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Abstract
A model that yields the spatial correlation structure of
atmospheric mass field forecast errors has been developed. The
model is governed by the potential vorticity equation forced by
random noise:
(V2-cy sin20) ¢ (A,0;u) = F(A,0;u) (1)
: where Y2 is the Laplacian operator on the unit sphere, ) and 8 are
longitude and latitude, ¢4 is the geopotential error fierld at 500mb
and F is white noise ‘rorresponding to a random realization w.
The spatial covariance function I is defined by
P'(h1,0332,02) = E {¢ (A1,81;50) ¢ (Ag,00;0)}, (2)
where E is the expected value. -
Three methods of solution have been tested. In the first
‘ method, Eq. (1) was solved by expansion in spherical harmonics
and the correlation function was computed analytically using the
expansion coefficients. In the second method, the finite-dif-
ference equivalent of Eq. (1) was solved using a Fast Poisson
Solver. The correlation function was computed using stratified
sampling of the individual realizations of F(w) and hence of
| ¢ (w). In the third method, a higher-order equation for T was
derived from Eq. (1) and solved directly in finite differences
by two successive applications of the Fast Poisson Solver. The
three methods were compared for accuracy and efficiency, and the
third method was chosen as clearly superior.
The results agree well with the latitude dependence of ob-

served atmospheric correlation data. The value of the parameter

| ,,"
Y Nt R SR

¢o which gives the best fit to the data is close to the value
expected from dynamical considerations. These results provide

the basis for an optimal choice of coefficients for statistical
analysis of atmospheric data.
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l. Introduction

The statistical structure of large-scale atmospheric
fields is of both theoretical and practical interest to meteor-
';logists. Theoretically, it is of interest to know what this
structure is and how it becomes established (Gandin, 1963). In
particular, the connection between the atmosphere's dynamics and
its statistics is an attractive area of study.

Practically, numerical weather prediction (NWP) requires
the accurate, detailed description of atmospheric fields as a
starting point for their forecasting. The data available for
such description are nonuniformly distributed in space and
céntaminated by various errors {Bengtsson, 1975). It is necessary,
therefore, to use some form of interpolation to derive field values
at the points of a uniform grid. It is desirable, furthermore,
that these values be as free of errors as possible,

Interpolation coefficients can be chosen which will minimize,
under certain assumptions, the expected value of the interpolation
error, given the statistical properties of the errors in the data
(Rutherford, 1972), This statistical approach to meteorological
interpolation has become increasingly attractive recently, due
to the large number of different data sources with varying error
characteristics made available by the Global Atmospheric Research
Program (GARP) (Fleming et al., 1979). It is often referred to
as "optimal interpolation" (OI) and has been implemented opera-
tionally by the U.S. National Meteorological Center (NMC:

McPherson et al., 1979), among others.
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The optimal choice of interpolation coefficients ir OI
clearly depends on knowing the statistical properties of the
fields one wishes to interpolate. Hence the practical impor-~
tance of an accurate model for large-scale atmospheric statistics,
The purpose of this report is to contribute to the formulation
and validation of a dynamically based model foxr atmospheric
statistics,

In a study on the use of satellite-derived temperatures for
NWP, Ghil eg al, (1979: to be referred to as GHA) were led to
consider the difference between the observed atmospheric tem-
peratures, T°, and model-forecast temperatures, T£, The model
used in that study was Fhe nine-level 4° lat. x 5° long., primi-
tive equation, spatially second-order model of the Laboratory
for Atmospheric Sciences of NASA's Goddard Space Flight Center
(GLAS); temperature data were obtained from the Data System Test
DST~6 held during January-March 1976.

The spatial correlations of the difference field T? - 7f
were computed. It turned out that, for the same spherical distances
s between points, correlations were typically higher in the
tropics than in high latitudes, 1In other words, the correlation
r(g£,n) of temperatures T° - Tf at a point £ on the Earth with
those at a point n a distance g away, s = dist (§,n), £falls
off more rapidly with s the higher the latitude of the point &
(Figs. 2a-d, GHA). No large or systematic dependence on height
was observed when stratifying the correlations by pressure level

rather than by latitude.
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It was suggested (ibid.) that this striking latitude depend-
ence of the studied field's second-order moments reflects the
dependence on latitude of the Rossby radius of deformation, L.
"The latter is a characteristic length scale for a number of dynamic
phenomena which determine the spatial structure of atmospheric
fields., We decided to puvsue this heuristic suggestion further,
and formulated the stochastic-dynamic model investigated in this
report.

Section 2 preseniis the model, and the governing equation,
Eq. (2.7). This equation is solved by a series expansion in
Section 3., For given, fixed right-hand side, Eg. (2.7) can be
solved numerically by the use of a generalized Fast Poisson
solver, as shown in Section 4. The full stochastic form of
(2.7) is solved by Monte-Carlo simulation in Section 5. An
equation for thg covariance funtion r(gl, 52) of the so;ution
to (2.7) is derived in Section's. It is seen to depend on a

scale parameter, Cqyr
' = I‘(El, 527 Co)

Comparinyg model correlations with observed mass field corwelations,
we obtained the best value of Cqye Numerical results are presented

in Section 7. Concluding remarks follow in Section 8.
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2. Dynamical model of the forecast error field

We will assume that for periods of a few days, the dynamics
of the atmosphere are approximately governed by the equation of
conservation of potential vorticity

%_, (a=2 v 2 y ~1"2 y + £)=q, (2.1) :
dt

Here ¢ = ¢ /f, is the quasi-geostrophic stream function, ¢ being
the height h of the 500mb surface multiplied by the gravity

g, ¢ =gh; the Coriolis parametexr is £=2 2 sin 0 , with 9 the
angular velocity of rotation of the earth and 6 is latitude,
while £, is a constant value of £ corresponding to a mid~latitud
e 85. The radius cf the earth is a, V 2 is the Laplacian
operator on the unit sphere, with A longitude, L is the Rossby
radius of deformation, L2=gD/f2, with D a characteristic depth.
The forcing term Q represents diabatic heating, dissipation and
lower-boundary effects.

