:  C, X. that 4n which sheering tesis of
cxpcrimental data ¢r {51, steel rods ustally are dcne. The
- re sultq nf testing of 20 icentical
Rey: a. kglen’” sanples were uveraged and rlot-
b, 1O =B ted on a graph as one joint. The
¢, LIV=0 Fraphs o! ¥eylwerth, which he
de G =\ rlotted frem the results of test-
ing beech raminated weoed plastic




Sch-T-Bu-20, which approximately corresponds
to the structure of DSP-B plastic, consist-
ing of 20 parallel veneer layers, are pre-
sented in Fig. 36 and 37. The explanation
of the maximum on the continuous curve of
Fig. 3€ evidently 1s that cutting the fibers
of natural wood, parallel plywocd [22] and
Sch-T-Bu-2C beech plastic of similar structure
to it requires the greatest forces when it
is not done at right angles, but at an acute
angle to the fiber direction. This is con-
firmed by the results of shearing tests of
plywood [2Z ), where the maximum resistance
occurs at an angle of approximately 45-50°
to the outside ply fiber direction.

R AT
C v JO@ & 060 /. &0 a°

Fig. 36. Shearing test The practical use of laminated wood
results of Sch-T-Bu-20 plastics in machine building, for gear produc-
laminated beech wood tion in particular, raises the prnblem of
plastic from Keylwerth: producing type DSP-G plastic of transversely
Tn- Shearing strength; isotropic (star) structure, with the optimum

angle between the fiter directicns in ad-

solié curve plotted by : SR
i J jacent layers [82].

Eq. (49); dashed curve,

by empirical formule; -
ciﬂqs'hn‘cied :‘r*: ) According to the data of P.E. Pyudik
- o 9 L-4 Al o - - -~ 0 N . P
hﬂgupj niksor of téer (Fig. 38), the highest tensile strength re-
ac adl - < oL - -
results o g sults with DSP-G-45 and DSP-G-60, i.e., with
~ - .

adjacent veneer layers lald at angles of U5
or 60°, There is practically no difference
in the strengths of these two structures.
Calculations have shown [82] that, for all

grades of DSP-G studied except DSP-G-90, the change in strength as a
function of angle of inclination of the outside ply fibers 1is ex-

plained only by the scatter of the experimental data, and that averag- /TH
ing these data in accordance with the transverse isotropy hypothesis

is statistically justified.

Thus, the theorem of V.L. Cerman (see Section 1) 1s experimentally
verified for the strength characteristics of wood materials if, in
accordance with the assumptions substantiated in Chapter 2, it irs con-
sidered that the strength ct a“ecverLst;cs correspond to a fourth order
tensor.

=

iberglass plastics. The anisotropy of fiberglass plastics 1is
determined by the method of reinforcing *“er and, as a rule, 1t cor-
responds to the orthogonal symmetry calculation sﬂhe*e

In oriented fiberglass plastics, the optimum is laying the glass
reinforcement along the raths of action of the principal normal stresses
in parts. Parallel winding or laying fiters 1in a single direction is
used primarily in units which experience uniaxial stress. In fiber-
glass cloth reinforced sheet fiberglass plastics, the directicn of the
principal stresses 1s assumed to coincide with the directlon of the
warp of the cloth z, which corresponds to the greatest strength ard

t; th

e “'“M._—MM
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Fig. 37. Shearing test

results of laminated
beech wood plastic from
Keylwerth: solid curve
plotted by Eq. (49);
dashed curve, by em-
pirical formula; cross
hatched strip, actual
scatter of test results.

Key: a. kg/cm’

In fiberglass reinfo
strength 1is very kwighx
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primary reinforcing
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the z axis
stacking rlane. The
3
anisotropy
fibers 1in
fiber ratio
fiber placement, from
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the plane of
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(Fig. 39 a). We consid*x‘ ',ho zy

reasons for

ous for SVAM are cleer from cons

curves cof SVAM,
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Lcurve ‘.\, even !
which
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wound flterglass plastilc r

Deviation of the axis of symmetry of the
material from the direction assigned by the
buillder, sometimes called cross grain, can
strongly affect the strength of a part made
of an anisotropic material 1in some cases.
This effect can be estimated by Eq. (49) and
(50).

Three possible cases of deviation of
the y and z axes of symmetry of sheet fiber-
glass plastic are shown in Fig. 39, which
affect sheet strength differently under prin-
cipal stress g, in its plane. Even with a

small angle o, the decrease in strength 1is
aporeciable, when there 1s an error in stack-
ing the cloth (Fig. 39 a). The cross grain
shown in Fig. 39 b has comparatively little
effect on the static strength of fiberglass
plastic. Another kind of cross grain (Flg.
39 ¢) quite strongly decreases the fatigue
strength. In this case, 1t 1s recommended
that both surfaces of the sheet be covered
with a protective layer of cloth [35].

1l three cases of cross grain can be
either provided by t ) ofe) dnctiox‘ technology
or d lop as a resul of random

'S
i
L
4

errors.

tics (for example, SVAMC),

angles a between the
1e direction of tension (Fig. 39 a).
‘cing direction of SVAM to be along
prlane to be the glass veneer
cross grain (F

Fig. 40. Tensile

of mutually

Acerﬂt.on of strength

with different ratios

With a 1:1
S ¢ 1 of the (primary

a is reckoned in the figure) from the direc-
at decreases the strength Ly more

‘ded in building unidirectionally

axis

1
14 aroon
a e g

roducts.

With mutually rerpendicular stacking of the same amount of fiber
(Svam, 1:1), ’Le anisotropy is most proncunced under tension (Fig. 41).
Wwith shearing (curve 2), the anisotropy levels out, and the direction
of greatest Strcuftt is nearly dilagonal. For cold cured flberglass
plastic cloth (Fig. U42), the tenslle anisotropy alsoc has a greater ef-
fect than in shearing c pression.

P S — s .
fnisotropic fiberglass ~1torial, produced by the Leningrad Leminated
Flastics Plant, 1s abbreviated SVAM,

ig. 39 a) is hazard-

perpe nhdculnr
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The question of the method
2 a of determinaticn of the strength
o

