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A GLOBAL. TECTONIC ACTIVITY MAP

WITH ORBITAL PHOTOGRAPHIC SUPPLEMENT

ABSTRACT

A three-part map, showing equatorial and polar regions, has been compiled showing tectonic

and volcanic activity of the past one million years, including the present. Features shown include

actively-spreading ridges, spreading rates, major active faults, subduction zones, well-defined plates,
and volcanic areas active within the past one million years. Activity within this period has been in-
ferred from seismicity (instrumental and historic), physiography, and published literature. The
tectonic activity map has been used for planning global geodetic programs of satellite laser ranging
and very long base line interferometry, and for geologic education. It illustr tes several aspects and
problems of global tectonic and volcanic activity not shown on com'^,. aonal plate maps: the largo

areas of crustal deformation not susceptible to treatment as parts of rigid plates, the wide occurrence
of volcanoes on the tipper blocks of continent-continent convergence zones, areas of little-known

vulcanism and tectonism, intraplate rifts, and the bilateral across-strike symmetry of young fold belts.

A supplemental collection of representative orbital photographs is included, showing major

tectonic and volcanic features active within the last one million years. Areas covered include parts

of North and South America, Europe, Africa, southern Asia, and selected oceanic islands.



A GLOBAL TECTONIC ACTIVITY MAP
WITH ORBITAL PHOTOGRAPHIC SUPPLEMENT

INTRODUCTION

Plate tectonic theory is based on essentially four elements: rigid spherical plates, spreading
centers, subduction zones, and transform faults. The theory in this original form has been strikingly
successful in describing oceanic and active margin geology, and has been shown by Minster et al.
(1974) and others to have predictive capability. However, the question remains of how well plate
tectonic theory describes and explains global geology as a whole, especially continental geology.

The question has become acute with the development of ultra-precise geodetic techniques, using
satellite laser ranging and very long baseline interferometry (VLBI), which permit the direct measure-
ment of plate motion and deformation over intercontinental distances I Lowman, 11) 76b). To plan
such measurements, and to interpret satellite geophysical data (Kaula, 197?), a rcalistic representation
of present global tectonic and volcanic activity is required. Existing plate maps are both generahzed
and eclectic, being intended to illustrate a particular theory, and do not show continental geology in
any detail (Morgan, 1968: Dewey, 1972: LePichon et al., 1973). Furthermore, even the most recent
such maps (e.g., Condie, 1976) are out-dated in that they do not include findin gs from orbital pho-
tography such as those of Lathram ( 1972), Molnar and Tapponnier (1978), Ni and York ( 1)78), and
others. For these reasons, I undertook the preparation c t' a global tectonic and volcanic activity n, •!-t

covering the last one million years, for use in geodetic experiments and geophysical data interpretation.
Farly versions of this map have appeared elsewhere ( Lowman and Frey, 1979; NASA, 1979: Lowman
et al., 1979). This paper presents a substantially revised version, accompanied by the seismicity maps
on which it is largely based, and with complete documentation of sources.

DATA SOURCES AND COMPILATION METHODS

The primary topographic base map chosen was the National Geographic Society's 1 0 75 "The
Physical World," ( Figure 1 ), reproduced here with the Society's permission. This map is an artist's
rendition of global physiography detailed enough to permit delineation of many tectonic features,
such as oceanic ridges and trenches, directly from it. The Van der Grinten projection used, though
neither equal-area nor conformal, has several useful characteristics. Most important is the fact that
it is possible to show the entire surface of the Earth if desirable, which cannot be done with the
commonly-used Mercator projection. Coverage of the main map presented here was actually re-
stricted in latitude, with polar regions being shown oil 	 orthographic projections. "The
Floor of the Oceans," a Mercator projection published by the American Geographic Society ( 1974)
and based on the well-known maps by Bruce Heezen and Marie Tharp, was used in drawing specific
details not shown by the National Geographic Society map.

Any global map of this sort must obviously draw on all 	 large numher of sources:
those used here are listed in the bibliography, though not all are referred to in the manuscript.
The location and shape of any given tectonic features as finally drawn generally represent a cotn-
posite of or a compromise among the various data sources. Howev; r. the primary datum for



active tectonic features was the distribution of seismicity as compiled by the National Oceano-

graphic and Atmospheric Administration (NOAH). A digital data tape supplied by NOAA was

used, with the aid of a computer program for the Van der Grinten projection developed by

O'Keefe and Greenberg (1977), to plot four maps of global seismicity (Hutchinson and Lowman,

1979), centered on the equator and the poles (Figures ?, 3, 4, and 5). To supplement the data

tape, which covers only a ten-year period, other seismicity maps, such as the Catenberg and

Richter (1949) compilation, and seismic risk maps were used.

Orbital photographs, from the Gemini, Apollo, and Landsat program,, were frequently con-

sulted to determine, from sharpness of physiography , whether volcanic and tectonic features in

poorly-mapped areas had been active within approximately the last one million years. A repre-

sentative selection of these i. included as a separate photographic supplement following the map

and related figures.

MAP UNITS

The choice of map units was governed by several factors. First, it was desired to strike a balance

between purely objective features and those largely interpretive. Complete objectivity would produce

little more than a topographic map, whereas interpretive maps ar • beset by subjective bias and are

soon out-dated by changing concepts. Accordingly, the features chosen for map units were those

whose nature ( though not necessarily their origin) seems clearly revealed by geological or geophysi-

cal evidence. A second factor involved is cartographic simplicity. Maps with a large number of units,

though extremely informative, require considerable study for understanding, and their complexity

may obscure significant patterns. A final factor governing choice of map units is simply the degree

of detail that can be shown at the scale chosen, which restricts the choice to major features that are

inherently well-defined (e.g., large strike-slip faults) or lend themselves to cartographic generalization.

lice map units finally decided upon are pragmatic ones and may not meet the usual requirements

of a classification scheme. For example, the category "normal fault" would appear to fit into the

equivalent category "major active fault." The criteria for each unit are described in the following

section.

Active RiLIRCS

Active ridges were drawn on the basis of physiography and seismicity. Where the relation be-

tween ridges and continental rifts seems reasonably clear. the latter were shown as extensions of the

ridges. Oceanic fracture zones, prominent on most maps, were omitted Fince they are essentially in-

active, a character,uc explained by Wilson's transform fault concept. Piate motion values for the

ridges ( total spreading rates) were taken from the "Datum" column of Table 1 in Minster and Jordan

11978). These were determined by them from magnetic anomalies '_ and _'', and thus are averages for

ahout 3 million years. Spreading directions were drawn parallel to the nearest transform fault, or

where necessary perpendicular to the ridge axis. they are not from the Minster-Jordan table, and

Should be considered diagrammatic only.



Major Active Faults

This category is a broad one. Most 
of the faults shown here are strike-slip, but the category in-

citides some normal and reverse faults as well, such a-. those marking the Front Range of the Rocky
Mountains. It also includes major fractures whose nature and degree of activity (within the past one
million years) is uncertain. The Rocky Mountain trench furnishes a good example. it has only low-
level seismicity and there is no agreement oil 	 nature of displacement along it. Yet it seems closely
related to major active faults in Alaska, and is the most conspicuous single fr:xture in North America,
being visible from severA, thousand miles altitude (Lowman. 1972).

