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Figure 4: In the legend, the word "timing" should be “lining."

Figure 4: The ordinate scale label should read PRESSURE RATIO p,_ /Py_q
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ON THE PRdPAGATlON OF LONG WAVES IN ACOUSTICALLY TREATED{ CURVE- DUCTS

by W. Rostafinski
National Aeronautics anQ'Space Administfatiun
Lewis Research Center
Clevelany, Onio 44135
. ABSTRACT
A'two-dimensional. detajléd study is presentéd on the oehqyior of long
waves in lined, curved ducts. Tne ahalysis ﬁncluoes a comparison between fné
propagation in curved and straight lined ducts. A parametric study was
conducted ovef a range of wall admittance and duct wall separatioh. The
complex eigenvalues of tne characteristic equation, whicn in the case of a
curvea auct are also the angular wévenumuers,‘have been obtained by
successiye approximations. o
INTRODUCT ION
“Tnere are both scientific and practicai reasons for'unaers;aﬁding phé
mechanics of the propagat ion of acoustic waves ?ﬁside‘ACOuSLiCdlly lineg
pipes and oucts. The .noise suppressors found in aircraft engine ducts are a'
typical application. Consequently, mAny papers and enginéering'articles nave
been published on the motion of'waves‘iﬁ straight conduits with acoustically
absorbent, or lined, wallsﬁ |
There are soﬁe instances where extreme curvature is present in an engine
duct. An example i1s the S-snaped inlet to tne center eﬁgine of.a
three-engine girplane. For some time now, there has been a theoreticai

effort focused on the propagation of waves in lined, curvea ducts. Of about

2 papers piudblishey to date on the propagation of waves in circularly curvea

ducts, thrce tredat tne cése of sott-wall ducts of rectangular cross section.

This relative scarcity of literature on this subject may ve explained by the
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severe mathematical difficulties that exist Qhen eigenvalue proplems are
encountered which involve Bessel functions and other higher transcendental
fundtions, esﬁecially when the functions are complex.. In the three papers,
selected areas of the pfopagation process are déveloped.- ‘

The first paper, by>Grigor'yanl, puufisheu in 1970, considefs thé

numerical solution of the propdgatior equations at two fi=quencies, 2 and 4

kHz. Three configurations of acoustical wall treatment are considered: both

curved walls lineda; only the convex wall lined: ang only tne concave wall
lined. The radii of curvature of the bends are equal to or greater than the
radial aistance between the curved walls, so that a = RZ/RI < ¢, where

R2 _is the radius of the concave wall, and Ry is the ragius of tne

convex wall. This is a rather narrow range, considering that in the great
majority of industrial applications, a > 2. The analysis consioers two
widths of the curved ducts, and two types of sdund absoroing materials.. A
number of very interesting conclusions are ootajnéd, aﬁong'thém tue fact that
the curvature dves not always yiela an increase in the attenuation over that
obtainable with a straigit duct.

Myers and Mungurz, in a paper published in 1975, numericdlly solve the
partial differential equation of motion, and numerically evaluate the
propagation anu attenudtion of tnree duét modes. The zerotu,.basic niode is
not included. In this work, tney assuyme one_arbitrary'value of wall
admittance, a range of vibrational frequencies, anag a'single duct width
characterized by a = 2. 1In their conclusions, the authors state that tor
locally reactive duct walls, the sound field gengrally attenuates more.
rapidly along the axial direction of a pend than doeé.the field jn'a straight

auct,




Finally, in 1977, Ko ana H03 publisped results of their extensive
parametric Stuuy'of mution in slightly bent ducts. The purpose of their work
was tc develop a method for predicfing the at;enuatipn of sound in
acoustically Yined, curved ducts. They proceed by the derivation of
eigenvalues, which they lgst in extensive tables. Among their finuings was
the determination that the level of attenuatioﬁ of SOund is rather‘depgndent

on acoustic resistance and relatively insensitive to the sharpness of the

_bend. wWithin the limits 1.11 < a < 1.43, only the median arc length.affects

the amount of sound attenuation, which is independent of .tne width of the
duct. |