¢
Gs, aljfem® n &
characteristics of anisotropic

1620
materials has been raised repeat-
1500 — edly in the literature, in par-

ticular, those of fiberglass plas-

tics under tension in directions

whizh do not coincid2 with the

axes of elastic symmetry of the

material. Confirmation of the

necessity of testing only tubular -
specimens instead of the tradition-

al flat specimens, the axis of

which 1s at some angle to the axis

1400 —

o of symmetry of the material, has
| o recently been appearing more and
sl more often.
800 - M 4 o T S S 7R
, This question 1is important ¢
i for both fiberglass plastics and
' o for all unisotropic materials, since
all data available in the literature
2 on the elastic properties and
strength characteristics have been
) Fig. 38. Tensile test results of obtained primarily on flat samples.
DSP=-G of varied structure (from Flat samples are convenient in
.' data of F.E. Pyudik): 1. DSP-G-15; determination of the cé~aree of
2. DSP-G-30; 3. DSP-G-45; 4, anisotropy of mechanic:l properties
].‘:“}‘-\‘t—(“o; Hie I‘S}\—‘\;"-"‘_". DSP-G=-90, of the material of large sized
; items and in testing the effect of
Key: 1. kg/cr production technology on the
serties of fiberglass plastics.
Diagonal specimens, the strength of ch depends on the proverties of
’ the binder and, therefore, on many purely technological factors, are
especially convenient here.
Theoret i sumptions base n the "cut filament" concept lead
to the state t, in study of the dependence of fiberglass plastlc
strength or e the sample is cut cannct be employed with f]at
iples. Bdidermar 11 ] wrl s that points which correspond
to failure ss filaments at angles other than a=( ind a=90"
cannot be utilized with flat samples, since the ends of the fllaments
1roul which fallure start a result f detachment of the filament
. from the binder g ut the sides of the sample.
The experimental ita of [85] dispute the sta t ff V.l Rider-
mar on the nature f the failure f samples, the f whicl loes
not coincide with the a * symmetry of the rit ss plastic. he
{ ‘A‘U!‘t { ¢ L4 ;.l wronal ". . recorded \‘.' maanae ¢ :'! \me \.“ s, me
I t raphy, begir with the development f cracks in the center ot the
sample, n which the reat 't noerma stresses act, In a detalled in-
vestigation, the edge irea of stretched diagon ample provea O Dt
' undaerioadqded. he existence " the inde aaged edpe 1"eas 5 the idths
f which depend on t} fiber; vlastic structure and 1is the preatcont
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for fiberglass laminate, was convincingly
8 " demonstrated in [85], by means of the polar-
i o 74 I ization optical method of study of stresses.
& T /6 The edge effect, which was described in [01],
V'*‘3----'-{ evidently 1s assoclated with sample damage
S .___L/ during mechanical treatment, and not with the
; N . effect of cut fllaments.
b4 gz v
S / 70 A new explmmtion of the lower strength
Z—— 7 r—— P v LEo P
i f~——»-7/(’ Guh at an angle of 45° to the warp in flat
B samples than in testing tubling, based on the
) | 2 experimentally proved existence of underloaded
./ A } areas in dlagonal samples of textolite, was
- Y ;+;i confirmed by study of the dependence of g)¢
f————— el .
——— t /| on sample width [85)]. Increasing with in-
crease in sample width (with a constant 3:1
Fig. 39. Three possi- length to width ratioc), oye of Tiberglass
ble cases of deviation laminate reaches the highest values wilth a
of y and z axes of sym- 70 mm sample width and, of type SVAM oriénted
metry of fiberglass fiberglass plastics, with a 15mm width [85].
cloth plastic vs. di- Thus, the to"tinr, of flat samples at least
rection of tension o4: 15 mm wide, with a length to width ratic of
. - o a* least 3 [“:“‘l, is completely Jjustified ror
+ _warp of cloth; ) oriented fiberglass astics
weft of cloth. o iberglass pls ke
V.D. Protasov and V.P. Georglyevskly /79
[84] conducted extremely interesting tests of anisotropic I‘ibex'glass
laminates at various angles to the reinforcing fiber directlon. These
tests were performed on tubes, in which the axes of symmetry of the
material coincide with the axes of symmetry of the tube. The tubes
were subjected to longitudinal forces, internal pressure and torque.
It was considered here that the stress in the tube was linear and that
the principal stress acted at a specific angle to the fibers. From
the tube testing results, the authors obtain considerably higher elas-
tlc constants E and y and strengths gp than 1in tensile testing of flat
specimens in directicns which do not coilncide with the axes of symmetry
' of the material.
t
Based on these tests, the autncrs of [84] state that study of the
trength and elastic propertie f flat samples of anisotropic rein-
forced materials in directions cother than the reinforcing fiber direc-
tion results in ot‘aining distorted results
It was shown in [85, G3] that study of the elastic properties of
inisotropic reinforced fiberglass plastics in directions other than the
I reinforcing fiter direction, on flat samples of sufflclent width ar
It prorer quality of production, gives satisfactory results. The question
' is important, since the use of flat samples permits control tests of
the material of large structures, without introducing the unavoldable
errors contril ] by the differe: in the technological prccesses of
'OA U g flat nd tubular fiberg p.astic samples. (he flat sam-
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The results of study of the bending strength of various domestic
fiberglass plastics (AG-4S, 27-63S,.EF-32-301) were presented in [67,
68], and it was found that the ratio of the interlayer shearing strength
to the tensile strength along the fibers changes from 0.03 to 0.12.
Consequently, in bending fiberglass plastic samples, in which the neu-
tral layer 1s parallel to the layers of the material (fiberglass cloth
or veneer), failure can be of a fundamentally different nature. The
cause of failure can turn out to be either maximum normal stresses

O max parallel to the glass fiber on the outsides of a hazardous cross

section of the sample, or maximum tangential stresses T max °0 the neu-

tral layer of the sample, i.e., along the vinder layer under interlayer
shearing conditions.

Depending on the height to span
ratio of the sample cross section,
fallure can occur, either because
> the stresses op,, exceed the longi- 81

5;’1’..)1 ) N8t t a

<

tudinal tensile (compressive) strength

Gys OT because stresses Tmax under

lower loads turn out to equal the
interlayer shearing strength.

o, <
~-

O T oL O

The results of the tests of Rose
[67] of AG-US fiberglass plastic, with
different ratios of the fibers laid
along and across the length of the
sample, are shown in Fig. 43, 1In
the conventional symbols, the number
of fibers lald along the sample axis
is indicated first. The rays connect
test result points. The cross section

¢ ! z Tae’b 0H to span g ratio of the test sample
Fig. 43. Nature cof failure of i1s given on each ray. Ray 2H/2=0.1
fiberglass plastics by bending corresponds to a sample according to

GUST 4643-5t, 1n which failure of
materials with considerable anisotropy
occurred by shearing (shearing along
the Zayer). At 2H/2=0.2, all the ma-
terlals falled bty shearing upon bend-
ing. It follows from these data that
the results of bending tests of aniso-
trepic filberglass plastics must be
apprcached critically. YFor determina-
tion of the interlayer shearing (shearing along the layer) strength,
bendaing tests of samples with a larger height to span ratio (2H/2>0.0
can be recommended, 1n which fallure occurs conly due to tangential stresses
along the neutral layer of the beam (IFig. U43),

(from data of Fose); fiber ratio
shown by figures after conven-
ticnal symtols of test results;
results corresponding to sample
splitting along layer noted by
solid symbels.

Key: a. kg/mm” b. kg

10, Jcatter of Strength Characteristics

Tt 1. known that the results of mechanical testing of various anisc-
tropic materials (wood, plywcod, oriented fiberglass plastics) are dis-

Lo




tinguished by substantial scatter.
of the results 1s

tion.

For flberglass plastics, the scatter

especlally large in testing in the reinforcing direc-
It decreases in testing samples,

the axis of which 1s inclined

at some angle to the reinforcing fiber direction.

Fig. 44,
characteristics of
Key: a. kg/cm-

The distribution of the
4651-49) of samples of cold
are shown in Fig. 44 [38,
oR of samples, the axes of whil
(a=90°) are
compared wit!
located nearly on a

directions.
str"‘ﬁ‘ Line.