Normal Faults

Features included in this category are those with well-documented histories of dip slip reflect-
ing regional tension or uplift not obviously related to the mid-ocean ridge system and, obviously,
excluding the rifts ot, the oceanic ridges themselv es for cartographic simplicity. Examples are the
Basin and Range province (shown without hachures because of the density of faulting) and the
Shansi graben system ill 	 Widths of a few were slightly exaggerated on the map for clarity.

Reverse Faults

Subduction runes and overthrust belts are essentially reverse faults or fault /ones, though fre-
quently associated with fold belts, and there are some places such as Burma where one grades into
the other. Accordingly, these features were shown with the same symbol, a convention also followed
by Hamilton (1979). It wa- not practical at this scale to show continental fold hefts, such as the
7agros Mountains, explicitly.

It can he argued (e.g., Gutenberg and Richter. 1949, p. 97) that present seismicity in the Alpine
fold helt is not related to the Alpine folding. If this were true• it would he incorrect to show the
structures oil 	 map • since that would imply that orogen\ is still continuing. However, seismic
risk neaps, based on historic earthquakes, show clearly that seismicity closely follows the trends of
the Cenozoic overthrusts and folds. Geodetic measurements also suggest that these structures are
still active, and Pavoni ( 1971 ) concluded that  in principle recent horimital m enn • nts may he
regarded as hang in direct continuation and devrlopmrnt of iate ('enozoic movements" though bas-
ing his review largely oil 	 faults.

Iltere jr-.- some areas shown as active overthrusts that are not delineated by seismic activity on
the maps, such as the southern boundary of the Atlas Mountain.. However, the historical record
demonstrates that such features are active. For example, an earthquake in 1 900 leveled the city of
A gadir. although the NOAA els icrnter tape shows only one event In this area in the 1 905-1975 period.

Volcanoes

Volcanic fie l ds of the central eruptive type make up mcmt of this category, although a few,
notably Tibet and Iceland. are partl y fissure eruptions. The oceanic ridges could. as with rifts, be
included here masmuch as they are frequrntl\ the sites of recent basaltic eruptions. It proved
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surprisingly difficult to compile vol -anic areas active within the last one million years. The tabula-
tion of active volcanoes by Gutenberg and Richter (1949) and the Catalogue of Active Volcanoes of
the World bv the International Association of Volcanology were good starting points, but it was ob-
vious, from orbital photography and other lines of evidence, that such tabulations show only a small
fraction of the vcicanic areas with eruptions in the past million years. Accordingly, I used sources
such as the Burke and Wilson (1976) hot spot map, other publications, and orbital ► ,hotographs
( Lowman, 1970. The primary criterion for ages less than one million years was physiography. It
appears that volcanoes do not survive as recognizable land forms, at least in humid climates, for more
than about a million years, and I therefore assumed that anything shown as a "volcano" on an author-
itative neap, such as the L ► NLFA'0 geologic map of Africa, had been active %within this period.

The depiction of volcanoes in Tibet merits special ►ne,ltion, since W. Hamilton (personal com-

ni l mication) has informed Ilne that Chinese geologists doubt the existence of active vulcanism in this
region. Sengor and Kidd (197 4 ), working with samples and reports from the Sven Hedin Tibetan
expeditions of the I 920s, have mapped extC1lSIVC deposits of young andesites and rhyolites north of
the I ldus suture. Tile Hedin exile , lition reports included photographs of obviously youthful cinder
cones; this, coupled with the existence of many hot springs, clearly indicates the presence of recent
voli anism. However, it is stressed that the I iimalavas are not a volcanic arc.

Features Not Shown

It is apparent that a number of intraplate areas, such as the Appalachians, exhibit seismic activity
not reflected in the t^ctonic activity map. The reason for this omission is that the seismicity is not
only diffuse but is frequently impossible to assign to discrete tectonic features, as discussed by Sykes
11978). Appalachian seismicity may he caused by crustal uplift and localised by very old structures
(Boll nger, 1 1)73). Howc%er, it would be misleading to imply that the Paleozoic orogeny is still con-
tinuing, so these structures have been omitted from the neap. This problem of reactivation of old
str:::!ures is also encountered in the Urals, the ( anadian Arctic Islands, and Australia. The recent
paper by Sykes (1978) analyzes this problem in detail.

A related problem is that of how to represent "passive" contin;ntal margins such as that of
eastern North America. 'llle actual amount of tectonic activity over the last one million y ears is
lluite un!<nown, as pointed out by Allen ( 1975). Furthermore, there is growing evidence of Tertian
or even Quaternary deformation along this margin and possible other Atlantic margi n s (Mixon .:nd

Newel!, 1977. Fyfe and Leonardos, 1976). and of' strong regional stress (Star and Sykes, 1970.
'Ihe.e margins ma y not he as inactive as Co1111111o11ly SUl)poSCd, but there is simply not enough infor-
mation t i warrant their inclusion on the neap-: presented here.

APPLICATIONS AND IMPLICATIONS

Wing essentially a compilation of previously-available data, the tectonic activity nlal can hardly
he expected to produce new discoveries. Nevertheless. it appears to he of' potential value in several

applications.

The most obvious such application is in the planning and interpretation of data from VLBI and
satellltr laser ranging experiments. As first pointed out b y Lambech (in lxl'ichon, et A., 1971), to
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measure plate movements by these techniques it is necessary to locate instrument sites a considerable
distance from the plate boundaries to avoid measuring "the instantaneous deformation in localized
areas." However, conventional plate maps emphasize narrow, well-defined boundaries. The North
American-Pacific plate boundary, for example, is customarily shown as the San Andreas fault, yet as
the tectonic activity map shows, this is actually an extremely broad zone (a fact discussed by Atwater
(1970) and LePlchon et al. (1073)). VLBI measurements made with radio telescopes at Goldstone
and Owens Valley will not, therefore, give true indications of plate rnovern;nis. Similar problems
may be encountered in laser ranging experiments. The tectonic activity map has for these reasons
beers used for planning VLBI and laser ranging sites ( Lowman et al., 1979).

The broad zones of tectonic activity illustrated by the map have major implications for regional
and global crustal dynamics measurements. The most obvious of these, already implied, is that a
number of existing radio telescopes usable for VLBI are not ideally situated for plate motion de-
termination because they are within active zones (or diffuse plate boundaries). Exarnpies include the
radio astronomy observatories at Bonn, Germany. Bologna, Italy: Fairbanks, Alaska, Kashima, Japan,
and possibly the Crimea, U.S.S.R. Interpretation of measurements from such sites will require exten-
sive local surveys to assess near-by crustal movements (e.g., Lowman, et al., 1980). A further impli-
cation is that a comprehensive program of global crustal movement measurement, as contrasted with
simply plate motion determination, will require a large number of sites, whether laser, mobile VLBI,
or fixed VLBI. However, it may be desirable to supplement measurements with these techniques by
dense arrays of retro-reflectors on the ground in broad deformation zones for use with orbiting lasers
( IASOM. 1979).