The present study is intended to extend this author's two-dimensional
study of the behaQior of long waQes in cfrCuIarIy bent d&cts with hard
waHs.4 Oné of the results of that-work was determinationAof wave phase
veloCity, whicin in the case of very ]uw'frequencies is higher than-in.a
similar straight duct and is proportional to the sharpness of the bend. This
extension of that study consfsts of modifying the boundary conditions and
evaluating the effect of the new boundaries on sound phase velocity and on
the aistribution and level of particle veiocity and pressure. -These boundary
conditions assume that the curved walls of the bend will be lined with
locally reactive, acoustically absorbing material. All other assumptions of
tne previou§ work are accepted without change, namely that there is 4

sustained, continuous, and steady propagation of long acoustic waves in a

two-dimensional, infinitely long, circularly bent duct. The closest physical

example of such an infinitely long bend is a tightly wounu coil of which the

pitch is negligible compared to the racius of curvature of the duct. The

~wave length is at least two orders o magnitude larger than the wiath of the

duct. The pressure distribution witiin the duct satisfies the wave equation.
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ANALYTICAL SOLUTION
Infinite, Lineu, Curved Duct

The basic difficulty in solving equations of motion with complex roots

" resides in our inability to split the final equation containing exponential

and trigonometric functions into_rea1'and iméginary pafts. Were thjs
possible, it still would not gﬁardntee yielding the answers difectly, but it
would help enormously, bécause a singie term Qould Qé éufficient to satisfy
the characteristic equation. With compigx expressions, fwo real numbers must
be fpund. SO we ére forced to rely on the‘teuious>méthodiof sucéeésiVe -
approximafions.

The calculation of pressufe and.of components of particle velocity stafts

with detinition of the velocity potential:

[ =:E: [AQJv(kr) + BVYv(kr)] expi{ut - ve) : : (1)
v . 4
which yields
.38,  lag, o
pP=p 30 4 Ve = - f5e anq vV = -

r ar

A sympol list is found in the appendix. In the above expressions, the two

- Bessel functions .Jv and Y . are of complex order, since the angular

wavenumber
v=ov, * v
1 2

Determination of constants Bv in the definition of the velocity potential

is usually ubtained from the bounddry condition, by assuming that at e = 0,

Vé = Vg However, in this paper only the lowest order mode will be
considered. The attenuation of souna,'in decibels {uB), is defined by -adB =
20_J°9(99/99=0)' Singe, p exp(—vze), AdB = 20 (-vze) log e. The

angular wave phase velocity, & = w/vy, and tne phase velocity along tne
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‘median radius, $ = éRm = C le(a + 1)/2v1, are easily calculated. -A

general solution of the two-gimensional problem for ooth'rigid and soft-wall
cases has beenAformulated by Grigor'yanb.énd others, Tne equation for
determination of the angular wavenumber tor the case of identicg]llining'
material on both curved walls (fhe 6rigina1 equaﬁion makes it possible to

stipulate different materials) of a circularly bent duct, is

= 3 (KRGY R ) < J (KR DY (KRy) + 0 (KR,)Y (KR )]

" nZ[JV(le)Yv(kRZ) - U (KRy)Y (KRY) = 0 (2)

where n = -pC Vr/p (i.e.; a dimensionless wall aamittance vr/p). In
generdl, n="T +,5o is complex, and 7 is the conductance of the walls,

and- ¢ the susceptance of the walls. It is clear that using »n =0 in
£q. (2) leaves only the expression of the cross products of the derivatives
of the two Bessel functions, which corresponds to tne casé.of the hard-walleud
bend. |

To solve £q. (2) for the case of ‘long waves propagating in a sof t-walled

vend, the two Bessel functions are expanded in series, and in view of the

smallness of the arguments, only the first terms of the series are retained.