Equation (2.1), with Q=0, is strictly valid for a quasi-geos~-
trophic, frictionless, shallow-water model without topography,
with a mean depth D. It is also valid for each of the vertical
modes in a linearized guasigeostrophic model in which the vertical
dependence has been separated out (Phillips, 1973). 1In this
case D is the equivalent depth corresponding to either the external
mode or to one of the internal modes. Our assumption is that
for periods of a few days equation (2.1) is a veasonable model of
large~scale atmospheric flow.

The dynamics of a numerical weather prediction model are also
governed by an approximation of egquation {2.l):

(a=2 v 2 y=5=2 § +£) = Q. (2.2)

e

Bl 2

\
MLM,AA. mavirboirns . b Sl . aT i b o vl il i i ol il s it MUY s il B ksl D LYY A 2 2055




R s A el

5.
The tilde represents the numerical truncation effect in the operators

d/;t and ; 2 on the one hand, and the errors in the parameterization
of the physical forcing, 5, on the other.

It follows that forecast errors 6y = ; - ¥ will also be
governed to a good approximation by a conservation equation of
potential vorticity, which does not contain the planetary vorticity
term f:

% ( a=2 Vzaw -L=2 8y) =merrors; (2.3)
t

we let the errors in the right-hand side of (2.3) represent all
the approximations, physical and numerical, made in equation

(2.1) and, a fortiori, in equation (2.2). At the initial time,

t=0, ¢ is obtained £from observations of the atmospheric state
¥ which are also made with certain errors:
§¢y =errors at t=0. (2.4)
If the errors in both Eq. (2.3) and the initial conditions (2.4)
were zero, then one would obtain that the potential vorticity of
the error will remain identically zero
(a=2 v2 -1-2) §y =0
at all times t > 0.
In the presence of purely random errors, we can combine
Egs. (2.3) and (2.4) to yield a time-independent equation governing
forecast errors. This equation is a stochastically forced steady-
state potential vorticity equation on an f-plane:

(a2 v L2y sy =F (0, A w ). (2.5)

We take Ft to be random white noise, corresponding to different

realizations of atmospheric processes labeled by w,at time

B PR s wr . . e N S ) . -
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>0, We expect Eq, (2,5) to be a good representation of the
structure of the forecast error field whenever systematic errors
in Bq. (2,1) and (2.2) are small., It will cease to be valid at
time scales longer than a day or two, because the errors in the
approximation of the nonlinear terms, d/;t-d/dt, as well as in the
parameterization of physical processes, S—Q, become sizeable and
nonrandom. We may also expect that BEq. (2.5) will be less accu-
rate in the Northern Hemisphere than in the Southern Hemisphere,
because topographic forcing and land-sea contrast are more impor-
tant in the former than in the latter.

The statistical properties of Fy, in particular its variance
dy 2, might change with time. Since t in (2.5) is only a para-
meter, we shall consider a fixed o2 in the sequel. The value
of ¢ affects only the amplitude, and not the structure of the
solution.

The Rossby radius of deformation L depends on the equivalent
depth D and on the sine of latitude:

L~2= (4 22/gD) sin? e, (2.6)
For simplicity, we assume that one vertical model dominates the
error field, and shall determine the value of the equivalent
depth that best fits the data.

Summarizing, we will study the equation for the geopotential

error field ¢,

(v2 -Cq sin? 8 ) ¢ =F(X,0;u), (2.7)

where Bqg. (2,5) was multiplied by the constant foaz, and F is a
spatially multi~dimensional noise process:

E{F(&; w)}=0, (2.8a)
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E{F(£y;) F (Ep;0)} = 26 (& -, (2.8b)

¢

Here E is the expectation operator or snsemble average over the
. individual realization w, £=(6,)) is the position vector, and
02 a prescribed variance.

We are mainly interested in the couriance function.

PCEY,ER) = B {4CE1iw) ¢ (Epiw)} (2+9)

of the solution ¢ (&j;w). The reason for our interest in I' is
that interpolation formulaes for assimilation of atmospheric data
require P s the basic statistical information.

In the following four sections, our methods for the solution
of (2.7) and for the .omputation of (2.9) are described and com-

pared.
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3., Series solution of the model eguation
Consider ».; expansion of ¢ ,
o n
o(6,A) = § 7 BT (3,1)
ngo mm=-n nnt

in the sphexical harmonics yﬁ ’

00,0 = e'™ pMsing) = o™ PNy . (3.22)

»

(u) are the associated Legendre functions

Hexe u = sin® and Pﬁ

(Courant and Hilhert, 1953; Hobson, 1958),

d— 2n?, (3, 2b)

normalized so that

21 ¢l * . -
f f Yg\{yg}'] du dy = 4m(2n+1l) (n-m) | 8

o -1 TA+m) | mm' Sn,n

m
An 6m,m'

m

6!‘1,!‘1' ; (3.3)

