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Abstract

This article addresses the important problem of electrodynamic coupling of
B<l stellar coronal loops to underlying Bgl velocity fields. A rigorous analysis
has revealed that the physics can be represeqced by a simple yet equivafent LRC
circuit analogue. This analogue'poincs to the existencé of global structure
oscillations which resonantly excite internal field line oscillations at a spatial
resonance within the coronal loop. Although the width of this spatial resonance,
as well as the induced currents and coronal velocity field, explicitly depend upon
viscosity and resistivity, the aesonant form of the generalized eleztrodynawric
heating function is virtually {ndependent of irreversibilities. This is a classic
feature of high quality resonators that are externally driven by a broad-band
source of spectral power.

The major results of this article are:
(1) The heating function, EH’ field-aligned electron current,and cross-field ion

polarization current are explicit functions of the B3l velocity field's spectral
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The essential feature of a resonant heating mechanism is that magnetic loops

eff’ cor

power function, e.g., EH=6.28x109(T /lz ) ( /R )<‘4.pve v (ergs/cms-sec‘
0

with different lengths, and hence different global resonance frequencies,

are heated at a rate that critically depends upon the amount of spectral
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power found at the resonance frequoncy, Voo
This heating function results in the following implicit equations for the

maximum temperature, T, and base pressure, P:

h 2/7
3.36 x10% [T exp (0,362 /2) < 1/2002 > I
Te3 egf *¥P (V20 p) < Lépvg >v°
. 6/7
4 hoto
1,38 x 10 2 P
- =238 X 10 2
P ‘cot exp (1.51 Lcor/l'p) [Teff <1/2 Vg >v° ] (dynes/cm)
\

which are in remarkable agreement with observations of solar coronal loops,
Solar applications require nonlinear modificatiens that do not alter (1) and

(2) above but which dramatically increase the cross-field size of the

coronal dissipation site from kilometers to thousands of kilometers. Preferential

viscous heating of the ioqs is also predieted as well as a 10-16 km/sec coronal

velocity field.
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RESONANT ELECTRODYNAMIC HEATING OF STELLAR CORONAL LOOPS:

AN LRC CIRCUIT ANALOGUE

I. Introduction

One of the most outstanding problems faced by solar and lte;lar physicists
is an understanding of the cause and effect relationship between inner (e.g.,
photospheric) and outer (e.g., coronal) atmospheric dynamics. Central to this
problem of global coupling within a stellar atmosphere is the role playcd by
magnetic fields, Magnetic fields typically thread the inner and outer atmospherece
of a star and thus one cannot disregard the potentially important role that
associated electrodynamic processes could play in effecting an "electrodynamic
coupling" of these two regions,

A useful parameter that identifies the dominance of 'electrodynamic coupling"
over, for example, mechanical coupling of the inner and outer atmosphere by
acoustic waves, is the plasma beta, B = vi/vi (vs E sound speed; v, Z Alfven
speed). Spe;;;ically, electrodynamic coupling within a stellar atmosphere
dominates mechanical coupling whenever the plasma beta is less than unity within
the outer atmosphere, i.e., B < 1, and of the order of unity within the

outer

inner atmosphere, i.e., Binner 2 1. Thus, mechanical dymamics such as convective

and/or differential-rotation velocity fields within the sinner # 1 atmosphere
can couple to and drive casually related phenomena, Such as heating, within the
5outer < 1 outer atmosphere through various electrodynamic processes associated

with the interconnecting magnetic field. This is in contrast to a mechanically

coupled stellar atmosphere which would require a B 2 1 outer atmosphere.




It is now widely believed that the £ 2 1 inner (photosphere) and £ <1

outer (corona) atmosphere of the Sun are electrodynamically coupled since

extrapolations of the observed photospheric magnetic energy into the corona
exceeds the in-situ thermodynamic energy (i.e., B < 1). Furthermore, it H
appears that the solar corona is typically structured, comprising a variety

of closed, loop~like regions of enhanced radiative output, i.,e., coronal loops

(c.f., Withbroe and Noyes, 1977; Vaiana and Rosner, 1978). 1In this article

I will focus upon the electriodynamic coupling of solar coronal loops to their

underlying driver -=- the B 2 1 photospheric velocity field. However, this by

no means restricts the applicability of the following analysis tc the solar

p setting, Indeed, the results of this article are generally applicable to any

PP

stellar atmosphere and for that matter any cosmic plasma that satiefies the

conditions on the plasma B as described above,

f The specific goals of this article are to:

(1) Dpetermine both the resistive response (i.e., an electrodynamic heating function, EH)
| and the reactive response (i.e., the induced currents and velocity fields) of
magnetic loops in terms of the spectral power of an underlying B21 velocity field
such as the solar photosphere.

ri (ii) Utilize the heating functi-n, E_, in an energy balance mcdel whicli yields the

o H’
*2‘ resulting thermal state (i.e., maximum temperature and base pressure) of a loop.

