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Abstract:

Parallel electric fields can exist in the magnetic mirror
geometry of auroral field lines if they conform to the quasi-
neutral equilibrium solutions first suggested by Alfve'n and by
Persson. Such solutions may contain double-layer discontinuities,
reflecting the disparity between the two sources which contribute
to their plasma population--the hot and rarefied magnetosphere,
magnetically confined, and the cool dense ionosphere, held down by
gravity. This study reviews previous results on quasi-neutral
equilibria and on double layers, and then examines the effects on
such equilibria due to non-unique solutions, potential barriers
and field aligned current flows, using as inputs monoenergetic
isotropic distribution functions. Among the conclusions reached:
(1) Double layer solutions not involving any net current flow are
readily constructed; (2) Such layers may occur naturally and may
involve a significant fraction of the total field aligned voltage
drop; (3) Non-uniqueness of quasi-neutral solutions must be
utilized to determine the position of such layers; (4) The
gravitational potential barrier which confronts escaping ions
plays an important role and must be taken into account; (5) Out-
bound field aligned currents are carried primarily by
precipitating electrons and only a very small fraction of them is
due to ionospheric positive ions; (6) Inbound field aligned
currents require an appreciable voltage to drive them, and their
density is no greater than that of outbound currents; (7)
Precipitation with no net J" sets up a "thermoelectric potential"
similar to the one predicted by Hultqvist. Overall, the model
suggests that quasi-neutral equilibria can explain many of the
observed features of field aligned currents and of their
associated electric fields, though solutions at this stage do not
extend to voltages exceeding 2.2 kV.
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1. INTRODUCTION

Until the early 19703 physicists studying the Earth's magneto-

sphere widely believed that magneto3pheric electric fields con-

tained only a negligible "parallel component" E " along the direc-

tion of the ambient magnetic field. Instead, it was generally

(though not exclusively) held that, because charged particles in

the magnetosphere moved easily along magnetic fie' ^l lines, any E.

would quickly transport ions and electrons in opposite directions,

and that the contributions of such particles to the electric field

would quickly nullify E".

There exists now convincing evidence that E " does in fact

occur in the Earth's magnetosphere. In particular, electrons in

discrete auroras have energy distributions which suggest that they

have undergone acceleration by E " , and beams of 0+ ions have been

observed rising from the ionosphere, apparently extracted by a

parallel electric field (see Torbert and Carlson, 1980; Mozer and

Torbert, 1 980; Gorney et al., 1981; Mozer et al., 1980; earlier

literature is reviewed by Stern, 1979). It should be noted that

both above examples of E„ are associated with a field-aligned

(Birkeland) current J " flowing upwards, out of the ionosphere.

Two main approaches have emerged for explaining these obser-

vations. On one hand, it has been argued that collective plasma

phenomena, commonly known as "anomalous resistivity" (Papado-

Poulos, 1977) hamper the flow of ions and electrons in response to

E" and allow the source of ,j " to maintain a finite voltage drop.

The other and older approach relies on processes which maintain

charge neutrality in a plasma, both those that spread out E" along

a flux tube in a mirror geometry ( Persson, 1966) and those that

concentrate it in thin transitions or so-called double layers
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(Block, 1972).

In this work we the second mechanism is examined assuming a

simplified distribution function and a one-dimensional geometry

(i.e. each flux tube is considered in isolation from the rest).

This does not imply that "anomalous" processes might not also be
a 	 present, but rather (to echo Laplace's words) that "this hypo-

thesis was not needed" ;in fact, if collective interactions modify

the distribution function appreciably, the proper watt to proceed

is probably to incorporate such modification in the present model

(rather than introduce an "anomalous resistivity") and then derive
the electric potential • as before_ from considerations of charge

neutrality. Assuming a magnetic mirror- configuration _along which

there exists a finite voltage drop, qualitatively restimblfng-

situations occuring in the magnetosphere, equilibrium solutions

were sought which take into account the presence of ionospheric

plasma, gravity, potential barriers and field-aligned currents,

and the uniqueness of such solutions obtained was also examined.

This work extends the study of Chiu and Schulz (1978) and also

[as noted in subsection (e) below] the efforts of Lemaire and

Scherer, Lennartsson and Knight. Up to a limiting value of about

2.2 kV a unique solution was always found to exist, and the

voltage drop was always shared between, an extended "mirror type"

E„ and an abrupt "double layer" transition, with most of the

voltage drop appearing in the former. The breakdown at 2.2 kV will

require additional study, and may require the addition of a

"trapped" particle population (below). The prevalence of "double

layers" does not preclude the possibility that with appropriate

distribution functions they may be absent, as found by Chiu and

Schulz (1978).

Sections 2 and 3 describe the mathematical tools for handling

E,, and place the present work in the context of other research and

of the relevant observational evidence. We then introduce one by

one the additional factors which need be con sidered--uniqueness,
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gravity, accessibility and loss cone flows--ending in section 6

with a model of Jn, qualitatively resembling the "region 1"

Birkeland currents, both for downward flowing and upward flowing

currents.

2. QUASI—NEUTRAL EQUILIBRIA

a. Basic Concepts

When a plasma is immersed in a homogeneous magnetic field and a

parallel voltage drop is imposed along it, ions and electrons move

in a way which tends to cancel E "--in Figure 1a, ions to the

\	 right, electrons to the left.

On the other hand, when the confining field has a mirror

configuration, as in the dipole field of Figure 1b, and a voltage

is imposed between the middle ("equator") and the ends of each

field line, E " no longer produces such a simple unidirectional

shift. While a few of the particles are shifted into the loss cone

and are lost, most of them keep returning to the equator, but

their mirror points are now shifted, the dependence of each

particle's total speed on position is changed and the net effect

of all such changes on the distribution of space charge is rather

complex.

It was Per sson (1963,1966; also Al fven and F11thammar, , 1963)

who first pointed out that under these conditions, an equilibrium

was still possible, in which the particles coexist with a

nonvanishing E". Since ions and electrons are affected by E„ in

different ways, the trajectories of the two species differ, but

when one integrates over the entire distribution functions, charge

neutrality is still maintained at every point. Persson called this

a quasi neutral NN) equilibrium, the qualifier "quasi" serving as

a reminder that the calculation has chosen to ignore the tiny net

space charge needed for maintaining E„ itself.

W-11
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Per sson himself derived the QN equilibrium supported by a mono-

energetic "almost isotropic distribution function" (AIDF),

isotropic except for the loss cones in which it vanished. We shall

derive this solution in subsection (c) below--in part, to

introduce notation, in part to illustrate the integration scheme

(which differs from Per son's and which will be used throughout

this study) and to derive some characteristic features of ON

equilibria.

The basic magnetic configuration will consist of one half of a

Closed dipole-like flux tube (Figure 2), on which points are

identified by their distance s from the equatorial plane (the

other half is assumed to be a mirror image and therefore does not

require separate treatment). At s=L there exists a "loss surface"

beyond which all particles are absorbed, and subscripts (o, L)

will refer to quantities evaluated at s=0 and s--L.

Let the field intensity B grow monotonically with s, and

let the "mirror ratio" be defined (as in Persson's work) by

y(s) = B(3)/B 0	
s

With YL = Y(L). It turns out that Y (rather than s) is the most

convenient variable to use along the flux tube; furthermore, its

use allows the present formalism to be extended to "open" field

lines extending to interplanetary space, on which distance

measured along field lines is unlimited, but where B tends to an

asymptotic interplanetary Bo . The electric potential 0 will be

assumed to vanish at the equator (s=0, Y=1) and to have a positive

value oL at the loss surface.

In what follows W will denote total energy (all calculations

are nonrelativistic), V initial velocity, subscripts (i, e) will

refer to (ions, electrons) and (A., ") will identify components



Perpendicular and parallel to the magnetic field. If subscript

zero refers to the poi.:; with yul, we have for ions

Wi = (mi /2) Voi = (mi/2) (vn + vy) + e O(s)	 (1)

and for electrons

We = (m e/2) VOe =.(me/2)(vn + v2) — e 00)	 (2)

b. Almost Isotropic Distribution Functions

Distribution functions are most conveniently expressed in terms

of the constants of motion preserved by the particles which they

describe, and in the present example such variables are the energy

W and the magnetic moment µ. However, any two independent func-

tions of (W, W ) can also serve, and it is often convenient to

choose as such functions the equatorial velocity components (von,

vol). At the equator, the stably trapped ions with the smallest

pitch angles are those that mirror at s=L (vnL=O) and (assuming

that they exist--see below) theirs is the largest v on, satisfying

voin (max) _ (2/m i) [Wi (1 — 1/YL) + e0L/YL]	 (3)

Some judgement must be excercised in using this equation: if

e0L>Wi the lhs exceeds (2Wi/mi ) and this cannot be: if that is the

case, no equatorial ions reach s=L and the correct limit is

clearly

v2in (max) = 2Wi/mi	(4)

An almost isotropic distribution function (AIDF) F i (von,voy ) for

ions at Y=1 can thus be written

F1 = foi d(von + voy — Voi)

0 < van 2 < Von 2 (max)	 (5)
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F  = 0	 otherwise

Similarly, for electrons

`	 Fe = fOe 6(von + v04. - Voe)

t	 0 < vo„ 2 < 11.0 

0" 	 (6)

Fe = 0	 otherwise

when e

vai„(max) _ (2/me)[We(1 - 1 /YL) - eeL/YL}	 (7)

The density of either species, at any point is

n = 2w f F vl dvL dv„	 (8)

Using this with (5) and (6), one can readily derive the

equatorial densities nOe and noi ; charge neutrality then demands

n0e=noi , and from this it follows that a certain relationship

between fOe and foi (see eq. 26 below) must be satisfied.

In deriving n (for either species) at an arbitrary point along

the flux tube, it is convenient to split the integration of (8)

into two parts--first, integrate over vl to obtain a one

dimensional distribution function G(v„) and then derive n

G(v„) = A f viF d 	 (g)

.r
n(s) =	 J G(v„) dv„	 (10)	 -

x
In the present model, the second integration is particularly
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easy to perform and to generalize; furthermore G(v " ) will be

needed in the analysis of "double layer" discontinuities which

have to be incorporated in the model.

We next try to evaluate ( 9) for ions with an AIDF at some given
value of s. The conservation of energy, which earlier gave the

bounds of voi" at 3=0. can similarly give the bounds of v  at any
other s, and the result ( at all l ovels of this study, each of

which may use different bounds) takes the form

v"(min) < v"
2

	v„(max)	 (11)

Using ( 1), eq. (9) now becomes

Gi (v" .$) = if	 d [ v„ + vl +

+ (2e/m i )Q(s) - V02 1 
dvl	 (12)

It follows that

Gi ( v" .$) = * f 0

	

v2(min) < v„ < v„(max)	 (13)

Gi (v " .$) = 0	 otherwise

Thus the dependence of G(v " .$) on v" is that of a slab

distribution ("boxcar") anci is readily integrated to

n i (s) = 21foi [ v" (max) - v" (min)]	 (14)

The factor 2 arises because v " may either range over positive

values from v " (min) to v " (max). or over negative values from

-v„(min) to -v" (max). The first distribution represents

downflowing ions, the second one ions which rise after having

undergone mirroring; each of these contributes equally to ni.
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Similarly, for electrons

n e(s) = 21fOe [v„(max) - v„(min) )	 (15)

Superficially, this resembles (14), but one ought to note that

in general fOe differs from foi and that furthermore the limits on

v2 (which we have chosen not to encumber with additional indices)

differ for both species.

c. Person's Solution

If the ionospheric plasma source is ignored, the boundary

conditions which constitute the input of the problem are the two

distribution functions (Fi ,F e) and the total voltage drop 0(L) =0L

between s=0 and s=L; ( F i ,Fe) must be such that ni=ne at s=0, and

both densities must vanish at s=L. What is not yet determined is

the detailed voltage profile, given by the function 0(3), although

it is precisely that profile which determines the densities in

(14) and (15).

The question raised by Per son (and before that, by Alfven and

FlIthammar [1963], whose eq. (13). sect. 5.1.3, is analogous to

(28) here) was whether among the many possible profiles Of 4(3)

there existed any for which the plasma was neutral. Both n e and n 

depend on 0, and hence the neutrality condition may be formally

stated as

n e[s,0(s)] = n i [ 3,0(3)]	 (16)

This may be viewed as the equation defining the profile 0(3)

necesary for QN equilibrium. In most cases, e.g. when Maxwellian

distributions are used or where several populations are superposed

( Chiu and Schulz, 1978), the functional form of (16) is so complex

that it can only be handled by numerical methods. In the present

case, however, an analytical solution may be derived as follows.