( )* denotes complex conjugation,
The representation (3.1) would diagonalize Ba, (2,2), provided
the operator in (2.2)were a pure Helmholtz operator, i.e., only a
constant, ¢~independent term werc added to the Laplacian v2 . As
it is, we shall show that (3.1) leads to a five~diagonal representation

of (2.2).
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The orthogonal functions Pg(p) satisfy the three~term recursion 1
E relation i
v +
| uPa g“‘gl P:~1 %{{:‘?’I"g“' Pn”‘l ’ forn » 0 , |
. - ;
|
It follows that, for n > 1, |
| 2 .8 ~S 8 8
, WO P o= G Pog B }3 + Yn,,,z S0 (3.4a)
i
|
E where
n+s }/n+s~1
| Snep ™ (iml)( )' (3.4b)
) n n-s+l) n+g+l
} -( l)(Zn )+(§n+1)(2n+3 ) d (3.4c)
} and
o [R=s+l n=s+2
n+2 (2n+l ) (2n+3 )’ (3.44)
te ¢ 5792 o gmetl oza . raed :
Note that S S q = Yq = 0 foxr q 2 0.
Substituting the series (3.l1), truncated at n=N,into
Eg. (2,2) we have
(v - cq sin29)¢(N) E
N n
2 - .l 2 R m m -
(V¥ = ey sin®e) | [ Byy, =
n-0 m=-n
| 2 2[00, =1 =1, 0,0, .} .1
P} oaen]
) B Y = F. (3.5)
' n=2 m=-n o D
. {
M&_._ . - - % B e SR i i R B it i it W AR i B, et T k i, I _ - " j




On the unit sphere,

2
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| ‘ m
vEoy, n(n-f‘l)yn 2 (3.6)
2
The £iv-., few terms of the five~term recursion (3.4) are given
by
T
0 2
1'
N 0
2 gl ~id 2 -1 -dd -l SiN) Ll -, 4 -1 1 -1 4 -1
H YH = e U Pl = e upz e [ g Pl + 5 P3 ] 5 Yl + 5 Y3 '
and
u, g -
2 1 did 25l _oyda b L 1) oL diA)p 3,12 1) 3 1,2 U1
Ty = et TRy = d “[3"2]“3e [51’1’“51’3}“155{1‘15”3
Thue (3.5) can be rewritten as
0 2,0 , 1,0 -1 -1 1,1, 4 -1
By [— co(i"«yz + -3—Y0)J + B, [- 2 ¥,7-co(3 Y+ £ Y, )I
0 0 2 0, 3,0 il 61 3 L1 .2 .1
+Bl [-—2 Yl~co(§Y3+§Yl)]+Bl[ 2Yl CO(lS Yl+15 Y3)]
N n r ~ |
+ ) I [—-.c o ]Ym_ + | -n(n+l) - ¢ Bm.lYm“*
ne=2 m=_nn{0n2 n-2 L 0 "n_™n
- om m =
+[ €0 Yn+2 Yn+z; F . (3.7)
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Define
m -m m
Bn = [-n(n+l) - % Bn IAn ’ (3.8a)
m ~Mm m
U2 = [f 0 %n-2 JAn-Z ’ (3.8b)
and
m | ~m m
Yn+2 [ °0 Yn+2 Ihh+2 * (3.8c)

*
Multiplying both sides of Eq.(3.7) by (Ya) and integrating,we have

1

2T 1 V% 27 3, *
[T a " sy ay = fo a [ o e a6

0 =l

We denote the spherical harmonic coefficients of F, gi-en by the
integral on the right hand side, by Fﬁ . Given Fi » we wish to

solve for the coefficients B: of ¢. We have

0 0.0 _ .0 Lo 0

0. 0.0 _ .0 .3 0
c, B) + ol BY = ¥) , ¢, = -(2+3 c A} ,
0.0 . 0.0 0 _ .0 2 0
By B + a5 By + Cy By =F, , Cy=30cCy Ry,
0.0, 0.0 0 _ .0 2 0
0.0 . 0.0 0.0 _ .0 ;
Br B + O Bryp * Y Byop = Fx o 4 Sk < N-Z,
L R S EE e - - " " " b . AN ST S S i, o2 Lk
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0 0

0 0
B Fyoy

0
Bn~1 By-1 * Yn-1 Byes =

0 0 ,.0 0 _ .0
By By * Yy By = Fy -

The N+1 equations for Fg, 0 < k < N+1, can be put into matrix

. ¢ 0
vector form as a five-diagonal system in Bn » 0 < n < N+l ¢

0
0 0 4 f 3 N P 0 0 F C A
r B, 0 a () D. O : ) ( - .0 3
0 sg 0 of 0 b, 0— 0 rd ¢
3 3 p0 _ 1 4
FEAN | , g
4 0 \\\\ 0 0 .
\ 0 + > = FO F
0 “N-2 4
' 0 :
0] 0 0 "
0 Oy, 0 B 0 - _—0 0
v N N oJo ) )\ By ) | N )
(3.10.0)
where
0 0
= - = - /
Dl C3 ao/cl D2 c4 al,02 .
The equations for F; are
1, 1.1 _ .1 0.3 1
Cg By + o By = Fy , Cg = = \2+7.C0)AY
ol el s ol al- el
v
. *s 1
Bé By + “g B% + Cy Bi = Fé' Cp == %5 Co Ay v
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1

1.1 . 1.1 1.1
P Bk * o By

1.1 R
Py-1 Py-1 * YN-1 Bye3 = F
1.1, 1.1 _ .

By By * Yy By-2 = Fy -

They have the five-diagonal form,

oz 0— 0]
\ |
oy | *
0
1

([ 0——0——0 0
? D, O
0 0—0 )
f——p- —9

13,

1l 3
Fa
1
c F]
Ce
1 |
4 :
' i
; |
[+ N i
g
(3.10.1)
|
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We have a similar system for F)

c gL 1 -1 1

g By7t op” B

g=1 o=l
By B,” + d

1

2 P4 2

831 B;l + aal Bgl + CQB;1=E§l,where
Sl S AR
sﬁi; By * Yyoy Bes = Py ¢

R A

All the other systems are of the form

> S

i}

k=2'

3 = Fl s where Cg = (=2 - o T) A

%

<

—

14.

