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Abstract

A model that yields the spatial correlation structure of

atmospheric mass field forecast errors has been developed. The

model is governed by the potential vorticity equation forced by

`	 random noise s

t	 (D2ac0 sin 2 e) ^ ( a , O ; w) = F (a, e; w )	 (l.)

where 92 is the Laplacian operator on the unit sphere, a and a are

longitude and Latitude, ^ is the geopotenti,al error field at 500mb

and r is white noise -orrespondi.ng  to a random realization w.

The spatial covariance function r is defined by

r'('X1_, e;X2,e2) - E f^ 01 ► e l; w ) 4' (a2r e?; w)}, (2)

where E is the expected value.

Three methods of solution have been tested. to the first

method, Eq. (1) was solved by expansion in spherical harmonics

and the correlation function was computed analytically using the

expansion coefficients. In the second method, the finite-dif-

ference equivalent of Eq. (1) was solved using a Fast Poisson

Solver. The correlation function was computed using stratified

sampling of the individual realizations of F(w) and hence of

(w). In the third method, a higher-order equation for F was

derived from Eq. (1) and solved directly in finite differences

by two successive applications of the Fast Poisson Solver. The

three methods were compared for accuracy and efficiency, and the

third method was chosen as clearly superior.

The results agree well with the latitude dependence of ob-

served atmospheric correlation data. The value of the parameter

co which gives the best fit to the data is close to the value

expected from dynamical considerations. These results provide

the basis for an optimal choice of coefficients for statistical
analysis of atmospheric data.

,..
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1. Introduction

The statistical structure of large-scale atmospheric

fields is of both theoretical, and practical interest to meteor-
6	 ^	 -

ologists. Theoretically, it is of interest to know what this

structure is and how it becomes established (Gaudin, 1963). In

particular, the connection between the atmosphere's dynamics and

its statistics is an attractive area of study.

Practically, numerical weather prediction (NWP) requires

the accurate, detailed description of atmospheric fields as a

starting point for their forecasting. The data available for

such description are nonuni gormly distributed in space and

contaminated by various errors 'Bengtsson, 1975). It is necessary,

therefore, to use some form of interpolation to derive field values

at the points of a uniform grid. It is desirable, furthermore,

that these values be as free of errors as possible.

Interpolation coefficients can be chosen which will minimize,

under certain assumptions, the expected value of the interpolation

error, given the statistical properties of the errors in the data

(Rutherford, 1972). This statistical approach to meteorological

interpolation has become increasingly attractive recently, due

to the large number of different data sources with varying error

characteristics made available by the Global Atmospheric Research

Program (GARP) (Fleming et al., 1979). It is often referred to

as "optimal interpolation" (0I) and has been implemented opera-

tionally by the U.S. National Meteorological Center (NMC:

McPherson et al., 1979), among others.
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The optimal choice of interpolation coefficients ir r 01

clearly depends on knowing the statistical properties of the

fields one wishes to interpolate. Hence the practical impor-

tance of an accurate model for large-scale atmospheric statistics.

The purpose of this report is to contribute to the formulation

and validation of a dynamically based model for atmospheric

statistics.

In a study on the use of satellite-derived temperatures for

NWP, Ghil et al. (1979; to be referred to as GHA) were led to

consider the difference between the observed atmospheric tem-

peratures, To , and model-forecast temperatures, T f . The model

used in that study was the nine-level 4° lat. x S o long ., primi-

Live equation, spatially second-order model of the Laboratory

for Atmospheric Sciencea of NASA's Goddard Space Flight Center

(GLAS); temperature data were obtained from the Data System Test

AST-6 held during January-March 1976.

The spatial correlations of the difference field T O - Tf

were computed. It turned out that, for the same spherical distances

s between points, correlations were typically higher in the

tropics than in high latitudes. In other words, the correlation

r(c,n) of temperatures To	 Tf at a point. P on the Earth with

those at a point n a distance s away, s = dist (4 1 n), falls

off more rapidly with s the higher; the latitude of the point F

(Figs. 2a-d, GSA). No large or systematic dependence on height

was observed when stratifying the correlations by pressure level

rather than by latitude.
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It was suggested (ibid.) that this striking latitude depend-

ence of the studied field's second-order moments reflects the

dependence on latitude of the Rossby radius of deformation, L.

"The latter is a characteristic length scale for a number of dynamic

.	 phenomena which determine the spatial structure of atmospheric

fields. We decided to pursue this heuristic suggestion further,

and formulated the stochastic -dynamic model investigated in this

report.

Section 2 presents the model # and the governing equation,

Eq. (2.7). This equation is solved by a series expansion in

Section 3. For given, fixed right-hand side, Eq. (2.7) can be

solved numerically by the use of a generalized Fast Poisson

solver, as shown in Section 4. The full stochastic form of

(2.7) is solved by Monte'-Carlo simulation in Section S. An

equation for the covariance funtion r( l , 2 ) of the solution

r	 to (2.7) is derived in Section 6. It is seen to depend on a

scale parameter, coo	
r = r(^ 1 , ^2% c0)

Comparing model correlations with observed mass field correlations,

we obtained the best value of c 0 . Numerical results are presented

in Section 7. Concluding remarks follow in Section 8.
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2. Dynamical model of the forecast error field

We will assume that for periods of a few days, the dynamics

of the atmosphere are approximately governed by the equation of

conservation of potential vorticity

`	
dt ( a

-2 V 2 * -L"2 * + f)-Q.	 (2.l)	
I

Here * = 0 /fo is the quasi.-geostrophic stream function, 0 being

the height h of the 500mb surface multiplied by the gravity

g, ^ x9h; the Coriolis parameter is f=2 S1 sin 6 , with n the

angular velocity of rotation of the earth and 8 is latitude,

while fo is a constant value of f corresponding to a mid-latitud

e 00 0 The radius of the earth is a, D 2 is the Laplacian

operator on the unit sphere, with X longitude, L is the Rossby

radius of deformation, L2=gt^%x`, with D a characteristic depth.

The forcing term 4 represents diabatic heating, dissipation and

lower-boundary effects.

