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I, BACKGROUND ON THE DEVELOPMENT OF REMOTE SENSING TECHNIQUES IN THE
THERMAL INFRARED

The use of thermal infrared imaging for renewable resource applications is a new
and rapidly developing technique with considerable informational potential. A

major obstacle to the growth of this field appears to be the lack of data specificall

oriented toward renewable resourie applications. From remote sensing platforms,
data unrelated to defense applizations is only available from meteorological
satel1ites, the Heat Capacity Mapping Mission (HCMM) and_ aircraft, with the
exception of a very small amount of data from Landsat-3. '

In the early 1970's, Landsat data became available to a potential renewable
rescurce user community, some of whom.were immediately capable of utilizing

the data, others of whom gradually became aware of the potential information
source and acquired tiiz skills necessary for its use. In the past few years,

that user community, which includes government, state, and municipal agencies,
private industry, universities, etc., has greatly grown in size and sophistication
in the use of remote sensing imagery. But this larger user community has found
that the available remofe sensing data is not yet completely adequate to monitor
some of the major probleéms in renewable resource applications, such as soil
moisture determinations, pollution heating effects of water and air from

man's activities, mapping of sea and lake ice, snow cover mapping and run off
prediction, and a host of other problems. This renewable rciource community

is now looking 1in other directions for adequate data sources, such as in the
thermal infrared and microwave regions of the electromagnetic spectrum. In some
cases they are looking for an additional data source to supplement the data they
already have in hand; in other cases they are looking for an entirely new technique
to accomplish their desired goals, such as a temperature mapping of a particular
area.

The birth of thermal infrared sensing techniques started with the technical
developments fostered by the Second Worid War. Prior to this time, except for
photographic cameras, very little effort had been devoted to sensing techniques
and devices to be used outside laboratory environments. The first major step
in the development of thermal infrared sensors occurred with the rapid advances
in electronics in the early 1940's, advances such as increased amplification,
signal modulation, etc. But even ir the early 1940's it became apparent that
electronics was not the limiting factor in the detection process; performance
was being limited by either the internal noise of the instruments, or the
random external nuvise sources unrelated to the targets being sensed. By

the 1960's, the signal-to-noise ratio problem was no longer the Jimiting

factor to sensor development. The new sensors, however, did not necessarily
solve the problems of users because they were not only sensitive io "targets" but
also the the background in which the "targets" were imbedded. In the two
decades of development from the the early 1940's to the early 1960's, the
signal-to-random noise problem had been solved, which then had exposed a

second limiting factor in the detection process, the signal-to-background noise
ratio problem, some times known as the discrimination - interpretation problem.

In general, three basic approaches are possible t¢ increase discrimination -
interpretation of target objects in the thermal infrared. The approaches
require optimization of the signal characteristics of the object of interest
by utilizing spatial, spectral and temporal effects.
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For the pictorial infrared representative, the .nost usual form used in the
remote sensing of surface features for renewable resource applications, the
spatial shape of an object characturized by a fairly uniform level of infrared
emission maybe sufficient to clearly identify the source of the radiation.
Other areas of investigation include two dimensional optical techniques,
spatial techniques featuring sample altering based on a prior knowledge of
target and background characteristics, studies of analogous behavior in

living organisms, and the use of reticules.

With regard to snectral identification of objects over a wide infrared window,
objects of different materials can be identified by characteristic emissivity
profiles, although this is more easily accomplishied in certain cases by in-
cluding the reflected infrared profile of a material as well as the emitted

profile. Vegetation is a good example of an object which can be clearly ident(fied

under certain conditions in the wavelength region outside the infrared
emission spectra and then be combined with the infrared data for greater total
informatinn content.

Temporal effects can also be used in the discrimination process. Short term
effects are particularly suited to military purposes. Diurnal variations can
be used to detect changes in thermal inertia and for soil moisture detection.
Longer term effects such as seasonal changes can be used to detect changes in
vegetation and crop growth in various stages of maturation. Again the use of

thermal infrared effects for discrimination can be further aided by simultaneously

gathered data from other regions of the spectra.

In the 1970's, significant sources of remote sensing data in the thermal infra-
red were available. The U.S. civilian meteorological satellite program was
entering its second decade of operation and a wide varjety of measurements were
made partially through the efforts of the World Meteorology Organization (WMO)
of the United Nations. As early as 1967, the WMO defined a set of goals for
meteorological satellites in the global observing system of the World Weather
Watch. The parameters to be observed included clouds, ice and snow, earth's
surface and cloud top temperatures, radiation and heat budget data, vertica
atmospheric temperature and humidity profiles, and precipitation intensity.
These initial parameter goals were further enlarged during the 1970's, and
were monitored with increasing frequency and accuracy with the development of
new satellite systems and instrumentation. Other meteorological satellite
programs which continued tc develop over this period were the Defense
Meteorological Sateltiite Program (DMSP} which was started in 7966 and the
Soviet meteorological program which started in Febvuary 1967; both programs
have been in continuous operation since their initiation.4

In 1978, the Heat Capacity Mapping Mission (HCMM) produced thermal data at
spatial resolutions of £00 meters for over two years, and many participating
rﬁseasazerg in renewable resource applications are now using and evaluating
this data.