{ 3 also in terms of the spectral power of the B2l velocity field.
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With regard to (1), there have been a number of attempts at developing a coronal
heating function, E“ (c.f., reviews by Wentzel, 1978; Hollweg,1979 ; Kuperus,
Ionson and Spicer, 198l1). For example the solar physics community has proposed
heating by Alfven waves, fast waves, slow waves, Alfvenic surface waves,
electrical currents, magneti: raconnection -- a seemingly endless list of
pessibilities, Unfortunately, there is a very serious problem which appears
to be rapidly spreading throughout the solar and into the stellar communities.
This problem is associated with the fact that each of the above mentioned
mechaniams are being thought of as unique in their own right. This, however,
is simply not true since they are all based upon a unifying foundation of
electrodynamics whose principle ingredients are cupacitance -- the ability of
a magnetoplasma to store electric and kinetic energy, inductance =-- the ability
to store magnetic energy, and resistance =-- the ability to convert the above
electrodynamic energy into thermodynamic end products such as heat. Another more
practical problem with the plethora of proposed heating mechanisms is that they
do not result in a heaying function which is explicitly correlated with the
properties of the B 2 1 driver of the corona, viz., the underlying photospheric
velocity field. Thus, it has been virtually impossible to develop a complete
thermodynamic model that allows us t¢ appreciate coronal loop heating in terms
of synchronously observed mechanical activity within the photosphere,

Although some authors have invoked electrodynamic circuit analogues in an
attempt to consolidate the many different aspects of electrodynamics into a
simple formalism, their approach has for the most part been somewhat too

phenomenological as well as limited in scope. Specifically, they have primarily

-
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addressed flare prcblems in terms of transient L/RJ discharges (c.f., Alfven,

oule

1977 and references therein). They have not, however, considered continuously ]

driven systems and have also virtually disregarded the critically important capacitive

properties of the magnetoplasma, Thus, although their basic phenomenological treatment

deserves commendation, the concept of electrodynamic circuit analogues should §
be rationalized by a more complete and self-consistent treatment. The:efore;
upon investigating the important global cause and effect relationship between a
coronal loop and its P 2 1 driver, one should keep in mind the possibility that
the electrodynamics of such a system can be represented by a simple yet equivalent
driven "LRC" circuit. If this is the case, then a powerful approach §
|
to the complex problem of "electrodynamic coupling"” in astrophysical plasmas would
be at hand since the electrodynamics of simple LRC circuits is well understood.
0f course, the key is in the determination of the equivalent L, R, and C values

which, as we shall see, is relatively simple to do.

11. The Physics of Global Electrodynamic Coupling

Figure 1 illustrates both the prototype physical system that will be

investigated and its equivalent electrodynamic circuit which will be derived

below. The physical system comprises both a f§ < 1 magnetic loop and an
underlying region of § 2 1 velocity fields which electrodynamically couple to

and drive electrodynamic activity within the 8 < 1 loop via the interconnecting

magnetic field 20' The magnetic loop contains plasma at both coronal and

chromospheric temperatures, the transition occurring along the externally
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generated potential magnetic field, 2%. The field-aligned scale length of
the coronal portion of the magnetic loop will be denoted as Lcor’ vhile the

scale length of the chromospheric portion will be denoted as ‘c In

hrom®
addition, the field-aligned scale length of the B 2 1, photospheric velocity

¢+ The

fields which interact with the magnetic loop will be denoted by Lphoto

cross-field scale size ¢f system will be denoted as LL which represents the
diameter of the magnetic loop in the corona, chromosphere and photosphere.

For simplicity zl will be assumed to be the same in all three regions -- an
assuymption that will not adversely affect the analysis presented in this article.
The main field Eo is generated by a primary dynamo that is external to

the leop's local mechanical driver, This is probably the case for many stellar
coronal loops in which large scale velocity whose characteristic time scale
exceeds the loop's Alfven transit time, are responsible for the overall potential
magnetic field structure. It is the relatively smaller scale P 2 1 velocity
fields,whose characteristi: time scale is of the order of the loop's Alfven
transit time, which drive the loop into a non-equilibrium electrodynamic state
re;ulting in the flow of electrical currents along (i.e., force-free) and

across (i.e,, non~-forcefree) the ambient field‘gb. The equivalent LRC circuit

is illustrated in hindsightfvgﬁhe derivation to follow and models the electro-
dynamic behavior of the physical system. Specifically, the P 2 1 velocity fieids
act as & secondary voltage generator, supplying a time dependent emf,ii which
drives an equivalent current, I, though an equivalent loop inductance, L,

resistance, R p’ and capacitance, C, as well as through an equivalent photo-

loo

ept ¢ istance .
spheric resistance, Rphoto
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{a) Denivation of the Global Electrodynamica Equatiin

Magnetohydrodynamic systems are inherently ucnlinear,

However, experience

in handling such complex systems has showm that critically important characteristics

become apparent by appropriate linearization.