Equation (2.1), with Q=O, is strictly valid for a quasi-geos-

trophic, frictionless, shallow-water model without topography,

with a mean depth D. It is also valid for each of the vertical

riodes in a linearized quasigeostrophic model in which the vertical

dependence has been separated out (Phillips, 1973). In this

case D is the equivalent depth corresponding to either the external

mode or to one of the internal modes. Our assumption is that

for periods of a few days equation (2.1) is a reasonable model of

large-scale atmospheric flow.

The dynamics of a numerical weather prediction model are also

governed by an approximation of equation ;2.1)s

d (a-2 v 2 *, -L-2 	 +f) = Q.	 (2.2)
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1

The tilde represents the numerical truncation effect in the operators

N

d/dt and V 2 on the one hand, and the errors in the parameterization
N

•	 of the physical forcing ► R, on the other.
N

It follows that forecast errors 6*	 will also be
s

^Aoverned to a good approximation by a conservation equation of

potential vorticity, which does not contain the planetary vorticity

term f

d C &-2 V 2 6, -ice- 2 d*) werrors;	 (2.3)
at

we let the errors in the right-hand side of (2.3) represent all

the approximations, physical and numerical, made in equation

(2.1) and, a fortiori, in equation (2.2). At the initial time,

t-0, y is obtained from observations of the atmospheric state

* which are also made with certain errors:

4 =errors at t=0.	 (2.4)
If the errors in both Eq. (2.3) and the initial conditions (2.4)

were zero, then one would obtain that the potential vorticity of

the error will remain identically zero

(a-2 V2 r-L-2 ) any =0

at all times t a 0.

In the presence of purely random errors, we can combine

Eqs. (2.3) and (2.4) to yield a tame-independent equation governing

forecast errors. This equation is a stochastically forced steady-

state potential vorticity equation on an f-plane:

(a-2 
V 2 -L-2 ) 6^ - Ft ( p , a; w ).
	

(2.5)

We take Ft to be random white noise, corresponding to different

realizations of atmospheric processes labeled by w,at time
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t?0. We expect Eq. (2.5) to be a good representation of the

structure of the forecast error field whenever systematic errors

in Eq. (2.1) and (2.2) are small. It will cease to be valid at

time scales longer than a day or two, because the errors in the
r	 y

approximation of the nonlinear terms, d/dt-d/dt, as well as in the

parameterization of physical processes, Q-Q, become sizeable and

nonrandom. We may also expect that Eq. (2.5) will he less accu-

rate in the Northern Hemisphere than in the Southern Hemisphere,

I

	

	 because topographic forcing and land-sea contrast are more impor-

tant in the former than in the latter.

The statistical properties of F t e in particular its variance

O t 2 , might change with time, Since t in (2.5) is only a para--

mater, we shall consider a fixed 02 in the sequel. The value

of o affects only the amplitude, and not the structure of the

solution.
The Rossby radius of deformation L depends on the equivalent

depth n and on the sine of latitude:

L-2= (q h2/9p) si.n 2 ®.
	 (2.6)

For simplicity, we assume that one vertical model dominates the

error field, and shall determine the value of the equivalent

depth that best fits the data.

Summarixi~ng, we will study the equation for the geopotential

e, rr®z field ^,

(V 2 -00 si,n 2 0 )	 =F{ ^r ^i ^

	
(2.?)

where Eq. (2.5) was multiplied by the constant f oa2 , and F is a

spatially multi.-dimensional noise process;

Elr(&, 01=0-, 	 (2.8a)
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E(F(41;w) F (92t w)) " 1126 (ti—Fa.)*;	 (2.8b)

Isere C is the expectation operator or ensemble average ovor they

=	 individual realization w, ^w(8,X) is the position vector, and

02 a prescribed variance.

We are mainly interested in the co ,juriance function.

r(41PCO . E (Wl;w) t (r 2 ;w)}	 (2.0)

of the solution ^ (C w). The reason for our interest in r is

that interpolation formulae for assimilation of atmospheric data

require P cis the basic statistical information.

In the following four sections, our methods for the solution

of (2.7) and for the +:oniputation of (2.9) are described and comp-

pared .



3. Series solution of the model equation

S.

Consider 4. ,4 expansion of ^ f

to	 n	 m
Z	 Bn nnWO mi-n

in the spherical harmonics Yl-,n I

	

Yin	 e 'MX P111 (sin 0)	 PM 0j)

	

n	 n	 n

(3.1)

(3-2a)

Here p w sInO and PM (p) are the associated Legendre functionsPm ( p )
 and Hilbertr 1953; Hobson, 1955),

1-U 
2 ) m/2 dn+.yn

P	 2_10 I 	 (3.2b)", (IJ) 0n	
2 n 

n I	 dvn+'M

normalized so that 	 f

27t 1	
Y m YMI 

*	

. 
47r (	 -2n4-1) (nm) I	

6ZIMI	 6	 1
0 f-1	 n ( 

n i 	 14 dX	
(n+m) I	 nin

An 6	 6	 (3.3)

	

n	 m I m	 n I n I

* denotes complex conjugation,

The representation (3-1) would diagonalize rct.(2.2) I provided

the operator in (2.2) were a pure Helmholtz operator, i. e ., only a

constant, 0-independent term were added to the Laplacian v 2 As

it is, we shall show that (3.1) leads to a five-6iagonal representation'

of (2.2).