Another vast source of data exists from aircraft thermal infrared mapping
programs. Diverse groups have produced data such as the cooperative effort
between NASA/Ames, the University of California-Davis and USDA-Arizona, the
University of South Dakota, the University of Kansas, Texas A&M, LARS-Purdue
University (who participated in the "corn blight watch" effort), the
Environmental Research Institute of Michigan %ERIM), the Canadian Center for
Remote Sensing (CCRS), the Netherlands Interdepartmental MWorking Community for
Application of Remote Sensing Techniques (NIWAKS), and CSIRO in Australia.b




IT. BASIC PHYSICAL CONCEPTS OF THERMAL INFRARED MAPPING

Four basic physical laws describe thermal infrared radiation and its relation-
ship to the temperature or emitting bodies. The first, known as the Stephan-
Boltzmann Law, states that the intensity of emitted radiation from a body is
proportional to the fourth power of its temperature. A second law attributed

to Wein, defines the wavelength at which the maximum output of the energy
distribution occurs; that wavelength is inversely proportional to the

temperature of the emitting body. A third relationship, Kirchoff's Law,

states simply that if a body at a given temperature strongly absorbs radiation

at a particular wavelength, it will also radiate this waveiength strongly,
assuming of course, that radiation at that wavelength is present in the

radiation spectrum for that temperature. Fresh snow, for example, is white
because it scatters visible light incident to its surface, and therefore

absorbs very 1ittle direct high temperature sola! radiation; on the other hand it
acts as a near perfect absorber and emitter or "black body" to the Tong wavelength
radiation from the earth's atmosphere at lower temperature. A fourth and more
general relationship derived by Planck in 1900, describes the energy distribution
of emitted radiation as a function of hoth temperature and wavelength.

The general Taws stated above hold for thermal infrared radiation in all cases.
For the specific conditions of satellite observations of the earth's surface
however, & host of new physical concepts are cperative. To start, of the 100%
of solar radiation arriving at the top of the atmosphere, only about 47% is
absorbed by the surface of the earth. This 47% is composad of a direct absorp-
tion of 27% of the short wavelength solar radiation with an additional indirect
20% absorption of energy which has been reflected downward or genducted through
the atmosphere. On the other hand nearly 49% of the incoming radiation is
immediately reflected back toward space by the earth's surface, the atmosphere
and clouds, a condition which depends on the reflecting power or albedo of each
of the three surfaces. The determination of albedo is fundamentally important to
energy and hear balance studies of the earth and its atmosphere, and has been
one of the parameters optimally determined by satellites from outside the
earth/atmosphere system. Although albedo measurements are reflected rather than
the thermal or emissive region of the energy spectrum, data from both infrared
spectral regions are necessary to account for the budgeting of the solar radia-
tion distribution incident at the top of the earth's atmosphere.

At the earth's surface the incident solar energy is either absorbed, reflected,

or transmitted. The ratios of these three surface quantities to the incident solar

energy are defined as the coefficients of absorbance; reflectance, and trans~
mittance, respectively. From Kirchoff's law, the spectral infrared absorbance
of a material equals its emittance, because transmittance can be disregarded in
th;? spectral range. Thus, a good absorber is a good emitter and a poor
reflector.

The disposal of incident solar eénergy at the earth's surface acquires an equi-
1ibrium status described by the =nergy or heat balance equation. The element

of this equation describing solar flux absorbed by the earth's surface depends
on the solar constant, the atmospheric transmittance in the visible spectrum

of the incoming radiation, the surface albedo, solar declination, latitude of
the observation and the diurnal phase of the sun with respect to local noon.9
Corrections must be made for ground slope, clouds, and atmospheric transmittance.
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The element of the heat balance equation describing the outgoing energy flux
from the surface includes the net infrared emittance plus the conducted and
latent heat contributions. The emittance from the earth's surface varies
considerably with the emissivity, ¢, of the various surface materials; this
emissivity is the constant of proportionality from the Stephan-Boltzmann law.