The scientific implications of the tectonic activity reap lie primarily in its capability to visually
illustrate already-known relationships and prob[_ms.

One general prot,lem thus Illustrated is central to plate tectonic theory: the question of how
much of the Farth's crustal behavior can be described b y a model with "a small number of well-
defined plates" ( LePichon et ::I., 1973, 1 ). 95). la Pichon et al, point out that such models are the
essence of the theory, and urge that the theory's constraints be observed, despite the obvious diffi-
culties encountered in wide areas of "superficial deformation." They present a 1 2-plate model that
includes, beside the large well-defined ones such as the Nazca plate, segments of the Alpine fold belt
divided into small plates: Persia, Turkey, Aegea, and Adriatica. However. it is now rapidly becoming
recognized that these areas cannot be validly described as nlicro-plates. Molnar and Tapponnier ( 1978)
find slip-line field theory, in which Asia behaves as a plastic mass deforming in front o(a rigid indenter
On ±ia ), more realistic. Cummings ( 1976) arrived at a similar conclusion in regard ;o the Mojave block,
which is similarly being squeezed laterally by an advancing plate. Dewed and Sengor ( 1979), in a study
of the Aegean and surrounding regions, found plate tectonics sensu stricto inapplicable, referring in-
stead to "continuum tectonics" for much of the area. Roeder ( 1979). in reviewing continental colli-
sions, generalized this conclusion, calling plate models "inappropriate for explaining the variation of
tectonic styles which comprises nearly all known orogenic style elements." All these interpretations
were foreshadowed by McKenzie's ( 1969) paper in which it was pointed out that continental plates
Should be much more easily defilnned than oceanic ones.

The T ectonic activity map does not of course prove or disprove these views, but it does provide
a good impression of the large areas that are not assignable to rigid plates, in North and South America,
furore, and southern Asia. These areas can be considered broad diffuse plate boundaries, but if so
the inal) provides a mulch more realistic plCtllre of their Iocation and extent than do conventional
plate 111aps.



Tile tectonic activity mar illustrates, especial!y in the Alpine-Himalayan chain, the bilateral
symmetry of folded mountain belts, expressed as matching overthrust zones of opposite polarity.
Although this symmetry is well-known ( Holmes, 1965: Van Bemmelcn, 1960. Roeder, 1973: Bally,
1975), few global plate maps show it and most recent treatments of the origin of folded mountains
neglect it. A discussion of this characteristic would be beyond the scope of this paper, but it may
be worth pointing out that such symmetry seems more easily explained by vertical movement and
resultant gravity tectonics - ►s proposed by. for example, Cady (1970, than of the major horizontal
movements assumed in plate tectonic mechanisms. A contrary view has been published by Roeder
(1973).

The tectonic activity mar suggests another general question concerning the Alpine fold belt:
Is this immense chain, particularly the northern margin c\tending from the Pamir to Franc_, as uni-
fied a stnicture as the map shows' Taken at face value, the tectonic activity map imp:lcs that almost
the entire 7000 kill length of this margin is simultaneously (in terms of geologic time)' ing over-
thrust to the north. Such unified behavior seems unlikel y it' the fold belt is the result of the com-
plex horizontal movement and collision of many small plates as proposed by, for example. he..ey
et al. (1973). Several .-xplanations suggest themselves. Most obvious is the possibility that the tec-
tonic activity map is simply over-generalized, thus producing an illusion of strurtmal unity. Dewey's
( 1977) map of the Alpine fold belt, for example, is far more complex than mine. Another possible
explanation is that we are seeing by chance, at this point in geologic time, a temporary coalescence
of randomly-moving tectonic elements. A third u'ossibihty is suggested by Dewey's (1977) concept
of continental collision as a "terminal" stage of suturing: the apparent unity of the Alpine fold KAt
may tie a reflection of its tectonic maturity, just as mature soil profile. on a variety of rock types
tend to converge.

The tectonic activity map illustrates another relationship not explained by classic plate tectonic
theory, nanlel\ , the great difference in dynamic behavior between continents and ocean basins, or
more precisely. between continental and oceanic crust. T)uere is clearly far more deformation occur-
ring within continents, a fact neglected by treatments in which the continents are simply passive
rides oil 	 plates and the continental margins incidental features that may or may not
coincide with pWC boundaries. Possible explanations for this evidently real continent-ocean dichot-
onun are discw,sed by McKenzie (1969), Solomon and Sleep (1974), and Jordan ,1975 ): further dis-
cussion is beyond the scope of this paper.

111e problem of infra-plate rifting is also illustrated by the tectonic activity map. The best ex-
ample is the Fast African Rift valley system. It is not obvious how these rifts can be expanding when
the continent is largely surrounded by actively spreading ridges. Tile reality of this problem is indi-
cated by the fact that Minster and Jordan (1978) found it impossible to satisfactorily model Indian
Ocean tectonics with rigid plates: their RM_' mode l indicated east-west compression across the rift
valleys at over I cm/yr. A possible explanation easily visualised with the tectonic activity map is
that the ridges themselves are moving away from Africa. However, such a nlecllanisnl is not clearly
applicable to other Ieatures such as the Baikal, Rhine, Reelfoot (New Madrid), and Rio Grande rifts.
It Wray be that nits reflect vertical rather than horizontal stresses, as suggested by H. (loos, Holmes.
and Dewey and Burke ( 1074).

The tectonic map shows the surprisingly widespread occurrence of volcanoes on the upper
blocks of s:lhducturn for overthrust zones in the Alpine chain from Burma to Morocco. Ills relation-
ship is well-known and reasonably well-understood for the suhduction z:mes ringing the Pacific (e.g..
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Marsh. 1976), but there is considerable uncertainty as to how magma is generated at conlinent-

continent convergence zones. Radiogenic heat in areas of thickened .rust has been suggested by
Ik wey and Burke 11974),  referring specifically to the Tibetan plateau, but as the mar shows, vol-
canic activity occurs in other convergence zones with much thinner crust. Frictional heating would
seem to be a more generally available mechanism (Bird, 1975), a third possibility ( P-gi rd, I37R) is Con-
tinental delamination following collision, exposing the crust to hot ast lien osrheric mantle mal-rial.
A useful review of this problem has been presented by Roeder (1979).

Finally, the tectonic activity maps of the Arctic ( Figure hl and Antarctic ( Figure 9) regions

provide at (cast a new perspective oil 	 tectonics of the polar regions, which are generally omittet:
from global plate maps. Several problems are easily visualized with the (naps presented here. For
example, it is apparent (even though coastlines, not margins• are shown) that the Arctic Ocean can-
not he explained as simply the result of one episode of continental drift driven or accompanied by
sea-floor spreading, a concept suggested in the Atlantic from the parallelism of continental margins
and the clad-ocean ridge. The complexity of plate tectonic interpretations for this area (r.g., Herron
el al.. 19751 reflects this problem. At the other end of the earth, the geologic peculiarities of Ant-
arctica are well illustrated. Particular s noticeable is the apparent absence of a subduction zone
along the Pacific coast of Antarctica ( between the Rllss Sea anti the Palmer Peninsula 1, as shown by
the absence of seismic activity (Figure 7). The Pacific-Antarctic Ridge would appear Ill require such

a sllth duchon /one, and the fe •.v volcanic centers east of the Tranwntarctic Mountains aught he ex-

hlallled thus. One alight slieculate oil 	 presence of a Benioff rune characterized by extremely
slow subduction. a%synlrtric spreading from ill: Pacific-Antarctic and other ridges surrounding the

continent nlav also be invoked.