I
rx_



ti

The orthogonal functions Pm (P) satisfy the three-term recursionn

relation

ups M n+s 
.6+ 

n-s+1 
Ps 	 for n > 0n UnTl n-1 2F+I— n+l

I	 Xt follows that, for n > 1 0

	

2 s	 ws	 s	 -9
V P 0 

an-2
 
p . + Ds pa + Y	 p

	

n 	 n 2	 n n	 n+2 IA 2 (3-4a)

where

	

.4 s 	 n+s
+san-2

	

	 (3. 4b)(Y
n+l)

	

S	
n+s N/ n -- s

+ " -3+'-	 (3.4c)

	

n	 2n+1  ^ (—','.n - + RN +41 (2n
+, 

 —

and

a -s+l)
 (r-s+2

 )
	 (3. 4d)

Yn+2 (2n—+—1  

_-q-2	 _-q-1 = - :a	 wq-j W 0
for q > 0.Note that	 a	 C%	 Y	 Y

9	 q	 a	 q

Substituting the series (3.1)o truncated at n=Ntinto

Eq. (2.2) we have

( V 2 - a
0 

sin2e)O(N) =

N	 n
(V 2 _ C sin2 

0)	

B M Ym
0	

&- 0 m.—n n n

2 _	 2) 
B̂ 0
O Y O	

- 1 - 1
	 0 0	

YlpOP
	 0 + 

B 
'I Y1 + 8 1 Y 1 + a1. 1

N	 n
+ m in

	

B n Y n	 F.n=2 m=-n
(3 . 5)
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On the unit sphere,

	

n 2 Yn 	- n (n^ l) Y^	 (3. 6)

The f il: •. , few terms of the five-term recursion (3.4) are given

by

	

P2 0	 2 0	 2	 2 1142 3 u 2_	 ],	 2 0	 1 0	 2. 0	 1 0

	

Y 0 	 P "^O	 3 2	 1) + 3 3 P2 +3 p 0 3 Y2 3 Y0

4

	2 0	 2 0	 3	 2 1	 3 	 2 0	 3 0	 2 0	 3 0u y1 = )1 P	 }^	 5 IY	 }^ -3^!) + 5
	 5 P3 + 5 P 1 	 5 Y 3 	 _5 Y

1 r

	

2 -1^ _ix 2 -1.	 _ix '-I -ix 1 -3, 4 -1 _ 1 -1 4 -11l 
Y1^ 

e	 U P 1 = e	 )IV2 = e	 5 P1 + 5 P 3	 5	
5Y1 + Y3 r

and
e

	

2 1	 it ;,I1	 is	 1 1	 1	 3 1 2 I	 3	 1, 2	 I

	

Y1 e U P1 =	 u 3 P 2	 3 e	 p P1 5 P3 - 15 X 1 
.
'4 15 Y3

Thus (3.5) can be revzritten as

B0 [c (3 Y00	 0 3	 2 + 1 YO )j3	 0 + B - '[-1 2 Y-1 -1 c	 10 ( 5
-1	 4

Y 1 + 5
-1

Y 3 	 )

1	 1-2 Y'1 c 0 (5 Y3 + 5 Y1 + B1 -2 Y - c0 ( 15 Y1 + 35 X3)I

r0tnR
_ 'c0 am	 Ym + -n (n+1) - c e I Ym +

n=2 M= l  n 	 n-2	 n-2 	 L0 n j n

I - 0 Yn+21 Ym+2	
F	 (3.7)'
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Define

sn = f.-n (n+1) - co Sn lMA 	 (3.8a)

",	 (3.8b)_m	 m
an-2	 c0 an-2 jAmn-2

and

Yn+2 _ [ c0 Yn+2 jen+2	 (3. 8c)

Multiplying bDth sides of Fq. (3.7) by ( Yk ) and integrating, we have

27r	 1

J-j 	
fj)*	

27r	 fl3
dX	 (Yk 	 (LHS) du 	dX `	 (Yk) F(u,a) du. (3.9)

0	 o	 11"

We denote the spherical harmonic coefficients of F, g -en by the

integral on the right hand side, by Fk . Given Fk we wish to

solve for the coefficients Bn of ^. We have	 j

C1 B0 + A B  = F0 , C1 = -r. 0 A0/3

C2 Bi + ai B3 = Fl , C2 =-(2+5 c0)A1

S2 B0 + a2B 4 + C, B0 = F2,	 C3 = - 3 c 0 A2

S0 B0 + a0 B0 + C B0 = F0 , C = - 2	 A03 3	 3 5	 4 1	 3	 4	 5 Co 3

S k Bk + ak Bk+2 + Yk Bk-2 ` Fk , 4 < k < N.-2

f



+I

B02

B3

i

D0---------0

0 D 2 0

FQ
Q

_ F0 C3

2
C 

0F 3

0
F 1 C4- _ 

C2

F4

F0
N

0	 0 0
BN

12,

B 0	 BO	
0	

B O 	0	N^1 N-I	 YN-^1 N^-3	 FN-1

0	 0	 0 0	 F0

	

sN BN	YN B11 2	 N	 {

The N+l equations for r 0 , 0 < k < N+1, can be put into matrix

vector farm as a five-diagonal system in Bn , 0 < n < N+1

.

^2 0 a2 ^-0

0^0 0 ao

0	 !,
Y4 0	

0

	

\	 a 0
0	 N-2

0

0	
0 YN 0 SN

(3.10.0)

i

where

D 1= -C3 aQ /C 1 D2 = -C 4 a, /C2

The equations for Ft are

C 6 B	 + a	 B3 - Fi , C6 = - 12+ 2.15 c0)Al

112 B2 + a2 B4-F2,

^3 B3 + a3 B5 + C 7 B^	 Pi C7	
^' ] 5 

c 0 A	 r
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^k Bk +ak Bk+2 + Yk Bk - 2 = Fk'	 k N-2

1	 1	 1	 1	 _ ^.
^N -1 BN-1 + YN-1 BN

.
-3 FN-1

N BN * YN AN -2 FN

They have the five-diagonal. form,

I	 +	 I

02	 0	 a2	 0	 0

0

0
i

Y 4	 1
aN--2

0
0

0	 01	 0	
1

	

YN	 ON

0----0	 0	 0 B 2

D3	 0 B1
3

0	 0	 0	 0

F12

	

1	 `I
F1 - C^F1 9
3	

C6

F14

f^

F1
N

where D 3 = - al , C7 /C6



B}k
k

+k

Bk+l

F± kk

+k

Fk+l

YNk	
`Q F k

J

k=2, ..., N ,	 (3.10 k)