Due to the energy equilibrium at the earth's surface, the syrface acquires a
kinetic temperature. But the radiant temperature sensed by a detector
immediately above this surface records the product of the surface material's
emissivity and the fourth power of its kinetic temperature. Thus, there

is a transformatioit between the input energ.: and resultant kinetic temperature
of surface materials, and their emitted flux, indicative of the measured

radiant temperature. Both %he solar flux absorbed by the earth's surface and
the output flux from this surface can be interpreted as boundary conditions to

a heat flux equation. This heat flux equaticn with boundary conditions, in
conjunction with proper conservation of energy relationships, can be s¢lved

for periodic solutions which approximate the physical situation at the earth's
surface. This periodic solution describes the property of thermal inertia,
loosely defined as the temperature response of a body which has been subjected
to a time varying energy flux (e.g., diurnal variation of solar radiation at the
earth's surface) at a surface. The typical thermal inertia curye of surface
temperature with time peaks to maximum values nedr local noon and sinks to a
minimum in early morning, a few hours after midnight. In order to assess the
inflection points of this diurrq)ly varying curve, remotely sensed chservations
shouTld be scheduled to be collected over a particular geographic location at the
times of maximum and minimum thermal inertia values.10

After the energy balance at the earth's surface has been determined, convective
properties at the earth's surface-atmospheric interface must be considered.
Factors which do not influence surface-atmospheric thermal infrared fluxes by
reason of convective variations include the geometry of radiative properties,
atmospheric transmission of radiation and earth's surface reflectivity, and
variation of temperature with depth below the surface, Convection does control
heat and moisture fluxes into the atmospheric microclimate through turbulent
transfer processes dependent on mean wind speed (advective heating changes

shewn by streaking in infrared imagery), atmospheric stability, surface

roughness, and the temperature and relative humidity contrasts between the earth's
surface and the microclimate. In general turbulent effects in the atmospheric
layer immediately above the earth's surface affects the temperature determinations
made at higher altitudes.11

The net result of the incident energy and emitted flux transformation at the
earth's surface is that the short wavelength distribution of incoming solar
radiation incident to the earth's surface is transformed into a Tonger wave-
length distribution emitted from the earth's surface. This longer wave-
Jength distribution begins at about 3 um and proceeds to still longer wave-
lengths, longer wavelengths which happen to match the beginning of the spectral
region of thermal infrared radiation and accounts for a principal argument for
the importance of thermal infrared sensing of the earth's surface.l

As the emitted longer wavelength distribution in the thermal infrared Jeaves
the earth's surface and atmospheric interface and is transmitted through the
upper layers of the atmosphere to aircraft or satellite altitudes, atmospheric
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effects are encountered. Gases and suspended particles may absorb the vadia-
tion, resulting in a decrease in energy reaching a solar sensor. Attenuation
of the original signal can also occur due to atmospheric scattering. Gases

and suspended particles in the atmosphere also emit radiation of their own,

The net result is that atmospheric absorption and scattering tend to make

the ground emission appear at a colder temperature; atmospheric emission

makes the ground emission appear warmer, A]thou?h these perturbations bias

the sensor output, the readings can be adjusted.13 Both the artificial warming
and cooling effects are a function of the atmospheric path length and direction
of path through which the radiation passes, because the gases and particulates
causing the perturbations lie in hounded layers throughout the atmosphere,

From tha point of view of designing a satellite mission to measure renewable
resource applications, the thermal inertia observable described above is a
physical property highly sensitive to the thermal infrared measurements as con-
trasted with a reflected infrared, a passive, or an active microwave experiment,
Even so, the thermal inertia obswmrvable for bare suil, for vegetation, or for
combinations of bare soils and vegetation, represont three distinctly different
interpretations of the same parametric value, even in the thermal infrared. For
the bare soil case, both the heat capacity and the thermal conductivity of soil
increases with the increasing soil moisture, producing a resulting increase in
the measurable thermal inertia. Surface evaporation is a complicating factor
which reduces the solar energy input to the soil and the difference between
maximum and minimum diurnal temperature variations. There is, however, a good
correlation of soil moisture down to 4 ¢m depth with thermal inertia. Initially,
when a soil surface is moist; soil temperature values vary strongly with
evaporation, but for dry.: soils, temperatures can be determinad by thermal
inertia. In comparison, for a bare soil moisture determination from reflected
infrared rather than thermal infrared radiation, the soil spectral reflectance

as a function of water content cannot be jsolated because of the spectral reflectance
of dry soil, surface roughness, geometry of illumination, organic matter,

and soil texture. For the vegetative surface case, thermal infrared measure-
ments of the vegetation canopy temperature minus ambient air temperatures can

be used to determine soil moisture stress in growing vegetation; reflected
infrared radiation is an isotropic as a function of the geometry of the local
orientation, and is highly sensitive to the angle of incidence and viewing angle.