~

4

probabili ty
f the resulting stra

.lt,ft‘ 0o
mately characterizes
same for angles a of
significantly greater.
of the diagonal sample test

t ransverse samples.

intervals are plotted

. &
0 and 9(

his has a very simple expl
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t

Distribution of
fiberglass

compressive strength
cured PN-1 btinder fiberglass plastic
69]. The
coincide

plotted on normal probability

This

tion of normal distribution of the experime

here
1ight lines to

the scatter of

but,

indicates a cons

results

SRR |

VSRS CSnoanmy e

compressive strength
cloth plastic

characteristics (GOST
cloth
frequencies of strength

the warp (a=0°) and weft
o}

paper, and angle a=45° is

all three cases, the polints are
does not contradict the assump-
ental data. Five percent

ative
with

cumul

for average straight lines. The
the abscissa, which approxi-
the results, 1s approximately the
for angle a=45°, this slope 1is
iderably smaller scatter
than those of the longitudlinal and
anation, based on consideration of the

anisotropy the material. urve (Fig. 42) shows the change in
compressive strength of thi fiverglass plastic as a function of the
ngle of inclination of the fibers a. Near =U45°  the curve 1s nearly
horizontal but, around angles a of and 90°, it is steeper. If it 1s
issumed that the scatter of the te results 1s determined primarily

t error in orientation of the samples, the decrease of this scatter

at a=45° 1s explained t n of this curve. Even a +5° error
n orientation of the s not result in a change In the

. 3 + S o,
Ana transverse




samples,

SVAM with a 1:13 fiber ratio (Fig.
longitudinal sample can reduce the strength by almost 10%.

such an error can change the strength.

In tensile testing of

40), a 5° error in orientation of a
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tribution of tensile strength
cs of pine wood.

)

more clearly 1n the results of testing
ial as pine wood. The distribution

of the tensile strength &har icteristics of pine wood at various angles

x to the fibers 1is shown in Fig. 45. The test method and material were
dosc"ib ed in detail in [22]. It follows from the figure that the great-
est scatter of the results happens with the direction of the force a-
long the fibers (a=0°) and the least, perpendicular to this (a=90°).

In this case, just as for fiberglass plastic, the 1esults correspond
quite closely to a linear change of the integral probability function,
especially at a=90° and angles close to it [69].

A curve of change of the tensile strength of pine wood as a func-
tion of a was presented in Fig. 10 of [22]. This curve 1s steep near
a=0°, which results in significant scatter of the test results, with
the directlon of the force along the fibers and negligible error in
sample nrithtw iorn. The nearly horizontal section of the curve cor-
responds to angles a=75-90° for the wood. Therefore, at these angles,
even a QLL\*irtial error in sample orientation does not result 1n
scatter of the values of og.

Thus, one cause of significant scatter of the results of testing
inisotropic materials in the directions of grea’ st strength can be
inexact ;:1'\ﬁ11:Q' of the sample axis with these directions.

In testing metals, the anisotropy of which 1s not as substantilal,
nonuniformity of the properties of the material plays the basic part
in the scatter of the results. Different degrees of cold working at

0
/8

-
i)




e BT TN - N

various points of a rolled metal sheet can result in greater than
normal nonuniformity of the mechanical properties of the metal.

As a rule, testing of a large number of iden- /84
tical specimens is not required for a decision

g, s/’ @ on the mechanical properties of a metal, because
A of the relative uniformity of the characteristic
75t properties of a metal. However, this procedure
2 _j/r can lead to errors associated with the nonuni-
Y it formity of rolled metal in study of anisotropy.
55 E.I. Braynin [71] committed such an error in
0 J0 60 oo 0 study of the strength anisotropy of cold rolled

OBKP steel. He tested one or two samples

Fig. 46. Change of 130x18x0.5 mm in size, at 7 different orienta-
ultimate strength tions (at angles a of 0, 15, 30, 45, 60, 75 and
oR of rolled steel, 90°), for four different states of the 3teel
from data of Bray- gnd, in three cases, he obtalned substantial
nin‘[71] disagreement of the experimental results with

' the results of calculation by Eq. (49). The
greatest disagreement happened with steel, after
cold rolling with 75% reduction (the curve of
change of og VS. angle a (Fig. 46) had a maximum

Key: a. kg/rr.m2

at a=15° and a minimum at a=50°).

A 250x260x0.5 mm sheet from
the same batch of cold rolled
steel was given to E.I. Bray-
nin by the author of this work,
to repeat his tests [72]. 1In
order to test the degree of
uniformity of the material in
the sheet and obtain reliable
average test data on a large /85
number of specimens, smaller T
adimensions were selected.
80x5x0.5 mm samples were cut,
according to the layout shown
in Fig. A7,

250

Samples cut perpendicular
»to the rolling direction (a=90°)
from the left and from the right
parts of the sheet gave the same
average strengths, but samples
Fig. 47. Location of samples in steel cut parallel to the rolling direc-
sl tlon displayed different strengths
deprending on their location in
Key: a. Rolling the sheet. Specimens cut in the

middle of the sheet gave the high-

>st strengths and those at the bottom, the lowest strength. In this
case, the difference in strengths of the samples cut from different places
in the sheet with the same orientation exceed the disagreements in
strength which were obtained for variously oriented specimens cut fronm

one part of the sheet.

o
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Fig. 48. Change of
tensile strength OR

of steel vs. angle

a between sample
axis and rolling
direction. Curves
plotted by Eq. (49):
l. sheet average; 2.
upper part of sheet;
3. center; 4. lover;
average strength
values from datu of
author: o. in cen-
ter of sheet; e
lower part of she
A. upper; A. mi
X. experimental d

v

E.I. Braynin.

-

o
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Key: a. kg/inm

he hending fatl
testing rotating cyl
extends to parts whi
{or f tl plane of
14 ¢ ‘ - 0': 1 S v .

Together with the data of the author, strength
data obtained experimentally by E.I. Braynin are
presented in Fig. U8 for comparison. The Bray-

nin data are much lower than the data of the
author along and across the rolling direction.

With a=0°, only two samples of 19 tested
displayed as low a strength. These were samples
No. 14 and 15, located in the lower part of the
sheet. There is some increase in strength at
angle a=15° to the rolling direction, compared
with the strength along the rolling direction
(at n=0°) according to the test results of the
author but, on the average over the sheet, the
increase in streagth is only 1.3%, while the
difference in strength at a=0°, which depends
only on the location of the sample, reaches 1l4%.

Thus, the existence of a strength maximum
at a=15° 1s doubtful, and the strength values
obtained by Craynin at a=15°, which are higher
than the strengths at a=0°, can be explained by
nonuniformity of the material.

The curves presented in Fig. 48 were plot- /86
ted by tenssrial Eq. (49), separately for dif-

ferent parts of the cheet and averaged over the
sheet. As tar a3 can be de~ided from available
data, tensorial Eq. (49) correctly describes the

regularities of change in the strength of metals
as a function of the angle between the direction
o' the tensile force and the rolling direction.

In other cases, the detection of regularities
not contained in Eq. (49) or (41) should thor-
oughly verify the scatter of the characteristics
of rolled metal determined, which are connected
with various degrees of its cold werking in 4if-

ferent varts of sheet.

J Fatigue

testing with uniform stress

¥
h transverse tension-compres-
\

\'JC’ y 1..,, W
recognized as the best. Yet, machines for
iing tests are favorable distinguished by
gn and operatior Therefore, they are more
1imit of metals usually is determined by

rical samples. he fatigue limit thus obtained
work with variable bending, with a constant loca-
tior f the lcad with respect to the part. 1In
tifie even for an isotropic metal.