Following the notation of Per son (1966), auxiliary functions
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a(a) and B(s) (not Euler potentials) , depending on both y(s) and
0( s) , are introduced as

a(s) _ [We + ef(s) ] /Wey( a)	 (17)

B(a) _ [Wi — ea(s) ]/Wi Y( s)	 (18)

Since •(0)_0, Y(0):1, it follows that

a(0)= BOW	 (19)

Conservation of energy now gives

Yew  = me(vn + vi)/2	 (20)

Narrowing our attention to only those electrons that mirror at s=L

YLaLWe = me vL4. = me vi ( YL/Y) 12	 (21)

Hence, for electrons anywhere

(me/2) v„(max) = y(s)(a — %L)We	 (22)

Similarly, for ions

(m112) v„(max) = y(s)(B — 0L )W1	(23)

We shall assume here that for any s and for both species

v„(min)=0, i.e. that at any s there exist particles of both

species which mirror locally. With the polarity assumed here, this

always holds true for ions (pro ,- <<ed that they can reach s at

all), but it may fail for electrons, which are accelerated

downwards by E " . It could happen, in principle, that the v " of

electrons is increased by E” faster than it is diminished by the

conservation of y (by the "mirror force"), so that local mirroring

of electrons does not take place, and if this state of affairs
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persists all the way to the loss surface, then all such electrons

are lost. To avoid this possibility it must be assumed here (and

may be confirmed later by examining the solutions) that E M in

everywhere sufficiently weak to prevent this from happening.

Charge neutrality implies

n2( s) z n2 ( s)	 (24)

Substitution of (14) . (15) • (22) and (23) then gives, after

cancellations

foe (We/m e) [a(s) - aL] =foi (Wi/mi ) 19(s) - BL]	 (25)

Substituting (19) here gives the relationship between f Oe and foi

required for neutrality at 3=0:

fO2 (W
e /m') [1 - aL ] 2 foi (Wi /mi ) [1 - BL ]	 (26)

From the law. two relations it follows that

[a(s) - aL]/[1 - aL ] =

= 19(s) - 6L]/[1 - O L ]	 (27)

Using (17) and (18) to isolate e(s) than gives

#(s) = eL [Y(s) - 1]/[ YL - 1]	 (28)

or

eL - m(s) _ [eL/(YL - 1)] [YL - Yis)]	 (29)

Thus the electrical potential varies linearly with Y and with the

magnetic intensity B.
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d. Implications and Applications

Two properties characterize the "Perssonian" solutions obtained

above. First, E " is exactly proportional to the parallel component

of vB (i.e. to Was) and hence to the "mirror force" which

maintains u constant. Because of this, QN equilibria are sometimes

said to involve a balance between the mirror force and the force

due to E" (e.g. Al;ven and FBlthammar, 1963).

Secondly, the plasma density n in this solution peaks at the

equator, decreases linearly with increasing y(s) and equals zero

when -(=YL. This leads to a serious question: if one extends this

model by adding a cold dense -ionosphere at s=L, is it possible to

bridge these two dissimilar plasmas by a smooth continuous profile

of n(s) and Vs) and still maintain quasi-neutrality? This has

been one of the key issues of the present study, and as will be 	 11

seen, the force of gravity must then be included to preserve the 	 j

high density of the medium below. 	 i

A casual observer may object that the parallel electric field

sustained by a ON equilibrium is the result of an unequal and

anisotropic pitch angle distribution of magnetically confined

particles and that as such particles are scattered by collisions

and by collective plasma processes and become increasingly

isotropic and maxwellian, such E" would rapidly decay.

There does in fact exist an anisotropy in all models discussed

here, due to the existence of a loss cone (just as it does for any

mirror-confined plasma) , but this is not the usual source of E".

One might consider, in principle, a "static" E. sustained by an

initial disparity between F  and F e , wi`hout any continuous

injection of new particles or energy, and such an E " would indeed

decay; in fact the plasma itself would ultimately escape through

the loss cone, as observed in mirror machines. In the

magnetosphere, however, most sources of E„ are "dynamic" rather

than "static," resembling a battery rather than a charged
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capacitor and imposing boundary conditions which tend to maintain

a finite voltage drop 000W) in spite of a constant drain of

plasma and energy. Four examples of such sources of E" are

described below, and at least 3 of these are of the "dynamic"

type.

i. "Decoupling"

Observations of the geomagnetic tail have sometimes detected

large-scale plasma flows at velocities of the order of 1000

km/sec, not accompanied by corresponding effects in the ionosphere

(Coroniti et al., 1978). Such decoupling between distant regions

and the ionosphere is one way by which E" may be produced.

Assuming for simplicity that the electric field can be represented

by a scalar potential 0 and that 0 changes in distant regions but

not in the ionosphere, then a gradient of 0 along the field line

must exist, and this is indeed possible if a QN equilibrium can be

established. The mirroring plasma in this case serves as a buffer,

Shielding the inner regions from rapid potential changes in the

outlying ones. Of course, such buffering could also arise with

inductive fields, except that now 0 may no longer be used.

Note that except for momentary overflows near the edge of the

loss cone, there exists no need for net field-aligned currents in

this case.

ii. "Thermoelectric" E"

It may happen that the loss cone is filled, i.e. that the

distribution function for trajectories inside it has about the

same value as it has for those adjoining it. Such filling may

result either from scattering in the source region y=1 or from the

arrival of fresh plasma, convected from adjoining field lines

where loss processes have not yet depleted the loss cone (e.g.

plasma on freshly merged field lines in the polar cusp).
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In all such cases both electrons and ions are precipitated, but

if ion and electron energies are comparable, the current carried

by the faster electrons will greatly exceed the ion current. If no

provision for closing this current exists, the ionosphere will

acquire a negative potential and electrons will be extracted from

it, until in equilibrium the net current vanishes. This mechanise

was first proposed by Hultqvist (1970, 1971) and was further
studied by Lemaire and Scherer (1974) .

If no processes replenish the hot plasma population at y=1, then

this E" is "static" and will gradually decay, as collisions and

wave-particle interactions drive particles into the loss cone. In

particular, the positive potential existing at y=1 will encourage

instabilities which precipitate ions, an effect which has been

blamed for poor plasma containment in mirror machines and which is

further discussed in subsection (2-e). On the other hand, if the

loss cone is continually refilled by convection (as in the example

of the cusp, above), this type of E " is expected to maintain

itself.

A similar effect is also important whenever the circuit is

closed and a finite j " is maintained. If a moderate j " flows from

the ionosphere outwards, it is only necessary to reduce the

outflow of ionospheric electrons from the preceding case, and it

is possible for j " to be actually opuosed to E" . A larger value of

J,, may have E" =0, so that no electrons are extracted and all the

current is due to the loss cone, while still higher current

densities require E " in the same direction.

When j " flows earthwards, on the other hand, the voltage drop

must exceed its zero-current equilibrium value, so that the

current of electrons driven out from the ionosphere exceeds the

precipitating current. All these situations are analyzed

quantitatively in section 6 below and the results are summarized

in Table 5.
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iii. "Divergence of E"

If the magnetosphere is "open" and a bundle of polar field

lines extends into interplanetary space--a situation believed to

exist at least part of the time--then a voltage will exist across

those lines. The reason lies with the flow of the solar wind,

which produces (as viewed from the frame of the Earth) an inter-

planetary electric field of about 10 kV/R E. Open field lines then

tend to transmit this vol".- to the polar ionosphere and a

dawn-to-dusk voltage of the order of 50 kV (somewhat less than

might be ex^e^t.,,%i--see Stern, 1977, sect. 4c) is in fact observed

in the ionosphere across the polar caps.

Because the polar ionosphere is an electrical conductor, this

voltage produces a current flowing across it from dawn to dusk,

and this current will be completed by Birkeland current sheets

along the flanks of the polar cap, as shown schematically in

Figure 3 (for the sake of simplicity, the effects of the

ionospheric Hall conductivity are neglected here; such effects

require departure from the simple 2-dimensional model of Figure 3,

but lead to no qualitative differences). These current sheets seem

to follow the "region 1" flows observed by the Triad satellite

(Zmuda and Armstrong, 1974; Iijima and Potemra, 1476).

To the lowest approximation, the observed E is uniform across

the polar cap, and j " associated with it flows only from the polar

cep's flanks. Such behavior requires that the voltage distribution

in the source region CD (Figure 3) be uniform, for then a constant

current j	 along AB in the ionosphere will create also there a

uniform electric field E (of about 20 volt/km), and no voltage

drops will exist along A'C' or A"C".

If field lines were perfect conductors, then the sheets AC and

BD would indeed be infinitely thin and the above picture could be

valid. Actually, however, j„ is limited to the order of 1 yA/m2,

so that the sheets are spread over a width AA' of about 200 km, as
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is shown by observations (Iijima and Potemra, 1976, Figures 1; the

reasons for this limitation are explored in section 6 below). By

our hypothesis of a uniform source field, there exists in the

source region a voltage drop CC' of about 4000 volts across each

sheet. However, the drop AA' is of an order only half as large,
t

because j diminishes gradually along AA' and by Ohm's law, so

does E., . Thus parallel voltage drops of up to 2000v will arise

along j " , where they are (presumably) maintained by a QN

equilibrium.

The above is very similar to a process proposed by Lyons

(1980, 1981) , by which E " was attributed to "the divergence of E."_	 t

A feature of that theory is that it predicts a gradual change in

the magnitudes of both E. and J. across the thickness of the

current sheet. Observations of E" ( Mozer and Torbert, 1980)

suggest such a variation exists, but they should be treated with

caution since they are indirect and represent averaged results

from many passes. Single-pass profiles of j " ( Iijima and Potemra,

1976, Figures 1) suggest that the magnitude of j„ is relatively

constant across the sheet.

iv. "Charge Separation"

The dominant flow of plasma into the vicinity of the Earth takes

place from the tail and requires large-scale electric fields

oriented from dawn to dusk, perhaps a combination of quiet-time

fields related to the average magneto spheric convection and

transient fields related to substorms ( Stern, 1977 and ref.).

Now a strict ExB/B2 drift acts equally on ions and on electrons

and does not create a net space charge. This does not hold true,

however, for magnetic drifts (curvature and gradient) which, when

acting on particles convected from the tail, move ions towards

dusk and electrons towards dawn. This tends to produce charge

separation and was first studied by Schield et al. (1969) , who

proposed the mechanism as a source of field-aligned currents and

0!
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who also noted the existence of "Alfven layers" accessible only to

particles of one sign.

The process is complicated by time dependence and by other

features ( Wolf, 1975) , but there seen to exist strong indications

that some such type of "charge separation" is indeed the cause of

"region 2" currents reported by Iijima and Potemra (1976), which

occur at lower latitudes than those of "region 1" (preceding

subsection), peak near midnight and are greatly enhanced during

high magnetic activity. Such charge separation might well cause

the parallel voltages inferred from observations of energetic ions

(Ghielmetti et al., 1978; Gorney et al., 1981) in the morning

sector and near midnight. The parallel voltages associated with

such currents will be further discussed in section 8, after some

relevant models have been developed.

e. Relation to Other Work

While the work of Alfven and F81 thammar (1963) and of Per sson

(1963, 1966) attracted only limited attention, some further

calculations along this direction have been published. They

include the work of Lemaire and Scherer (1974, 1978), Lennartsson

(1976, 1977, 1978. 1980) and of Chiu and his co-workers (Chiu and

Schulz, 1978; Chiu, Cornwall and Schulz, 1980; Chiu and Cornwall,

1980). In addition, Knight (1973) assumed such that such

equilibria existed and proceeded to derive the contributions to ,)"

from the various particle species and their dependence on the

total potential drop. Several workers have applied the concepts of

QN equilibrium to other matters, notably Whipple (1977) who used

them in the analysis of pitch angle distributions and Lyons et al.

(1979) who used some results by Knight (1973) to argue that the

energy flux density of the discrete aurora should vary as the

square of the accelerating voltage, in agreement with some

observations; this matter has also been studied by Fridman and

Lemaire(1980). Lyons (1980, 1981) also implied QN equilibria in

his model of E", discussed in subsection (d-iii) above.
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In an independent development, QN electric fields have become

important to the design of magnetic mirror machines for the

containment of fusion pla sna (Cohen et al., 1980). In simple

mirror machines there always exists a loss cone, through which

some particles escape: in analogy with the "thermoelectric

Potential" of (2-d-ii), this raises the mirror plasma to a

positive "ambipolar potential" caused by the preferential loss of

electrons, a potential which in its turn slows down the loss of

electrons but promotes instabilities which lead to ion loss. In

the tandem mirror geometry (Coensgen et al., 1980; Schwartzschild,

1980) , proposed independently by Fowler and Logan (1977) and by

Dimov et al. (1976), this liability is turned into an asset: the

main mirror confinement cell is joined at each end to a small

auxiliary mirror cell containing relatively hot plasma, which

attains a relatively high positive potential, and the result is

that "end losses from (the) center cell are reduced by (the)

electrostatic end-plug barrier of positive potential, which turns

back those low-energy ions which escape through the magnetic

mirror" (Coensgen et al., 1.080).