On the other hand, both passive and active microwave approaches to sensing of the
earth's surface are similar in that they both can penetrate clouds and moderate
amounts of vegetation and they sample soil depths to 2 to 5 cm. The spatial
resolution for passive microwave measurements is a function of the size of the
antenna, but is on the order of 10 km, marginal for many renewable resource
applications. Active microwave techniques include the use of synthetic aperature
radars and can produce spatial resolutions of 100 meters or better, but other
problems such as obtaining an absolute calibration of the instrument, strong
sensitivity to the viewing angle and surface roughness, and the large data to be
handled in an operational mode somewhat compromise the high resolution advantages.‘S

In summary, thermal infrared imagery of thermal inertia is a good indicator of
surface properties such as soil moisture, for example; data can be obtained at
high spatial resolution, but is highly sensitive to transmission through

the atmosphere. Because thermal infrared radiation js caused by transitions
between molecular vibrational and rotational states, absorption by atmospheric
gas molecules is a serious problem, especially by water vapor and carbon dioxide
molecules in different densities in the layered atmosphere. This problem can be
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overcome by looking ut the earth's surface through different atmospheric
transmission windows, such as the 10.5 to 12,5 um region. Micyawave measure-
ments penetrate clouds in the atmosphere and the earth's surface, but do have
problems of either spatial resolution, or sensitivity to the measurement at the
observable alone without other variables affecting the measurement. Reflected
infrared detection of soil moisture has extreme disadvantages because of its
dependence on so many variables, and as a result it is useless as an indicator
of specific observables, such as soil moisture. The physical properties detected in
the reflected infrared, thermal infrared and microwave regions of the spectra
gre}Vast1y different and require dissimilar instrumentation and detection
echniques,

ITI. STATUS OF TECHNOLOGY

The precision and accuracy that can be achieved in radiometric measurements are
Timited by the very nature of thermal infrared radiation and also by the fact
that radiant power is distributed and may vary simultaneousiy with a rumber of
different parameters. For example, every particle of matter involved in a
thermal infrared measurement may be radiating and/or absorbing and/or scatter-
ing radiation, which includes molecules of gas along the optical path, and the
supporting structures of the measurement instrument itself. The distributions of
radiant powér and its interactions with matter is a function of 4qts wavelength,
position, direction, modulation frequency of fluctuation in the Jevel of
radiant power, and polarization.

In a field measurement, a radiometric instrument is usualiy surrounded by
radiation flowing past it in all directions, the unwanted radiation can

usually be reduced to acceptable limits in Taboratory meacurements in the
visible spectral region by use of high quality optical systems with clear
transmitting elements, highly reflecting and well polished mirrors, and dead
black opaque stops and baffles. Such an optical system of precision dimensions
can produce sharp, isolated, well defined beams. For the longer wavelengths of
the infrared spectral region, howevr.r, new problems arise, For exampie,
ambient temperaturz from the structural components of the instrument may pro-
duce random thermal emissions above specified tolerance levels which requires
instrument cooling and all its related complications. Optical design of thermal
infrared systems, even though implemented by complicated ray tracing computer
programs, must contend with larger optical syst.ins than those in the visible
spectral region. Transmission, reflection, or non-reflection characteristics of
optical systems may also be difficult to obtain.!/

Another essential element of a radiometric instrument is the detector element or
transducer which transforms quantities of incident radiation into a measurable
quantity, such as electrical conductance. In the thermal infrared spectral
region, unlike the visible region, detector spectral detectivity curves measured
by D* values, the reciprocal of the spectral noise equivalent power, vary
dramatically with wavelength and temperature. This has resulted in the
production of a large number of detector elements, composed of different
materials, cooled by different systems to various temperature levels, each
designed for specific uses in narrow pass bands in the infrared spectral

region.
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An amplifier or output indicator, usually electronic, is the third basic element
of a radiometric instrument system. The current status of electronis develop-
ment makes this a very strong and reliant part of the system, unless new
technology 1s being deveioped such as multilinear array technology. Amplifier
design is facilitated by producing an AC rather than a DC output from the
dotecting element. Choppers may be employed to reduce drift problems which
oceur in DC inztruments.

In general, the ideal vadiometric instrument has an optical system with no
vignetting or aberations, so that field and aperature are sharply defined,
independently of one another at all wavelengths. The instrument responds
uniformly to all wavelengths in a spectral band and to none outside the band,
and Vikewise, responds uniformly to all pelarizations within sharply defined
intervals of polarization parameters, The radiometric system is completely
Tinear so that the final output is directly proportional to the incident radiant
power (within the aperature and field of view) throughout the entire dynamic
range of measurement values. Linearity extends to temporal freguencies present
in any levels of incident radiant power, i.e. an integral of the output over any
time interval corresponds to th2 total energy incident in that interval.

When the ideal of constant responsivity throughout the range of each parameter

is not realized, then instruments should be designed with separabie responsivity
transfer functions, where each parameter's effect is independent of all others,
If this is achieved, then the responsivity function of all significant parameters
cait be written as a product of independent one parameter functions. This,

of course, greatly reduces the problems involved in calibrating the instrument.