SLINUMARY AND CONCLUSIONS

Uniformitarianism, broadly interpreted• is still a basic assumption of geology, anti the tectonic
anti volcanic activity of the present i% presumable the key to understanding the geologic last. Ilow-
e\cr. there has been no map produced shovvlllg such activity over a long enough tittle spurt to IV
reasonably representative of the "present. - Comentional maps of %cimmc and %olcanic activlty gen-
erally cover only a few decades or centuries, whlle geologic maps cover periods of tens of millions of
years or amore. 111c tectonic activity neap presented here should help to fill this cartographic gap.
Ilse one million \ear tittle span chosen does not correspond to any particular epoch. but it is long
CliOtIgh lo; OW .1C^ tlllllllatioll (11 I'll\ raograpllic evidence of geologic ai tmte :Intl ,hurl enough to tie

considcicki all Instant of g"ologlc tine.

When viewed n1 the light of recent studies indicating the importance of continuous deforma-
tion nl orogenic helts, the neap call 	 considered a reasonably realistic assessment of how well global
tectonics Call lie e\plalned in terns of rigid plate inleractl(n as required by rigorous plate leclonic
theon . It is becoming clear that Large arras of the , rusl and several major clasu s of structure cannot
Ilk . vahtll\ treAcd as aggregates of noon ► plates, and that the continent -ocrar, dichotomy nlae he .i
fundamental one, contrary to comenclona) plate theory. hits by no means imalid,atcs mechanisms
such as sea-floor spreading • trailsfonn faulting • and subduction. But it seems clear that global te. -
tonic and \ulcanic activity cannot he completely expl.imed by such nlech. lnlsnrs acting oil 	 plates.
It is hoped dial the neaps presented here will Iead to improved tectonic syntheses that more Ie.111st1k
ally des.:nbe and predict crustal activity
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Figure 2. Earthquake epicenters, 1965-1975, without continental cutlines.
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Figure 3. Earthquake epicente rs, 1905-1075, with continental outlines.
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Figure 4. Tectonic activity mall.
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Figure 5. Farthyuake ellicenters, 1965-1975. Arctic regions.
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Figure 6. Tectonic activity map. Arctic regions.
Continental .outlines taken from earthquake epicenter map.
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Figure 7. Earthquake epicenters. 1905-I975. Antarctic regions.
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Figure K. Tectonic activil% mall . Antarctic region%.

(omtmental outlines from earthquake epicenter mall.
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MAIN INFORMATION SOURCES FOR TECTONIC ACTIVITY MAP

The following list, keyed to the main reference list, gives the main literature sources for the
maps. It is worth mentioning again that the representation of any given feature or area on the tec-
tonic activity map is almost always an interpretive composite from several sources, and may differ
significantly from any one of the references listed here.

North America: Atwater (1970); Bally (1975); Bollinger (1973); Cady (1972); Hinze et al. (1977);
Hopkins (1963); King and Edrnonston (1972), Kirkham (1977); Lathram (1972); Lowman (1972,
1976a, 1976b); Lowman et al. (1980); Marsh (1976) Muehlberger and Ritchie (1975); Prostka and
Oriel (1975); Simpson and Cox (1977); Smith (1915); Smith and Cristiansen (1980), Stewart (19 71

 et al. (1979).

South America: Bally (1975); Chesser and Hamblin (1975): Candie (1976). Dalziel (1974).

kntarctica: Barker (1972); Dalziel (1974); Daumani (1964); McKenzie (1969).

Australia and New Zealand: Brown et al. (i 968); McKenzie and Morgan (1968).

Africa: Burke and Wilson (1976); Holmes (1965); Lowman (1972).

Europe (incl. Mediterranean_): Albany Global Tectonics Group (1978); Ben Avraham and Nur (1976);
Dewey et al. (1973); Dewey et al. (1977); Dewey and Sengor (1979); Holmes (1965): Rutten (1969);
Van Benimelen (1972).

Asia (incl. Indonesian Region): .Albany Global Tectonics Group (1978): Bird (1978); Bird et al.
(1975); Burke et al. (1974); Churkin (1970; Gansser (1964); Hamilton ( 1979 ); tiolrnes (1965);
LePichon et al. (1973); Lowman (1972); Molnar and Tapponnier (1977, 19%8); N, and York (1978);
Powell et al. (1975): Ray and Ac}iaryya (1976); Sengor and Kidd (197(%); Swiss Reinsurance Company
(1 97S): Tapponnier and Molnar (1977, 1979); Terman (1974); Troth fka and Lowman ; 1979); White
and Klitgord (1976).

(A:eans: American Geographical Society (1974); Anderson et al. (1977); Bergh and Norton ( 1976);
Bracey and Ogden ( 1972); Chesser and Hamblin ( 1975)- Condie (1976). Dalziel (1974); Dewey (1972):
Forsyth ( 1975); Hilde et al. (1976); Isaacks et al. (1968); Johnson and Vogt (1973); Karin, (1971):
harig et al. (1978); Meyerhoff (1973); Morgan (1968); Sclater et al. (1976); Stein and Okal (1978).

PHOTOGRAPHIC SUPPLEMENT TO MAP

As previously mentioned, orbital photographs were essential to completion of the tectonic
activity map, by providing information on the location, nature, and approximate age of tectonic
and volcanic features in remote areas. It is therefore considered useful to provide a representative
selection -)f then photographs, although because of the scale and generalized nature of' the map,
there will be only occasional correspondence between it and the pictures. Brief captions are pro-
vide.}: for more detailed information, the reader is referred to the appropriate publications listed.
Features shown and described in the captions are, with a few specified excepkions, those meeting
the criteria of volcanic or tectonic activit y within the last one million years. 11iis does not of course
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imply that these features originated within the last million years, only that they exhibited actively
within that period.

Photographs from manned spacecraft were generally taken from altitudes of 150 to 300 kin.:
landsat images are all from about 920 kin Orientation is given in the captions for hand-
held oblique photos. All Landsat images are printed with north at the top. Swath width of the
U, ndsat Multispectral Scanner is 185 km, north-south dimensions of the images are the same. For
detailed discussions of Landsat and most of the images presented here, the reader is referred to
Mission to Earth, NASA SP-360, (Short et al, 1976). For Gemini and Apollo photographs, Space
Panorama ( Lowman, 1976), The Third Planet ( Lowman, 1976), and This Island Earth, NASA
SP-_'S0 (Nicks, 1970) will be useful.