All these calculations assumed the presence of a conducting

ionosphere, but among those that derived voltage profiles, some

found evidence for "double layers" while others did not. Lemaire

and Scherer (1978) obtained such a layer numerically and

Lennartsson (1978) argued that it was impossible to avoid doing

so, although later (Lennart sson, 1980) he changed his view to

maintain that QN equilibria in general were unstable. On the other

hand, Chiu and Schulz (1978), using a rather elaborate numerical

simulation, published profiles (loc. cit., Figs. 4 and 5; also

Chiu and Cornwall, 1980, Fig. 3) which were free from

discontinuities. However, their solutions are not necessarily

unique, and the authors themselves have stressed (loc. cit.,

P.639) that "..our model is not intended to exclude the possible

existence of double layers or electrostatic shocks. Indeed, it is

quite easy to obtain in our model a 'solution' which has the

characteristics of a double layer... However, such a potential

ti
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distribution does not satisfy our accessibility criterion.."

The present study is close in spirit to the work of Chiu and

Schulz (1978) but it stresses some points not considered by those

authors, while other features are simplified. Specifically, Chiu

and Schulz used realistic bi-maxwellian distributions of
i

ionospheric and magnetospheric electrons and ions, and they also

included scattered and "trapped" populations and the effect of

gravity. However, they did not consider the uniqueness of their

solutions, and they selected only such solutions that satisfied an

"acce31bility criterion",.meaning that whenever particles with

certain conserved properties (e.g. v and W) had access to two

points (A,B) on a field line, they also had access to all points

in between (accessibility is absent if a potential barrier exists

between A and B, so that a (v,W) particle moving from A to B is

turned back at some in-between point) . The existence of complete

accessibility simplifies the calculation, but there is no

compelling reason to expect it to hold in nature.

In the present study the distribution functions are greatly

simplified: a magneto spheric AIDF is used having W i =We=2 keV at

s=0, while another one, for ionospheric particles at s=L, has

Wi=We=0.25 ev; there exist no trapped or backscattered

populations.

On the other hand, this work traces the full range of solutions

of (16) and exploits their non-uniqueness to satisfy constraints

due to double-layer type discontinuities. It also explores the

effect of a potential barrier at low altitudes, caused by gravity,

which interferes with accessibility. Finally, situations are

studied where the loss cone is not empty and field-aligned

currents flow. The aim has been not to create a realistic model,

but to explore the qualitative features of QN equilibria and by

doing so, gain insight into the processes involved and thus pave

the way to more elaborate treatments.
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The present calculation ignores the small charge densities

(nine) required by Poisson's equation for maintaining EM . These

charges can in principle be taken into account by the following

recursion scheme. First, using the QN approximation (16) ,

calculate the zero-order voltage profile 4init(Y), in the manner

derived in this study. Then, using Poisson's equation, derive

n1( Y) and ne(y) , and with them proceed to solve a modified version

of (16)

ni(0.1r) - ne(O.Y) = ni(y) - n1(y)

This is probably best handled by exp&".ding

e( Y ) = finit(Y) + 41(Y)

and solving for the small correction •'. Because of Poisson's

equation, e' will next require small corrections to be added to

(nine), which in turn produce a further correction to 0. Assuming

the process converges, 4 may thus be derived to an arbitrary

accuracy.

However, the fact that the present study is strictly

one-dimensional, with each flux tube considered completely apart

from those adjoining it, introduces a basic flaw into this scheme.

In the polar regions of the Earth, where E„ is important, there

also exists a considerably larger convection field E 1 . As noted

by Chiu and Cornwall (1980; top of col.2, p.546) the free charge

densities (ni.ne) required to satisfy Poisson's equation then

consist of two parts, one related to E. and the other to Ems, and

the latter part completely overshadows the former: while E„ alone

would require n'/n,r10-8 , E.L. requires n'/n,r10-2-10 3 . Because of

this the errors corrected by our recursion scheme are far smaller

than those introduced by the assumption of one-dimensionality and

left uncorrected.

Practically, of course, n'/n in either case is small enough to

suggest that (16) will indeed yield a rather good approximation to



22

.(Y).

The next section is devoted to an exposition of some models of

double layers, used in this study. Beginning with section 4 the

various features listed above are added to Person's simple model

one by one and the results are discussed and evaluated.

3. DOUBLE LAYERS

a. Definition

It is an indication of the controversial nature of double

layers that opinions are divided even about their definition (Kan,

1980). This study will use the following definition:

"A double layer is a discontinuity of the electric field,

resulting from the tendency (or 'loosely,'desire') of the

plasma to maintain charge neutrality in the regions which

adjoin it."

While Kan (1980, 2nd para.) has stated that "the electric
current is an essential element in a double layer," the above

definition does not postulate any current flow (in common with a

definition used by Block, [1978]; a similar attitude is expressed
by Carlqvist, [1979], and in a recent work by Perkins and Sun
[1981]). Indeed, J" vanishes in all models investigated here

except for those of section 6, yet "double layer" discontinuities

are found to exist in all cases. Nor do current-free

configurations represent artificial situations which are not

likely to arise in nature, since two of the examples of subsection

(2-d) above do not require any currents.

A simple example will illustrate the meaning of "...the

tendency of plasma to maintain charge neutrality" (Figure u).

Consider the space between two planar plasma sources A and A,
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threaded by a common flux tube of a magnetic field B (or

alternatively, B_0 : in either case no magnetic forces affect the

plasma), and let each source be able to supply an unlimited number

of particles of either sign. A voltage generator is now connected

between A and B, capable of delivering a total current I and

producing a voltage difference 
OAB 

between its terminals whenever

such a current is generated. What will be the equilibrium

potential profile •(a) between A and B under these conditions?

With the voltage polarity shown, ions are emitted from A and

electrons from B: to simplify matters, it will be assumed that all

Particles of each kind start out with the same speed along AB, so

that at any distance s from the source A all ions and all

electrons have unique speeds v 1 (s) and ve(s). If n 1 (s) and ne(s)

are the corresponding densities, it is easy to see that no

equilibrium can exist in which charge neutrality holds everywhere.

For by the equation of continuity

n i (s) vi (s) = const.	 (30)

and hence

v 1 (s) [dn i /d s] + ni (s) [dvi /d s] = 0	 (31)

Similarly

ve(s) [dn e/ds] + ne(s) [dv e/ds] = 0	 (32)

Thus dv i /ds and dn i /ds must have opposite signs, and so must

dve/ds and dn e/ds. However, since the electric field accelerates
	 a

ions and electrons in opposite directions, dv i/ds and dve/ds are

of opposing sign, so that dn i/ds and dn e/ds also differ in sign,

i.e. the two densities must increase in opposite directions. But

then the neutrality requirement n i (s)=n e(s) for any s cannot be

satisfied.
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Consequently a net space charge must exist at least in part of

the region. Since even a modest space charge requires a rather

substantial electric field, this range will tend to be quite

small. In the final equilibrium E vanishes throughout most of the

space between A and B, and only over a narrow thickness

it	 sDL < s < sDL+ d	 (33)

is the plasma non-neutral. Thin plasma structures of this type are

usually known as sheaths (especially when they occur near

conducting boundaries), but in space applications the term "double

layer" (henceforth abbreviated to DL) has gained currency. A

simple model of such a '.ayer derived by Block (1972. eqs. 1)

clearly shows that given a finite voltage drop 0AB• 
such a

structure can accomodate a wide range of current density j by

adjusting its thickness d: thus it is misleading to discuss the

"resistance" of a DL. Additional details and more elaborate models

will be developed below.

Many studies exist about double layers and other abrupt

transitions of the electric field, and the reader is referred to

reviews and articles by Block (1972. 1978), Goertz (1979),

Carlgvi st (1979) , Levine and Crawford (1979). Kan (1c)75), Kan and

Lee (1980a,b) and Hasan and Ter Haar (1978) , as well as to the

numerous additional references cited by those authors. The model

used here and developed in the next subsection parallels one

described by Hasan and Ter Haar (1978) . In addition, many

laboratory experiments related to the formation of double layers

have been performed, but the only one involving a mirror

configuration somewhat similar to the one studied here is a recent

experiment by Stenzel et al. (1980).

b. A Model Double Layer

i. Densities
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All double layers considered here are one-dimensional, with the

potential 0 depending only on the distance s along a magnetic

field line and ignoring the effects of the curvature of such lines

(i.e. E"_ - d0/ds). When particles confined by a magnetic field

encounter such a layer, only their v " changes, while v l (and

hence v) remain unaffected: therefore, when treating the flow of

plasma through such a DL, it is permissible to use one-dimensional

distribution functions similar to G(v " ) of (9). Furthermore,

because a monoenergetic AIDF is generally assumed, GO " ) will as a

rule be a "boxcar" function, having a constant value for

v" (min) < (v" I < v" (max)	 (34)

and vanishing elsewhere; except for the examples of section 6, the

ranges of positive and negative v " will be the same. Rather

similar assumptions are used in the first of the two models

analyzed by Hawn and Ter Haar (1978), except that there some of

the distribution functions are delta functions (loc. cit., eqs.

3.4), while here all functions are boxcars.

Next, a suitable notation will be introduced. In the

magnetosphere each DL has a lower side, facing Earth, and a higher

side, facing away: by the conventions of Figure 2, the lower side

has the larger value of s and of the electric potential 0

(assuming 0 is monotonic). Quantities related to particles

originating above the ".'L kill be distinguished by subscripts 111",

those originating below by subscripts "2", and subscripts (i,e)

will as before denote (ions, electrons). On the other hand, the

subscript "parallel" will be omitted here (in thie subsection

only!) and v" will be written simply as V. since v,, never

appears. The initial parallel velocities with which particles

arrive at either side of the layer will be denoted by V, with

appropriate subscripts.

Let the layer extend over
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aDL < a < sDL+ d	 (35)

with

•(sDL) _ #DL

(36)

•(aDL+d) _ #DL+ i

A schematic view of the potential distribution inside the DL

and of the different distribution functions involved is shown in

Figure 5. Just. as Y(s) is more convenient than s for denoting

position in GN equilibria, 30 •( s) is the preferred variable for

studying double layers. In what follows the potential of points

inside the DL will be written as

•( s) _ ODL+

(37)

0<	 <,^

and C ( s) will be used to denote position.

The structure of the DL involves four particle populations --

ions and electrons from above, having at t=0 distribution

functions

Gi1(Vi1)	 and	 Ge1(Ve1)

and ions and electrons from below, having at G=* distribution

functions

Gi2(Vi2)	 and	 Ge2(Ve2).

Each of these contains a pair of boxcar distributions, one for

Positive velocities and one for negative ones. For example,

magnetospheric electrons at C=0 have

Ge1 (V e1 ) 	 N e1/Ve10	 if Ve 1g	 < V el < Ve1T
(3$)
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Gel (Vel ) = 0	 otherwise

where subscripts (T,B) denote (top, bottom) of the range, Veto is
the initial velocity'of all ions at ;=0 and Net is a constant; the

division by Veto is included in order to give N et dimensions of

density, for by eq. (10) the density of these electrons at 620 is

nel (0) = 2 N
et (Ve1T - Ve1B)/Veto	 (39)

The factor 2 acknowledges from the existence of both positive

and negative ranges of v, for although the source of Gil is

"above", magnetic mirroring causes equal fluxes of its electrons

to traverse the DL in both directions.

At other values of ;, it remains true that for a given value

of v
el , Gel (

vel) can only either vanish or equal the set value

Nel/Vel0 l because its dependence ( or non-dependence) on v el is the

same as on Vel (this may also be viewed as an example of
Liouville ' s theorem). However, the limits (velT , velB) within
which it differs from zero depend now on S. From the conservation

of energy

ve1T = Ve1T + (2e/me);
(40)

v e1B = Ve1B + ( 2e/me);

and therefore

nel (;) = 2 ( Ne1/Ve1o) [ (Ve1T + ( 2e/me)C)1/2

- (V2 1B + (2e/rre)^)1/2 3	 (41)

Because magnetospheric electrons are accelerated throughout the

double layer, there exists no possibility of a negative radicand.