Finally, after all improvements in instrument design and manufacturer have been
accomplished, there remains a noise equivalent input radiation or temperature,
NEAT. The overall goal of instrument design is to keep the instrument noise
Tevel well below tha measurement signal level to avoid interference or distortion
in measurement. Failing this, the order of magnitude of the system noise level
must be assessed and its interfering factor on measurements evaluated,

The status of infrared technology from satellite platforms is most easily assessed
by Tooking at meteorological satellite systems. For infrared mapping type
functions, two types of radiometers have been used, infrared radiometers with
medium resolution, MRIRs, and those with high resoTution, HRIRs. The MRIRs

have had optimal Tinear spatial resolutions of €64 km and the instruments

flown on TIR0OS, Nimbus, or the Soviet Cosmos have all usually been multiband
instruments. The HRIRs instruments have been primarily dedicated to facilitating
night mapping of the earth's cloud cover and more extensive measurements of cloud
top and earth surface temperatures. These radiometers characteristically have had
8 km resolution, from orbital altitudes of 1100 km, and generally operate in the
3.5 to 4.1 ym atmospheric window.

Two types of infrared radiometers were first used on Nimbus III satellites, the
Satellite Infrared Spectrometer (SIRS) and the Infrared Interferometer Spectraometer
(IRIS). Both of these instruments were used to determine vertical soundings through
the atmosphere, but also provided a mapping capability for ground surface temp-
eratures at a medium spatial resolution of 100 km. The SIRS is a muitichannel
radiometer which views a number of spectral bands simultaneously; the IRIS is a
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scanning interferometer with wave number spectral resolution in the 5 to

26 um range. Both the SIRS and the IRIS provide significant thermal infrared
data about the atmosphere over the "target", allowing earth surface tempera-
ture determinations for renewable resource applications to be calibrated and
interpreted more accurately.1?

Higher spatial resolution, in the 1 km range, was achieved by the Very High
Resolution Radiometers (VHRR) flown on the KOUAA satellite series through
NOAA-B, These NOAA satellites were launched into near polar sun synchronous
orbits at 1500 km altitudes., Equatorial imuges are acquired twice daily,
one in the day and one at niakc., At high latitudes around the polar
regions, NOAA orbits converge producing a greater number of images per day,
hoth in the broad visible band, 0.5 to 0.7 um, and in the thermal infrared
10.5 to 12.5 um band.

NOAA-6 or TIR0OS-N is a third generation satellite series and an improvement
over the NOAA series through NOAA-5, TIROS-N introduced a new infrared instru-
ment, the Advanced Very High Resolution Radicmeter (AVHRR). The initial four
channel flight instruments, stili at 1 km resolution, have infrared channels

at both 3.55 to 3,93 um and 10.5 to 11.5 wm., These channels are designed to
measure cloud distributions and to determine temperatures of either cloud or
surface radiating surfaces. These two channels will also contribute to the
computation of sea surface temperatures. But only with data from a second
version, AVHRR/2, five channel instrument with split channels at 10.3 to 11.5 um
ard 11.5 to 12,5 um, will the radiance from water vapor be deleted from surface
temperature measurementg.~Y Beside the U.S. Meteorological Sateiiite Preuram,
developments have progressed in both the international programs under the
World Meteorological Organization as well as the U.S, Defense Meteorological
Program (DMSP), ‘

Two other meteorological satellite programs bear mentioning. The Earth Radia-
tion Budget Experiment (ERBE) was devised to overcome previous deficiencies in
earth radiation budget measurements. Two TIROS-N/NOAA satellites combined
with the ERBS satellite, provide an even distribution of spatial and temporal
coverage, permitting more precise measurements and calculations of average
monthly components of the radiation budget.?2l

The geosynchronous satellite program was hegun in May 1974, with the launch of
the Synchronous Meteorological Satellite (SMS-1). The SMS-1 carried an instru-
ment with a 16-inch aperature telescope, the Visible and Infrared Spin Scanning
Radiometer (VISSR), from which data was collected on clouds in both day and
night, atmospheric temperatures, cloud heights and wind fields. SMS also
collects data from other conventional instrumentation such as river gauges,
ocean buoys, ships, balloons, and aircraft. Other satellites in the series

are SMS-2 (1975), Geostationary Operational Environmenta) Satellite (GOES-7)
(1975), GOES-2 (1977), GOES-3 (1978), and GOES-4 (1980).22

Starting with GOES-4, these geostationary satellites will carry VAS, Visible
Infrared Spin-Scan Radiometer which is an advanced version of YISSR. The VAS

is a dual band imager 1ike VISSR, but its infrared channels have greater utility
with expanded detector configurations and selectable narrow band optical filters.
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The new channel capabilities of VAS provides sensitivity to atmospheric
constituents which allows the determination of the three dimgnsiona? structure
of the atmospheric temperature and water vapor distribution,23