1
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= (= Co %)A;ll

k<N"2(

., N, (3.10.k)
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=n (3,10.k)

3 g3 4ol pd

- )
Bk Bk * Uk Byya = F

k

for ljl = 2’3[0.0’ t‘!"s and k = j'j+l ;

|j[ = N-2 and k = N-2 '

o s SN I Jpd L 2 ]
Bk B * ok Biya * Yk Bi-2 ™ Fy

for Ij[::: 2'3,oco, N~-4 and k = j+2"c.' N=-6

14 = N=2 and k = N-1 ,
for 4|3l = N-1 and Xk = N-1,N ,
l]l= N and k=N;
3 gl s I I,
Bi Bg * Yk Bgp = Fi
|jl = 2'3,}-., N-3 and k = N, N=-1 ’

r
[3l = N-2 -and. k = N-.

15.

f

Each of the above linear systems are ‘'penta diagonal. They can bhe

solved by the LU factorization algorithm given in Appendix A.
After solving for the Bg we wish to obtain the covariance

function P(&L,Al;ez,kz). More specifically, we.are interested

in the zonal covariances,
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clearly R(6,A) is independent of Ao. The zonal variances,

RN(B,A), corresponding to a truncated solution ¢(N), are given by

21
R, (6,1) = f s™ (6,y) 6™ (0,y +n)ay

0
N N n n'
= m.m' m m'
' 21
L] [] '
: fO ei[(m+m )y + m A]dy
|
} N N N o _ .
> - o ‘ } ) i
| n=0 nzgo mu§n By Buv Pp(WIP v (n) e
N N
= 0 0,2 0 .0 0 .0
' =2r4 § | (B p))“+2B’ P 50 p
| {n=0 [: n-n n'n nz=n+l n'“n!

N
+2 ) BY " P p M cos(mk)}.
=

(3.12)

Clearly, (3.12) does not provide a computationally efficient way
of obtaining RN(G,X) for large N .

In the following two sections we shall use the numerical approach
of directly inverting (2.2) for fixed RHS, w = constant. R(8,})
will be computed by summing over correlation products of solutions
for various w . A %Past solver for the inversion of (2.2) with ]

given RHS(w = const.) is presented next.
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4. A generalized fast Poisson solver

A fast solver for the equation,

(v2 4 C(6)1¢ = £(8,1),

17,

(4.1)

with C(f) = constant, is available in the NCAR software

library (Swarztrauber and Sweet, 1975).

modified and extended to solve Eq.(4.l1).

This program was

The NCAR version takes the

finite~difference approximation to Eq. (4.l1) as

1

N 1 .
[ sin(f + Z9(O51,5 = %,y

' 1
- Sln(ei - '2A9 )(¢i!j-¢i“llj):’

- 1

B f<6;{;l Aj) ’

where C = const ,

@
Hi

i (i-1) Ae , Aj = (4=1)AX ,

ot
1

(AA sinb)2 (5,541 = 285,59 F &5, 5-0) + Fdy 4
1

(4.2)

i,j = ¢(eir Aj) e 48 = /M AL = ZW/N ’

: i = 1’2’-uo'M * 1 ' j = 1'2’oo-’N + l .

i . s ’ p—

NN
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In the NCAR version, the option of solving (4.1) in a subdomain
on the surface of the sphere exists., This option was removed in
our version. Our extended program then takes C in eq. (4.2) to
be Cj = C(9;), No futher modifications of the original program
were regquired. The modified program was extensively tested
(Table 1).

We conclude from the numerical tests that the modified ver-
sion of the solver has the desirable properties of the original
one: second~order accuracy with respect to discretization error,

and machine accuracy in linear system solving for a moderate-size

mesh (32x64).

NG
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5. Monte~Carlo solution of the model equation

We wish to solve Eq. (2,7) with the RiS F(8,A:w) heing white noise.

The solution is approximated by Monte-Carlo simulation. In other
words, Eq.(4.1) is solved for an individual realization of the
white noise process F(6,A;w), namely £(6,)\). A large number N
of samples fl'f2”"’fn is drawn from the process F(6,);uw) .

Let ¢ (06,1) be the solution of (4.1) with £ (0,\) as RHS and let

»

(N) 1 N
¢ Q[A L .
(@n =5 1 4

Our Monte-Carlo solution of (2.7) is ¢(Nh

If {fn,n=l,2,,!,,N} are g¢imply independent samples of F,
then a very large N is needed in order for ¢(N) to be a good
approximation to the true solution ¢ of (2.2); i.e., ¢(N> has
a large variance around its expected value ¢ , even for large N.
In order to accelerate this convergence of ¢(N) to ¢ , we used
a technique for variance reduction called stratified sampling

(Appendix B).

Eq. (2.7) was discretized with 19 grid points in the meridional
direction and 32 grid points in the longitudinal direction. The pole.
are grid points, and the equator is a grid line.

We obtained the zonal correlations from our simulation as
follows. Let the normalized correlation r_ of an individual realization

K
¢K =¢K(9,A) be defined as

2
| Jo B (8,11) 8, (8,)"+A)dN" .
. — hd . Sula
$.(8,A)dA
K
0

et s sl s e .
.




A A

20,

notice the slight change of notation from (3.,11). xg(ﬁ,l) depends

only on the separation in longitude, A, between two points (8/2q)

and (S,AO +A) on a circle of latitude 0 , and not on their position

Aot This is due to the rotational invariance with respect to

longitude of (2.2). Now the correlation function r(€,)) is avnproximately
by

: N
r(N) (g2 = % }or
K]

e (5.1b)

Here we assume that the mean of ¢K is zero. We took a large number N
of correlation realizations, X.r. and averaged them to obtain statisti-
cally stable results.,

The integrals in (5.la) were evaluated by the trapezoidal rule,

M~1 :
= R _(8,81) = . A
Ry = R, (0,382) kZO b Spag BN (5.2)

where we have dropped the argument € and the subscript g, so that

O = ¢K(G,kAA) .