Landsat images can be obtained from: 	 EROS Data Center
Sioux Falls, South Gekota 57198
605-594-6511

Gemini, Apollo, and Skylab photographs call 	 obtained from:

Technology Applications Center
Universit y of New Mexico
Albuquerque, New Mexico 87131
505-_'77-36?'

Aerial and selected orbital photographs can he obtained from:

National Cartographic Information Center
U.S. Geological Surrey
507 National Center
Reston, Virginia 22092
703-860-604
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Figure 1. Landsat mosaic of SW United States and parts of NW Mexico. See

Fi g. _' for identification of features, and Lowman ( 1980) for discussion.
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Fieurc 2. Geologic structure of' Landsat mosaic (Fig. 11.

From Lowman ( 1 9 76a, 1980).
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Figure 3. Landsat view of southern California. showing intersection of San

Andreas ar.d Garlock faults (see Fig. 2). Triangular Mojave block W;)per

right ) app -ars to be squeezed out to the east by compression in th, 1 rans-

verse flan ;es along the bend of the Sail Andreas faU)t. AIJn1' faults beside the

San Andreas and Garlock are active or potentially so. LJndsat ima ge 1090-

180 1 _'.

1
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I igurt , 4. Lanllsat ciC\\ of ti,lllon tro l iell, southern California, and akliairnt

I'Cnln,ular Ranges. 5.111 I)I.'s\) At l0WCr lClt (SIT I It:. 2) S.'llon lr\1l1Lll "\'I,-

n11C.11 \ aiti\C Auld hlnuldC\I h\ aitl%C strikc ,III , i.ullt,. Geolllrrnlal ailnll>

nl,l rCCCnt \ L&JI i,nl ot: ur. fr\\u t ll Ilas IhCi n -,ho%%n probahl\ un\irrlaul h\

Gill\C SI1 rCa 1111_' il'11tCrS k:0111WC I 111 Cil Cilli'It I II transform laol Is. See I \m-

II an I l \) ^(\:1, I \) SO) for re%li\\ \11 rl'1'I0Ilal tiit,\Itics. Land-sat IIII:ILr 1 1 00-
1 7;04.
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Figure 5. (1rnuni 4 hand-hell photo tit the Sierra dcl 1 1inacate. northern

Sonora, Memo) A Noting %ol.JIM. Iielkl hor,Lring the l;ult of Califoriu.i

(loi,%cr Ich) m1h acli%'ity' WIflun th y I.iat tc%% thousand years. Rocks chicIly

basaltic ( wimm photograph S 65-34675.
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figure h. LJndsm	 of Swrra \evalla. k .IIII„rim. Picture	 normal

faults huundlnt 11err.l on nortIica.t: (Hens \,III:N .It 11 .211t Arca Jwi-A:te,

ve,l 11% fre,luenl earlh,lu.lke%, oirasimlilk %tl,mg Mon" lake It„pt an,l

1^^, 1i I:Ili^l rhyollli kioniCs IS an area O !Ciellt \'111iJ111S111. I oile \ .Ille\ , Just

SI of Mono LJki. IS also J volCJnli area With aitl%'tt\ a% re , inl as a lee
hun,lreil \ear% JgO. Jn,l 1% uMlir in v estigation for potc nal ge„thernl.11

eni rF^ . See Jour. ( coph) s. Re.. %. S I . nu. C . I' 1 'r, f„r so . lai paler% ,n

I ,,ng V.111c\ ialdera. I.In(tsal nnagi 11 c,?-1 SUr,?.

?c,
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Figure 7. Portion of Landsat mosaic prepared by U.S. Soil Conser-ation

Service showing northwest U.S. Area includes Cascade Kange, recent vol-

canoS considered to result from magma generation in suhduction cone

associated with .loan de Fuca plate. Light-toned area at center is Columbia

Plateau. undcr!aul by flood hasalts of Miocene ace thence not shown on

tectonic activity mall). Northwest-trending valleys at extreme upper right

are expression of Lewis and (Iirk lircan:ent, mineralized zone of low-level

seismicity, shown on tectonic activity map. Nest end of Snake Diver Plain

visib!e at extreme lo. %cr right: area of young basaltic and rh blink: vulcan-

ism. See G.S.A. Memoir 1 5 2, 1978, for papers on region.
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I Iedu; S. Ldndlsat mosaic of (0-edt Salt Ldke, Utah. and %%asdtch Mountains

to east. Area is the eastern margin of the Basin and KanLe Province, but is a

north-tre ndin g hch of dlis:rete seismicity (the intermountain seismic belt r

dnd geophysical an,011alie. then :ntat and hitli (teat now. It lids

been constdleredl an mkhNidual branch of the world) rift system by K. L. ( ook,

related to the Last Pacific Rise. the tectonic a:ti%tt) map Pub)N%s it as a rift

with no ck-ar relation to the global rift s\stcm.

i
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FILUrc Q . Apollo q hand-held { p hoto lookinL north o%er the Rio (;ralldC rift.

VaIIc. ialdora at - ciltcr -. Iarge voIcaII0 \lltll aSSOCLIteil rh\ ohIes and t_L'nim-

hrites. Sall L1,11 1 \101111t,lill> at 111)l l cr lcit corner. youn gest volcanics about

million \earn old. hcn,:c not >homi on tectonic acli\it\ mall. Sce Lo\\man .

for discussion and mdc \ mal'N. Apollo pholo rapl1 AS Q-20-3141
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I iL'ure 10. 1.111d>at inlatze 'dio ln^ the I runt Rmige, Colorado. anti htunitl-

Aq h; t%%een Ros k^ Mountains I lelt l Mid t:ralon Irizlll l: Demur 1owL r right.

I ight-tonetl III, still tallls :11 Im sellter are C ontlllc ntal Divitlt' Ret:elltly active

Ialllt till tt'iloilli aitkily 111ah In t1w, area relel ,, tO III)I111 .Ilt t ll	 tilt' hogbacks,
mmking the et1ge of flit' 1 runt Rance. not Its o llt'r Fault. III 	 lantlsat

inl,l,e 1 SS- I - I " I .

-14
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igurc I I. Apollo 7 hind-lirld I`hoto lookin g north o%cr Mississippi Ki%Lr

Inns-LO' lrd Apollo I I on ac.omp.m%ing mah). New Madrid rarthyuakr of

I•SI I ok:.urrCd in St. I rands Basin (extrcmc upper right), with n• rurrcnt s is-

nmit% sine. Aggra.ling nature of mer cmphasi/es hasic:ill^ tet:tomc origin

of Mississippi I mbar men: Apollo photograph AS
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I Ii-, tIrc	 [ail tls.lt 1110%ali I`It'I)arrtl I,\ L .S. Sot I ( owwr%attoit St'r\I:i s it , \\

Inc r:Lirrn U.S.. ic'ntrrntl on -311A I itittitle. hrlwrrn Wanll::ua.t .Intl 1.akc

rli 1 UI)I I i r I:I It I. As thsk us.Ctl Itl ti \ l. :ir a 1. nut .hu\\ll as :I,. IlIII tics Itt' Jil -