Moving away from the meteorological programs, the Heat Capacity Mapping Mission
(HCMM? has yirovided the next highest thermal infrared spatial resolution to

date, 0.6 ki by 0.6 km at nadir. The orbital altitude of the spacecraft is

620 km and it is the only system specifically dedicated to thermally

mapping the earth's surface, the primary focus of this paper. Many investiga-
tors are now processing and evaluating the HCMM data, and a variety of renew-
able resource applications will be mentioned in the next section. By comparison,
the Landsat-3 achieved an even higher spatial resolution, 240 meters, in the
thermal infrared than the HCMM, but the temperature accuracy of the measurement,
indicated by the noise nquivalent temperature, NEAT, was worse by a factor of

3, and has 1ittle utility for renewable resource applications which require
absolute temperature data fidelity.24

Finally, a new technology it being developed for the thermal infrared and other
spectral regions, Multi Linear Arvays (MLA). MLA's are fixed linear strings of
solid state detectors which accept radiation continuously while over a target,
eliminating the "dwell time" factor of a scanning mirror type assembly used in
the Multi Spectral Scanner (MSS) and Thematic Mapper (TM) of the Landsat

series., These linear arrays or push broom scanners are moved to the next scene
track simply by the forward motion of the satellite, eliminating the liabilities
of nojse, power requirements, instrument life time, and mechanical reliability of
a physically scanning mirror drive assambly.

IV. APPLICATIONS TECHNOLOGY

The number of actual scientific studies in which thermal infrared data has been used

for renewable applications is rapidly grcwing and the HCMM program has glven a
considerable push to studies using thermal data from satellite platforms,

When all corrections to thermal infrared data have been made, the data remaining
represents a thermal mapping of the earth's surface terrain. New applications
for surface information alone, obtained from thermal mapping, have progressed
rapidly in the last few years, and a brief reference to some of those new
applications will be made here.

A soil moisture determination from spsce data is one of the most desirable
application potentials from both the agriculture and water resources points of
view. Some of the specific agricultural applications, listed by the Soil
Moisture Workshop held in January 1978 in Beltsville, MD, include drought,

cirop, range and forest production, pest management, soil classification, and
wetland inventory, The hydrological applications include determinations of
runoff potential, erosjon losses, reservoir management, infiltration, and water
quality. Ground hydrologic modeling data to be used as inputs into climate
models represent another distinct application requirement. Agency and organiza-
tion uses were also outlined by the Soil-Moisture Workshop.
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A therral infrared approach using freguently obtained data from either the HCM

or a GOES satellite hold the most hope for soil moisture determinations, because
currently, thermal infrared techniques are more advanced than those of microwaves.
A recent survey of the status of techniques for determining scil moisture has been
published by Schmugge et al. and an older Canadian survey of thermal infrared
techniques for the determination of soil moisture, evaporation and evapotrans-
piration, and plant stress was given by J, Cinlar and A. K, McQuillan. A

paper by D, S. Kimes e¢ al. has investigated the relationship of thermal

infrared radiances and agronomic variables of plant canop’es, which include

plant water stress.25

HCMM investigators have also contributed studies relating thermal infared

mapping to agricultural and water resources applications. A Texas A&M study
relates dryland pasture and crop conditions to HCMM data as an extension of other
projects, undertaken in cooperation with GSFC on the subjects of wheat yields,
green biomass, and watershed run off Egefficients; using visible, near and thermal
infrared, and passive microwave data. A thesis from the Penn State Metecorology
Department combines a numerical simulation of the ground temperature response

and satellite measurements of surface temperature to deduce soil moisture avail-
ability or the amount of surface moisture. This data, taken over a watershed

in Missouri, is related to the type of surface areas which include croplands,
forests, creeks and small urban centers.?27

One other HCMM soil moisture investigator is the Commission of European Communities
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Joint Research Centre, ISPRA Establishment, Italy. Researchers from Great Britian,
France, West Germany, Italy, etc. are participating in the Tellus Project which
uses HCMM data to produce soil moisture and heat budget evaluations in selected
European zones of agricultural and environmental interests. This HCHM group
investigator has produced a soil moisture model and a number of papers from
investigators of different nationalities on agricultural and environmental

subjects to be detected by thermal infrared surface mapping.28

Another high potential land use application of the thermal infrared data with
suitable spatial resolution relates to the environmental effects of urbanization.
The reflecting and radiating characteristics ~f regions which have been urbanized
have been a}tered in the replacement of soils, grass, and trees by brick concrete,
glass, and metal surfaces at different levels above the ground. Another effect of
man's activities has been the generation of heat by means of combustion and
metabolic processes. This phenomena is usually associated with urban areas in
mid-Tatitudes; in Hamburg, for example, the average production of heat from coal
combusvion has been estimated at 40 cal/cm2, compared to_the total radiation

from the winter sun and atmosphere combined of 42 cal/cm?.29 A third effect pro-
duced by urban centers is the modification of the local atmosphere by the emission
of vast amounts of gaseous and solid poliutants into the air. The original work
of H. Landsberg in 1961 predicted, among other things, the formation of the

urban heat island which acts as a trap for atmospheric poliutants30, One study

using HCMM data and a boundary layer model, a thesis from the Meteorology Department

of Penn State, addresses the problem of surface characteristics and the energy
budget over an urban-rural area.