The situation may differ for magnetospheric ions, which are slowed
down in the DL and whose density is formally
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ni1 (G) = 2(Ni1 /Vio ) [ (Vi1T — (2e/mi);)1/2

— (Vi 1B — (2e/mi) 0
1/2 )	

(42)

In the above equation, Vi1B is the initial velocity of the

slowest ions entering the layer: if

(Vi1B — (2e/mi);)

is negative, then such ions will have already undergone reflection

before reaching ;(s) , and at r.( s) itself the slowest ions will be

those which are reflected locally, from which it follows that

vi1B=0. This property can be expressed with the help of the

Heaviside step function e, defined by

e(x) = 1 if x > 0

(43)

e(x) = o if x < o

In what follows equations will be simplified by the convention

that if the argument of a is not explicitly stated, it is

understood to be the function immediately preceding e. For example

[(Vi1B — (2e/mi);(s))e7 = [(Vi1B — (2e/mi)0 e(Vi1B — (2e/mi);)

(44)

and by the preceding discussion, this replaces the second term in

(42). Similar arguments hold for the first term, and the final

result is

n 11 (;) = 2(Nil/Vi1o) ( [(Vi1T — (2e/mi);)e] 1 /2

— [(Vi1B — (2e/m i );) e] 112
 )	 (45)
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Note that if a "critical ;" ;c exists in the DL such that

(2e/mi) tc ' V i 1i	
(46)

then all magnetospheric ions will have undergone reflection by the

time ;c is reached, and for ; > c c both terms in (45) vanish,

giving

ni1(t) = 0	 (C > cc )	 (47)

In what follows the terminology of Carlqvist (1979) will be

adopted and particles turned back by the electric field in a

double layer will be known as "reflected" particles: the term

"trapped" is often used in the literature, but here that term is

used in the sense given to it by Chiu and Schulz (1978. end of p.

631). for particles confined between a low-altitude magnetic

mirror and a high-altitude electric one.

Expressions entirely analogous to those derived above hold for

particles originating below the layer, except that now the voltage

drop traversed in reaching r.( s) is (1r--r.) and the electrons rather

than the ions are retarded by the field. Thus at the lower

boundary

n e2 ( * ) = 2 Ne2 (Ve2T - Ve2B)/Ve2o 	 (48a)

n i2 (4, ) = 2 Ni2 (Vi2T - Vi2B)/Vi2o	 (48b)

and inside the plasma

ne2(L) = 2 (Ne2/Ve2o) ( [(Ve2T - (2e/m e)(*- 0 )8]1/2 -

- [(Ve2B - (2e/me)(^-^))eJ112 )	 (49a)

n i2 (s) = 2 (N
i2/Vi2o ) (.(V i2T 

+ (2e/mi)(1r-x)]1/2 -
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[Vi2B + (2e/mi)(t-031/2 )	 ( 49b)

Since the plasma is neutral at its boundaries

ne1 (0) + ne2(0) = ni1 (0) + n12(0)	 (508)

net (+) + ne2(i) = nil (*) + n12W 	 (50b)

Consequently only two of the 4 density constants (Nel l Nil l Net'
Ni 2), or tw3 combinations of them, can be specified, and the rest

is then derived from (50). For instance, it is possible to specify

the total plasma densities above and below the layer (the terms on

either side of the equalities in eqs. 50) and derive the 4

constants from them.
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ii. The Jump Condition

In all preceding equations densities were expressed in terms of

c, the electric potential relative to the top of the layer. To
derive the voltage profile c(s), Poisson's equation must be used

d2c /d 32 = -(e/co) [ni ( c) - ne(c)]	 (51)

Following Bernstein, Gf eene and Kruskal (1957), a function V(c)

is introduced, satisfying

dV/dc = - d2c/ds2	(52)

Substituting this in (51) allows V(c) to be integrated

C

VW - V(0) = (e/co) I [ni ( c) - ne(c)] do	 (53)

0

However, it also follows from (52) that

2(dV/ds) = - d/d s [(dc/d s) 2 ]	 (54)

This may be integrated from 0 to the value of s corresponding

to a given c; assuming that outside the layer (and hence also at

its boundary c =0) the electric field vanishes, one finds do/ds=0

at c=0 and hence

2[V(c) - V(0)] = - (dc/d s) 2	(55)

Eq. 55 reveals the intuitive significance of V--if V(0)=0, it

is proportional to E 2 and hence to the energy density of the

electric field. From this the inverse function s(c) of the voltage

profile can be recovered, using

c

s = 
2
-1/2 I [V(c) - V(0)]

-1/2 do	 (56)

0
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and substituting from (53) in the integrand.

['

	

	 If the electric field E vanishes on both sides of the layer.

then V=0 at both C=0 and 6=*. and by (53)
a,

f rch(C) d; = ! [n1 (0 — ne(;)] dr. = 0	 (57)

0	 0

This is a consistency condition which must be obeyed by all

double layers, stating that the total integrated charge density

across the layer vanishes. The intuitive meaning of the condition

is best seen if the layer is regarded as very thin: the lhs of

(57), multiplied by the electron charge e, then gives the layer's

surface charge density a coulomb/m2. According to electromagnetic

theory. any discontinuous jump of the electric component

orthogonal to a plane surface is proportional to the surface

charge density a: since this component is continuous (namely, zero

on both sides), a must vanish. We shall refer to (57) as the "jump

condition."

At this point one may wonder whether these boundary conditions

are significantly altered when the layer is embedded in a

QN equilibrium, in which Et0 (E is parallel to B but orthogonal to

the layer: to avoid confusion. no subscripts are used). The answer

is no: ir order for the jump condi •^ion to be significantly

modified. E 2 adjacent to the layer must be an appreciable fraction

of E2 inside it, and this does not occur. In this connection one

may note a definition of double layers attributed to Karl

Schindler (C. Goertz, private communication), according to which

"double layers are regions in which the energy density of the

electric field is comparable to that of the plasma particles."

In very simple cases ( Block. 1972) the jump condition reduces
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to the Langmuir condition, which states Ciat the electron current

through a double layer exceeds the ion current by a ratio
(mi/me) 1/2. In more elaborate cases, though, the jump condition

becomes rather complex; furthermore, in many of the examples

considered here, both the electron current and the ion current

vanish, since every particle trajectory is matched by one similar

in all details but with the direction of motion reversed.

With the 4 populations postulated here, (57) is resolved into 4

terms

QDL = Qi1 + Q12 + Qe1 + Qe2 = 0	 (58)

where for any index pair k

Q = q f nkdC

0

(59)

and where q=1 for ions and q=-1 for electrons. With the densities

expressed here (eqs. 41, 45 and 49), the integrals can only have

one of two forms. For Q el and Q12 , all integrals are of the type

I 1 = I (a + b^)1/2 d { = (2/3b)[(a+b*)3/2
_ a3/23
	 (60)

0

For other particles, the integrand includes a step function

I^, = I [(a - b;)83
1/2 d4	 (61)

0

and it is always possible to arrange for it to be finite at the

upper limit ( a new variable	 must sometimes be introduced) .
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If the a function does not equal unity over the entire range, that

range must include the value

c  
= a/b	 (62)

at which the integrand vanishes. Then

I2 = I	 (a - br.)
1/2 d; = -(2/3b) (a-b*) 3/2	(63)

C,

In addition to the jump condition, there exists the so-called

Bohm criterion (Bohm, 1949; Block, 1972; Kan and Lee, 1980a.b)

which states (roughly) that in order for the double layer to have

abrupt boundaries rather than gradual ones, the mean speed at

which particles enter it must exceed (by some small factor) their

thermal speed. A simplified version of this criterion can be

developed for the present model (Hasan and Ter Haar. 1978. eq.

3.19) but we shall not follow this matter, other than note that

the criterion might be violated in magnetospheric DLs if

ionospheric particles enter them directly without any appreciable

pre-acceleration.

4.	 SIMPLE EQUILIBRIA

a. Ionospheric Sources

The initial model assumes a flux tube (drawn schematically in

Figure 6 with its curvature removed) with two pairs of particle

populations: a magnetospheric plasma with densities (n et' nil)
originating at the "equator" s=0, and an ionospheric plasma with

densities (n e2* n12) originating at s=L, which is considered as a

"loss surface" for magnetospheric particles but a "source surface"

for ionospheric ones.
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In all models derived in this study, the initial energies of

ions and electrons were chosen to coincide, being equal to 2 kev

for the magnetospheric component and 0.25 ev for the ionospheric

one. The plasma density at 3=0 (or Y=1) was chosen as 1 CM-3 while

the ionospheric density at UL was varied, the most typical value

being 25 cm-3 (only the ratio of the two densities affects the

voltage profile). Finally, all calculations here assume YL=436 and

(except at the end of section 6) a total voltage drop #L=1000v.
i

For magnetospheric particles (index "1")

	

Vet = ve1 + v2 - (2e/me) •(s)	 (64)

	

Vi 1 = vi t" + 
v i I.A. + (2e/mi )1(s)	 (65)

It is assumed that at any s there always exist locally mirroring

magnetospheric particles of both kinds (see comments following eq.

23). so that the smallest values of v et „ and vit „ are always zero.

The largest possible parallel velocities belong to particles that

mirror at s=L: if these are electrons then their perpendicular

velocity at s=L satisfies

v2 = Vet  + ( 2e/me)4L	(66)

and hence from (64), by conservation of v

ve t „(max) = Ve t + (2e/me)# - ( Y/YL)vL

[Vet	 e+ (2e/m)mL][1-( Y/YL)] +

	

+ (2e/me)(! - 40	 (67)

For ion s

v2Vit  - (2e/mi )0L	(68)
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V2 .(max) = [Vi 1 - (2e/mi) #L]11-(Y/YL)] -

	

- (2e/mi )(• - #L )	 ( 69)

(eg3.(67) and (69) resemble (22) and (23) but the notation

differs). The densities now are

nel(Y) = 2(Nel /V
el ) vet „(max)	 (70a)

ni1 (Y) = 2(Nil /Vil ) vi1„(max)
	 (70b)

where the constants (N el l Nil) are defined as in (39) and (40) and

are determined by the conditions that at s=0 (y=1) the plasma is

neutral and has a density 1 cm-3 . These conditions can be utilized

only after n it is derived, as shown below.

Among ions rising from the ionosphere, the largest v„ belongs

to those that are emitted parallel to the field, with zero pitch

angle. By the conservation of M. such ions have vi =0 anywhere,

and consequently the conservation of energy gives, at any value of

s

V2

	

i2l
 (max) = Vi2  - (2e/mi)(O(s) -mL) 	 (71)

The smallest value of v12n belongs to ions emitted with 900 pitch

angle, so that for them, at s=L

vLi = Vi2	(72)

Using the conservation of W and µ then yields

vi2l'min) = Vi2 [1-(Y/YL )] + (2e/m i )(OL-0)	 (73)

As is evident, v 
12 

is always real, since each of the right

hand terms is positive, in agreement with the assumed polarity of

E,,, which accelerates ionospheric ions upwards. In contrast,

t
b

V-'
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ionospheric electrons are opposed by E„ and since the total

voltage drop #
L=1000v greatly exceeds their initial energy of

0.25ev, they do not get very far; in fact, one may assume that at

every point accessible to electrons, some of them will mirror

locally, so that ve2„(min)=0. The relations corresponding to (71)
and (73) then become

ve211(max) = [Ve2 + (2e/me)(#L-e)]e	 (74a)

ve2„(min) = 0	 (74b)

where, according to the notation introduced earlier, the argument

of the step function is the term preceding it. The corresponding

densities are

ne2(s) = 2(N e2/Ve2 ) ve2„(max)	 (75a)

ni2(s) = 2012/V12)[vi2"(max) - v12„ (min)]	 (75b)

Here 2N12 is the given limiting density at s=L and neutrality

requires Ni2=N 
e2. The quasi-neutrality condition then requires

that at any s

nch ( s) = n il (s) + n12(s) - nel (s) - ne2(s) = 0	 ( 76a)

Examination of (65), (67) and (73) shows that the excess charge

density nch depends on s only through the functions f(s) and Y(s) ,

so that (76a) may also be written

nch (O ' Y) = 0	 (76b)

Numerical solutions of (76b) ire readily obtained. Choosing

representative values of Y within the range 1 < Y < YL , one first

derives the limiting values n ch (0,Y) and nch(OL'Y), whose signs

generally differ. By successive halving of the range, a solution

of (74b) can then be approached as closely as is desired; more
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elegant analytical iterations tend to be unreliable, because the

slope of the curve sometimes changes radically within a short

range of 0. The detailed properties of such solutions are studied

in the next subsection.

b. Uniqueness and the Jump Condition

Iterative solutions of (76b) generally lead to profiles •(Y)

which are discontinuous, with the voltage dropping abruptly at

some value of Y, typically by about 30% of O L. This suggests that

double-layer type discontinuities are embedded in the quasi-

neutral profile. Inside such layers quasi-neutrality does not

hold, since the jump condition (57) only requires the vanishing of

the integral of nch , and not of nch itself.