Itl.t'	 In Ap alachian%, pi^. I mc pi -cwnted for contrast with , I ,. live

Iultl	 as 111: /a ,L'rus Voutlla111. 0 Ig. 2' 1 1 Rid1r', and	 ul

\I'I`ah,'I11.111:. \\t'I: Iortl cd h\ difIcrt'nIial C1'ilslutl aII:r rt'gIUnal III)IIIt. 114 It

dIIc:11\ II\ IC:lullIsm	 111 I it, /apos.
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igurc 13. L.nl\Isaf nnal:c of wulllrrtl W\ico; Mc\ico. I I I .. at c\trrt!lr uh-
I`cr Ictt. Area sh„\vn I. casicrn end of the Neo .-Vol:anl: Platcau. an cast- we%I

trcnclnl .v hclt of %oung anal tn,iurntl^ aitl\c \ol:anocs: rc Ksmp the istllnlus
l^ro11111WIll Il„tlll\\c'It tr\'lldltly r.lilgl' at I,+l+ ccntcr Ill'lu'les I'„141:.If.il'rt1

kouthclll pt.-Al and I/ta::lhuaII (crnIraI pcak). La MaIinclic. a lit) thcl \ol-
^ano. 1" A IIppvt tlgllt. Dark arca% % urr , ` u ntling cacti are forc%IvkI mountain

'11( $ 1'Ls IJ1111s.l( Iln.l .Cr 1 .;O? - Ih'tiS.
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Figurc 14. (mrnuni 9 li mddicld photo lookin g south o%er Andes. (See Low-

Man. 1972, for detaiied diuussion of photo. i Relationship of Peru-Chile

I nc n:h. arc-trench Lap, and Volcanic ar: well shown. SUl)(ILIc tiOn lone dips

to east. Lc., from ri g ht to Iett. (iemim photograph 5 60-3K3 13.
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Figure IS. Apollo 7 hand-held photo of roast of Chile, showing area of
acts e tectonism overlying Peru-Chile trench suhLIuction tone. Flocks along
coast are Paleozoic i gneous and metamorphic rocks. Area characterized b
fretluent Strong earthquakes. Apollo 7 photograph AS 7-7-1820.
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Figure 10. Landsat \i%• %% of southern Iceland. Re\-kavik at lower left. South-

west-trcndinc drhressions and related features outline the extension of the

'slid-:atlantic Ridge. Area is seismicall\ and volcanic active and generally

considered to be an exposed part of the Rid ge. Substantial crustal extension

an,l volcanism occurred ill northern hart of Iceland in the late 11)70x.

See Short A A ( 1 1t 70l. Plate 'N. for discussion of this hicturc. LankINA

ima ge 1302-1 1 1.
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Figure 1 7. Apollo 9 hand-held 70 nun photo showing continuity of structure
across the Strait of (;ihraltar. Folds and overthrusts of Riff Atlas (lower left)
grade into similar structures in Sierra Nevada of Spain (right). Note direction
of overthrusting (away from Mediterranean). See Lowman (1970 for more
detailed discussion. Apollo O photograph AS U-_3-35; 4.
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Figure 1 8. Landsat viem- of i ,iterseetion of Rhine graben system and Alps.

Rhine valley at upper right; largest cit y is Basle. Switierland. Vosges kits. at
top renter. Black Forest at r\treme upper right. Jura Mts. at lower renter.
Rhine valley is south end of Rhine graben. Juras are Mesoioir sedin ► ent>:

folded and overthrust to the northwest, largely by gravitational gliding. At

r\treme lower right are the Alps proper. locally the nappes of the Prealps.

also O\Crthrust to the northwest. Vale\ between the Juras and Prealps is

the S%^iss Plain. a Tertian basin tilled with coarse sediments derned from

the Alps (Molasse). Landsat image 1078-09553.

1.
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h Fure 19. Landsat view of Rome and adiacent arras. Picture shows the large

calderas of the Rome .district. the Sabatnu and l mono volcanoes nortliwrst

of Rome an.l the Latian volca ►to to the southeast. Although now extinct,

they have been active Hithin the {past one mullion years Kock types associ-

ated with them are largely ignimbrites and rhyolites. Area to northeast (up-

per right) in Appenninesis und. • rlain h\ Paleovoic and Mcsoioic platform

carbonates. toldr.l and overthrust to the northeast. Landsat rtrragc 1I98-

0923 1.

(12
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11gurc :U. Sktlah harm-lidd 35mm photo looking southeast otcr southern

Ital%: (full' of Taranto (1) at top :rntrr. Adniti: Sri IA) it left, larlc%.111d

\ v ,-mms In It,urr right corner Mo tin Imii% rl %outImc •.1 halt 01 heninsuli Ito

right 1 arc larpei% ' • Arlalle S:ahose • ' Is:al\ shales) 01 Ccno/01: a ge. laldctl and

mcrthrust to the northeist. Ar.a southeast of !Ka{s irs was site 11 dc\astatinv

earthquakes of Nmembm I X1 ,0. Loo er tertanl to southeast I left 1. hounded

I, \ Front of the Alhlnc alloolion imarke.l 1,} o%erthrust symbols) is largely

less ^lefornle^t carbonate platform ,1rliosits. Whtir I,it:hcs are towns and

cities 1 Rcicrrn:e ( arta lettonici k1'Itaha. I :1.500.000. Colm9ho Nalionalc

Ikl1e Ricache, 10K0).

t,a
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Figure -' I . l;emim I I hand-lidd photo looking northeast over North Africa

Toward Libya and Egypt. Dark patch at left center is Haruj al Aswad, a re-

cent Volcanic field. Tibesti I'Mountains at upper ri_ht are also volcanic. Ligl.'

area at bottom center is blarnik Sand Sea. (lemini 1 i photograph S 6h-

5 45 25.
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Igurr ' nlni 17.u111-helti I'llottt. letting to Southeast t)%L . l I11"."ll

Mtnnitalll. oI I lh%a anti Chad. ('altwias. as%o iated with rh%olites anti ig-

Il in I , rltc-,. are consi tie rcd i xIIII ► 1 I , III IlesII IIIt I 111Iult I F. % ttl crate I'% all tl assoct-

.Ilt • tl Lit .1 lltms:leariv inlll:alrs young ages (t. g dal  flow of I", Uousside at

far nrItt). VttI, - amc fit , ItI gem. IAIN , :OIl Idel"l• t1 C\I'Icv.IIll of a "7.'11111' 1`1111110.

Ahsen:r of % ,ISIVIllatic alit. tllstrihulltms indicates tit, No emoit ill' Alrtca
%1111 resltr:t It, mantle for ahoul 'i nllllttrn veal IBmkt • .ultl N11lson. 14721.
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I - iiurr '?. Apollo ' 1 hand-lidd photo of \\ .Csirrn Ciht• sti Moll 11lains. SIIo\\ing

\, I IIIIIII I I ph \ siograph\ l\f \Iilialllll'ti. \^ III IL-tlOkiretl 	 h\U all latron

Clark t10 \\N Clllanate (Celli I'li F oussi c.