Another application of thermal infrared imaging is the mapping of sea and lake
ice, which has been considered in a number of studies with estimates of ice
thickness. For example, Kuhn et al,, used an airborne thermal infrared sensor
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over an area with only 3.0 cm of snow cover and were able to predict ice thick-
nesses hetween ¢ and 110 cm, with vins differences of 10 cm.32 Varying depths
of snow cover on an ice surface were also detected in the therma) infrared by
Cihlar and Thompson; while in another study by Poulin, snow depths covering a
uniform ice thickness were measured to depths of 50 cm.33 1In another larger study,
Poulin investigated thermal infrared imagery response over a wide variety of
artic terrain, and made a number of conclusions on the usefulness of the data.34
Othey investigators, Schertier et al., have found thermal infrared data useful
for mapping lake ice, and that the data usually allows designation of ice types,
representing the combined effects of 7ice roughness, thickness, snow thickness,
snow distribution, etc.35

Thermal infrared imagery can also be used in applications dealing with snow

cover mapping and run off prediction, Seifert et al. studied the combined

use of visible and thermal infrared data on snow covered areas, although

extensive use has been made of visible-near infrared data by Rango and other
Landsat users.36 NOAA thermal itfrared data can be used to map the extent of snow
cover in most cases, as Barnes et al. have shown, but snow_boundary thermal
gradients are mor¢ easily detected in spring than winter.37 Another study by
Algazi and Suk found some correlation between snow pack temperatures based on
ground based measurements and those determined from NOAA satellite data.38

At the present time, J. Barnes is an HCMM program investigator and is studying
the utility of using HCMM data to determine the distribution of snow cover and
the accuracy of temperature measurements. Two other goals of his study are

to combine HCMM and Landsat data into an overall snow hydrology and snow melt
prediction program and to develop a technique to automate HCMM and Landsat data
in a format useful for snow hydrology research.39

The detection of sea and inland water pollution represents another application
of thermal infrared imagery. Not all the types of water pollution listed are
independant varjables. For example, temperature plays an intrinsic role in
chemical and biological reactions. Bacterial action is greatly accelerated at
higher temperatures, and can substantially affect the self purification of
streams. Varmer water also speeds up anerobic decomposition, producing far
reaching effects on a stream's overall health from heat alone, aside from the
heat's more direct impact on fish and wildlife.

The chief source of thermal pollution at the present time is from electric
power generating plants, with additional thermal pollution from chemical, steel,
and pulp and paper processing plants. A number of studies have been conducted
on the effects of thermal pollution. Pluhowski has studied the effects of
urbanization on the streams on Long Island, New York, documenting the impact on
runoff and temperature from changes in infiltration in clearance of vegetation
from the channels, in small impoundments in different reaches, and in land use
adjacent to the channel.40 A study by Taske and Goebel on the effect of the
large reservoir system on the Columbia River, Washington, showed that reservoirs
tend to reduce temperature variability.41 But the thermal effects cited in these
studies are still small compared to the potential for temperature increases
caused by heated discharges of cooling water from power plants, s treated in a
review by Jensen.42
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Some investigators are currently studying thermal patterns in water bodies from
HCMM data. More et al., from South Dakota State University use the data as an
input for assessing regions of high potential ground wati: po]lution.43 British
investigators Fielder and Tefler are using HCMM data with that of yisible and
near infrared to determine marine pollutants, particularly oil, on the North

Sea surface.44 A study by Nilsson et al. observes the Tasman Front of the coast
of Australia with HCMM thermal infrared data. The study attempts to identify

a postulated broad zonal sea flow of 500 km width, fed by the East Australian
current, which crosses the Tasman Sea at 350 South latitude.45 A French team,
P. Y. Deschamps et al,, are using HCMM data to study the sea surface temperature
off the coastal zones of France. The goal of the study is to map the thermal
gradients in the French coastal zone produced by natural phenomena and man-made
thermal effluents.46

Other applications of thermal infrared mapping have been discussed by Cihlar
and McQuillan. They include the mapping of: perma frost and frost prone areas,
buried ice fields below the earth's surface, thermal characteristics of eco-
systems for animal habitat assessment, thermal characteristics of biological or
ecological land classification types, and forest fires. Of all these applica-
tions, only forest fire mapping requires constant monitoring and the use of
geosynchronous satellite capability.