It turns out, however, that most iterative solutions of (16)

which include a discontinuity do not fit the jump condition (57).

The problem is resolved, as shown below, by noting that such

solutions are not unique, and that among them a unique solution

which also satisfies (57) can generally be found.

Consider the plot of nch (o,y) against 1, for a fixed value of

Y, qualitatively shown in Figure 7 (the scales on both axes are

unevenly drawn to bring out the qualitative features of the

relationship, which however ;re the same for all values of Y). As

can be seen, the curve ha y a "valley" and a "peak" (actually a

cusp), the latter located around 0=(1000-0.25)ev, the value which

►,o ionospheric electrons can pass. Solutions of (76b) occur where

this curve intercepts the line nch=0.

Figure 7 corresponds to a small value of Y (e.g. Y =10): the

peak is submerged and a unique solution exists. At Y=1. of course,

the straight line intercepts the curve at 0=0, since at the

equator equilibrium is assumed to exist at 0=0.

As Y increases, the top of the peak approaches the line until,
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at some y=y 1 , the two touch (Figure 8). Beyond this value the peak

juts above the line nch=0 and three solutions exist as shown,

denoted (01,02,03).

Still further increases in y bring the line closer to the

valley floor, until at yoy 2 the two make contact (Figure 9); for

y>y2 the solutions 
01 

and 02 
disappear and only a unique solution

03 remains. As y approaches yL, 
03 

should approach OL , as required

by the boundary conditions at s_L.

Thus for y<y 1 a unique solution exf ms`s, continuous with 01,

while for y>y2 the solution is also unique and is continuous with

0 3 . If 02 
is ignored (and this will be justified below) then

somewhere between y1 and y2 the solution must leap discontinuously

from e 1 to 03.

A straightforward numerical schewe for solving (76) generally

selects the transition in an unpredictable fashion, and the jump

condition

0 = f nch do _ f (n 11 + n 1 — 'el — n e2) dK	 (57)

0	 0

is generally not obeyed. However, a judicious choice of the

transition point can indeed satisfy (57) , for one finds that at

y 1' QDL<0, 
at y2' QDL>0, and in between these two extremes (in

those cases that were studied) Q DL varies monotonically. While the

above result was first obtained by trial and error, it does in

fact have an intuitive interpretation, as follows,

Suppose that Figure 10 describes the numerical solution of

(76b) at the value of yDL where an abrupt transition from 01 
to 03

satisfies the jump condition (57). All terms in (57) may be

derived from equations such as (70) and (75), because they all

depend on (y,0) in a way involving only the conservation of (W,13),

which holds both inside and outside the DL (the conservation of u
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in the DL is trivial, since neither y not v♦ change there). For

Instance, n11 (C)is given by (70b), using (69) with (yDLjj#r)

replsaing there (y,#).

The appropriate formulas for other species are obtained

similarly, with y held constant and equal to y DL everywhere. Thus

the quantity plotted in Figure 10 is in fact the 1ntegrand of

(57), plotted against •z#DL+=. The dump condition therefore simply

means that the net area bounded by the curve and the line nch:0

must vanish (area below the line being counted as negative) . By

Figures 8 and 9, this area is negative at y1 and positive at y2,

hence if it is a continuous function of y it must vanish at some

intermediate value YDL , and if that function is monotonic, then

YDL is unique.

Obviously, this method could be extended to equilibria with

more realistic distribution functions. It also suggests that

discontinuities which have #at2 at one of their boundaries can

never satisfy (57), for the areas enclosed between 
m1 

and o2 , or

between 02 and #3 , are of one sign and can never vanish.

A model calculation was attempted, using the input parameters

of subsection (4-a) and the formulas derived there. Solutions

resembling those discussed above were obtained, and they are

traced in Figure 11, as well as tabulated in Table 1. :ile ,jump

condition was tested for various values of y, and by means of an

iterative search it was found that it was satisfied for y= 183.91.

Closer examination of the solution, however, shows that it is

flawed, in that it does not match its stipulated boundary values,

neither in density (where the discrepancy is appreciable) nor in

potential. Thus, strictly speaking, (16) has no solution which

satisfies all the conditions imposed by the problem.

In order to trace the cause of this mismatch, the densities of

the various plasma components were derived for values of (y,o)

very close to their boundary values (e.g. Y= 435.S9. e=.999 999)•
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For all such cases nch was negative, because as Y decreased from

its boundary value YL , n12 diminished much faster than did n
et . an

understandable result since E" accelerated ions upwards but held

back electrons. The densities of the two magnetospheric components

nib and r, k were extremely small (they tend to zero as Y tends to

YL ) and were not - sufficient to overcome the imbalance in the

charge density, so that no equilibrium could exist.

Thus the reason for the observed behavior can be traced to the

uncontrolled accel 4-_7tion of ions away from Y=YL , and this arises

because a boundary Lazm,- was postulated at Y_Y L without any

visible means-of keering it from "floating away." In nature such

means are provided by gravity; it will be shown below that after

gravity is incorporated in the model, densities begin to match

their boundary values, though new problems must then be addressed.
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5. THE EFFECT OF GRAVITY

a. The Equivalent Potential

The lower boundary of the region of E " is in the ionosphere,

which is held down by gravity. Although the gravitational

potential ma is much smaller than eeL (the escape energy W(•)

of an a ion amounts to about 10.45 ev) a consistent model must

include gravity,for gravity may be dominant near Y= YL , where the

externally produced E" is rather weak.

As was first pointed out by Pannekoek (1922) and Rosselend

(1924), gravity gives rise to a weak electric potential 09(z),

depending on the altitude z. In the auroral zone, magnetic field

lines are nearly vertical and this "Pannekoek-R03seland field"

("PR field") adds almost its entire strength to E"; therefore 0 
will simp_y be added to the field aligned potential 0 and it will

be assumed that z=L-s. The effect arises as follows.

Above the thermopause (about 110 km) atmospheric density no

longer follows a single scale height, but instead each species

tends to taper off independently of the others. At altitudes of

interest here the charged component is dominated by 0 4 ions and by

free electrons, with a temperature of about 3000 0 (Banks and

Holzer, 1969a, b) , i.e. a mean energy of about 0.25 ev. If these

electrons and ions were truly independent, the scale height of

electrons would greatly exceed that of ions--in fact, most

electrons would escape completely. However, charge neutrality

requires that both species follow the same scale height, and what

happens is that as soon as relatively few electrons escape the

gravitational pull, a positive space charge is set up, creating a

potential •g which prevents further escape. This potential may be

computed by MHD theory (Spitzer, 1962, sect. 4.2) or even by means

of a variant of eq. (16). but a simple heuristic method given
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below also leads to the some result as long as the energy

distributions of ions and electrons coincide (for 0g in some more

general cases, see Banks and Kockarts,[19731, sect. 21.6).

Let_ Q(z) be the gravitational potential at an altitude z and

let no additional source of electric field be present. The energy

of ionospheric particles is then, for ions

Wi = mivi/2 + mi n + egg	(77a)

and for electrons

We = m
e V

2
/2 + mea - etg	(77b)

The density distribution in z of an isolated a"mospheric

constituent depends entirely on the effective potential to which

its particles are subjected. Hence, in order for the ions and

electrons to have the same density at any z they must sense the

same potential, i.e.

mi n + e#g = men - et 

= ex	 (78)

From this

	

et  = -Q(mi-me)/2	 (79)

ex =	 n(m i+me)/2	 (80)

Note that for all practical purposes m e can be ignored here.

The effect of 0g is essentially to compensate for half of the

weight difference between 0 + ions and electrons, subtracting it

from the weight of ions and adding it to that of electrons, so

that both species sense the same combined potential ex(z). When an

external electric potential 0 is added, its effects are added to

this, giving for ions
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Ki = mivi/2 + e(O+X)	 (81a)

and for electrons

He = meve/ 2 - e(0-X)	 (81b)

In principle, everything here could be represented in terms of

gravity and the total electric potential 0 I =( O+O9 ), with 0'

derived from quasi-neutrality: this is the course chosen by Chiu

and Schulz (1578) and presumably, near s=L their derived E„

resembles the PR field. The notation of (81). however, will be

used here, as it is more symmetric and transparent : it suggests

that the various densities derived in the preceding section should

be modified by the replacement of 0 by (O+X) for ions and (0-X)

for electrons, and in many cases this inse&l holds.

At low altitudes a simple linear approximation may be used

a = m g z
	

(82)

Since Y( s) rather than s is used to indicate position, one

would prefer to express A as a function of Y. Again, at the level

of this model a crude approximation should suffice, since gravity

effects are confined to low altitudes: at higher altitudes the

externally imposed potential greatly exceeds X and the exact form

of X (or even its presence) makes only a small difference. If Y is

proportional to the inverse cube of the distance. and if altitude

zero is assigned to YL , then

YL/y = 0 + z/RE ) 3	 (83a)

and a useful linear approximation is

z/RE v [(YL/Y)-1]/3	 (83b)

The escape energy of an 0 + ion can be evaluated from the full

inverse square form of a and is
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W(-) = migRE v 10.45 ev (84)

Hence, if (82) is assumed and m e is neglected

ex = W(-)[(YL/Y)-11/6	 (85)

For high altitu6a I {small Y) this gives values of x which are far

too large. Since "(as noted before) the form of X at these

altitudes needs not be very accurate, a simple cutoff

approximation will be used, namely

ex= W(-)[(YL/Y)-11/6	 Y > YL/2	 (86a)

eX = W(-)/6 = exo	
Y < YL/2	 (86b)

b. A Naive Model

With gravity and the PR model added, eq s. (64) and (65) are now

modified to

Vet + (2e/m e)X0 =

vet" + v2 - (2e/meM e - X)	 (87a)

Vi1 + (2e/m i )X0 =

v i1" + v2	 + (2e/m i )(0 + X)	 (87b)

with X0 given by (86b). As before, it is assumed that at s the

smallest v„ of either species is zero, belonging to locally

mirroring particles. The largest value belongs to particles

mirroring at s=L, where X(L)=0. This gives

vet „(max) _ [Vel + (2e/m e)(mL+x0 )1[1- (Y/YL)] -
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- (2e/me)[OL - (*-X)]	 (88a)

vi1 „(max) _ [Yil - (2elmi)(#L-Xo)][1-( Y/YL)] +

+ (2e/mi )[OL - (•+)()]	 (88b)

Comparison to (67) and (69) shows that indeed • has been

replaced by (#-X) or (•+X) as predicted, but in addition there

also exists a dependence on Xot because particles starting out at

3=0 have 0=0 but X=Xo . Since X drives both species downwards it

introduces no special complications and the densities of these

species are given by a slight modification of (70) in which (88)

is substituted:

ne1 (Y) = 2 (Nel /Ve l ) vet „(max)	 (8 9a)

n i1 (Y) = 2 (Nil /Vil ) vil„(max)	 (89b)

where

(Ve 1 ) 2 = Ve1+ 	 (2e/me) Xo	 (90a)

(Vi l ) 2
 = Vil+	 (2e/mi) Xo	(90b)

For electrons from below

Ve2 - (2e/me)@L = 
ve2„ + ve21 - (2e

/me)(•-X)	 (91)

At any point, the largest v„ belongs (as before) to electrons with

ve21 =0. the smallest to those that mirror locally due to the

opposing electric field. This gives relations completely analogous

to (74), except that (f-)() replaces

V2e2„(max) _ [Ve2 - (2e/me)(oL - (0-x))]8	 (92a)

ve2„(min) = 0	 ( 92b)
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No new physical effects exist, since X and # both have similar

effects, tending to drive the ionospheric electrons back. Applying

the same criteria to ions gives, in analogy with ( 71) and ( 73) and

with a 8 function added (see below)

vi2" (max) = [Vi2 ♦ (2e/mi )(eL — (#+X))]e	 (93a)

vi2" (min) _ [Yi2(1—(Y/YL)) + (2e/mi)(^L — (kX))]e	 (93b)

A "naive" model with the above limits on vN of its four components

was analyzed by the methods of the previous sections, and it

yielded solutions analogous to those deri ,	there, with a voltage

jump somewhere in the range where triple solutions to the QN

condition exist.