G, alfcn? 8 An explanation of the differences
o 7 in fatigue 1imit in pure bending, de-
termined on circular rotating and fixed
samples, 1s presented in [73]. 1In

" testing a fixed cylindrical specimen
by an alternate upward and downward
s00 - ' T~ vertical bending load, the maximum stress-
Q es occur only at the farthest points from

|

i l the neutral layer. If a specimen rotates

! I under a constant vertical load, in a
{ | complete revolution all points of 1its

j perimeter will experience the greatest
stresses in turn. The area of the ma-
terial covered by the maximum stresses
prcves to be greater in a rotating sam-
Fig. 49, Fatigue diagram of ple than in a fixed sample and, cor-
cold cured fiberglass cloth respondingly, the fatigue limit should

250

6.‘;5’7

plastic made of linen weave be less.
cloth in PN-1 polyester res-
in, in pure bending along For anisotropic sheet materials, it
weft of cloth (symmetrical is more convenlent to conduct fatigue
cycle): 1. by testing ro- testing on flat samples, with a contin-
tating cylindrical samples uously variable bending moment in the
in NU machine; 2. by test- veriical plane [74, 75]. A fixed flat
ing flat samples in machine sample of rectangular cross section
of 1.P. Boksberg; eo. ex- should give a lower bending fatigue 1limit
perimental resultes. than a fixed sample of circular cross

. section [73], since the area of exposure
Key: a. kg/cem” to the maximum stresses of a flat sumple

is greater than that of a circular sam-
ple. In comparing the results of testing a rotating circular sample
with 2 flat fixed sample, the ratio of the cross section dimensions 1s
important.

Comparative tests of anisotroplc fiberglass plastic cloth with a
symmetrical cycle and pure bending were conducted on rotating cylindri-
cal and fixed flat samples [38]. The fatigue curves for these two
cases are shown in Fig. 4Q. The axes of all samples were along the
weft of the fiberglass cloth. Tests of circular cross section rotating
specimens 11 mm in diameter gave correlation line 1, which is lower than
fatigue curve 2 for a fixed 10 mm wide sample. The explandtion of this
relationship 1s that the area of action of the maximum normal strecses
in a rotating sample was approximately 1.5 times trat of the fixed flat
sample in this case and, therefore, the fatigue limit turned out lower.

In testing fixed flat samples of laminated materials at a low stress
level, a tendency was noted for them to separate into layers, if the

lJayers are parallel to the neutral layei. It was pointed out in [75]
that, for laminated fiberpglass plastic at low stress levels, fallure
f the fiberglass cloth in the zone of greatest normul stresses precedes

failure of the binder in layers parallel to the planes of the cloth.
' This characteristic circumstance of static bending tests (see Secticn 9)
requires a cautious approach to the practical use of benalng fatigue

+
test results.




Fig. 50. Fatigue
dlagram of fiber-
glass cloth
plastic.

Key: a. kg/cm2

S00

Fig. 51. Fatigue
limit anisotropy
of fiberglass
plastics: 1. e-
poxy resin fiber-
glass plastic
(44]; 2. PN=3
polyester resin
fiberglass clotl
;11-'f" [81]; 3.
cold cured PN-1

z :
resin fib

1’"1V“T~ 1ﬁ7,' 4.

The two branchet of the fatigue diagram, which
are characterictic of bending tests of flat fiber-
glass plastic samples, can be considered schemat-
ically (in the first approximation) to correspond
to two forms of disruption of the fatigue strength
of a material: by fallure of fiberglases cloth in
the zone of the greatest nocrmal stresses, and by
the development of layer separation cracks in areas
parallel to the neutral layer. The first form of
fallure frequently corresponds to high and the
second, to low stress levels [75]. 1In testing
flat samples, the axes of which are at 45° to the
axes of symmetry of the material (the direction of
placement of the fiberglass reinforcing in SVAM),
fallure at low stress levels also was accompanied
by separation into layers along the binder layers

(38].

The fatigue curves of epoxy resin fiberglass
plastic with mutually perpendicular fiber stack-
ing, with axlal tenslion-compression at various
angles to the fiber direction, are shown in Fig.
50 [44]. The angle between the axis of the sam-
ple and the direction of the glass fiber is in-
dicated on each curve. The strength of this
fiberglass plastic 1s the same in two mutually
perpendicular directicons. Therefore, only four
sample orientations in the planes of the fiber-
glass plastic sheet were tested.

The fatligue strength anisotropy of some fiber-
glass plastics 1s presented in Fig. 51. The bend-
ing fatigue strength anisotropy of fiberglass

plastics 1s less pronounced (curves 2, and 4)
than 1n continuously variable tension-compressicn
tests (curv

1 and 5).
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ison of the anisotropy of fiberglass
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In [64], A.L. Bukh points out that the fatigue
strength anisotropy of rolled steel shows up more
strongly in a symmetrical cycle than in a variable
cycle. A.L ukh considers the effect of nonmetal-
lic¢ Inclusions to be basic cause of the aniso-
tropy of rolled steel properties. In this case,
the properties in the rolling directlion scarcely
lepend on the presence of nonmetallic inclusions
in the steel, but the mechanical properties in the
transverse direction decrease with 4increase in im-
purities in the steel. The nonmetalllic inclus!on

/
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content affects the mechanical property

'cqs,.tym'a . anisotropy of steel more strongly than the
2050 T I l. degree of cold working. The effect of
2800 X~ : v am large size brittle inclusions 1s especially

;ngb,l._' ' ' significant [64]. As a result of the effect
of nonmetallic inclusions, the fatigue limit

i: . U _;‘____: anisotropy can prove to be still more sub-
T | stantial than the trarsverse walst aniso-
410 S T § E— tropy in static failure.
2297 s v Bl In all cases, the inclusions, which
Y R 2 AR assume an elongated shape in the rolling J
N i direction during rolling, act as stress
W0 ———X""—"7 1T 1 concentrators. As a result, their partic-
(] e e o ularly great effect on the fatigue limit of
e IS, W & S S the metal is clear. The higher the degree
OO I ST S of cold working, the more elongated the

shape of the inclusions becomes and the
higher the stress concentration coefficient
due to them under tension perpendicular to
the rolling direction. With very small
inclusions, thelr effect 1s within the
limits of the natural scatter of the test
results.

rollec metal can be extremely significant,

The scatter of the fatipue limit of a l
i1f the samples are cut from different parts

of the ingot [78]. Nonuniformity of the
material affects its characteristics still /90
more in fatigue tests than in static tests. ,
Fig. 52. Fatigue limit
g , (curve 1) and ulti- The anisotropy cf rolled sheets of
o _ low alloy structural steel sometimes cannot
mate strength g, (curve be discoter P4 Static taat sperrl
E iscovered from ic test results
2) anisotropy of epoxy- which are conduct vd only on samples cut 1n
phenol binder SVAM (1:1 the rolling direction and perpendicular to
fiber ratio) under axial 1t. Thus, in [77l], 1L was shown that the
loading (symmetrical longitudinal and transverse yleld stress,
cycle). tensile strength and relative elongation
of grade ten steel were practically the
Key 1, kg/cm same, and that only relative waist ¢y and
true tensile strength S, displayed anlsotropy
n
he fatigue limit ff transverse a les, deterinined
pre on in a symmetrical cycle, proved to be 20-30% low
of longitudinal samples for all materials studied [77]
ly here are n jata on the results cf testing dlagonal
[7 In a number of ses when all the longitudinal ar
mechanical properties, including the fatigue limit, were ne
same, testing of samples, the axi f which is at a 45°
directions, permits anisotropy to be discovered.