+k

BN
F±k

.A

14,

We have a similar system for Fk1

C 8 B-1+ 
a-1 a-1 s F-1 , where C 8	 (-2	

c 5) A11

ail B21 + d2 1 B41 i F-2 
1

S 31 831 + a31 B
5- 	 Cq B- 1 = F31 { where Cg _ (- c 0 4 )A-3l

0
-1 B -1 + a- 1 B -1 + Y-1 B

-1 >^ F-1 1 4 < k < N-2 rk	 k	 k	 k+2	 k k-2,	 k	 --

-1	 -1	 -1	 -1	 -1
^N-1 BN-1 + YN-1 BN-3 I= FN-1

SN1 BN1 + YN1 B:N12 FN-
1

All the other systems are of the form

.	 i

gkk	 0	 a^k 0	 0

0
+k

Q	
Sk+1

+ k{
k+2

+k
aN-2

^Q

I



•Y ;
t

f
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n (3. 10.k)

k Bk + k Bk+2 " Fk

 2,3t...,	 N-3	 and	 k = j ► j+1
x for ,

j I - N-2 and k= N-2

O
k

Bk + ak gk^+2 + Y k Bk-2 Fk

for	 ijI= 2,3,.., N-4	 and	 k	 j+2,..., N- 6

3 k A k 
=

Fk

ji = N-2 and k	 N-1
for I jI =

f1 jj =
N--1 and k = N-1,N
N and k - N ;

s k Bk + Yk k-2 Fk
IjI = 2, 	 , N- 3 	and	 k = N, N-1

for .
^3I = N-2 • and. k = N -.

Each of the above linear systems are penta diagonal. They can be

:solved by the LU factorization algorithm given in Appendix A.

After solving for the B  we wish to obtain the covariance,

function r(81,X1;e2'X2)' More specifically, we,are interested

in the zonal covariances,

R(e,X) -- r(e,x
0 if,x + X)	 (3.11)
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	clearly R(O t X) is independent of X 0 .	 The zonal variances,

R,(@,X), corresponding to a truncated solution ^(N ), are given by

R 
N "I	

P 2,ff 
(N) 

(OPY) 4 (N) (e t y +X)dy

0

N	 N	 n	 n' M M,	 mi
E	 PmW P I W

n=0 n'	
E	 B B I

!O Yn=^n ml :w-n 	n n	 n	 n

2 n

0 
e

N

2ff V

n=O

M+M')y + M'N]dy

N	 n M m M	 -M
I	 I B B-	 M P W)
n'=O m=-n n n' 

pm
 ;a I

N	
0 0 2	 0 0 

N
27T	 E	 (B P	

0
) + 2B P	 B OP 0

n=O I 
n n	 n n n =n+l n n

	

N	 N	 n

	

+ 2 1	 Z	 Y, B m B-M Fm P -m co t, (ni x)
n=l n l =l m=1 n n	 n n	 I.

(3-12)

Clearly, (3.12) does not provide a computationally efficient way

of obtaining R,,(O,X) for large N

in the following two sections we shall use the numerical approach

of directly inverting (2.2) for fixed RHS, w = constant. P,(OtX)

will be computed by summing over correlation i^ro6ucts of solutions

for various w . A E=ast Solver for the inversion of (2.2) with

given PHS(w = const.) is presented next.
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4. A_generalized East Poisson solver

A fast solver for the equation,

[0 2 + C( 0 ) 3$ _ f' ( O f X ) r	 (4.1)

with C(e) w constant, is available in the NCAR software

library (Swarztrauber and Sweet, 1975). This program was

modified and extended to solve Eq.(4.1). The NCAR version takes the

finite-difference approximation to Eq. (4.l) as

'	 1
2----------	 sin (0 i + 2 5) (5 	 - 6

A9 sin8i	
^

sin(ei	 2 9 ) ir-1„lrj),I

1	 2c	 + ^ I 	) + C^

	

(^ sin0^)2 ( 'a,j+l -	 ^,j	 s.,]_1	 3rd

f (e^,	 A j ) r	 (4.2)

where C = const

	

0i	 U -1) A  , a
J 

= (,) -l) A 1 ,

Oi,j = ^(Oi r a j ) , A® = n/M rAX = 27/N r

	

i	 1,2,... iM 'r 1 r	 j	 1,2,.	 ,N + 1



In the NCAR version, the option of solving (4.1) In a subdomain

R. on the surface of the sphere exists. This option was removed in

our version. our extended program then takes C in eq. (4-2) to

be Ci * C(Oi). No futher modifications of the original program

were required. The modified program was extensively tested

(Table 1).

We conclude from the numerical tests that the modified ver-

sion of the solver has the desirable properties of the original

one-, second-order accuracy with respect to discretization error,

and machine accuracy in linear system solving for a moderate-size

mesh (3204).
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S. Monte-Carlo solution of the modal. equation

We wish to solve Eq. (2,7) with the RHS F(6,,1 rw) hpirg white noise.

The solution is approximated by Monte-Carlo simulation. In other

words, Eq.(4.1) is solved for an individual realization of the

white noise process F (6 a tw) , namely f (8 , a) . A large number N

of samples f V f2 ,.. ,fn is drawn from the process F(O,a;w)

Let ^n (Q, X) be the solution of (4.1) with fn (O IX) as RNS and let

(N) (ark)	 N	 E Onn41

Our .Monte-Carlo solution of (2.7) is(N'.

if (fn ,n~1 1 2 1 ... tN) are Simplx .independent samples of F,

then a very large N is needed in order for 0 (N) to be a good

approximation to the true solution 0 of (2.2) ; i.e., 0 (N) has

a large variance around its expected value 0 , even for large N
In order to accelerate this convergence of O (N) to ¢ , we used

a technique for variance reduction called stratified sampling

(Appendix 8).

Eq. (2.7) was discretized with 19 grid points in the meridional

direction and 32 grid points in the longitudinal direction. The pole,

are grid points, and the equator is a grid Line.

We obtained the zonal correlations from our simulation as

follows. Let the normaliz ed correlation r  of an individual realization

OK 
=O K (0,A)  be defined as

2 i

fo
r^ (g,^,) ^

	

	(5.1a)

2(0,A)dX
0



2 0

notice the slight change of notation from (3,11), r. (O I X) depends

only on the separation in longitude, X, between two points (O t X 
0)

and (OX 
0 

+X) on a circle of latitude 0 , and not, on their position
X O O This is due to the rotational invariance with respect to
longitude of (2.2). Now the correlation function r(O # X) is approximatoly
by	

(N)	 1 Nr	
N 

E r 
K

KMl
(5.1b)

Hera we assume that the mean of ^K is zero. We took a large number N

of correlation realizations, r., and averaged them to obtain statisti-
cally stable results.