The results are given in Table 2: the overall voltage profiles

closely resemble those of Figure 11, the density profile for sL,%ll

values of Y is also very similar (being essentially Perssonian),

and the "double layer" is shifted only slightly snd is now located

at Y= 179.96. Unlike the results of Table 1, the profiles of

density and voltage now match their boundary values at s=L, but

the density distribution is quite different and changes markedly

around Y=382. It is instructive to examine the reason for this.

In the potential of (85) or (86), an ionospheric particle with

0.25 ev can rise unassisted to about Y=382. In the present model,

it appears, the effects of the external E " at altitudes below that

level are minimal, so that most of the ionospheric density is

confined below that Y and only a few ions manage to rise above it.

While these ions do produce a double layer transition, it is

located in the rarefied region well above Y=382 and can hardly

qualify as a boundary between "ionosphere" and "magnetr.ivhere."

However this model, like the one that preceded it, also has a

qualitative flaw, although this is not immediately evident. The
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problem involves accessibility: although E" tends to accelerate

ions upwards, X tends to drive them back and imposes upon them at

low altitudes a barrier which they must first overcame before they

can be freely accelerated.

The situation is schematically illustrated in Figure 12. The

dashed line represents a continuous solution for 0(3) resembling

Persson's, the lower line represents the approximation (86) for x

(greatly exaggerated) and the higher solid line is the sum of the

two, which constitutes the "effective potential" sensed by ions.

This sum peaks at some point Yc (c for "critical"), at a value of

( 0c+xc )>1, and this peak will turn back those ionospheric ions

which have started out at s=L with sufficiently small values of

v12".

At altitudes below the barrier such ions are automatically

excluded by (93). For Y>Yc , however, the present formulation

allows them to reappear and be accelerated, as if they had managed

to "tunnel" through the barrier. Alternatively, the solution is -

the one which would result if above the barrier there exists a

population of trapped ions (trapped in the sense of Chiu and

Schulz, 1978, end of p. 631), with a distribution function

F12 (W,u) exactly matching that of ions below the barrier.

Physically, however, such a match does not have any special

virtues: it would be more appropriate either to derive the trapped

population independently, or to assume that it vanishes. That

second possibility is explored next.

c. Solutions with a Barrier

(In this subsection, any velocity etc. appearing without an

index giving the population to which it applies refers to the

(i,2) population of ions originating in the ionosphere.)

Let there exist a barrier peak at Y c , with potential 0c (Fig. 12).

Ions originating at s=L will decrease their v„ between Y L and y 
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and consequently, those of them which were emitted with small

values of v " will mirror somewhere in that range ( Fig. 13, broken

line). The largest value of the parallel emission velocity for

which this occurs will be denoted by v "c and belongs to ions. that
mirror at Yc ( solid line trajectory in Fig. 13): all ions with	 {

v" >v„c will pass the barrier, all those with v" <v"c are reflected.

Both groups satisfy

V2 + (2e/m i )OL = v„+ 	 vi + (2e/mi)(O+X)	 (94)

and for ions mirroring at y  this defines a useful constant

is = V2 + (2e
/m i )[ OL - (Oc+Xc )]	 (95)

At any other Y, those ions that mirror at Yc satisfy

V"
2

	11-(Y/Yd]v2c + (2e/mi)[(Oc+Xc)-(0+X)]	 (96)

For Y less than yc , vn(min) is given by the above expression. The
fastest ions are those with v, =0, and by (94) they satisfy

v2(max) = V2 + (2e/mi)[0L-(-*+X)]	 (97)

For Y more than Y c , v,,(max) is the same as above, but v,,(min)=0,

because there exist locally mirroring ions throughout the range.

The limits on v � for other species remain the same as in the
"naive model", and hence it should be possible now to express the

densities of all 4 species, evaluate the QN egilibrium profile

0(s) and if (as it turns out) that profile is discontinuous, track

down the multiple solution s ( 0 1 , 02 , 0 3 ) and place the transition
from 0 1 to 03 wherever the jum p condition is satisfied. Before all
these steps can be taken, however, the values of y  and 0c must be
derived, because they are as yet undefined parameters of the
system.



50

One begins the derivation by expressing the varioue plasma

densities, using (89) and (75), with the limits on the parallel

velocities derived above, and from them one obtains the net excess

density nch of one kind of charge over the other (eq. 76a).

Because the limits on the parallel velocities contain y, y c , • and

•c , all these parameters will affect nch'

nch 2 nch (Y.Yc .',ec )	 (98)

One condition which must certainly hold is that the plasma is

quasi-neutral at the point (Yc,#c), i.e. if in (98) (Y,#) is set

equal to 
(Ye' #c), nch will vanish.

nch ( Yc .Yc , oc ,ec ) = 0	 (99)

This equation involves only 2 variables and if one of them is

known, in principle the other one can be obtained. The calculation

thus starts with a set of trial values of y c , in general near the

"gravitational-.limit" Y-`382 (see comments about Table 2). For each

such Yc. (9(9) is solved by trial and error: more than one solution

may exist, but the search should seek the largest one, in the

interval

OL < oc+Xc < 
#L

+Wi 
2

In this range, in general, n ch varied monotonically with • and

changed its sign, so that solutions were readily found by

iteration. As y  increased towards YL , •c tended towards OL , which

agrees with the boundary conditions; of course, the height of the

barrier tended at the same time to zero, since by (86) x(L)=0.

When on the other hand 
y  dropped appreciably below 382, (Oc+Xc)

became very close to ( #L +W12 ), allowing only a tiny trickle of

ionospheric ions to pass and essentially isolating the ionosphere

from the magnetosphere, similar to the situation encountered in

Table 2.
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These solutions correspond to the 4 3 branch of earlier models,

and a different solution branch 0 1 , matching conditions at ya1s

also exists. As before, this makes necessary a discontinuous jump

between the two branches, and wherever the transition occurs, the

jurep condition must be fulfilled. What now causes an added

complication is the extra undetermined parameter Y o : for each

choice of ycl a different location YDL exists at which the jump

condition is satisfied. Only the choice 
-fc
°YDL (unique in the

present case) is appropriate, however, for the following reason.

Supppose 
YDL>Yc' 

The voltage jump associated with the double layer

is relatively large compared to the height of the barrier. so that

if the transition occured at an altitude lower than Yc . along the

line AB in Figure 14, then the equivalent potential (•+)() would

reach its largest value at B. and it would never-attain the value

(#c+Xc ) derived from ( 99) for the value Yc used in our formulas.

On the other hand, it is not possible that YDL'cYco 
for •3 rises

steadily as Y decreases, leveling off close to #+X = 0c+M12 (this

is demonstrated in tables 3 and 4: the minute decline following

that leveling—off was not considered to be significant). Thus if

YDL is postulated to occur at higher altitudes, the equivalent

potential (#+X) will continue rising after y  is passed, and its

maximum occurs not at y  but at YDL• 
Thus the physical situation

is only consistent with Yc°YDL'

The iterative search now proceeds as follows. A starting value

Of Yc is chosen. the QN condition (99) is solved for it. • 1 and •3

are found there and a discontinuous transition between these two

values is assumed to exist. The parameter Q DL of (58) is now

evaluated, and the procedure is repeated for a different choice of

qc . By iteration. the value of y  
where QDL=0 is approximated as

closely as one wishes, and this gives the proper solution for the

problem on hand.
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The calculation of Tables 1 and 2 (with the same input parameters)

was repeated, taking into account the barrier, and the results are

given in Table 3 and Figure 15. The double layer has now shifted

to Y=386.027, below the "gravity limit" of Y =382. As a result, it

is quite pronounced, involving a density change by a factor of

about 20 (Figure 15). The voltage drop is only of the order of 10%

of the entire range; for completeness, the continuation of 0 3 has

also been included in Table 3, although it has no special meaning.

In Nature, of course, the presence of a "trapped" population above

the DL may diminish appreciably the density change aa.-'ciated with

it and could conceivably eliminate it altogether.

Finally, a few words about the stability of the equilibrium

solutions derived here. If an equilibrium is unstable, there

generally exist exist alternative solutions towards which the

system can evolve. Here, when all factors are considered, only a

unique equilibrium solution remains and it is therefore expected

to be stable against changes caused by E".

Of course, E" may also cause local instabilities by energizing

one species while decelerating the other. Any realistic evaluation

of such velocity-space instabilities, however, requires the use of

more realistic distribution functions as inputs: the artificial

monoenergetic functions used here are very far from maxwellian and

are probably inherently unstable to begin with. At the present

level of modeling, velocity space instabilities are ignored, since

the primary aim is to obtain the overall properties of E,,.
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6. FIELD ALIGNED CURRENTS

a. The Quasi-Neutral Equilibrium

In all the preceding models field lines were assumed to be closed

and complete symmetry existed between negative and positive values

of v„ of all species. One consequence of that symmetry was that

the net current vanished. If however the conditions are such that

the loss cone is filled, a certain asymmetry appears and J„ no

longer vanishes.

In the model developed below it will be assumed that field

lines are "open", as in subsection 2-d-iii and Figure 3, and we

begin by considering conditions on the dusk side, where 0 + ions

may be accelerated upwards. Two sources of asymmetry exist: first,

the distant source region characterized by Y=1 is now in the polar

cusp, where convection constantly causes new particles to arrive

and keeps the loss cone filled. Secondly, all ionospheric ions

which manage to rise above the potential barrier of Figure 14

escape and never return. Each of these components carries a net

upward current, and it is of interest to evaluate and compare the

associated current densities.

Consider first the precipitating component. The maximum values of

v„ for magneto spheric electrons and ions which move upwards after

having mirrored are given by (88)

vet „(max.uP) = [y el + (2e/m e)(*L+Xo)][1-(Y/YL)]

- (2e/me )[OL - (m-X)]	 (88a)

vii „(max.uP) = [Vi1 - (2e/mi)(OL-Xo)][1-(Y/YL)] +

+ (2e/m i )[OL - (O+X)]	 (88b)

However, the largest parallel velocities for such particles moving
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earthwards now corresponds to zero pitch angle, i.e. v♦ s0. By (87)

ve1 .(max.down) z Ve t+ 	 (2e/me M#-X) + Xo ]	 (1008)

vi lh (max,down) a V11 - (2e/mi)[(4+X) - Xo ]	 (100b)

With these limits the densities are expressed by a generalization

of (89) (note the absence of the factor 2, since the population is

no longer bidirectional):

ne ,(Y) " (Ne1/Ve1)[ve1n(max,up) + v el „(max,down)]	 (101x)

nit(Y) ' (Nil/V11)[vi1M(max,up) + v i1 „(max,down)]	 (101b)

Among the ionospheric ions, the escaping component is the one

which crosses the barrier. Its limiting values of v„ are given by

( 97) and ( 96)

v12l (max,e3c) _Vi2 + (2e/mi )[oL - (4+X )l	 (97)

vi2n (min,esc) = v^c[t-(Y/Yc)] +

	+ (2e/m I )[(4c+Xc ) - ( 4+X)]	 (96)

where

	

vic = Vi2 * (2e/m i )[4L - (4c+Xc )]	 (95)

For Y smaller than Yc , thus,

n12(Y) " (N12/V i2 )[v i2„(max,esc) - v 12,,(min,e3c)1	 (102a)

For Y larger than Y  one must add to this the ion population

reflected from the barrier, extending from v„=0 (local mirroring)

to v i2„(min,esc). Because among these added io,s each rising

particle is matched by one on its way back, the expression for

their density has a factor 2 (as in 75b), and when this is added

to (102a) the result is



nit(Y)-_ : (Ni2f11i2k(vi2„(max,esa). +_vi2„(min,e3c)]	 {1Q2b)

-	 -	 (Y > Yd

The density-of ionospheric electrons is as before given by (758),

with the limits (92). These expressions are now used to express

-__-	 -	 plasma densities at the boundaries Y=1 and-Y=YL , and from the

input conditions there plus the neutrality requirement, constants

such as N 1i are evaluated. Then, as before, we !oust find the

proper values of yc and •c , by first compiling a tabulation of Yc

and matching each value with the appropriate #,.,_then by finding

for each Y. other values of t which satisfy the QN condition, and

finally finding iteratively which is the value of yc where a

transition from • 1 to #3 satisfies the jump - condition. The jump

condition is evaluated by using the different densities expressed

above, and (102a) rather than (102b) is to be used for the ions

from below, because a11_ion3 entering the DL from below-manage to

escape.