M-l
The convolution product]&Z dyby 4y can be computed using
2 =0

Fast Fourier Transform ideas (Henrici, 1979 . Let R be the
reversion oparator; for a perisdic sequence {xi} ¢ it is defined
as

(IIR.‘C)m = x"'ln 3 (5-3&)

Let T be the discrete Fourier operator defined, for two sequences

{xi} and ﬂJi} of period M Ly F x =0 ; component-wise

M

I

1

<
H]
=
Hi~s
€
i
3
=
n
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0
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211)

with w = exp(===) . It follows that the invexrse Fourier operatox

is defined by -1

«=MEE=MRE,

Consider the Hadamard product?’? of two sequences % and 37,

X +y = {x, ¥} and let

The Fourier transform of X °y is then

+

iy 1 ~km
(E(xy))p = § Zo X Yy @

i

L “2 Z o¥K -k
M ko K g Yo ¥

M=1 M=) oy
= Z vg' l )' )'kw (m R;)k

=0 kNO

M=l

v, U
. - \
For any two M-periodic sequences U = {Uk} and V = {Vk}' we define
the convnlution product ¢ n{ck} by

M=l

Z Uk m-k °

C. = ) V. U

m
) ' N ) . ) -

We denote this convolution product by E=0+~7.

Thus

P (X:¥) = EX *EY . (5.4)
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Taking into account that ¢(6,A) is 27-pericdic with

respect to A, we have that

o sl M=1 Mzl

37 ke Mk ey ™ L0 ey f ™ L %k feyen)
oxX

R=3 23

EE xR P))

M* E((RED)* (RER §))

M2 E R ((R XS ) (D))

ME (R XS) - (ED))

e M ETL((ES) (ED) .

After calculating the corrxelations rjrsrﬁ(e,jAk) for cach
latitude © at upiform angular distance intorvals AA, we usc spline
interpolation to vbtain the correlations che,a) in terms of svherical
distance s around a circle of latitude, atregular intervals As= 200km.

Qur experiments showed that Monte~Carlo simulation, even
using variance reduction, converged very slowly. It regiired a
large number of realizations. But the solution had the expected
behavior, namely R(®,5/a) ~ exp(-3/s,), where s,(9)~sino,

and a is the radius of the earth.
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6. An equation for the covariance function

Given the linear equation with deterministic coefficients
(2.7) for ¢ = ¢(E3w), it is easy to obtain a linear eauation for
the covariance function rig,. 52), defined in (2.3). Writing
(2.7) symbolically as

Ly = F(E10) (6.1a)

with ’
2 2
L = (V ~Cosin 8) , (6.1b)

we are interested in the ensenble average of ¢(€1:w)¢(52;w)

Let Ly, Lo be the operator L written with respect of the
position vectors £, and £, respectively, ¢, = ¢(Eyiw) s 6y = 6(Epiu),
and Fl,z = F(El’sz). Then

b Ly &y = 6y Fy i
applying LZ and taking the ensemble average, we have
Blydp By ¢p =1y IypB gy &
SELy¢p Fy mEF Fp = 0?85, £5) -

Here we used the fact that E, Ly s Lz are all linear operators
and commute with each other, since they operate on the indevendent

variables w, £, and £, respectively. We thus obtain for

F(E;lr 52) = E¢l ¢2
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the detewministic linear equation
-y = g2 - '

A rigorous derivation of (6,2), under suitable assumptions on the
operator L and data F, appears in Bé@cus and Cozzarelli (1976).

We are only interested in computing

R(8,\) =T(6,0;8,)) . (6.3)

To solve (6.2) for R(8,\), we start by solving numerically

for each 52. First, the solution H(El; gz) for giwen 52 is
obtained for Az = 0. More precisely, for 52 = (sze,O),

Ky = 0,1,..., K-1, we compute H(klAe, leA: £5) kl = 0,1,..., K-1,
jl - O[l,o--, J-l.

The solution H(E ;E,) for all other &, = (k,A8, J,AN),

j2 = 1,2;¢..,0-1, k2 =0,1,...,K-1 is then obtained from the

previously computed H(El;gz) by

' ‘ = j =3 ; ) . .5
H(k B0, 318M; kyA8, 3,00) = H(k 80, (33-35) A7 k,8,0) (6.5)

In other words, only K "inversions" of Ll are needed, rather

than KJ in solving (6.4), viz., O(KZJ) operations rather than

k& PP S i e s A hiib s e At A il N . ot W S R Gl i By A2 2 g i e
i it k. —. " - s e PRI T .
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0(K2J2) have to be performed. Furthermore, (6.3) shows that

we need only solve
Lal'{£1; &2) = H(E1;62) (6.6)

for H(9,0;E2), since we are¢ only interested in R(6,)), rather

than in the full T'(£1;&(2). Hence, only K "inversions"” of Lg

are needed, leading to a total O(KZJ) operation count to obtain
R(6,)) from (6.2). In our numerical solution of (6.2) directly

is much more efficient in order to compute R(6,) than a Monte-
Carlo solution of (2.7). First, N, the number of realizations
necessary for a good approximation $(N) to ¢ is considerably

larger than 2K. Second, here the covariances ars obtained directly,
without the need for computing convolution products of ¢(N);

the later requires O(Kleog J) additional operations.

The numerical »esults we present in the next section depend
only on the form of Eq. (2.7), not on the method used for obtaining
it solution and the covariance of this solution. The results were
obtained by the most efficient method, that described in the pre-
sent section. Some of the results were futher confirmed by using
Monte-~Carlo simulation with variance reduction (Section 5 and Appen-
dix B). The zonal covariances R(6,)) obtained by solving (6.2)

were divided by the local variance to obtain zonal correlations

r(6,2) as in (5.1).