I temc 24. Apollo - hand-held pholk , lookmI,. north u\rr Sm:n 1'rnln.ula: Rcd
SC,1 ltl\\rr right kk- pon gCth'r,lll\ intaI irCti d as a trifle Illlli tion ridge (KCJ
Sea)-lran.fornl ((vull of Atlal ,&Dcad Scal-I:ulcd rift (Gulf u1' SuC: ) Arabian
I'Cllltlsuh (rights ,ippt-ar ,. to I Nc tllmIlll' northca-,l ll ) lClt•latrral slip alonl
I'lult" k i t 1110 (;llll kit'	 Sca "rill " [ Ot dCt,ItICd IIISCUSS1011 SCC I O\\-

rtl,ln ( 1 1 )	 1. Apollo , I'llotklLraI'll AS	 1 1-2000
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I Icurr 5, (irnlinl 12 ha"d-hcl,l photo looking ,outheast o%er lllc Rcd Sca

and S111J1 - clunsul.1 (Itmer lril1. Space . r.Itt dot kc,I Io Agciw. ra,1.1! trans-

ponder 1. o%L-r \ilc Ri%cr. 1n.lrked h) .lark %egewilion. Moto gnc. good over-

.11I %i c%k kit Kcd tii.1 and trwIc Imiction will (;ult o( ;\,Iaha .'n,i (;ulf o f SIIC/.

(4. 1111111 1.^. hhk`ktogr.!hh Shp -(,3480.
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11 t urC 't, Avoll1 1 11 hand-licId I\hulr 1i1 Var &PIC..1111 .ul\I (1111 oI I a11-

jout.l. var dCI`rCssl1 1 n gL-ncr.11l\ i\ I Il+1\ICh'\I i\I)»Cd "CA 11001. dA1111nCLI ull

Ir, 1 111 RC11 SC.l. \111 Nllli h 1101`111.11 t.11111S 111 JIl JC II% L' \ 	 pi-ca mi! .IIC.1 ac C\-

I41.,'kI	 \\111It' .1rk'JS .I R' C\.Ipt i rlICS. d A t k .I1CJS i I t IICI`IL'S%1111 i!OlCfall\ I^.I".III'

l onl	 Itpar: \\Ith I mils	 pit.turo% lit I .t , t Vnk.ln rill aml of kol.lnd Ai , ollo `l

pholovr.11 1 11 \1 1-
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I}llrc '- I -ink Is,11 %li %% ill WI1111 ,.'rll I\l'llNa 11,IIr( 1 1) 1 .11 i \Irl'I11C right). \IIl1H-

nle I .INI AItl.an IItt •),t rill .1I Ilit* I ,Iti.iIor I .Itgr %„I..mo it tiI , per righI. in

1111. IN SIINN.1 sl'%l'ta , IIIrr , .II"r \ IV h Ir Srr S110rI rt ,11 ( 1 x )7(,1. I9,IIr 59 It 1i

' Iiiallk-d disc. USS10111. 10 1i tilil) 1.11111 N Ill CJ S IL , rn part ( i t rill, com pall' W1111

sirll.rllrl' ill Mar I)rpris s loll 11 19 701 KIII IS ICII%L and illafai-

IrrviJ h^ n,nnl.t! I:lllltnl .L! I,unt^.rt 1nl,lEr IUIbU^I
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Figure 'ti. Lanclsat view of teat! Sea and Dead Sea "r,ft." Vallr^ now gen-

ci.dle ronsicl,-red a transform fa,llt reucm:ill\, alon g which mor. thmi 100

knl of left-latcral movement has ta6cn place. I his se gment has been shown

h\' Quenc'll to he hounded by paralk-I mc'nch tmilts, opening a — rhilil bo-

d ;sm - tS. N. Car-\'' ,, term ► 1 N,  left !;.tern till{. Linclsat image 1053-07421.
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{ Igine 0 ApAk	 {I,III.I hAd p hoto of /,ICio , N{oIIIII.IIIIS, Iran. {1\okII11' to

north. Qi%li 11 {{.Ind .it {o\1t'f IISi`l	 P', link' %hOW, ,1111\C oro1 _,illli arc.i In

\1{Ili{1 lo atf,i{ {1\ Illlllol s QfUilllfl`v "Ain 	 IIt{!,c , { cmI	 .Illl:i{IIICs. {l.iik

ilfill{,if II,iItIR'] at 	 c\ I rwl i \ k , N.I {I dI I IIIi N	\I CA IVI'R'SCilh COMCtgCIIiC IIIn'

hiI\1CCII	 Al	 I'{,Ili ,111k{ { il1.111,111 {^I.IIi. I'III \%ld	 q I:.Id	 .111d

ICi lk l lllsll l '{I"'{uallI \ it 11 1 111 tho	 0I11.I1i	 sii I	 \\ 111.111 ({ tI	 _ I

Ik%1 111,11' .Ills{ dINi11" 1 1011. A vol It, • ph1llk)^I.1 ph AS - 1 5 1 (1 1

--J





ILllri ?O. (iilllllll	 I	 I1:1114 IIiIiI I'Ili t tl t Ilh0k111L ia^t It\CI' 01C Strait kit

Illtrnlu/. \\ith Oelan ,It ri ght .ind ,l^uthca;t lime and Pakistan at lilt. I ast-

trcndulL r110unt.un, ai lift ccn(cr arc Ills %hki.u1 Ran ec. cltnsidcrcd an lncr-

thru.t. Itrcthahl% 11MILrhin h% a nktltl)-,Ill'l l in' ,uhJuill(tn iuni. hld gcs al

I,)\\cr lift irk , hart tit /agro ,, Ott,.. dl\ldcd trom Makran Rmi .gc h\ wrenc h

lam p s tit tlli 0111.111 I inn (term ['101 1 0SCII I' \ A. Garisscrt. ILIrk rOiL, ltl Illi

llnlan h.111UT Ir1 11t1 ati :Mill\ 01 1 11101111,. 1hlu1d1l, ll t 11.1\c hcin lth,ltli[Ckl

l^rnuni 1	 I111010graltll S (l1i- o.'s4Sh.





11'llrl	 .^	 l ^^'i111I11	 II,IIItI - IIrIJ I'IIo o lei ^ ^lll
^,IIIC	 ,11 Il (I.	 I'1^ 111fL' S^l I\1 1, 1111	 1,,'I\
I^\ Il l.11^^l 1 :Illl1 on cat	 \rt • ,1 ull ' ICTI,III1 h\ pail

:rnhr. Linear fr.ltun'. ,Il to \%cl 11LI1; ark- \mda
I11ghk ,1111%C S CI % I1lli,l11\	 l^^'illli^l	 I^Ilt^l^^lCr,ll'll
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I e"rr ?'. Apollo , hand-hell pht"o shouim, twrtltcrn India. Ri%eN in lore-

grinitlll ,Irc Dart l l t thr trangcs ,\ ,liIll. Area Lcncr3ll\ i11I111dL-rcd to rclirlsenl

site tit imdl rthrustin^! llt ' iksia h^ 111(113. %kllh thl 	 (tipper IL-I'l ) hCHI

t I i c IIlru.t. I ,1rl • crl) III ll i', l IdtlgC 1, \Iltnial 1'1,1111. underlain hN III , to ,-, hn1 ul

.ellinle11t dkri%ed larerl^ trlim I It mah Nis. .\ptd1,	 photograph \S , -I I-
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1 lgury ? i. 1 .111d"di %iC%k tit I irn Shmi. China, viimit% of 1 '7 8'.N40	 shuw-

inC lold ,, and	 larlill Basin to smith. Notc pronmicnt o%cithrust

.it ll-^kCr Irtt. houndcd hN Irli latcraI liar I.iult" 1.1lids 'll nn.icr I 200-0 000.
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1 Icun 4 1 and%at %IrN of wr,trnl { , ,III of :\It% n Iaph Fault. wc dcrn ( 1una.