In continuously variable torsion teats of tubular nickel-chrcme-
nolybdenum steel samples, Khodorovskiy found (78] that longitudinal and
transverse samples give nearly the same fatigue limit, but that samples




cut at an angle to the rolling direction give )
a higher fatigue limit under torsion. The

authors of [79] reached similar conclusions.

Besides, they determined that tne fatlgue

l1imit anisotropy of aluminum alloys and roll-

ed steel 1s less strongly exprescsed in tor-

sion than in bending. ]

Fatigue limit curves of rolled aluminum
alloy and rolled steel, plotted from the dat
of [79], are shown in Fig. 53 and 54. The
results of determination of the fatigue limit
for three different sample orientation in the )
planes of a sheet of rolled metal are present-
ed in this work: rwr%llnl to the rolling
direction (0°); perpendicular to it (90°);
at a 45° angle to it. While fatigue l1limit
anisctropy in lomdir; is appreciable, even

e - ~ vy | - " |
in comparin wo orientations, onl
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Fig. 53. Bending
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0 4
Fig. 55. Anisotropy of
damping properties of
fiberglass cloth plas-

Jo & 5 me

tic in bending: ¢. co-
efficient of energy ab-
sorption during vibra-
tion; a. angle between
warp of cloth and sam-
ple axis (see Fig. 56).

of a fiberglass plastic made of satin weave
ASTT (b)-S fiverglass cloth in PN-3 polyester
resin are presented in [81]. Energy ab-
sorption coefficient ¢, which is approximately
double the logarithmic decrement of vibration
damping, was determined experimentally. The
tests were conducted on freely suspended flat
specimens with the natural bending vibrations.

A graph of energy absorption coefficient
¢ Vvs. angle between the sample axis and the
finerglass cloth warp fiber direction, plot-
ted from the data of [€1], is presented in
Fig. 55. Data on thke anisotropy of this
fiberglass plastic, obtained by testing large
flat samples, are presented in Table 15. Fner-
gy absorption factor a 1s compared to the ra-
tic of energy dissipated in the vibration.

TABLE 15. ANISOTROPY OF PN-3 FIBERGLASS CLOTH PLASTIC

2 |aizt
U%:(’i C:.;: | :é:
g5 | >5e | =3 .
F B | B

¢ | oose 144 % 700

5 ' 0150 057 | 273

9 | 0120 | 0% | 300

Key:
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; X ; =
A . A
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. ~3 e, S
ql

A
4

Fig. 56.
of fiberglass plarctic.
Warp of clotn

Key: a.

characteristics.

Sample position in determi-
nation of damping proverty anisotropy

Angle with warp direction o, degrees
Coefficient of energy absorption ¢
Modulus of elasticity E-102, kg/cm
Fatigue limit o_,, kg/cm?

o'

2.0

period to the greatest po-
tential energy of the cycle.

The orientation of the
samples which correspond to
the tests of [81] presented
in Fig. 55 1is shown in Fir.
56. /s should be expected
the damping properties of the
fiberglass plastic are ‘hLe
grectest, in the case of forces
acting in the direction of the
lowest elastic and strength

The damping property anisotropy 1s so high that the

resonance vibration amplitude can be changed 1.5-1.7 fold, only by
changing the angle between the sample axis and the fiberglass cloth

warp direction.
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CHAPTER 4. ANISOTROPY IN MACHINE PARTS AND STRUCTURES

12. Strain Measurement Characteristics

The experimental study of deformation of working machine parts and
structures for the purpose of investigation of strain is called strain
measurement. Strain measurement usually 1is resorted to 1n those cases
when theoretical determination of stresses is impossible, or when the
degrece of correspondence of theoretical forrmulas to reality must be
verified.

Tre principal stresses at danger points are calculated from the
results of strain measurements on isotropic materials. In the event
the strength of parts made of an isotropic material is studied, calcula-
tion of the principal stresses 1is not necessary. Testing strengths
under two dimensional ciress requires determination of the stresses a-
long the areas of symmetry of the material (see Chapter 2). If the
direction of the axes of symmetry of the material 1s known beforehand,
this task is significantly simplified.

The location of the axes of symmetry of an orthotropic material in
part can be determined by various methods. Sometimes, it 1s pre-
termined with great accuracy ty the production technology as, for
cample, in rolled metal sheet: the roiling direction quite accurately

efines the location of one axis of symmetry of all mechanical proper-
ties of the metal.

cc
n
4

In parts made of fiberglass plastlcs, especially when they are hot
molded, the direction of the glass fiber (and, consequently, the axes
of elastic symmetry) can deviate quite strongly from the assumed direc-
tion. Thig is xplained by errors in the technological process. Cut-
ting, impregnation and laying the cloth in the mold can 1lnvolve mis-
alignment, and molding a part of complex configuration can involve
disturbance of the arrangement of the layers. All these technological
process errors have the result that the actual glass fiber arrangement

is unknown in a finished part

~"u

o

The 3ctu11 direction cof primary orientaticn of the glass fiber and,
consequently he location of the axes of elastic symmetry in the or-
thogonal stack of fibers can be found by means of ultrasound [83].
For this, a ci e of arbitrary radius 1s drawn cn the finished part
(Fig. 57). The ultrasonic wave 1is passed through two diametrically
opposite points 1 and 2. The time in wh*“h the wave covers the dis-

tance between the mark points is recorded by the instrument and, from
the known distance between the points (it is the dlameter of the cir-
cle), the velocity of the ultrasound 1s determined. The wave traverses
the x axis of greatest rigidity of the material, which colncides with
the p: mary orientation of the fibers or with t}w direction of the warp
in fiberglass plastic cloth, most rapidly. Therefore, by measuring the
velocity of the wave in several directions, the axls of greatest rigid-
ity, i.e., tne axis of elastic symmetry of the material can easily be

a-termined.
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widespread. Three sensor rosettes are used for stress determination.
Two sensors of the rosette are cemented along the axes of symmetry of
the material and the third, at a 45° angle to the first two.

Strecses acting on areas of elastic symmetry can be determined by

solving Eq. (7) for stress, with °Z=T~X=Tyz=0:

_ Ey(ex — ppaty)

T—papyr
_Ey(ey gt (88)
E et

Ty = G, V-

1 the general case, both normal stresses B and °y and tangential

stresses Txy act along areas perpendicular to the axes of symmetry of
the material. Therefore, for strain measurement, a three sensor rosette
is used. Two sensors, cemented strictly along the x and y axes of sym-
metry, are used to determine the relative longitudinal deformations €y

and Ey’ and one sensor, cemented at a 45° angle to the first two on the

same part, is used to calculate angle of displacement ny. The follow-
ing formula is used here, which was obivained from geometric considera-
tions:

(89)

=2
Txy “Cus€x"Ey:

where €gs and EMS are the relative longitudinal deformations along

the x and y axes of elastic symmetry and at a 45° angle to them (Fig.
513+

It should be noted that deviation of
the sensor axes from the axes of elastic
\ symmetry of the material can result in sub-
stantial errors. Eaq. (88) then is unusable,
and it should be replaced by the more com-
plex formulas presented in [83]. The sim-
plest and least erroneous strain measurement
of anisotropic materials 1s carried out by
mez2ns of a three sensor rosette, in the
event of coinclidence of the axes of the
rosette with the axes of symmetry of the
material.