The integrals in (5.1a) were evaluated by the trapezoidal., ule,

M-1

R	 R K (O,jAx) = 
k
7 ^k Ok+j 

AX	 (5.2)
O

where we have dropped the argument 0 and the subscri pt K, so that

^k 
= ^ K (O,W) .

M-1
The convolution product I	 can be computed using

k =0	 J

Fast Fourier Transform ideas (Honrici l 1979)	 Lot IR be the

reversion operator; for a per it ,,, ­'Ac sequence (x i`) t it is defined

as

(3R X) m = 
X-M 

#
	

(5. 3a)

Let r- be the discrete Fourier operator def 'Mod, for two sequences

(X i ) and {J i ) of period M ^y V X4 = rl it component-wise

1 
M-1 

-mkU M
X W
	 Xk

k -0
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-.T i

	

with, W a GXP(
2 

A'	 it follows that the inverse rourier operator

	

is defined by r	 Mr z n M R x .
+ +

Consider the Hadamard product x l y of, two sequences x and y

X • y '0 (:K k yk), and let

	

U S T x ,	 y

O Y is then*Tlie Fourier transform of x+

	

F ('X	 m M kO 
XY. Yk W-kmM

1 M-1 M-1	 Zk km
z x k X V z

	

k'4 0	 zwo

1	 0 k

	

V	 xk w-
Z=O	 k=O

M-1
E

two 
V 9 U M-z

4.	 +
For any two M-periodic sequences U = (U k ) and V	 we define

-.5the convolution product C =(C by

M-1	 M-1

Cm = k 
Xn

O 
V 
k U m-k k =XO'	 Uk arm-k

0

We denote this convolution product by

Thus

r (x 4, Y )	 r x * ry
	 (5.4)
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Taking into account that 000) in 2 v -periodic with
respect to X, we have that

	

MW*l	 M-1	 M-1
k 
Z OX ox+^ W X^ Ox. Ok W E Ok 06. (J-k

	

No	 moo	 j	 kno

or

A.

R

r

M2 
x ( ( ya r	 r R

142 -V P. ( ot r	 (r^)

M V

rX M

After calculating the correlations r,4,

4

 r*,r 
K 

(OA AX ) for each
latitude 0 at uniform angular distance intervals AX, we use spline

interpolation to obtain the correlations 'r Ic (8,$) in terms of soheri-..al

distance s around a circle of latitude, at regular intervals Ar, = 200Ym.

oi= experiments showed that Monte-Carlo simulations even

using variance reduction, converged very slowly. Xt recd fired a

large number of realizations. But the solution had the expected

behavior, namely R(O,s/a) - exp(-:,/s 0 ) , whore s 0 (9) - sin 0

and a is the radius of the earth.

I
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Given the linear equation with deterministic coefficients

(7.7) for ^ w ¢(^:w)r it is easy to obtain a linear e quation for
tho covariance function r(g l r g2 ) r defined in (2.3). writing
(2.7) symbolically as

L^ n F (g;`w)	 (6.1a)

with

L	 ( p2.. c0sin20) 1	 (6.1b)

we axe interested in the ensemble average of ¢(9l;w)0(42;w)

Let Li t L2 be the operator L written with respect of the

position vectors g l and 9 2, respectively, Ol = ^ (g l ;w) , 02 = 0 (92;w)'
and F lo g = F ( 9 i,2 ;w). Then

0 2 Ll 01 = 0 2 Fl ;

applying L2 and taking the ensemble average, we have

E L2 0 2 Ll 0 l =Li L2L,i
02

'E L2 
^ 2 

Fl ' E Fi F2	 c26 (^l- 92) .

Here we used the fact that E, L it L2 are all linear operators

and commute with each other, since they operate on the independent

variables w, tl and ^ 2 , respectively. tae thus obtain for

r(41' ^2 ) = El l ^ 2

f

^I°°`	 .i...^..>..;...,...urea•.,ase'..,...^...,.r...^....i°. °- -- Y^d#^_ ...	^i,_- :, _._:.. ... _ >..^. "• 3^f . ,^^.y,^,. 	 :OWA1tldvJ^9XJ'r`a°tL:w=^,.xa.,
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the dete r.,ministic linear equation

L1 L2 r (^i , g 2 )	 a d (gl` 92) .	 (.6.2)

A rigorous derivation of (6.2), under suitable assumptions on the

operator L and data F, appears in B6cus and Cozzarelli (1976).

We are only interested in computing

R( e ,X)	 r(e,0;e,%) .	 (6.3)

To solve (6.2) for R(e,X), we start by solving numerically

L  H(^l; Y = 6(&1- Y	 (6•4)

for each 9 2 . First, the solution H(^V Y for given ^2 is

obtained for a 2 = 0. More precisely, for ^2 = (k2A8,0),

k 2	 0,1 ? ...	 K`1 ► We compute H(k lAe, j lAX; 2 ) ► k l	 0,1,..., K-1,

j 1 = 0,1,...	 J-1.

The solution H(Y Y for all other 92 = (k 2 A6, j 2 Aa) ,

j 2 = 1,2,...,J-1, k 2	 0,1,...,K- 1 is then obtained from the

previously computed H(9 1;92) by

H(kI A6, j lAX; k2 66 ' j2AX) = H(klAe ► ( j l- j 2 ) AX ; k 2 Ae,0) .	 (6.5)

2n other words, only K ".inversions" of L1 are needed, rather

2than TKO' in solving (6.4) , viz. , O(KJ) operations rather than



r
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0(K2J2 ) have to be performed. Furthermore, (6.3) shows that

we need only solve

L2 r ( q ; 92) - H(C1; W
	

(6.6)

for H(e,0;42), since we are only interested in R(e,X), rather

than in the full r(41,t2). Hence, only K inversions of L2

are needed, leading to a total 0(K2J) operation count to obtain

R(O,a) from (6.2). In our numerical solution of (6.2) directly

is much more efficient in order to compute R(OX) than a Monte-

Carlo solution of (2.7). First, N, the number of realizations

necessary for a good approximation ^( N) to ¢ is considerably

larger than 2K. Second, here the covariances are obtained directly,

without the need for computing convolution products of ^(N)

the later requires 0(KJ 2log J) additional operations.