W
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7. Numerical results

i3

The starting point of this study wns the development and
testing of a model which will reproduce the latitude dependence
of zonal correlations of TO - T observed in GHA. The model is
governed by Eqs. (2.7) and (6.2).

a. Data sets

The model was tested first using the data on which Figs. 2a-d
of GHA were based, namely vertically averaged corrclations of
the difference field, To - Tf, petween satellite-derived and
model forecast temperatures. This test was based on the hydro-
static connection between temperature and layer thickness,
which should make ¢ and vertically averaged T interchangeable
at the level of approximation of our model. Model correlations
exhibited the same tightening with increasing latitude as that
of the data, for any reasonable value of the parameter c¢q.

After this preliminary test, we proceeded to study if our
model results would fit observed 500mb geopotential height
data. We considered first NMC analyses of 500mb heights for
the DST-6 period, January-March 1976, and for January 1978,
available on tape at GLAS. Zonal correlations for the analyzed
fields every 12h over these periods were computed at different
latitudes and averaged over time. The averaged correlation
curves showed the typical damped cosine (Gandin, 1963; Thidbaux,
1977) or Bessel function behavior (Jp: Rutherford, 1072) of
atmospheric fields. In particular, the curves crossed the
s-axis, becoming negative a* some distance sy =sy ( 0 )

which decreased with latitude. It is clear that our mndel wil?

T S
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not simulate such behavior: the covariance function I'(£;, &)
given by (6.2) cannot become negative. Indeed, the operator
(-L) in Eq. (6.1) is monotone, i.e., ~L ¢ > O implies ¢ > O;
this property is closely related to L satisfying a maximum
principle. Thus 4(&1-£3) > O implies ~Lal(&y,&9) 20
and hence I'(&y,&t2) > O, i.e., T is nonnegative for all
values of 51 and £2. More rigorous proofs, not involving & -
functions, can be given, using the fact that I(&1,&2) is
closely related to the Green's function of the monotone operator
Ly Lo

The physical reason that correlations of observed geopoten-
tial data become negative at distances larger than sj is the
presence of the planetary vorticity in the potential vorticity
Eq. (2.1). The planetary vorticity varies with latitude and
it is the vif/96 term that gives rise to Rossby waves, which
have a characteristic horizontal wavelength of the order of sev-
eral thousand kilometers. These waves dominate large-scale,
mid-latitude flow and hence the statistical structure of mass
fields at these latitudes. The variable planetary vorticity,
however, is not present in the geospotential error equations
(2.3) or (2.5)., This makes it physically plausible that the
horizontal error correlation should never become negative in
our model.

Based on the evidence of the correlations for the difference
fields T® - T, we turned our attention to the model forecast
fields of 500mb heights. One of the assimilation experiments

performed at GLAS with DST-6 data, namely the one which, in
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addition to conventional data, assimilated temperature data
frorm two satellites by a time-continuous statistical method
(experiment S2a, cf. GHA, Table 1) was used, Three-day forecasts
had been performed from initial states produced by the assimila-
tion cycle every 48h from 0000GMT 1 February 1976 till 0000GMT
4 March 1976. Table 2 shows the availability of forecast
fields at synoptic epochs for all the forecasts, at the time
our computations were carried out.

b. Model validation

We computed correlations for the difference fields ¢° - ¢ £,
using NMC analyses as ¢° and our experimental forecast fields
as ¢ £, for 12h 24h, 36h, and 48h forecasts (Table 3). These
correlations were then compared with our model correlations,
using different values of the nondimensional parameter cg.

As in the case of the temperature difference fields, model
results and data were in good agreement for a certain range of
values of co. The result which is apparently best for all
error measures is boxed. This value seems to increase slightly
with forecasting interval: it is 110 for 12h, 150 for 24h, 170
for 36h and 190 for 48h. For the combined 24h and 36h data
set, it lies between 160 and 170.

c. BEffects of vertical stratification

The stochastic model (2.7) gives good qualitative agreement
with zonal correlations of experinental forecast errors, provided
we use values of the constant cg 2etween 100 and 200, From

Section 2,

c. = 4 9 2a%/gD. (7.0

(o]
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For the external mode of the atmosphere, D ~ 10 km, this expres-
sion takes a value of co 2 10. The lack of agreement with our
results indicates that external, barotropic motions do not
dominate the error field growth.

As a first step in accounting for the effect of vertical
variations, we can use in (7.1) a reduced value of g ivity,
g'=Sg, that takes into account the stable stratification S,

S=(D/6g) dég/dz,
of a standard atmosphere with potential temperature 08g = 08g(z)
(Pedlosky, 1979, Sec. 6.5)., A typical value of the stratifica-
tion parameter is S=0.1, which corresponds to a Brunt-Vaisala

frequency of N % 102 sec‘l, where N2=(g/es)dos/dz.

Redefining co as:

¢, = 40%a2/g'D, (7.2)

and substituting a value of g' based on S=0.1, we obtain Cy & 100.
This is in much better agreement with our results.

A rigorous analysis of stratification effects would require
a full three-dimensional separation of variables. Such a devel-
opment does not seem to be warranted by the poor accuracy of the
data., Stratification of the data by height would also impose
serious restrictions on their statistical reliability, due to
limited sample size.

We can interpret our results as indicating that forecast
error growth is dominated by baroclinic motions in the atmosphere.
Barocliaic instability is the most important dynamical instabi- 1
1lity in the extratropical atmosphere. Hence this aspect of |

our results is not entirely unexpected.

NG
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8. Discussion and conclusions

We have derived a stochastic-dynamic model for the global
structure of the atmospheric mass field forecast error. The

model is governed by a stochastically perturbed Helmholtz-type
equation (2.7). The covariance function of the model's solutions
has been shown to be governed by Eq. (6.2). The study originated
in the observation (GHA) that zonal correlations of mass fields
exhibit a strong latitude dependence, with radii of equal corre-
lation becoming smaller at higher latitudes. An analysis of

the potential vorticity equation, both for the atmosphere and

for numerical weather prediction models, led to the derivation
of our stochastic-dynamic model for the error field. The model
supports the heuristic intewpretation of the tightening of the
correlations with latitude given in GHA, namely that the typical
correlation radii vary with latitude in the same sense as the
Rossby radius of deformation.