Unlapped seinsors should be preferred
in strain measurment of parts made of aniso-
tropic materials, since the effect of the
loops can introduce significant errors to
the results in small base measurements,
especially in certaln stresses. This 1is

I . Wire sensor

rosette on surface of part
rthotropic material:

X and y. axes of symmetry

0 f
.
C

.
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because the coefficients of transverse deformation of anisotropic ma-
terials differ in different directions. Therefore, the effect of the
loops will differ for the three sensors of one rosette.

The features of strain gauge determination of stresses in parts
made of anisotropic materials can serve as an example of the practical
application »f the theoretical considerations of the first chapter in
engineering practice. Strain gauge determination of stresses in an
anisotropic material, performed without taking account of the character-
istics discussed, can prove to be erroneous.

13. Effect of Anisotropy on Machine Part Strength

Since the time of publication of the classical works of D.K.
Chernov, it has been known that macroscopic anisotropy of the mechanical
properties of metals 1s observed. It is the result of oriented arrange-
ment of heterogeneous components of the metal [10].

In senior practical physical metallurgy ccurses [21], recommendations
have been formulated for the design of parts made of anisotropic metals.
It is not recommended that load carrying parts made of such metals be
made by cutting. The shape of the parts should be such that the fiber
direction follows the load direction [21], 1.e., the fibers of the fabric
shculd not be cut during manufacture. These recommendations are widely
utilized in pressure working of such standard machine parts as gears, igé
crankshafts and the like.

Cases also are known [10] wnen, for example, a stamping tool (knives
for cutting out cylindrical intermediate products ana dies) failed, be-
cause it was improperly made of an anisotiropic metal.

In pressure working, the metal fibers should be st so that no ten-
sile stresses act across the fiters and no tangential stresse; act on
areas parallel to the fibers. The areas parallel to the fibers are the
weakest in a rolled metal. If possible, they must be positioned so
that there are no stresses along these areas or, at least, there are
only compressive stresses. A similar, but considerably more extreme
phenomenon occurs in wnod. Tensile and shearing stresses along areas
parallel to the fibers are a great danger to wood and cause its brit:le
failure. This limits the use of wood as a structural material. Anilso-
tropic rolled metal behaves the same way. With tensile and shearing
stresses along areas parallel to the fibers, failure can be brittle,
even for soft steel, since it occurs along weak interlayers of non-
metallic incluslons and 1s aggravated by stress concentrations near /97
these layers. An analysls of stamping tool failure wes carried out in
t10], which showed that, with improper fiber placement, failure of the
metal occurs by breaking off, without macroscopic indicaticns of plas-
tic deformation.

Failure of a stamping tcol with incorrect fiber placement 1s shown,
and a diagram of correct placement of the fiters in diles and cutters
is given in Fig. 58 and 59 [10]. The direction of the forces 1s shown
by arrows. Placement of the fibers along the axis of the die (Fipg.
58 a) is the most dangerous case, in which "splitting" of the die oc-
curs along areas parallel to the fibers, similar to the srlitting of




Fig. 58. Failure of shearing dies,
cutters and stamping dies with in-
correct fiber arrangement (a and b)

wood with axes.

Thus, placement of the fibers
according to the configuration of
the part turns out to be insuf-
ficient. 1In working, metal fibers
should be matched with the paths
of the principal tensile stresses,
Just like the reinforcing in re-
inforced concrete. Some recom-
mendations presented in [1C] are
reproduced in Fig. 60.

It should be noted that oll-
ing a metal in two mutually per-
r 'ndicular directions does not
liminate its anisotropy.

The production of a sheet
1sotropic metal by pressure work-
ing possibly could succeed, if it

is rolled in at least three direc-
tions at 60° angles from each
other (see Section 1), but this
method requires additional ex-
perimental study.

and diagrams of correct fiber
arrangement (c).

Key: d. Stamping die
e. Shearing die
f. Cutter

g. Cutters In study of th~ anisotropy

of a metal, experimental study of
all orientations of the forces is
not needed. The formulas present-
ed in Section 6 are sufficiently
simple for practical use [42],

and they permit experimental de-
termination of the mechanical
property characteristics in only
the longitudinal, transverse and
diagonal directions in each plane
of symmetry of the material (Sec-
tion 1).

Fig. 59. Failure of siot cutters
with incorrect fiber arrangement (a
anc b) and dilagram of correct fiber
arrangement (c).

It should be noted, that with /98
the same kind of mathematical re- ~
lationships, the form of the curves
which define the resistance of
materials to normal and tangential
stresses 1s completely different.

The diagonal frequently corresponds
to the greatest shearing strength
but the least tensile strength. While the strength characteristics

along and across the fibers (or the roll) differ little from each other,
as a rule, the diagonal corresponds to extreme strengths: the maximum
shearing strength and the minimum ¢ensile strength. This rule was con-
firmed in fatigue testing of metals.

Key: d. Cutter
e. Breakaway line
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With increase in the degree of
anisotropy of a material, i.e.,
differences between the longitudinal
and transverse strengths, the ex-
treme values correspond with the
diagonal but, as before, the re-
sistance to normal stresses is at
a minimum, and the resistance to
tangential stresses is at a maximum.

cd S"_...7 ----- 7% With a very high degree of aniso-
Y ¥ ALY tropy, the extreme corresponds with
“jtj;ftfﬂvftﬁg NS N the longitudinal or transverse di-
2 ﬁ]lf 11ii$+ rections.
g
hy) Mathematical relationshnips
(see Sections 5 and 6) permit easy
determination of the direction of
least or greatest strength of an /99
anisotropic material, in distinc-
Fig. 60. Recommended fiber ar- tion from the purely empirical
rangement in metal parts: a and approach to the question, which
b. in zimple compression and ten- does not make this possible. In
sion; ¢. in torsion; d. in re- this case, the same or nearly the
versed torsion; e and f. in bend- same longitudinal and transverse
ing; g. 1n reversed bending; strength characteristics still are
h. in pipe under internal pres- not indicators of the isotropy of
sure. a material. Its strength 1in any

other direction (for example, di-
agonal) can prove to be considerably reduced.

it follows from Eq. (49) that the extreme ultimate strength Og

corresponds to the extreme value of the denominator on the right side
of the equation. BRy making the first derivative of this denominator
equal to zero, from angle a, we obtain the following condition of the
extreme gp:

(90)

cos'z sina b sin 22 cos 22 + ¢ sin? a cos x. 7

In particular, it follows from this that, to reach extreme values
of oy on the diagonal (a=45°), where sinJacosa=cos3asina=1/4, and

sin2acos2a=0, it 1s necessary that c=1, 1i.e., 0n=0qq-* In other words,

1f any characteristic of an orthotropic sheet material has the same
longitudinal and transverse values, this means that the greatest or
least value of this characteristic will occur diagonally.