Tne second and following terms of the expansions are smaller than the firs;
) ]

)

term at least by the order of (le . ‘Rearranging and.eliminafing small

terms of higher orger yields

7% =0 *+ 2i10 *+ (0 - i7)

P . Y -v . '
2 2 a+tla +a v - 0. (3)

AR v Y 'a(kR1;2

For 7 =0 =0, the conditions for stiff walls, Eq. (3) yields a¥ = a7V

or alv = 1, and v = ins/in a, pure imaginary roots derived before in
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Ref. 4.. Eq. (3) also allows verification that for finite values of 7 and
o, there are ﬁo pure imaginary or simple real roots. Hence, v must be.“
complex. Roots, which are compiex angular wavenumbers, have been obtained by
successive approximations. It nelped to know that both the real and the
imaginary parts of v must be small pecause the real root for the case of
the hard walls is small. In applying Eq. (3); calculations have been made
for the fo]lowing set of parameters: k = 0.1; R1 = 0.2; a =2 and 4;
r=20.1, 0.2, ..., 0.5; and o = 0.2, 0.3, 0.5, and 0.8, The calculated
icomé{é;*;oéggﬂé%”é;;.(3), which are also‘compleg propagation constants, are
listea in Table I and are shown in Fig, 1. It will be noted that quantitjes
related to attenuation are one order of magnitude smaller than terms related
to propagation. Attenuation increases witn increasing 7,-bqt atténuation is
1ess'proﬁounced with a widef duct. For smai] values of conductance T,
susceptance o does not greatly influence attenuation; with higher 7,
however, large changes occur with changing o. The percentage change in
attenuation at constant T and varying o is nearly twice as great for the
lower range of - 7 as for the largest 7 .studied.. 0On the same graph, the
angular wavenumber for the rigid, curved wall case (i.e., for T =0 =0,
and a = 2) is also shown. Presence of acoustical lining on curved walls
markedly increases the values of t”e propagation constants vy-
. Infinite, Lined, Straignt -Duct
The propagation of acoustic waves in a siraight, ]inea duct can be

described in terms of the acoustic pressure using the expression given by
6.

p = COS (E%l> exp Gnﬂ - g ;x) ' ’ ’ (4)
In Eq. (4), the g's are complex roots, Also, £ =a *+ i8 is a complex wave

number with its propdgation and attenuations terms. Now, [ = iVl.- (Zg/kH)2



as derived by Rice, H/2 1is the half-width of the duct, and x and y are

" the axial and transverse coordinates, with y = 0 at duct centerline.

The phase velocity in a straight duct will be simply x = c/8. The

transverse particle velocity may be expressed by. u_y = nploC oOr

U= i(aplay)lom; Equating thésg two expressions at y = H/2 yields

y

tan(g) =1<%g><%> S : : (5);

‘where n = T+ io, as in the case of the curved wuct. Solution of £q. (5)

yields the real and the imaginary components of the roots. 'Foi}owing this, a
calculation of complex wavenumber is straightforward. Also, the expression
for the axial component of particle velocity is easily obtainavie by
derivation of the expression for pressure with respeci tbl x, the axial duct
coordinate [ux - 1(opléx)/pm]. ' - _

To be able to compare the propagation inrtne straight duct with the
probagatibn in the curved duct, not oniy the same set of values ror T and
o are used in numericél calculations as in the case of the curved auct, but

also tne wiaths of the straight ducts are selectec to match the two widtns

.used in analysis of the curved ducts. The complex wavenumber ¢ for the

straight, lined duct (i.e., the attenuaton and the -propagation terms) are

giveh in Table Il and shown in Fig. 2. As in the case of & curved, lined

duct, the wider duct has a less pronounced &ttenuation. AThe genéral
infiuence of T and o on the complex wavenumber is similar to that in the
curved duct.. | A '
RESULTS AND DISCUSSION