The observation (GHA) that correlation fields did not ex-
hibit a strong vertical dependence led us to choose a single
model parameter to represent the vertical structure. The value
of this parameter, cg, was determined so as to give the best
gquantitative fit between the second-order statistics‘of the
model and of the data. The empirically determined value is
consistent with baroclinic motion dominating the error growth
field. The barotropic mode does not seem to play a major role,

The model results are in good agreement with actual numeri-

cal weather prediction errors, both for temperature and geopo-
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tential fields. The differences brtween model and data are
typically smaller than those hetween the data of one hemisphere
and those of the other. We intend therefore to use the global
correlation functions produced by the present model in the
development of the GLAS statistical assimilation method. This
should eliminate the inconsistency produced at present by the
use of ad-hoc, meridionally stratified, empirical correlation
functions (GHA).

The agreement between our stochastic model and actual fore-
cast errors fields for 12 to 36 hour periods validates the as~-
sumptions on which the model was derived. Within this period,
the difference between the potential vorticity fields of the
atmosphere and of the numerical model forecast used in the
comparison is well represented by white noise.

For periods shorter than 12 hours, the lack of balance in
the initial data generates fast inertia-gravity waves in the
model, which violate the quasi-geostrophic assumption implied
in the potential vorticity equation. The use of a strongly
damping time scheme, *he Euler-backward scheme, in the GLAS
second-order model, makes these waves negligible after 12 hours.
The use of an effective initialization scheme could eliminate
this restriction.

For periods longer than 36 hours, the forecast errors become
so large that the model equation (2.2) ceases to be a good re-
presentation of the atmospheric governing equation (2.1). The
length of this limiting period is obviously model dependent.

The forecast mrdel used in obtaining our forecast error data,
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the GLAS 9~level 4° latitude by 5° lengitude, second order
model, has rather large truncation errors, With higher resolun~
tion or higher accuracy models (e.g. Kalnay-Rivas and Hoitsma,
1979) we may expect that the stochastic model will remain valid
for longer periods.

The observation that our stochastic model based on white-
noise forcing fits Southern Hemisphere errors better than those
of the Northern Hemisphere jis also an interesting result., It
indicates éhe validity of an increasingly well accepted point:
that the lack of proper parameterization of the planetary-
scale forcing can have a very important effect on the forecast
errors.,

The interplay between atmospheric statistics and dynamics
which is stressed by this work points the way to further studies

along similar lines. Allowing for such interplay in modeling

efforts might help to improve our knowledge of both deterministic

and stochastic aspects of atmospheric behavior.

A concrete step along this road would be to investigate
the stochastically perturbed potential vorticity equation (L.l)
itself, rather than its steady-state form (2.2), This would
be a nonlinear, time~dependent Langevin-type equation for
large~scale atmospheric flows. Its study appears considérably
more difficult than that of the present model, but still acces-
sible by Monte-Carlo simulation with variance reduction. We

hope to report on such a study in a future publication.
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Appendix A, Algorithm for penta-diaconal svstem

We solve
AX = b (A.1)

where A is penta-diagonzl, by LU factorization

A= LU .

The factorization can be derived from the well-known one for

tri~-diagonal systems, by noticing that actually odd and even

variables in (A.l) decouple.

The algorithm can

Step 1: Cl =

O
I

= B

1

Hence
1 0 0
0 1
y
l/Cl |
0

( Y
Cl 0 o 00
\i ,
0
-2
0
0 0 ¢ J

be performed in the following three steps.
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Step 2 (Forward elimination, i.e., solve Ly = b):
Yy = by s ¥y =b,
Yy = By = Yymz Yiu2/Cgng 0 K% 3reeeim
Step 3 (Back substitution, i.e., solve Ux = y):

¥p ™ Yn/Cpy v Xp-1 yn-l/cn~l '

Xk kt (Yk - akxk+2)/0k ] k #An~2,n~'3,..-,l .

34,
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Appendix B. Stratified sampling

Monte-Carlo simulation is a method for the solution of
stochastic model equations using sample realizations. The
individual realizations are computed by using pseudo-random
number generators to specify the random functions preascribed
as data of the eguation. Basic random number generators producc
variables which are to a good approximation uniformly distributed
on the interval (-1,1] and stochastically independent,

We used the following stratified sampling procedure
(Kleijnen, 1974, Ch,3), Let N be the number of reqlizations in our
sample, We classify the random value taken by any sampled RHS,
£,(6,A), at each grid point (0:.4,) into exactly one of N classecs.
These classes are formed by di&iding the range [~1,1l] into N non-
overlapping exhaustive intervals. We picked the range of each class
to be of equal length. The functions fj(e,A) and fk(e,k) are made
dependent for j # k, j, k€{1,2,..., N} , by taking at each qgrid
point fj(e,k) and fk(e,x) from different classes. The objective
of stratification is to lead to variance reduction.

We solve Eg. (4.1) with £(8,)) = fi(B,A) to obtain
¢i' i=1,2,..., N. Thus the ¢i themselves will be dependent.
After experiments with both independent and stratified sampling,
the superiority of the latter was clearly established. A sample
size of N = 200 gave satisfactory results when using stratified
sampling; independent sampling with N = 700 gave results whose

variance was still much too large to be satisfactory.
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Table 1. Test of our extended fast Poisson solver.