In this regcrd, the following

equations will be linearized with nonlinear modif..ations being considered later in

the article:

where
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and where the electron collision frequency, v., and ion collision frequency,
;» vi, are given by:
!
N e ™ Ve-t + Ve-neutral + Vanomalous (10)
| v, ¥ (m /m )1/2 v for T T (11)
i e 1 e e 1’ ) |
| with the electron=ion collision frequency, vg_‘. given by: |
v . 2500 (n/r.3/?) sec’ (12) |
e-1i * e’ e ’ i
the electron~neutral collision frequency, Veen given by: %
; |
~ - 1/2 - ?
, v = 1,95 x 10 ? n T — sec 1 (13) |
| e=n n e 1
and with the anomalous collision frequency, Vanomalous’ of electrons with a i
non-thermal level of low:frequency (W< a$i) electrostatie plasma waves being g
r given by: ‘
i
v 2w [(——) <Suw (14) |
anomalous pe nekBTe pi

where W is the energy density of the plasma microturbulence, Such plasma

microturbulence could develop if the electrical currents exceed various
threshold conditions (c.f., Papadopoulos, 1977; Ionson et al., 1979; Rosner
et al., 1978; Hinata, 1980).

The electrodynamics equation (1) is given in terms of the local current

| density, j, and electric field, E. In analyzing this equation I will adopt

a cylindrical coordinate system in which §n represents a direction parallel to

i
4
|
J
i
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the ambient field, 20. and in which ?L represents a direction perpendicular to
the field. The perpendicular unit vector, ;L,conCains two bases, wviz,, 39
which corresponds to the azimuthal direction and Qr which corresponds to the
radial direction. In addition, variations in plasma parameters such as the
Alfven speed will occur only in the 3” and'?r directions.

In order that the Poynting flux be directed primarily along the ambient
field, no’ it follows that (Y x E)” ~ 0 (i.e., approximately shear disturbances).
Note that the field aligned perturbation in the magnetic field is not identically
zero thereby resulting in a small component of the Poynting flux in the QL
direction, This is important since it allows the "interior" of a coronal loop
to receive electrodynamic ene;g;xnzxterior" regions of a loop. Note also that
the condition (I x E)” ~ ( is equivalent to disturbances that are approximately
incompressible (i.e., 9*v ~ 0) thereby rationalizing the use of an incompressible
momentum equation (4)., Although nonlinearities could convert shear into
compressible disturbances therefore requiring use of a compressible momentum
equation (Hollweg, 1981), it is important to first consider the linearized,
shear system, In section II.(e), I will briefly discuss some simple nonlinear

modifications of the linear analysis,

1 = ~ [ - ~F
Under the somstraint that (f x E)) ~ 0 it follows that 7 (7 *E) -V €, 0
and thus equation (1) can be written in the following component form:
M aj;;
4T i o 2
- —— v L] - =
c2 " + = ("'.L ’EL.L) ’Y'.L E“ 0 (15)
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4T 5‘1‘ %E 322‘
=T &t (-—H-Bx“) i (16)

Noting in hindsight that B/er >> B/Bx6 due to a local resonance absorption

process that will be discussed later, it follows that Ee << Er; and since
o . e J

l; EL the i; curren’: is carried primari}y by jr' Using Ohm's law (i.e.,

equation (3)) the electrodynamics is therefore described by,

) 3
%3 2 3 2 33 37(v,B )
4T r o, 3 ; (n J)- & fn==x).+3 f— .0 an
|

c2 at2 &xrdx (<3 ot c Bxﬁat

2 2 Oox Ox ot ~ ot ;9% Ot
b o ” r

2 ; 3.
; 373, 2 33 3j 3 (v.B )

. A, ® (ﬂ r)_v?-(n J})_; o) o as)
c ot l ‘

Since ¥ * § = 0 (i.e., Bjrlaxr --Bj“/BxH), equations (17) and (18) are redundant,
this redundency is primarily a consequence of the (Y x E)H ~ 0 constraint, Thus

it is necessary to consider only one of the above equations since they both contain
a complete electrodynamic description. In this regard I will focus upon equation

(18), rewritten in the following form.