Phase Velocities
_ Uéing the propagation conS;ants for both curved and straight ducts,

corresponding phase velocities were calculated and ratios s/x established.
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They are shown on Fig. 3 as a function of 7. The ratios are greater than 1
for all parameters considered. They are higher for a wider duct (e.g., for
a-= 4) than for_one half as wide (for 'a = 2).' Generaily, the 5hase
velocities and their ratios increase with 7, but not strong]y.. The

corresponding values of phase-velocity ratios for a hard-walled aucts are

‘also shown. At these low frequencies, the phase-velocity ratios in lined

ducts are lower than in untreated ducts. -
Attenuation of Sound

Atte-n'uatiori of. souna in lined ducts, both cu.r'vpt;(Jw ;"ld As—t—r"_;i"gh‘t,”has—z)—e:e—r; T
calculated for all parameters showﬁ ianabIes I and 11. .Some of'the results
for curved ducts are.shown in Fig. 4; in whicn pressure gecay in a bend of
180° is plotted against parameters of the lining, both 7 anu o.

There is a very significant increase in -pressure loss with the increase
of conductance 7. .0On the other hand, for a given level of conductance,
higher values of susceptance o somewnat reduce the press&fe loss. Both
relations are clearly nonlinear. Also, it is cizar that -in a wider bend the
losses are somewhat less than in a narrow one. It will be noticed that on a
plot of pressure ratio versus T, the twd curves can be extrapolateu down to
T =0 (i.e., to the case of bends with hara walls). The extrapolation
reaches a pressure ratio of unity, as it shoula.

Results of calculations of sound attenuation per unit length, in dg/m,
ana comparisons of attenuation between curved and stréight ducts, are shown
in Fig. 5. Attenuation has been evaluated with variable parameters,.r and
o, of the acoustical lining in ducts éf two widaths. Sound attehuationA
fap%dly increases with increasing 7, but it is,less.pronounced in a wider
duct, 1In general, attenuation is slightly highe} in a straight duct (by tho

7 percent), but in tnis range of very long waves, it must be considered
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significant. All four linear functions shown in Fig. 5 extrapolate to zero
attenuation at - T = 0. The dependence of att-nuation on o is nonlinear,
and attenuation decreases with increasing susceptance. For narrow ducts, the
difference between the attenuation in a straight duct and in a curved duct
remafns fairly constant with increasing o. For wide ducts, this difference
in attenuation uecreases with i~creasing o.
Radial Distribution of wave-Motion Parameters

The radial distribution of the particle velocity coﬁponents and of the
acoustic pressure has been analyzed for all cases taken into consideration
breviously. Samples of typical profiles irn a curved, linea duct are shown in
Fig. 6. The particle velocities are nondiménsionalized by using Vor
Basically, very slight radial variations have been detected when T and o
were given their full range of )é]ues. Ajso, when the wéve wés.moving aown
the curvea duct; the pressure and éxia]-Velocity prr€iles remained unchanged
except for a gradual decrease in their-amplitudes. The profile of the .radial
component of the particle velocity is different in. that its slope changes
with distance. The radial velocity distribution exhibits a zero point near
the convex wall of the bend. This pouint is'not much .dispiaced toward the
center of the duct when a duct three times as wide is used. In Fig. 7, these.
profiles of particle velocity compdnents are compared with distrioutions
calculated for the case of unlined bends of the same geometry and for
similar{ very low frequencies of acoﬁstic waves. A striking di‘ference
exists between the two radial particle velocity'distributionﬁ. -Thjs was to
be expected, because a lined duct has a finite value of wall impedance wnich
does not require that the rad{a1 particle velocities vanish at the wall. The
-relative values of the radial velocities show: on the graph have no

particular meaning, because the boundary conditions at e = 0 for the rigic

B R T e A DR I i Ry & RTINS
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and the lined bends are different; The distribuiion bf thé tangential
§e1ocity component 1is not affected by the bresénce of a lining, except for a
generally lower amplitude at all raaii.