1'.11111 flail' III II IL It C' I b% ;IIr0%% 11111toin Irtt- 1aICraI. Sec Nil I n a r mh

1:1I^ 1^^H1IiIVr 11' 1,5 1 for d INC IN^I ill. I.In I^.II I111.1^'C 1U,3 1t1:{ Z.
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Figurr 35. Landsat view of western Chin;i. vicinity of 3 0°N, 91°C, showing

hart of Altyn Tagh fault. Molnar and Tahlumnicr ( 19?5) ,consider !his "per-

haps tll ,. greatest active continental strike-slip fault in the world." Fault

trace sho%kn by arrows. Tarim Basin to north. Serve of motion i,, Icft-lateral.

landsal image 1410-04062.
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I IC ► Irt' !h. L:Inds,ll vic%\	 -I Sinkiang PirmItlte, will I.akL' Baghrash it IIpper

IcH. :area Is t i lt northeast itlu' 111 Karin Basin. I ast-west Iwildini 1.11111 at

ItI%%cr t ellter shtm it hi' NIt)In.11 ,Illd I .II`I`tinIt Wir ( 19 7', 1 ,I^ fie-Ill I.IICf.II. ,It-

sl`I l,' app.ll -elll UI %l \ N I,IIIIIIe rok its. ( onsitlerod I,\ MoInat and I ,Ilt-
14t11111,'I Ili lit' IrSnit tIl e: ► sI-%%sI slle:Iriniv III kIUket) b\ itorIII %%:IitI Ili t1 \ ilIIt'lll

anti ,ttlll.lun oI I it, Iia with Asia. I.:In,k.11 In lave 1 12844 21i().
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hinirc 37, tinuhus l image.ho-inLnorthcrn Mongolia. Lake host , . and

southern Slht• 1'1.1 near cit\ of Irkutsk. t S.S R . l akr Baikal at r\tn•ink•
I'r(nuncnt lineament running from limer right to tot) .rntrr is the Sa\:u ►
laull tarrkmsl, LA,.- hoso oiiuhics a graben %:(mmilered p.irt of the 14,11k,11
rift %ystriii. Image shows valuc of seasonal :overage for rC I It I I I 10 11 of geologic
features. See Lo\%m-in 1 l 0- _'1 for	 and oli,cussion. hnaLe taken 1 1 ► Sept.
1k)()4.
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I'1CIIrC !ti. 1. ndsat viv%% of Lake B.6k.11. U. S.S.R . bot"Idt'd I ,\ I 1111 1,kl\

1Z.111CC t i ll the \%c%t side .n d Uhn Burkass% RanEc 1m the C.Lt .Ikli. Laki

i^iilll^IC^ ,1 I:11'gC 1.ral)L'11 11I1%ICI'00111L ,1'11\C C\Ic'I1 1,1011. with strono scism1i1t\

and fault plant s11111tionN (MoInar mid I.ippomcr. I` 1- 5) ItllhlatlllC 1101111.11

Imilting. ~lion rartll luakC in I 'sbl kill d 1300 I olplr. See Short Ct .11

1 1 07(() 10r 1110rC tICI.IIIC it Ill", 104\1011. I .WdS.1l II1I.ILC _' I *; O-()? 1 23
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I it:ur. 3 1). L-andsat %irH • of ' northun portion of Shansi gruhrn tiystrni, about

150 km west of Pckin g . Mountains arc tart of thic (Treat kimigan flange, a

complc\ of' Preianil l rian inctamorphics and N.jkurgcr sc(hmcnlarN .ind ip-

neous rocks. Area i, undcrgoing crustal :\tcnsion, as shown h5 norm.il

taults hounklinL sallc%• Landsat ir ► agc 1 5_3-02331.

I()-I



FI I4-wl	 [lid 391	 FII.5 A I 	 IMP

.'N!]EL P7 C IM-17.4 II 3 -11s -V I ~/[II JIjj ICY S	 R &A EL2I 1WIW IM rARk ' ti : I	 dli^	 Y

10.1



igurl • ill l .ultk.lt %it'll of nortll:ln ( hma. Nlltll ijt) (11 I'llipang at I(nll•1
ilnt^r \Ir.l "llo l 1. Dart 111 Shin" g raben i sh • nl, a scn:•s of aiUnr I,a,,
rl • `I)lnsihlc' for Ittlrlll• rous dc%aSt .11lllg k.IrllhILI L's. area IIII,lCr1 :11il f". C\101-

.r\r IOC%s ^Irl^l^at.. ul^lli.lt:^I hl intniat: Jrn,llitli Jr.nn.ltr p.IIIrrn I.lndsat
II11ark- 15_-1•- O -' -Atli

,N



► 'tr . =i	 fill-301	 ['l7-w,	 F, 17-10,

s
7^tn [ ^•^iii-2 T 1. an-0 ►AA i4i% 	 las'^- qt' ^ flr ^[^•	 ^	 ^r^ ► ^^
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Figure 41. tankisat %, i-,%k of ShrkrJ:u, Japan. 1111,nk: Sea, and Dart of Ihmshu

(upl ,e: ha:f of rielure. Prominent fault irossing S'ukoku Iron lover I. 4 to

upper right n th; %1k , khan	 Line, separating the hrg!, IIre..urc Sarl-

haga%a nletamorp1 : hell to the southeast from the lover hre.sure R oke-

Ahukunw mvt,Inrorhhr^ belt to the northwe s t Isolated mountain range Just

north%k e.1 of main f,u ► It ► % al.o p.Iri of Sanhagj%a belt. Sanbagama belt is

cha rat: teniekI 	 glauk-ohl ► ane ,,hists and few Igneous roiks, Rt oke-

Abuktima Ilk-11 11` ( retak:eous gram*A	 rn%trusion% (%I asluro, J	 PCtrol.,

'I ,_7 7 , 10 (1 1 )	 .. id--at lul:,ge 1112 . 01 120.

I(k,
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I tturn: 42 Landsat view of Alpine fault. South Island, New Zealand. Fault is

kno%^n to he recentl y active (ri lvht-lateral slip)on basisot displaced stream ter-

races, although not displaying t clear pattern of seismic activity. Fxcept for

ahsence of svismicit y . ti i Alpjne Fault rest:mhles the San Andreas fault and

the Median Tectonic Line of Japan in havin g major lateral movement and in

separatin g paired metamorphic belts. Area shown Here has hip_h-pressure

metamorphic rocks to the east. Landsat Intake 1503-2 142 1.
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