The numerical results we present in the next section depend

only on the form of Eq. (2.7), not on the method used for obtaining

it solution and the covariance of this solution. The results were

obtained by the most efficient method, that described in the pre-

sent section. Some of the results were futher confirmed by using

Monte-Carlo simulation with variance reduction (Section 5 and Appen-

dix B). The zonal covariances R(9,X) obtained by solving (6.2)

were divided by the local variance to obtain zonal correlations

r(B,X) as in (5.1).
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7. Numerical results

The starting point of this study was the development and

testing of a model which will reproduce the latitude dependence

of zonal correlations of TO - Tf observed in GHA. The model is

governed by Eqs. (2-7) and (6.2).

a. Data sets

The model was tkisted first us ing the data on which Figs. 2a-d

of GHA were based, namely vertically averaged correlations of

the difference field, TO - Tf j between satellite-derived and

model forecast temperatures. This test was based on -the hydro-

static connection between temperature and layer thicIcness,

which should make ^ and vertically averaged T interchangeable

n-t the 'level of a pproximation of our model. Model correlations

exhibited the same tightening with increasing latitude as that

of tho data, for any reasonable value of 'the parameter co.

After this preliminary test, we proceeded to study if our

model results would fit observed 500mb geopotential height

data. We considered first NMC analyses of 500mb heights -for

the DST-6 period, January-March 1970, and for January 1978,

available on tape at GLAS. Zonal correlations for the analyzed

fields every 12.h over these periods were computed at different

latitudes and averaged over time. The averaged oorrelation

curves showed the typical damped cosine (Gandin, 1963; Thi6baux,

1977) or Bessel function behavior (JO: Rutherford, 1972) of

atmospheric fields. In particular, the curves crossed the

s-axis, becoming negative at some distance s  =sj ( 0 )

which decreased with latitude. It is olear that o ,-, r ynorin l %011.
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not simulate such behavior: the covariance function r(91,92)

given by (6.2) cannot become negative. Indeed, the operator

(-L) in Eq. (6.1) is monotone, i.e., -L 0 > 0 implies $ > 0

this property is closely related to L satisfying a maximum

principle. Thus 6(91-P;2) > O implies - L2 r (P1,92) > 0

and hence r(41,92) > 0, i.e., r is nonnegative for all

Values of 11,i and ^2. More rigorous proofs, not involving 6 -

functions, can be given, using the fact that r ( q ,^2) is

closely related to the Green's function of the monotone operator

L1 L2.

The physical reason that correlations of observed geopoten-

tial data become negative at distances larger than el is the

presence of the planetar y vorticity in the potential vorticity

Eq. (2. 1) . The planetary vorticity varies with latitude and

it is the v8f/89 term that gives rise to Rossby waves, which

have a characteristic horizontal wavelength of the order of sev-

eral thousand kilometers. These waves domi nate large-scale,

mid-latitude flow and hence the statistical structure of mass

fields at these latitudes. The variable planetary vorticity,

however, is not present in the ge^)potential error equations

(2.3) or (2.5). This makes it physically plausible that the

horizontal error correlation should never become negative in
0

our model.

Based on the evidence of the correlations for the difference

fields To - Tf , we turned our attention to the model forecast

fields of 500mb heights. One of the assimilation experiments

performed at GLAS with DST-6 data, namely the one which, in

i'
s

i

I
s

i
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addition to conventional data, assimilated temperatuVe data

from two satellites by a time-continuous statistical method

(experiment S2a j cf. GHA, Table 1) was used, Three-day forecasts

had been performed from initial states produced by the assimila-

tion cycle every 48h from OOOOGMT I February 1.976 till OOOOGMT

4 March 1976. Table 2 shows the availability of forecast

fields at synoptic epochs for all the forecasts, at the time

our computations were carried out.

b. Model validation

We computed correlations for the difference fields ^ 0	 f,

using NMC analyses as ^ 0 and our experimental forecast fields

as ^ f f for 12h 24h f 36he and 4$h forecasts (Table 3). These

correlations were then compared with our model correlations,

using different values of the nondimensional parameter co.

As in the case of the temperature difference fields, model

results and data were in good agreement fora certain range of

values of co. The result which is apparently best for all

error measures is boxed. This value seems to increase slightly

with forecasting interval: it is 110 for 12h, 150 for 24h, 170

for 36h and 190 for 48h. For the combined 24h and 36h data

set, it lies between 160 and 170.

c. Effects of vertical stratification

The stochastic model (2.7) gives good qualitative agreement

with zonal correlations of experinental forecast errors, provided

we use values of the constant co .)etween 100 and 200. From

Section 2,

co = 4 Q 2a2/gj) .
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For the external mode of the atmosphere, D - 10 km, this expres-

sion takes a value of co = 10. The lack of agreement with our

results indicates that external, barotropic motions do not

dominate the error field growth.

As a first step in accounting for the effect of vertical

variations, we can use in (7.1) a reduced value of g- tvity,

g ` -Sg, that takes into account the stable stratification S,

S=(D/Os) dOs/dz,

of a standard atmosphere with potential temperature es 	 9s(z)

(Pedlosky, 1979, Sec. 6.5). A ty pical. value of the stratifica-

tion parameter is S-0.1, which corresponds to a Brunt-Vaisala

frequency of N = 10-2 sec -1 , where N2=(g/Os)dgs/dz.

Redefining co as;

co = 4p2a2 / g`D ,
	 (7.2)

E

and substituting a value of g' based on S=0.1, we obtain co = 100.

This is in much better agreement with our results.