With a=060°, equality (90) can be satisfied with 0y5%040- Similarly,
J N\
with a=30°, the maximum or minimum can occur if 0p=0 e
In preoducing wound fib

placement °
assumed that the maximum

berglass plastic products, nonorthogonal iber
requently is used (see Fig. 2). In tnis case. 1f it 1s
st ccurs in the primary fiber placement

——




direction, i.e., along the x'l axls, the approximate value of Oyg can

be calculated and, in this case, it 1s sufficient to determine the
strengths experimentally along the Xq and X, axes of symmetry of the

material, 1i.e., o4 and o4, (see Fig. 2).

We assume that the strength of a nonorthogonal fiberglass plastic
changes according to tensorial Eq. (49), depending on angle a between
the Xy axls and the direction of the tensile stress. Then, the maximum

strength occurs with a=y and, consequently, the zero value of the first
derivative of the strength og according to angle a. After simple cal-

culations, we obtain

O — —_-4__(! — '.qt/'_)_
BT 3-wly 13wy
Je Ty0

In this case, the strength criterion can be utilized without ex-
perimental determination of strength o, . at an angle of U5° to the

axes of symmetry of the material.

It must be noted that the value of Oy calculated by this equation /100
proved to be quite close to the value of q“S determined directly from

testing flat samples. The tensile strength anisotropy from test re-
sults was somewhat more pronounced than from the calculated data.

Eq. (49) was used in [Bl1] to describe the anisotropy of the vibra-
tional characteristics of fiberglass plastics. Based on this formula,
the optimum reinforcing angle, at which the damping properties of the
fiberglass plastic are at a maximum, is determined. The question 1is of
practical importance in selecting the reinforcing ang’e which ensures
the least ncise emission of fibergless plastic ship huils.

Primarily cold cured fiberglass plastic 1s used in ship hulls, in
connection with its purely technological advantages for the production
of lar:e items. Hot molded fiberglass parts, which ensure higher me-
chanical property characteristics of the material, are used more often
in machire building.

f complex configura-

14‘.31: of the structure of material in parts
f angenent determined

tions produced by hot molding shows that the fi ry

by the uvs‘;ne“ actually cannot be ensured in th nished product.
This can ~"r’”i antly reduce the strength of the p rt,; although its
external appearance and dimensions correspond to the drawlng.

The causes of disruption of the structure of the material are as-
socliated primarily with creep of the layers of fitergldg“ cloth, tape
vonuor.durinr molding phenomenon 1s character-
stic of items of co ¢ blades, compressor and
during molding, which
surfaces. The strength

—~
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of such items can frequently be increased without change in properties
of the binder or reinforcing, only by a technology which ensures the
proper structure of the material and the use of nondestructive methods
of monitoring the structure of the item.

In fiberglass plastic hulls, the use of parallel deck and bottom
reinforcing schemes and parallel-diagonal reinforcing of the sides,
which reduce shearing deformations, is considered the optimum [81, 29].

Star stacking of the reinforcing fibers (or fiberglass cloth layers)
is expedient, in the event of a need to decrease the stress concentra-
tion. This 1s particularly important in large fiberglass plastic struc-
tures.

The coefficient of tensile stress concentration along the axis of
greatest rigidity is the larger, the more pronounced the elastic aniso-
tropy. Star stacking of reinforcing elements can be done with an 1so-
tropic material near the place of stress concentration, with reduction
in the concentration coefficient.

14, Use of Strength Criteria for Calculation of Pipe Wall Thickness

Fiberglass plastic pipe has been widely used recently 1in various
branches of the national economy. Such pipe usually is produced by
winding glass tape or glass roving on a mandrel. As a result of
lengthwise-crosswise or cross bilas winding, orthogonal or nonorthogonal
laid fiberglacss plastic is formed, with the axes of symmetry, as a rule
coincident with the cylinder generatrix, pipe cross section radius and
tangent to the cross section circumference.

We consider a pipe subjected to internal

" pressure. It can be considered that two di-
: 4 mensional stress develops in the walls of such
,&6 a pipe, with the principal stresses o4 and 05
- = - along the areas of symmetry of the material
5 y =
! (Fig. 61).

These stresses are determined by the

: sl
Fig. €1. Directions formulas

of principal stresses -
in wall of pipe under 0, =751 O=azr: O=-T

interna. pressure.

where p is the internal pressure; r 1s the plpe radius; & 1s the wall
thickness.

As is known, stress o, acts along areas perrendicular to the axls
of the pipe, i.e., in the directions of the axis of symmetry of the
material.

We designate the axis of the pip2, 1.e., the axis of symmetry of
the material, by the letter y. Then, for the problem under considera-




tion (Table 7), the stress tensor will have the following form:

0, l o | o
0 1 a, ' 0
_;"| o | o

At each polnt, the x axis passes along the tangent to the c¢ircum-
ference of the pipe and the z axis along its radius.

We assume that we know the following strength characteristics of

the pipe material:
990 is the tensile strength along the y axis, i.e., along the

axls of the pilpe;

on 1s the tensile strength on the tangent, i.e., along the ‘10
x axis of symmetry of the material;

Jyue is the tensile strength at an angle of U45° to the x and
y axes; =

o

T is the shearing strength, in which the tangential stresses
act along areas perpendicular to the x and y axes.

We calculate the pipe wall thickness § which corresponds to a
nazardous state of the material. We use the strength criteria obtained
in Sections 5 and 6 for this.

Initial

1 we substitute the stress values in the quadratic strength
criterion, 1

Y
e., in Eq. (35)

n:'. ' "“l" “l‘_’l | 1
0 & & & )" (91)

From this formula, it haprens that failure onccurs

/o s 2 (92)

By substituting the values of stress o,, we obtain the value of §,

it which the pipe falls due to internal pressure p. It 1s evident
that, after selecting valid strength safety factors k, pipe wall thick-
res

. P A \ e . o n al At 3 .
ness § at which pressure p 1s safe can be calculated:

-0




b= Pty —ogt — a3,

T

(93)
where a-oo/ous, dcoO/To, °'°0/°90 (see pp. 27-28 for notation).

For the same purpose, we now use the fourth power criterion (see
Section €) and, from Eq. (66), we obtain

q % '
Tt +0|0:(‘—du sl -——t-o)=
(94)

S N T
=] oi+ 0l - 0,0,

The following condition of failure of the pipe 1s obtained from
this formula:

W SO N I (95)

The corresponding safe pipe wall thickness 1s

~
o
[@%)

k
6= L2
2 7o,

Ba—2d —c+ 9, (96)

A similar calculation procedure can be used to determine the wall
thickness of thin walled vessels and casings exposed to internal or
external hydrostatic pressure. The active stresses can be determined
with the anisotropic elastic properties of the material taken into ac-
count or, in the first approximation, as for 1sotropic materials. The
use of the strength criteria proposed in Sections 5 and 6 is particular-
ly convenient in these cases, since the stress is characterized by two
principal stresses of the same sign. If principal tensile stresses
are involved, determination can be limited to the tensile strength of
the material without determinaticn of the compressive strength.