A calculation following the above lines was carried out for the

same plasma population for which Table 3 and Figure 15 were

earlier derived; the corresponding results are given here in Table

4 and in Figure 16. As can be seen the results are qualitatively

similar, with the DL shifting only slightly to Y=396.57. The main

differences are now a decrease in the magnitude of the density

Jump and an approximate doubling of the voltage jump.

b. The Current Density

The current density due to any component is given by

J =n a<0	 (103)

In the general case it is necessary to evaluate <0 (or else, J
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directly) by integration over the distribution function. Here,

however, the calculation is simplified because all distribution

functions are boxcars, allowing one to take for n the total

density of the particles involved and for <v> the mean of their

extreme values of v.- For instance. for precipitating electrons

the density includes those values of v ii „ that mirror below YL•

hence

	

n e1 (prec) = (N ei
/Ve 1 )[ve1 „ (max . down) - v e1 „(max.up)]	 (104)

with

<0 = (112) [ ve1 „(max.down) + v e1 „(max.up)]	 (105)

From this. by (88a) and (100b)

j et = e(Ne1/2Ve1)[vei.(max,down) - vl,,(max.up)1

	

e(Ne1/2VI
	 -(/ 	 + (2e/m

e)(tL+Xo )]	 (106)

It follows that j et does not depend on a but is proportional to Y

(and thus to B), as is expected from a current confined to a

Angle flux tube. Similarly, for magnetospheric ions (88b) and

(100b) give

ji1	 e(Ni1/2Vi1 )(Y/YL )[Vi 1 - (2e/mi )(mL-XO )]	 (107)

If 0  is small and both species start with the same initial

energies, then by (106) and (107) the currents are very nearly

proportional to Vet and V11l and hence they satisfy the Langmuir

condition -

	

(het/j11) = (m i /m e ) 1/2
	

(108)

The presence of Oil only makes the disparity more pronounced,

because it increases j et while diminishing ji1'
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If IL greatly exceeds the initial energy of electrons ( ions may

then be cut off), one gets

Jet 
v e(Ne1/2Ye1)(Y/YL)(2e/me) mL	 (109)

The current is then proportional to the total voltage drop O L . and

the rate at which 2J e1 deposits energy in the ionosphere is

proportional to @L , in agreement with published results ( Knight.

1573; Lyons et al. 1979; Fridman and Lemaire. 1980).

Intuitively this may be interpreted as follows. Because the

distribution function of electrons is assumed to be isotropic. 3el

is proportional to the solid angle subtended by the loss cone at

Y=1. For electrons, the parallel field magnifies this solid angle.

since it accelerates them downwards and causes the loss of some of

them which might have have mirrored if no E„ existed; and by

(109). for large voltages. this magnification is in direct

proportion to $L . For ions, on the other hand, deceleration takes

Place and the loss cone shrinks; it may even vanish altogether. if

E„ is strong enough to cause all ions to be reflected before

reaching s=L.

The rising ion current has a similar form. since (102a) resembles

(104)

i i2 = e(Ni2/Vi2) [vi 2„(max.esc) - vi(min.esc)]

= e(N i2/y i2 )(Y/Yc ) IV22 - (2e/m
i )(@L - (0c+Xc ))]	 (110)

The magnitude of 42 is controlled by several factors, but overall

it is much smaller than J i1 . Ignoring the effect of the potentials

in (110) leaves

e N
12 Vi2 (Y/Yd

In the present model, ionospheric particles have 0.25 ev vs. 2 kev
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for magnetospheric ions, V i2 is 90 times smaller than V11 , and

even if N 1 exceeds 
Nil by a factor 25. J12 still comes out

several times smaller than a il , which was already shown to be only

a small fraction of del . Taking into account #L only further

reduces ,) i21 and in the model analyzed here it was found (for tc

and Yc satisfying the jump condition) that

J et /j il 'P 1600

All this agrees not only with our initial guesses but also with

observations which suggest that 3„ is carried primarily by

electrons and that its order of magnitude 'agrees with what may be

expected from loss cone precipitation. For instance, for Nel_of

lem 3 and a starting energy of 0.5 kev

eNet VPl12 _ 1.06 PAM 

c. Downflowing Currents

The preceding derivations of (nel,nil,ne2,ni2) only involve the

input densities and energies of the various plasma species. If

those are left unchanged, the same profiles of 0 (with the same

values of Yc and oc ) also furnish QN equilibrium solutions if the

direction of,E„ is reversed.

The current densities, however, change appreciably, because

their dependence on <0 makes them roughly proportional to the

(-112) power of the mass of the particles involved. Thus J i2 is

increased by the Langmuir factor (m i /me ) 1/2--171.4 (assuming 0+

ions are involved) and similar factors also affect the two current

densities from the magnetosphere, the one aided by E„ and the one

opposed to it. For the same input conditions as those used in

preceding calculations, the results are given in the first column

of Table 5, and it will be noted there that the net current still

flows outwards from the ionosphere, even though this direction is

now opposed to E,,. The reason is that for both polarities of E,,,
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3" is dominated by the current Jet due to electrons precipitating

into the loss cone: when the voltage is reversed, Jet is reduced

threefold, but it still remains large enough to swamp everything

else.

The calculations were repeated for voltages of P kV, with P

ranging from 1.4 to 2.2. This was accomplished by scaling the

variables--all energies (including N( •) of eq. 84) were divided by

a factor P, and the final current densities were then multiplied

by P1/2 . These results are also given in table 5 and they show

that for Pf1.42, J"40, making 1.42 equal to the "thermoelectric

potential" of 2-d-iii. This value is relatively large, because

the rather high energy of 2 keV was assumed for the precipitating

electrons; future studies will investigate the way it changes with

input conditions.

At P_2 (not tabulated) the voltage is Just sufficient to stop

one species from precipitating, and at P_2.2 only two species

contribute, both aiding the flow of current: still, the value of

3" flowing downwards is still only a fraction of a uA/m 2. For

larger values of P, solutions could not be obtained: it might be

that the situation then resembles that of Table 1, where no

solution exists either, because the ionospheric boundary plasma

then is not properly "held down." In that case gravity and the PR

field supply the require holding force, but it could be that

whenever P is lav'ge, it manages to overcome that force at all

levels and thus prevents an equilibrium from existing. If such a

large voltage is applied along a field line, one expects the

plasma and its electric field to undergo a time -U* ependent

evolution, ending perhaps in an equilibrium state after a

sufficient number of "trapped" particles are produced. This,

however, is at present only a conjecture, and requires further

investigation.

Even though the quantitative values of J" may be too

approximate, qualitatively this result agrees with observations by
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Ii3ima and Potemra (1976, Figs. 1 and 3), by which field-aligned

currents on the dawn side and on the dusk side of the polar caps

have approximately equal magnitudes. If one assumes that these

currents are carried mainly by electrons, the magnitude on the

dusk side fits quite well the loss-cone precipitation of

electrons, but without a calculation similar to the one performed

here, it is not immediately evident why a similar current density

should exist on the dawn side. On the contrary, it might be argued

that even a narrow strip of the ionosphere (e.g. one 10 km wide,

as proposed by Knight, 1973, before accurate observations became

available) can easily supply enough electrons to carry Birkeland

current sheets of sufficient intensity.

The present results suggest that the outflow of such electrons

is greatly hampered by the Pannekoek-Ro sseland field. Even though

the total voltage drop associated with this field is small, a

relatively large external voltage must be applied before it is

overcome, because most of such a voltage is distributed at higher

altitudes, to insure quasi-neutrality, and only a small part

remains available lower down, where the PR effect is most

pronounced. In the present model, most of this remainder is "used

up" in maintaining the DL, so that even at 2.2 kV the PR effect

still throttles j " to a considerable extent.

In addition to the above role, E " is also required on the dawn

side	 the polar cap to stem the precipitation of electrons,

which opposes the flow of j„ fed by external sources. Future

studies should provide a more complete modeling of the behavior of

this interesting region.

r
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7.	 SUMMARY

A one-dimensional model of E. has been developed in which field

aligned voltage drops are maintained by a quasi-neutral plasma

equilibrium. The model assumes two monoenergetic isotropic sources

of plasma, a hot dilute magneto spheric one and a cold dense one in

the ionosphere.

All equilibria derived here required an abrupt discontinuity

embedded in them, a discontinuity in which quasi-neutrality did

not hold. A model was therefore derived for the "double layer"

discontinuity which arises in such cases, and the "jump condition" 	 }

(57) which must be satisfied was expressed. It turned out that the

discontinuous quasi-neutral solutions were not in general unique,

but that among the range of such profiles, one solution could

generally be found (Figure 10) for which the jump condition held.

Even then the simplest solutions (Table 1) were not consistent

with ionospheric boundary conditions, until gravity was taken into

account (in an approximation valid for low altitudes), together

with the Pannekoek-Ro sseland electric field which accompanies it.

Initially, questions of accessibility were ignored and

quasi-neutral equilibria were constructed (Table 2) with

discontinuous voltage profiles very similar to those obtained

before. However, such models ere inaccurate, s".rce they required

either "tunneling" or a rather artificial "trapped" population.

A more consistent calculation was then undertaken, including a

potential barrier which hindered the escape of ionospheric ions;

this involved one additional parameter, the location y  
of the

barrier (from this its potential 0c was derived using charge

neutrality). Here, too, quasi-neutral equilibrium dictated a

discontinuous voltage ,jump, and plausible arguments were given to

show that this occurred at 
y  

itself. Model calculations in which

this barrier was taken into account gave double layers in which

the voltage changed only moderately but densities underwent a

17-1
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marked change (Table 3, Figure 15).

Finally, a current flow was included in the model (Table 4),

contributed in part by precipitating magnetospheric particles and

in part by escaping ionospheric ones. In regions of upward flowing

J" , this current was found to be dominated by precipitating

electrons (Table 5), to be approximately proportional to the

accelerating voltage (or more accurately, to the ratio by which

the energy of electrons was increased) and its density was of the

order of 1 uA/m2 . The profiles of density (Figure 16) and of

voltage were qualitatively similar to those obtained in the

preceding case.

For E" directed towards the Earth the situation was more

complicated (Table 5) and for small voltages j " actually opposed

E" , since it was still dominated by the contribution of loss-cone

electrons (in common with currents having upward E "). Assuming a

distant population of 2 keV electrons, a voltage drop of 1.42 kV

was required before J " vanished (yielding an approximate

"thermoelectric potential" for equilibrium with J "=0 under the

given conditions). At 2.2 kV, the current was directed upwards and

its density reached a fraction of a uA/m 2 (though for 3 kV

solutions no longer could be found), in rough agreement with

observations by which J " is limited to the order of 1 µA/m2 for

both upflowing and downflowing currents.

While the models developed here are quite rudimentary, they

seem to indicate that quasi-neutral equilibria can provide a

physically plausible mechanism for maintaining E " and J " in the

polar magnetosphere, and in particular in the "region 1" current

sheets (Figure 3). "Double layer" type discontinuities occured in

all the solutions: whether they persist when more realistic

distribution functions and "trapped" particles are included, and

whether they are related to the abrupt structures observed aboard

33-3 ( Mozer et al., 1977) is left for future investigations to

decide. As an incidental byproduct, it is noted here that a net

W
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current flow is not essential for the existence of double layers,

and that current-free parallel electric fields may play a role in

decoupling distant magnetospheric motions from the ionosphere.

8. OUTLOOK

The present effort suggests three immediate extensions. First,

the effects of varying the input parameters should be studied.

These include the density and mean energy of the bounding plasmas

and the total voltage drop 0L ; in addition, the effect of a

"trapped" population may also be investigated and the reason for

the lack of solutions at OL>2.2kV should be traced.

Secondly, the monoenergetic distributions may be replaced by

proper maxwellians, similar to those used by Chiu and Schulz

(1378) and by Chiu and Cornwall (1980), but making use of the

experience gained here concerning uniqueness and accessibility.

Through the use of a maxwellian ionospheric population, it might.

be possible to construct a model in which a quasi-neutral plasma

with E" i0 blends smoothly with an exponential ionosphere, without

postulating any ad-hoc "boundary density" at s=L. Something of

this sort is already evident in Table 2. but when voltage barriers

are included the situation seems to be more complicated.

Finally, one might postulate mechanisms for particle scattering

and loss which would support a stable trapped population, and this

is expected to modify the voltage profiles to a considerable

degree; existing theories of wave-plasna interactions developed

for models of J. in the magnetosphere may be utilized to provide

such mechanises. Ultimately, of course, the consistency of all

such theories must be checked against observed particle

distributions. In principle, particle data (pitch angles and

energies) from two points along the same field line may be able to

provide such a check, and it is hoped that the forthcoming

Dynamics Explorer mission will indeed provide such data.
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Models of this type can be expected to reproduce many of the

properties of E" associated with "region 1" current sheets,

similar to those in Figure 3. Additional problems arise, however,

when such models are applied to "region 2" currents created by

"charge separation" (2-d-iv), and this study will conclude with

speculations about E" in such cases.