A rigorous analysis of stratification effects would require

a full three-dimensional separation of variables. Such a devel-

opment does not seem to be warranted by the poor accuracy of the

data. Stratification of the data by height would also impose

serious restrictions on their statistical reliability, due to

limited sample size.

We can interpret our results as indicating that forecast

error growth is dominated by baroclinic motions in the atmosphere.

Baroclinic instability is the most important dynamical instabi-

lity in the extratropical atmosphere. hence this aspect of

our results is not entirely unexpected.

ar
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8. Discussion and conclusions

We have derived a stochastic-dynamic model for the global

structure of the atmospheric mass field forecast error. The

model is governed by a stochastically perturbed Helmholtz-type

equation (2.7). The covariance function of the model's solutions

has been shown to be governed by Eq. (6.2). The study originated

in the observation (GHA) that zonal correlations of mass fields

exhibit a strong latitude dependence, with radii of equal corre-

lation becoming smaller at higher latitudes. An analysis of

the potential vorticity equation, both for the atmosphere and

for numerical, weather prediction models ? led to the derivation

of our stochastic-dynamic model for the error field. The model

supports the heuristic interpretation of the tightening of the

correlations with latitude given in GHA, namely that the typical

correlation radii vary with latitude in the same sense as the

Rossby radius of deformation.

The observation (GHA) that covrelation fields did not ex-

hibit a strong vertical dependence led us to choose a single

model parameter to represent the vertical structure. The value

of this parameter, co, was determined so as to gave the best

quantitative fit between the second-order statistics of the

model and of the data. The empirically determined value is

consistent with baroclinic motion dominating the error growth

field. The barotropic mode does not seem to play a major role.

The model results are in good agreement with actual numeri-

cal weather prediction errors, bath for temperature and geopo-
,
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tential fields. The differences between model and data are

typically smaller than those ))etween the data of one hemisphere

and those or the other. We intend therefore to use the global
P

correlation functions produced by the present model in the

development of the G LAS statistical, assimilation method. This

should eliminate the inconsistency produced at present by the

use of ad-hoc, meridionally stratified, empirical correlation

functions (GHA).

The agreement between our stochastic model and actual fore-

cast errors fields for 12 to 36 hour periods validates the as-

sumptions on which the model was derived. Within this period.,

the difference between the potential vorticity fields of the

atmosphere and of the numerical model forecast used in the

comparison is well represented by white noise.

For periods shorter than 12 hours, the lack of balance in

the initial data generates fast inertia-gravity waves in the

model, which violate the quasi-geostrophic assumption implied

in the potential vortici.ty equation. The use of a strongly

damping time scheme, -the Euler-backward scheme, in the GLAS

second-order model, makes these waves negligible all ter 12 hours.

The use of an effective initialization scheme could eliminate

this restriction.

For periods longer than 36 hour's, the forecast errors become

so large that the model equation (2.2) ceases to be a good re-

presentation of the atmospheric governing equation (2.1). The

length of this limiting period is obviously model dependent.

The forecast mr,dei used in obtaining our forecast error data,
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the GLAS 9-level 4 0 latitude by 5 0 longitude, second order

model, has rather large truncation errors, With higher resolu-

tion or higher accuracy models (e.g, Ralnay-Rivas and H.oitsma,

1979) we may expect that the stochastic model will remain valid

for longer periods.

The observation that our stochastic model based on white-

noise forcing fits southern Hemisphere errors better than those

of the Northern Hemisphere is also an interesting result. It
s

indicates the validity of an increasingly well accepted point:

that the lack of proper parameterization of the planetary-

scale forcing can have a very important effect on the forecast

errors.

The interplay between atmospheric statistics and dynamics

which is stressed by this work points the way to further studies

along si„nilar lines. Allowing for such interplay in modeling

efforts might help to improve our knowledge of both deterministic

and stochastic aspects of atmospheric behavior.

A concrete step along this road would be to investigate

the stochastically perturbed potential vorticity equation (w.].)

itself, rather than its steady-state form (2.2). This would

be a nonlinear, time-dependent Langevin-type equation for

large-scale atmospheric flows. Its study appears considerably

more difficult than that of the pre-sent mode f but still acces-

sible by Monte-Carlo simulation with variance reduction. We

hope to report on such a study in a future publication.
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Ap2en 	 . 	 Algorithm for 2anta-d acinnal svotem,

We solve

Ax - b	 (A.1)

where A is penta-diagonal f by LU factorization

A = LU .

The factorization can be derived from the well-known one for

tri-diagonal systems, by noticing that actually add and even

variables in (A.1) decouple. Hence

The algorithm can be performed in the following three steps.

S tep :	 C1 = R 1' C2 = a 2 '

Gk = 'k - (Y),--2/Ck-2?ak-2 j k = 3,... ,n
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stop 2 (Forward elimination, i.e., solve Ly w b),-

yj " b,	 Y2 - b 1	
0

Yk = b k	 yk-2 yk,2/CX-2 I k m 3r ... fn

Ste2 3 (Back substitution, i.e. f solve Ux - y)t

x ft " Yn/Cn I X-i-i-1 = Yn-l/Cn-I I

Xk ts (y k - a k X )c +2 ) /Ck r k - n-2 f n-3 1 ... 1 1 .

- "r i *



35.

A22 endsx B. Stratified snolim

Monte-Carlo simulation is a method for the solution of

stochastic model equations using sample realizations. The

individual realizations are computed by using pseudo-random

number generators to specify the random functions nrescribed

as data of the equation. Basic random number generators produce

variables which are to a good approximation uniformly distributed

on the interval C-1,1) and stochastically independent.

We used the following stratified sampling procedure

(Kleijnen t 1974, Ch,3), Let N be the number of realizations in our
0

sample, We classify the random value taken by any sampled R11Sf

.4
	 at each grid point	 -! ► r% into exactl y one of N classen.

These classes are formed by dividing the range C-1,13 into N non-

overlapping exhaustive intervals, Ile picked the range of each class

to be of equal length. The functions f i (e,X) and £k (e,X) are inado

dependent for i ^ k, jp kG(l f 2 j .. *f N) I by taking at each grid

point f i (0,N) and f k (O,X) from different classes. The objective

of stratification is to lead to variance reduction.