The radial distribution of the acoustic pressure is markedly changed by
the presence of a-lining. fhe.data are nonaimensinalized by using Pgs the
acoustic pressure corresponding to reference particlé'veiocity Vor Within
o hard-walled bend, the pressure is cﬁaracteristical]y higher at the outside
wal}, as was-first documented Ly Cummings7. In a linea, ‘curved duct, it is
practicgl]y independent ot the radial postion, i

CONCLUDING REMARKS

APropagation of long waves in cifcularly beht.ducts lined with'
sound-absorbing material has been analyzed tor a,ranée bf acoustic
parameters. A set of eigenva1ue$, the complex angu1ar wavenumbers. has been
obtained by a method of successive approximations. The reéults have been
compared with'the propagation of low-frequenty sound in.a straight, lined
duct of the same width and lined with the same material as the bent duct.
furthermore, a comparison witn the propagatiqn parameters in a hard-walled,
bent duct has been presented as welil. | - -

At these very low frequencies, and in the range of pdrameters evaluafed,
the sound attenuation in a curved, lined duct is generally less pronounced
than in a straight Juct of tihe same width and same wall impedance.

Resﬁ]ts of this study and of work of others indicate that there is need
for fﬁrthet'analysis of the propagation of sound in curved, linea ducts. The

overall picture of such propagation is not yet clear.
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APPENDIX - LIST OF .SYMBOLS
a constant
radii ratio = Rp/Ry
a constant

velocity of sound

~ complex eigenvalue for the straight duct

depth or width of a rectangular ‘duct

Bessel function of thé first kind, of order v

wavenumber

acoustic pressure

reference acoustic pressure'

acoustic pressure at angular location @
curved-duct convex wall radius = 0.2 m
curved-duct concave wall radius

radial coordinate

distance along curved-duct centerline

wave phase velocity in the curved ductA

time coordinate

reference particle velocity

tangential component of particle velocity
radia) component of particle velocity

axial component of particle velocity

transverse partitle veloCiiy '

axial coordinate . :

‘wave phase velocCity in a straight duct

Bessel function of the second kind, of order v

transverse coordinate

1
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attenuation coefficient in & strzight duct

" propagaticn couefficient in a straicht duct
complex wavenumhef, L =a * iB

wall admittance

polar coordinafev

angular phase velocity

complex angular wavenumber, - = vi + ivp

propagation coefficient

attenuation coefficient
density

susceptance

conductance

velocity potential

anguiar frequency = kc
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TABLE I. - COMPLEX ANGULAR WAVENUMBERS FOR CURVED LiNED DUCTS FOR

k?] = 0.02 AND FOR A RANGE OF PARAMETERS OF THE LINING

¥

T g a=2 a=4
Propagation | Attenuation | Propagation | Attenuation
1 Y2 Y1 V2
0.1 ¢+ 0.2 0.135406 -0.03200 | eeemmee ) e
.2 . 14460 -. 05997 ——————- ————————
31 15577 ~.08351 0.14225 -0.07680
.4 16745 - 10368 | emeemee | cmeemee
AT .17873 R V4 ) S B T ettt
.1 .5 .20931 ~.02077 . 19149 -.01925
.2 21224 -.04097 19402 -.03797
.3 2lv72 -.06019 19804 -.05580
.4 .22234 -.07823 20307 -.0725b
.5 ¥ .22873 -.09505 .20v38 -.08823
1] .8 .26415 ~.0lb51 —— e
.2 . 26505 -.032683 | @ eeeee- ————
.3 .26805 -.048860 24649 -.04564
.4 27125 -.06480 | e —————
5V 127511 ~.07925 B —e
TABLE I1. - COMPLEX WAVENUMBEKS FOR STRAIGHT LINED DUCTS FOR
k = 0.1 AND FOR A RANGE OF PARAMETERS OF THE Liw.NG
T o H/Z2 = 0.1 H/2 = 0.3
Propagation | Attenuation | Propagation |Attenuation
ki Ka ks Ka
0.31 0.2 0.5¢195 0.26o87 U.30218 0.185061
.1 .5 .70021 .07175 . .39872 L05574
.2 71197 L13971 .40343 .08171
-3 . /2856 .20486 L4129 .11486
.4 L76772 . 26020 .42498 15527
.5 .76408 .32183 L43856 .. 18817
.3 .8 -S0287 Jdebze .512068 .08939
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