4T azji 32 %y a3(veBO/c) o (vgB /e)
2z "2 ("% ) HO-B) e - B EoEE (19
¢ o er e I

where H(1-8) is the Heavyside step function and with B as the plasma beta
(i.e., H(1=B) = 0 for B> 1 and = 1 for B < 1) and where the second term on the
left hand side of equation (18) has been neglected since it is small compared to the

other terms.

T s Mk s e e i o A T s San

il s




1¢

The third term on the left hand side of equation (19) contributes only
in P <1 regions and represents the hydrodynamic reactance of the plasma to
externally applied emfs associated with the P 2 1 velocity fields (i.e., the
right hand side of equation (19)). The P < 1 reactance tern can readily be
determined via the force balance equation (4) valid in B <1 regions, i.e.,

ix5
» S R

(20)

Using the correspondence 9/ — i W and noting in hindsight that the reactance

is maximum when 98/9t ~ vAB/‘éx" , it follows that

Ba(veBO/c) Bj?l ‘OTTVAZ azj |
o) 2% 2 R M o ax""i

where the magnetic Prandtl number Prmg is defined as the ratio of momentum

diffusion to magnetic diffusion, i.e.,

4T mi 1/2 viZ -1
Pr = i =~ g 14— . (22)
mag 2 m 2
pe N e Qi

Using equation (21), the local electrodynmamics equation (19) reduces to,

2 2 2 .2 3
Rk 3735 4Tv 33~ 37 (v, B /¢)
4T JH H ( A ) H B0
-y - n(l+H1 - BPr ) = H(1-B) | —— = H(B-1) <~
3 al "8 o Lo P ) x| 3

c

(23)
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and cuae begins tc see the emergence of a simple "LRC" circuit analogue == the
first term representing an inductive reactance, the second term representing

a Joule and viscous resistance, the third term representing a capactive reactance
and the term on the right hand side representing the external source of emf which
drives the currents,

Equation (23) describes the local electrodynamics of the system. A
description of the global electrodynamics is obtained by integrating equation
(23) over the volume of the system, In performing this integration it is
importani to notz the possible occurrence of a local resonance absorption
process in the B € 1 magnetic loop. This process has been discussed in some
detail by a number of authors (e.g., Hasegawa and Chen, 1976; Kappraff and
Tataronis, 1977; Iomson, 1977, 1978, 1981; ott et al., 1979), Although most
of these discussions are strictly applicable for specific plasma parameters
(eegs, collisionless or collisional analyses), Ionson (1981) has presented
the concept in a relatively unified manner which I will briefly review for the
case of a collisional plasma (i.e., the electron pressure E-field which supports
kinetic Alfven waves is small compared to the resistive E-field).

Noting that there is a cross-field variation in the Alfven speed, dvA/dxr,
it follows that for a particular driving frequency, a:,absorption of electro-
dynamic energy could occur within a small spatial bandwidth, Axt, centered about
a spatial resonance located at X=X o0 For a specific x“, a spatial
resonance exists only if vA(xr = xres)alaxqw at some point in the §r-direction——
a condition that is not necessarily satisfied. However, if this resonance
condition is satisfied, the spatial bandwidth, Axr, can readily be estimated from

equation (23) by expanding the Alfven speed about the spatial resonance and
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noting that the inductive und capacitive i actances cancel one another at the
2 2.2 2 2 2

- <
spatial resonance, X =X i.e., 4T3 ju!c xt AﬂVA(xre’)a 5”/ax] .

A consequence of matching the innex ‘=usiszive solution to the outer reactive

solution (i.e., the ideal mhd solutiou) s that the resistive term in equation

(23) equals the first order contribution of the expanded capacitive term, i.e.,

WL+ P HO-P) W 7?4 (& )

(Axr)2 ac2

(24)

vhere -}
d(Ln VA)

a = In (25)
r

and where the correspondence B/axrrb 1ﬂ7(Axr) has been used. Solving equation

(24) for Axr yields,

Ax 1/3
r_1/3(a C 173 -1/3 .
T m ( £.L) (L+Pe H(L =8 Re (245)

where the magnetic Reynold's number, Remag’ is defined as,

MT,vlocal 2 2
A 1

2
J)
e

i}

Re . (27)

mag
where B/&x”-) 1W/£“ has been used with £“ representing the field-aligned extent
of the local region, It should be noted that Axr as defined by equation (26)

depends upon local plasma parameters such as the resistivity, T, Alfven speed,

T
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local
A

local region, LH. It is also important to note that equation (26) implicitly

.