We solve Eq. (4.1) with f(OX) = f i O t X) to obtain

= 1 1 2 1* .., N. Thus the ^, themselves will be dependent.

After experiments with both independent and stratified sampling,

the superiority of the latter was clearly established. A sample
I

size of N = 200 gave satisfactory results when using stratified

sampling; independent sampling with N = 700 gave results whose

variance was still much too large to be satisfactory.
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Table 1. Test of our extended fast Poisson solver.

Trial
•	 function

Form of
forcing
function

C M N Max Max ^^,n-^

Cos 2 6 cos y analytic - sin 2 0 16 32 1 8.16	 -2

to of
32 64 1 2.3	 - 2

of
- 3.6	 +7 16 32 1 8.3	 -8

to -10.0 16 32 1 3.57	 -2

of -sin 2 0 32 64 1 2.9	 -12
difference

-cos 2 0 cos 3X analytic It 128 0.02 7.19	 -3
48

cos¢ cos 2 0 " - 10 sin 2 0 32 64 1 1.18	 -2

-5 sin 2 0 32 64 1 1.36	 -2

-sin 2 0 32 64 1 2.3	 -2

(sin 0	 sinX 32 64 0.25_< 9.14	 -4

Cos 2 0 cosx)

The RHS of (4.2) corresponding to a given trial function was
computed either as grid point values of the residual of that
function (4.1) ("analytically") or as the residual of that func-
tion in (4.2) ("finite-difference"). M is the number of grid
intervals into which the meridional coordinate a was divided;
N is the number of grid points in the longitudinal direction.
A. number a.b + c means (a.b) x 10+c.
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Table 2. Forecast fields from the DST -6 experiment S2a (GHA)
which were available for our computations.

Date	 12h	 24h	 36h	 48h	 COh	 72h

Peb.

1
3

5

7

9

1.1

13

17

19

23

25

27

29 * ,^

M I r C 

4

Forecasts were initiated at 0000 GMT on the day indicated in the
first column. They were carried out for 72h each, but some of
the existing prognostic fields were lost in data storage, trans -

mission or retrieval. The columns in the table indicate the
availability of the fields at successive synoptic times for each
forecast. NMC objective analysis were available at all of the
corresponding synaptic epochs. Beyong 48h there were too few
fields available to constitute a statistically valid sample.
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426
'fable 3. Comparison between model correlations and

correlations of the data fields.

c0 ^1 (Ar) £2 (Ar) L1 (Ar) L2 (Ar) R 1 (r (m) ) A 2 (r (m) )

12.15 10 .322 .379 .379 .442 .849 .857

12.14 50 .132 .176 .207 .257 .640 .685

12.13 70 .108 .143 .183 .221 .589 .647

12.12 80 .101 .134 .178 .212 .569 .633

12.11 90 .0967 .129 .175* .207 .552 .620

12.10 1.00	 . .0943 .126 .176 .206* .536 .609

12.9 01 .0938* .125* .180 .208 .522 .599

12.8 120 .0946 .125* .185 .213 .510 .590

12.7 140 .0981 .130 .201 .226 .488 .575

12.6 160 .103 .136 .219 .242 .470 .562

12.5 170 .106 .140 .229 .252 .462 .556

12.4 180 .108 .144 .239 .261 .455 .550

12.1 190 .111 .147 .248 .270 .448 .545

12.2 230 .122 .162 .289 .307 .424 .528

12.3 270 .133 .176 .329 .342 .405 .515

24.8 140 .0745 .0986 .153* .172 .488 .575

24.7 150 .0744* .0970 .155 .171* .479 .568

24.6 160 .0748 .0965* .159 .172 .470 .562

24.5 170 .0756 .0968 .163 .174 .462 .556

24.4 180 .0768 .0978 .169 .178 .455 .550

24.1 190 .0784 .0994 .174 .182 .448 .545

24.2 230 .0860 .109 .203 .206 .424 .528

24.3 270 .0939 .120 .232 .234 .405 .515



Table 3. (Continued)
43

co £1(Ar) z2 (Ar) L1( Ar) L2 (Ax) ti (r W) R 2 (r W)

36. 6 160 .0898 . 114 .191* .203 •	 .470 .562

36.5 70 .0891* .112 1.193 .202* .462 .556

36.4 180 .0888 .112* .195 .203 .455 .550

36.1 190 .0889 .112 0199 .20-5 .448 .545

36.2 230 .0918 .115 .217 .218 .424 .528

36.3 270 .0965 .123 .239 .238 .405 .515

48.6 : G0 
a

.0952 .123 .202* ,21.9 .470 562

48.5 170 .0937 .120 .203 .216 .462 .556

48.4 l80 .0928 .117 .204 .213 .455 550

48.1 190 .0923* .116 .206 .212* .448 545

48.2 230 .0928 .113* .219 .214 .424 .528

48.3 270 .0951 .116 .235 .226 .405 .515

24/36.8 140 .0808 .104 .166 .182 .488 .575

24/36.7 150 .0792
r

.102 .165* .179 .479 .568

24,/36.6 160 :0786 .0999 .167 .178* .470 .562

24/36..5 170 .0785* .0991* .170 .178* .462 .556

24/36.4 180 .0786 .0991* .173 .180 .455 .550
24/36.1 190 .0791 .0996 .177 .183 .448 .545

24/36.2 230 .0830 .106 .196 .200 .424 .528

24	 36.3 270 .0887 .115 .219 .224 ' .405 .515

The first column indicates the label of the numerical experiment, based
on the data set and on the value of co used. The data sets are identified
by the length of the forecasts on which they were based: 12h, 24h,	 36h,
48h or combined 24h and 36h.	 The second column gives the value of co.

`	 The next four columns contain the various norms of the dif,.erence Ar

L	
between model and data correlations (Eqs. (7.1) and (7.2)). These columns
contain a star next to the minimum value of each error measur-- fo,- t!^e
corresponding column and data set. The values of co which	 to
the largest number of stars in their own row and in the two a. 41 Went rows
are boxed. The last two columns give the norms of the model correlations
themsel.vpq .
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