From the obviously diverse nature of the renewable resource applications ]isted
above, data interpretation, especially with regard to informational content,

can be seen to be different for each specific application. This is not only

a problem for the individual researcher, but it is also a problem for the satellite
mission designer who must incorporate the diverse needs of many application
requirements. Vhen an evaluation of the HCMM investigator's resear % has been
properly completed, a set of mission requirements may then be possiuvie.

In summary, data interpretation and subsequent satellite mission requirements for
thermal infrared mapping of renewable resources include a variety of possibilities.
Some thermal scanning operations for geologic and soil mapping characteristics

are qualitative, not quantitative in nature, for example, requiring relative
radiant temperature differences in a scene rather than absolute ground tempera-
tures and emissivities. Mapping variations in water temperatures from power

plant cooling effluent is an example.

Another factor influencing data interpretation is the time of day of data
acquisition. Temperature extremes, and heating and cooling rates can furnish
significant information about the type and condition of an object. For example,
water has a smaller diurnal range of temperatures than soil and rocks and

reaches its maximum temperature an hour or two after these solid terrain materials,
due to water's high thermal capacity, or ability to store heat. Shortly after
dawn and near sunset, the diurnal temperature curves for water and terrain

features cross, showing no radiant temperature differences between a wide

range of dissimilar materials.

Throughout the day, surlight differentially heats objects according to their
thermal and absorption characteristics, principally in the visible and reflected
infrared spectral regjons. Refiected sunlight can affect infrared imagery in the
3 to 5 um band. The 8 to 14 pm band is immune from reflected radiation, but
thermal shadows caused by the shading of trees, buildings, and topographic
features are included in infrared imagery. Sloping terrain also causes differ-
ential heating with south slopes heated more than north slopes. Predawn imagery
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provides the most stability for the detection of ground temperature effects and
signature extension, but poor visibility for terrain identification.

Other distortions must be considered in the interpretation of thermal infrared
scanney imagery, such as the geometric factors of tangential scale distortion
corrections, resolution cell size variations, one dimensional relief displace-
ments, and flight parameter distortions. Calibration problems included airborne
radiometer and internal black body source referencing, air to ground correlations,
repetitive site coverage, and temperature mapping from radiant thermal infrared
imagery when absolute rather than relative temperature data are required for a
particular renewable resource application.

V. CONCLUSIONS AND RECOMMENDATIONS

With the conclusion of HCMM data, the lack of at least one continuous source of
thermal infrared imagery from a known data processing facility is the single
greatest deterrent to the use of thermal infrared data for renewable resource
applications. This deterrent is considerable not only for those researchers who
are actually using remotely sensed data for renewable resources, but especially
for the vast number of potential users who are unaware of the possible
informational content of thermal infrared imagery for those applications.

The principal recommendation of this paper is that such a thermal infrared data
source capability, such as that which had been provided by HCMM, be initiated.
The mission parameters of such a dedicated renewable resource s«tellite system,
concentrating on mid-Tatitude regions exclusively, should follow HCMM characteristics
in general. Corrections or additions to HCMM mission parameters can be made

when the final results of renewable resource investigators using HCHM data become
available and are evaluated. Other applications requiring continuous monitoring
coverage can use existing or planned GEQS syszgms designed principalily for
meteorological systems, such as the ATS/GOES. Such applications include
monitoring of power plant effluents, urban heat islands and heat poilutant con-
centrations, forest fires, etc. The ice and snow detection applications dis-
cussed above require satellite platforms orbiting over polar latitudes. Such
platforms are already available within the American meteorological satellite
system. :

A second recommendation of this paper is that basic physical research essential
to the interpretation of thermal infrared sensing of renewable resources should
accompany thermal infrared satellite monitoring to form a cohesive program.
Foremost areas of research should include the interaction of the earth's
surface Tayer with the solid earth layers immediately below it, as well as the
interaction of the earth's surface layer with the atmospheric boundary layer
jmmediately above jt. Additional research is also needed to assess the incre-
mental increase in renewable resource information which can be obtained from
thermal infrared sensing alone, as well as the increased information which
results from combining thermal infrared data with those data from other
spectral regions. Only with a firm grip on an understanding of the available
tools for the gathering and processing of thermal infrared data for renewable
resource applications and the resultant informational content which can be
deriveg from these data, can meaningful future renewable resource planning
proceed.
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From even the brief desc¢ription of the previous uses of thermal infrared imagery
for renewable resource applications stated in this paper, the increased use of
such imagery in future years seems inevitable. Thermal infrared mapping data,
even more than some other spectral regions, provides a unique and valuable data
source for a myriad of applications. Thermal infrarcd data combined with data
from other spectral regions can greatly enhange the informational content of
remote sensing jmagery for many specific uses, A1l in all, thermal infrared
sensing has been developed over a number of years, many of its problems in
detection and data interpretation have been solved, it represents a unique or
complementary data source for renewable resource applications, and as seon as the

opportunities for its further use are available, its future increased growth rate
is assured.
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