Whenever the convection of electrons produces regions of

negative space charge (in general, in the early morning sector and

near midnight), the dissipation of such charge is governed by

(106), or approximately by (109); while those relations were

derived for a rather specific model, other and more elaborate

models lead to similar results ( Lyons et al., 1979; Fridman and
Lemaire, 1980). T%e point to note is that the current density

which can be handled by this mechanism is quite limited: if 1 kev

electrons are convected earthwards and a parallel drop O L=20 kV is

produced by their space charge, the solid angle covered by their

loss cone is increased 20-fold, but because that cone is initially

very small (order of 1 0 ) the loss rate will always be rather

modest and, unless scattering is rapid, particles with pitch

angles of 100 or more cannot be easily precipitated.

In contrast, the rate at which free space charge is produced

depends only on magnetospheric conditions: what happens, then.

when the production ratz outstrips the removal rate? The value of

4L- 20 kV is already an appreciable fraction of the total voltage

drop associated with the convective electric field, and cannot

increase much more: indeed, auroral energy spectra often display a

sharp cutoff at 10-15 keV (e.g. Evans et al., 1974; Maynard et

al . , 1977.  Figs. 5-6; Bryant et al . , 1978),  suggesting that 0L

peaks in this range. Thus it does not appear that J " can be raised

by increasing its driving voltage. Neutralization of the negative

charge by ionospheric 0' ions is delayed by their low mobility and

requires 2-3 minutes, which may be too slow.

The remaining alternative is that negative charge does indeed
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accumdlate and that it creates local electric perturbations which

steer away convecting electrons to other regions of space. Such

charging has been studied by Hallinan (1976), who concluded that

it would manifest itself in counterclockwise spiral structures,

and those have been observed (Untiedt et al., 1 078, p. 51). It may

further be speculated that the rapid variability of the aurora

could represent a constant shifting of its source region in the

equatorial plane, away from field lines which have accumulated an

excess of negative space charge.

A second (and perhaps related) problem involves the large

abundances of 0+ observed in the ring current (Balsiger et al.,

1980), often reaching 20-30% and even more. Supppose that all of

E„ on field lines threading the ring current is due to charge

separation between electrons and ions (presumed to be mostly

protons) , convected earthwards from the tail. Then for each

separated proton there exists one separated electron, and if none

of the electrons is precipitated and each of them draws upwards

one 0+ ion, the ring current will ultimately contain equal numbers

of protons and 0+ ions. In fact, unequal losses due to charge

exchange with hydrogen can even cause 0 + to predominate. However,

Tab'.e 5 suggests that electron precipitation greatly exceeds any

urward flow of 0+.

A possible explanation is that scattering of electrons into the

loss cone occurs on a time scale much longer than the 2-3 minutes

required for 0+ ions to arrive at the region of unbalanced space

charge. Thus after the local density of space charge has saturated

(in the way described earlier) the population of loss cone

electrons quickly becomes depleted, after which the electron

current of (106) is greatly diminished, while the ion current of

(110) persists for a long time. If this mechanism indeed occurs,

one would expect a far greatcr variability in the intensity of the

precipitating electron beam than in that of the 0 + beam associated

with it.
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In addition, it now appears (Horwitz, 1960; Gorney et al., 1961)

that the acceleration of "conic" distribution of 0 + ions by wave—

particle interactions constitute an important source of 0 + in the

ring current, in addition to the "beams" discussed here. If this

indeed proves to be the dominant source, then the discrepancy

noted above is avoided.
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CAPTIONS TO FIGURES

Figure 1 -- Schematic representation of the effect of E. in a

homogeneous magnetic field (1a) and in a geomagnetic

mirror geometry (1b).

Figure 2 -- The geometry assumed in Persson's calculation and the

notation Used.

Figure 3 -- Schematic view of a circuit producing field aligned

currents along open field lines linking the solar wind

to the polar ionosphere.

Figure 4 -- Collision-free plasma in a homogeneous magnetic field,

subject to a fixed potential drop #AB . Under such

conditions the entire drop tends to become concentrated

in a narrow sheath.

Figure 5 -- The voltage profile across a double layer and the

different particle populations which enter it.

Figure 6 -- Schematic view of a magnetic flux tube (drawn without

its curvature) subject to a parallel voltage drop OL,

and with the various particle populations which enter

it.

Figure 7 -- Schematic view of the net charge excess n ch (m,Y) as a

function of e, for a fixed small value of Y• Both axes

are unevenly divided in order to bring out the qualita-

tive properties of the curve.

Figure 8 -- Similar to Figure 7, showing the existence of 3

solutions (* 1
0#

2 .,43 ) for intermediate values of Y.

Figure 9 -- Similar to Figure 7, showing conditions for values of

Y near YL , when again only a unique solution exists.
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Figure 10 -- Similar to Figure 7, at the value of Y where the

double layer condition is satisfied. The two shaded

areas are equal to each other.

Figure 11 -- The 3 solutions ( 0 1 ,02 ,03 ) to the quasi-neutrality

condition, plotted against Y for the simple gravity-free

model (as noted in the text, this solution does not

fulfil all requirements). The y coordinate is propor-

tional to -log(OL-0) and is labeled in fractions of #L.

The input conditions are 0 =1000 V. Wil=Wel=2 keV, W12=
We2=0.25 ev, nil =n12=1 cm , N12Ae2=25 cm

-3 . YL=436.

Figure 12 -- Schematic representation of the potential sensed by

ions, being the sum of an externally imposed electric

potential 0 (drawn here without any abrupt disconti-

nuities and the combined potential X contributed by

gravity and by the PR field.

Figure 13 -- The motion of ionospheric ions in a geomagnetic flux

tube (drawn without its curvature) under the influence

of the potential of Figure 12. The dashed line

represents the trajectory of an ion reflected by the

potential barrier, while the solid trajectory belongs to

an ion which mirrors at Yc and which is therefore on the

threshold of escaping.

Figure 14 -- The assumed curve of the effective potential (0+X)

sensed by ions, near y=yc . If the abrupt transition

occured along AB, then (4 c+Xc ) would not be the largest

value of the effective potential in the range.

Figure 15 -- The density profile of a plasma similar to that of

Figure 11 and Table 1, but incorporating the effects of

gravity and of a potential barrier.

I 
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Figure 16 -- The density profile obtained for the case illustrated

in Figure 15, if one allows free escape of ionospheric

ions and if the toss-cone population of magnetospheric

particles is constantly replenished to the same level

as the one existing outside the 1033 cone.



Table 1.

Y 0  0  °3 n1 n3

1 0.0 1.0
2 0.0032 0.9991
5 0.0128 0.9963
10 0.0289 0.9917

20 0.0611 0.9824
30 0.0933 0.9995 0.999 505 0995 0.9730 1.1838
50 0.1583 0.9981 0.999 750 1166 0.9541 1.6942
80 0.2568 0.9942 0.999 750 5687 0.9253 2.3009

120 0.3914 0.9844 0.999 751 7392 0.8863 3.1296
160 0.5333 0.9655 0.999 753 6199 0.8477 3.9844

183.91 0.6263 0.9452 0.999 755 1175 0.8263 4.5097
200 0.6979 0.9220 0.999 756 2961 0.8143 4.8869

240 0.999 759 8803 5.7°25
280 0.999 764 5267 6.7601
320 0.999 770 4556 7.7839
360 0.999 778 0053 8.8795

400 0.999 787 7627 10.0687
420 0.999 793 8380 10.7036
435 0.999 799 416 11.1728
435.99 0.999 800 110 11.1926

The three solutions for the voltage at which quasi-neutral equilibrium may
exist. and corresponding plasma densities, for a gravity-free model with both
magnetospheric and ionospheric sources ( see text: this model does not satisfy
all requirements). Spaces left blank mean that a particular solution does not
exist.



Tabl e-')

Y	 ^1	 0 	
n1	 n3

2 0.0032 0.9991
5 0.0128 0.998 450 9316 0.9963 1.2195

10 0.0289 0.998 390 6543 0.9917 1.2124
20 0.0611 0.998 145 6204 0.9824 1.1980

30 0.0934 0.997 723 8220 0.9730 1.1834
50 0.1583 0.996 289 4530 0.9540 1.1535
80 0.2569 0.992 364 4393 0.9252 1.1068

120 0.3916 0.998 471 6220 0.8862 1.0440

160 0.5337 0.998 471 6319 0.8477 0.9756

179.96 0.6107 0.998 471 6369 0.8296 0.9395
200 0.6989 0.998 471 6418 0.8144 0.9098
240 0.998 797 6733 0.8220

280 0.999 259 1944 0.7335
320 - - 0.999 605 3376 0.6326
360 0.999 874 5623 0.5122
380 0.999 987 9209 0.4396

382 0.999 998 6039 0.4317

383 0.999 999 7733 3.4650
385 0.999 999 5730 6.3369
400 0.999 999 1043 15.2738

415 0.999 999 0876 20.2130
430 0.999 999 4214 23.8403

435 0.999 999 7532 24.8411
436 1.0 25.

Similar to Table 1, with gravity incorporated but accessibility considerations
ignored. In this table and the ones that follow the 1 2 branch is omitted, since
it is never used. Note how the "ionospheric" and "magneto spheric" regimes have a
relativel y well-defined boundary at y=38L, differing from the double layer at
Y = 179.96



Y	 41+X1	 @3+ x3

436 1.0

435 1.000 003 841
430." 1.000 024 235
425 1.000 N5 281

420 1.000 066 895
415 1.000 089 074
410 1.000 111 830
405 1.000 135 182

400 1.000 159 152

395 1.000 183 768
390 1.000 209 071
386.027 0.9247 1.000 229 714

380 0.9088 1.000 249 986
370 0.8335 1.000 249 983

350 0.8344 1.000 249 979

300 0.7141 1.000 249 966

250 0.5950
200 0.4761

150 0.3568

100 0.2375

50 0.1185

1 0.0017 783 = ^o

Table 3

n1

0.3669

0.3840
0.4113
0.4621
0.5706

0.6618
0.7420

0.8145
0.8811

0.9430
1.0

n3

25.0
24.841

23.840

22.735

21.531
20.213

18.758
17.131

15.274
13.085

10.345

7.358

0.4406
0.4773

0.54U8
0.6849

Similar to the preceding table, but taking into account the accessibility
restrictions imposed b^ gravity and by the PR potential. All rising ions
ultimately return and the loss cone is empty of magnetospheric particles, hence

J11 =0.



Table 4

Y	 •1+x1	 •3+x3	
n1	 n3

435 1.000 003 383 25.1450
430 1.000 020 892 23.9605
425 1.000 038 820 22.6597
420 1.000 057 108 21.2292

415 1.000 075 706 19.6373
410 1.000 094 513 17.8301
405 1.000 113 264 15.7057
400 1.000 131 017 13.025

396-57 0.8058 1.000 139 333 0.6910 10.1478
390 0.7795 1.000 188 750 0.6996 7.6780
370 0.7092 1.000 249 848 0.7254 0.8515
350 0.6485 1.000 249 835 0.7492 0.8852

300 0.5208 0.8007
250 0.4131 0.8437
200 0.3175 0.8813
150 0.2299 0.9151

100 0.1487 0.9458
50 0.0725 0.9741

1	 0.0017783 = xo

Similar to Table 3, but now rising ions are allowed to escape and the loss
cone is filled with magnetospheric particles, both effects contributing to a
non-zero J,,.



Table 5

voltage kV 1 1.4 1.42 1.8 1.9 2.2

Yc 396.57 404.4 404.8 412.8 415.5 427.8

( 03+x-1).106 139.333 46.692 62.2074 27.471 20.507 3.701

(4 1 +x) 0.8058 0.8359 0.8379 0.8217 0.8038 0.7769

n 3 10.1478 13.154 13.304 16.291 17.300 21.985

n 1 0.6910 0.6758 0.6746 0.6603 0.6649 0.6819

Upflowing J,

Jet 364.1 412.7 415.1 461.3 473.4 509.9

1 11 2.83 1.70 1.65 0.57 0.29 0

j12 0.224 0.349 0.355 0.481 0.499 0.634

Downflowing J,,

ji1 8.50 9.63 9.69 10.76 11.05 11.90

Jet
121.43 72.93 70.51 24.45 12.33 0

Jet 38.42 59.76 60.85 82.55 89.71 119.46

Values of Y. for various voltage drops in kilovolts, together with the

potentials 0 1 and § 3 =0c and the corresponding densities bounding the double

layer (for the sake of brevity, @c+X is encoded: its value in the first column,

for instance, is 1.000 139 333) •	 For each voltage, the 3 components of the

current density at YL are given, in relative units. Apart from the total voltage

drops conditions resemble those assumed in the preceding tables.
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