Trial Form of

i?gfifon gﬁggi?gn o M N Max| ¢ | Max| ¢, = ¢]

cosze cos)\ analytic -sinze 16 32 1 8.16 =2
" " " 32 | 64 1 2.3 -2
" " -3.6 +7 16 | 32 1 8.3 -8
" " ~10.0 16 | 32 1 3.57 -2
" finite ~sin?g 32| 64 1 2.9 -12

difference
~cos?g cos 3)\| analytic . 64 | 128 0.02 7.19 -3
78 ;

cos$ cos?o " - 10 sin%s | 32| 64 1 1.18 -2
" " -5 sin%e | 32| 64 1 1.36 -2
" " ~sin?0 32 | 64 1 2.3 -2

(sin® sinA~ " " 32 64 < 0.25 9.14 ~4

The RHS of (4.2) corresponding to a given trial function was
computed either as grid point values of the residual of that
function (4.1) ("analytically") or as the residual of that func-
tion in (4.2) ("finite-difference").

A number a.b + c means (a.b) x 10%*C,

i E 5

Ll M IO s

‘ M is the number of grid
intervals into which the meridional coordinate 6 was divided;

N is the number of ¢rid points in the longitudinal direction.
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Table 2. Forecast fields from the DST-6 experiment S2a (GHA)

which were available for our computations.

Date 12h 24h 36h 48h &0h 72h
h
f Feb.
) X
3 * * * *
| 5 * * * * * *
' 7
E 9 L * * * * *
' 1l
! 13 * * * *
‘ 15 * * * * * *
17
| 19 X * *
; 2], * * * *
| 23 * * *
25 * *
27 * * * *
29 * * * *
| March
2 * * * *
4 * * * * * *

Forecasts were initiated at 0000 GMT on the day indicated in the
first column. They were carried out for 72h each, but some of
the existing prognostic fields were lost in data storage, trans-
mission or retrieval. The columns in the table indicate the
availability of the fields at successive synoptic times for each
forecast. NMC objective analysis were available at all of the
corresponding synoptic epochs. Beyong 48h there were too few
fields available to constitute a statistically valid sample.
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Table 3. Comparison between model correlations and 12
correlations of the data fields.
| e, LAE) oy (Ar) Ly(Ar) Ly (A gy () g, ()

;\ . 12.15 10 .322 .379 .379 442 -849 -857
. 12.14 50 .132 .176 .207 .257 .640 685
t o 12.13 70 .108 .143 .183 .221 .589 .647
12.12 80 .101 .134 .178 .212 .569 .633
i 12.11 90 . 0967 .129 .175% . 207 .552 .620
| 12,10 100,  .0943 .126 .176 .206*  ,536 .609
| 12,9  [110] .0938%  ,125% .180 .208 .522 .599
‘ 12.8 120 .0946 .125% .185 .213 .510 .590
12.7 40  .0981 .130 .201 .226 - .488  .575
? 12.6 160 .103 .136 .219 .242 .470 .562
? 12.5 170 .106 .140 .229 .252 .462 .556
12.4 180 .108 144 .239 .261 .455 .550
12.1 190 111 147 .248 .270 .448 .545
, 12.2 230 .122 .162 .289 .307 .424 .528
| 12.3 270 .133 .176 .329 .342 .405 .515
: 24,8 140 .0745 .0986 .153% 172 .488 .575
24.7 [ 150 L0744 % .0970 .155 L17L* .479 .568
| " 24.6 160 .0748 L0965% 159 172 .470 .562
* 24.5 170 .0756 .0968 .163 .174 .462 .556
24.4 180 .0768 .0978 .169 .178 .455 .550
©o24.1 190 .0784 .0994 174 .182 .448 .545
24,2 230 .0860 .109 .203 .206 .424 .528
24.3 270 .0939 .120 .232 1234 .405 .515

e e




-y i N
Table 3. (Continued)

43, |
¢, B AR 2p(ar) Ly (An) Ly(AR) 2y (x ™)y g, OV 1
36.6 160 .0898 114 L1901k 203 . .470 .562
: 36.5 . 0891 112 193 ,202% 462 .556 1
36.4 180 .0888 J112% .195 .203 .455 .550 1
: 36.1 190 ,0889 .112 .199 .205 .448 .545 j
L 36.2 230 .0918 .115 .217 .218 .424 .528 l
36.3 270 . 0965 .123 .239 .238 .405 .515 -
, A
n 48.6 160 © .0952 .123 L202% .219 .470 .562
' 48.5 170 . 0937 .120 .203 .216 . 462 556
| 48.4 180 .0928 117 .204 .213 .455 .550
48.1 .0923% 116 .206 L212% .448 .545
“ 48.2 230 .0928 L 113% .219 .214 .424 ,528
:, 48.3 270 L0951 116 .235 226 .405 .515
24/26.8 140 .0808 .104 .166 .182 .488 .575
24/36.7 150 .07?2 .102 L165% 179 .479 .568
f 24/36.6 160 .0786 .0999 167 L178% 470 .562
} 24/36.5 .0785% .0991* 170 .178% . 462 .556
1 24/36.4 180 . 0786 .0991* .173 .180 . 455 .550
24/36.1 190 L0791 .0996 177 .183 . 448 .545
4 24/36.2 230 . 0830 .106 .196 .200 424 .528
| 24 36.3 270 .0887 115 .219 224 .A05 .515

The first column indicates the label of the numerical experiment, based :
on the data set and on the value of cy used. The data sets are identified
by the length of the forecasts on which they were based: 12h, 24h, 36h,
48h or combined 24h and 36h. The second column gives the value of cq.

The next four columns contain the various norms of the difference Ar
between model and data correlations (Egs. (7.1) and (7.2)). These columns
contain a star next to the minimum value of each error measure for the
corresponding column and data set. The values of cg which correshonc to
the largest number of stars in their own row and in the fwo adjircont Xows
are boxed. The last two columns give the norms of the model correlations

themselves.
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