F.P. Pekker experimentally tested the appliczability of strength
criteria in the form of fourth power polynomial (94), to estimate the
destructive internal axisymmetric pressure of fiberglass plastic pilpe.
Two series of pipes, each 150 cm long, were tested. One series, with
lengthwise-crosswise orthogonal laid glass roving, had an average
diameter of 53 mm and a wall thickness of approximately 3 mm. The
second series, with nonorthogonal crosz laid fiberglass cleth tape, had
an average diameter of 52 mm and a 2.8 mm wall thickness.
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All the 1initial characteristics of the material and the destructive
pressure were determinec on samples cut from each pipe, and they were
averaged for the pipe batch, with statistical evaluation of the test
results and with the effect of the sample width on °0 and °h5 taken into

account. To determine Ty torsion and shearing tests and the indirect
method proposed in [36] were used.

The torsion test gave understated results, especially for the second
series of pipe, the outer layer of which consisted of lengthwise roving.
The maximum tangential stresses under torsion, &leong areas parallel to
the pipe axls, were taken up by the binder alone in this case, which
explained the understated destructive torgue. Shearing tests, with
their great complexity, do not make 1t possible to achieve pure shear-
ing stress [36], and they lead to overstated values of Toe Therefore,
the indirect method of determination of Ty based on plotting limit
curves from the known values of Tqs °U5 and o0,-, were used In the

work.

Determination of strength 1, from the results of tensile tests of

0
three kinds of samples, which were oriented differently toward the axes /104
of symmetry of the material, was described !n Section 14 of [36]. The
indirect method of determination of pure shearing strength Ty permits

the number of experimentally determined strength characteristics of the
material included in the strength criteria to be reduced to three, 1in
the special case of pipe calculation of the effect of two dimensional
stress in elements of the material. Estimation of the destructive pres-
sure from the results cof simple tests of three kinds of samples cut

from the plpe 1s of great practical impcrtarnce.

The results of the experiments of F.P. Pekker are presented in
Tables 16 and 17. The maximum high and low values, at the 0.95 con-
fidence level, were determined in these tables by the fornula ?+2
(X is the arithmetical average of the determined value and S 1is its
root mean deviation).

(J

Comparison of the destructive internal pressure obtained in these /105
tests with 1ts value calculated by the fourth power polynomial strength
criterion show completely satisfactory agreement.

It follows from the fourth power polynomial strergth riterlion that
-~ o vy me b - " -~ . mnemd ooe b onme d o mmns mand A9 -~ - L S -~ e 1 - . Al msvm A e e
| 78 3 -1 n_L.J.lilbbll Vi alil dXAJ.DLLLUp..L, ihavc<l iad caili e -l ’_LT:LL' villal avuTl] L1 oCU
b a fourth order tens It rollows from this that the nrotation formu-
l¢ted on p. 17, which perrit establishment of a calculation scheme for

f c
the elastic property anisotropy of 2 material, 1s classified as strength
characteristics. Only that material can be LOﬂSiUPFCd isotropic in
strength under any kind of loading, for which, in this type of locading

——— . Al ~ i
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TABLE 16.

T R A —

TUBE MATERIAL CHARACTERISTICS

b Mpeaean npounoctu » x/ /emt
8 Mo ssarean - T - § e
LN . Tye T ) ‘04
¢ Tpybuw Thanenue
d [lMpeacaswoe nanGoanwee anaucnie |
¢ pepoatnocteio 0,95 . e T 564 2248 1952 846
e Cpeanee upndmernveckoe . 3108 1855 1775 768
[Trezeasnoe HanMeHbWee IHAuEHNE
£ scrorioctao 095 | s omez | 1598 94
Tpybuw xryronme
d Mpeaeasnoe wanBoabuiee Inavenune '
¢ sepcarrocTeie 0,95 | 5604 3813 2510 1149
e Cpeanee apudpvernvecxoe 4667 3080 2322 934
n!‘(‘.’l(‘.‘lh"of HanMeHLUICe INAtICHNE | =
pepoarvocteo 0,95 : 3729 | 247 | 2034 ! 876
Key: a. Characteristic 5 e. Arithmetical average
b. Strength, kg/cm® value
¢c. Cloth tubing f. Minimum value with
d. Maximum value with 0.95 probability
0.95 probability g. Roving tubing
TABLE 17. DESTRUCTIVE INTERNAL PRESSURE (ATM)
[ ' n
a Mowsrarenn I Mo gopuyae (W) | h .»c‘:afp.»::::x:a
s — R e L e -
c TPYOuw Thavenue
[Mpesearvoe Hawhoauee naveuwe ! 3l | 420
¢ weposThocTeo 0,95 C { 265
ety S — S p— : " e | U85
e Cpearice aprdwernueckoe snavenie | 284 300
I - 305
- [Mpeiessvoe manuennmee navenns | 2% 7:70 )
% seposTHocTeo 0,95 { 260
o Tpybu xrviorue
[Mpeaeavnoe wanBoaviwee *navenne ! 4116
¢ pepoarviocreo 0,95 g | 7
- - - - | S :
Cpeanee anudveriieckoe 1.agenie x N3 {I,‘:
- 350
“;'r.( LHOE HanveHbLice CHUEe | 1.3
WORT TL¥ 1,495 f‘
Ke 3, Characteristic f. Minimum value with
b. By Eq. (94) 0.95 probablility
c. Cloth tubing g. Roving tubing
d. Maximum value with h. Experimental data
0.95 probability
e. Arithmetical average
value
e o R R A TN TTINRrRRRSNNNNSNSS,,




xy(O)_Tyz(O)-Tz’(O) is less significant, and it is
more difficult to test experimentally, because of the difficulties of

testing a sample of anisotropic material to failure under uniform pure

The requirement =t

shearing stress conditions. Here, as before, ox(o). c (0), qz(o) are the

strengths under uniaxial stress, with the principal stress coincldent
withuthe axes of structural symmetry of the material, and
(45) (45) (45)
Uyz and .

o
Xy 2
with the principal stress coincident with directions in the planes of
structural symmetry of the material at U45° angles to the axes of sym-
(0) (0) (0)
xy ’ Tyx and L
areas parallel to the planes of symmetry of the material.

are the strengths under uniaxial stress,

metry, and t are the shearing strengths along

Establishment of the calculation scheme of anisotropy of a material
and experimental determination of the complete set of its strength /106
characteristics i1s of great practical importance, since 1t permits an
increase in carrying capacity of a structure, by means of the correct
use of an anisotropic material. References to examples of this kind
are presented in [88], where methods of monitoring and reguiating
anisotropy in metals also are described.

t must be noted in conclusion that, at present, sclentific data
still have not b2en obtained for constructing a physically valid theory
of the strength of anisotropic materials, and methods of determination
of the actual strength characteristics of a material also have not been
found. Fhenomenological strength criteria under complex stresses and
determinaticn of the material constants included in them, known to be
jnaccurate methods of mechanical testing of sarrles, are the first
approximation in the solution of these problems, as aprplied to items
made of anisotropic materials.

Strength criteria of anisotropic materials still are nct sufficlent-
ly widely used in engineering practice, and data still have not been
accumulated on the performancze cf structures calculated by these cri-
teria. The question of substantiated selection of strength safety
factors has not been worked out tco the proper extent, and the very
method of experimental determination of strength characveristics of
anisotropic materials is still the subject of centroversy. In addi-
tion to that, the development of moderrn technology makes urgent
“ne consideration of the broadest aspects of the questions ralsed here.
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