» the magnetic Prandtl number, Prmg and the field-aligned extent of the

assumes the existence of a sgpatial resonance.

Keeping in mind that Axr can be interpreted as the local (i.e., along the
magnetic field), chevacteristic cross=-field shear length of the tnduced current
and velocity fields, equation (23) can be simply integrated over the volume of
the system, This results in a description of the system's global electrodynamics

which is represented by the following global electrodynamics equation:

2
dTl dl 1 - dﬁt!
L dt2 * ,Rglobal dt + C dt (28)

where the equivalent inductance, L, capacitance, C, resistance, Rglobal’
current, I, and driving emf, e(t) are given by,
4Ly,
L = ——7§- (29)
e =7
Tyicz
C = ——5 (30)
AﬂvA
Rglobal B R1oop + Rphoto (31)
2
R = X ML+ Pr ) £./(&x) (32)
Loop chromosphere mag “ r :
corona
Tkhoto ﬁﬁhoto
Rphoto = 2 (33)
(&x )
photo
"

P

e
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L= (&x ) J“ - ﬂlLﬁHJr (34)

L ve B
E (t) = 2 . (35)
[}
photo

(b) Discussion of en ELectrodynamic Circuit Analogue

It's clear from equation (28) that the global electrodynamics of the
magnetic loop system can be modelled via a simple LRC circuit analogue.' The
equivalent circuit elements described by equations (29)-(33) obviously represent
averages over the loop and its underlying mechanical driver. Specifically,

2“ and ;A found in equations (29) and (30) represent a characteristic length
of the system and a characteristic average value for the Alfven speed whose
expligit dependence upon spatial details of the system is at this stage not
overly important, In fact, since the majority of the system resides within the

corona where the Alfven speed is at its maximum value, the expressions for the

inductance and capacitance can for all practical pu}poses be written as,

4£cor
L= —= (36)
Te
Lcorcz
C = (37)
éﬂ'vz
A

where it is understood that A refers to the coronal Alfven speed. An iimportant
point to be made here is that the magnetic loop naturally supports global structure

oscillations at a characteristic frequency, a%, given by,

j
:
b
|
%
!
|
|
A
|
g
|
1
|
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v
w = 1 - = A (38)
JLC cor

One such example of global structure oscillations which are characterized by
high sheac are Alfvenic "surface" waves (c.f., Ionson, 1977, 1978; Wentzel,
1979, and references within these articles), It is important to

note that Alfvenic "surface" waves d0 not require a discontinuous Alfven speed
profile, In fact, any degree of nonuniformity will suppor:t their
existence. Hollweg (1981) has alsn stressed the importance of global loop
resonances, Thus it appears that the formalism presented in this article casts
the concept of global geructure oscillations and resonances into & unified

picture, That is, according to the derived electrodynamic circuit analogue,

these global oscillations can be interpreted as glpbal LC oscillations. Of course,

this point was missed by previous proponents of electrodynamic circuit analogues
since they, in their purely phenomenological treatment, diJ not account for a
critically important energy storage element -- the capacitance, The capacitance
is important because it describes the hydrodynamic reactance of the plasma to
imposed emfs, an essential feature of all hydromagnetic oscillations. This can
be simply understood by noting that the energy stored by the capacitor is

1/2 ¢ éz where C = COK (the free space capacitance across field lines being

Co = LQ/4ﬂ'and K being the plasma dielectric) and where & :'ﬂlg* is the average
electric potential across the field lines. Since the low-frequency dielectric

K =1+ czlvi, one can see immediately that the energy stored by the capacitor

comprises two parts, viz., the electric field energy per unit volume, Ei/Bﬂ and

the polarization energy per unit volume, czﬁi/Bﬂvz. Noting that YL=¢§L/BO,

e S
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the polarization energy is therefore in the form of kinetic enevgy,

pol.

i is defined such

1/2pvi. In fact, the so-called polarization current

POIQ
L

pOIO
x ’golc =Py, resulting in 1'4.

that - czéu/4ﬂ§i, vhich is consistent
with a derivation of 15?1' using particle orbit theory.

Since the hydrodynamic reactance of the p 2 1 plasma (i.e., related to C)
is associated with electrodynamically-induced velocity fields, one must also
self-consistently include viscous dislibacion. Therefore, just as Joule

dissipation is an importance source of resistance, RJoule’ to current flow,

so is viscous dissipation since it tends to prevent the electrodynamic charging

of the P < 1 plasma capacitor by inhibiting the development ~f polarization
velocity fields within the magnetic loop. Although viscous drag is also important
within the B ® 1 photospheric driver, it does not explicitly appear in the
electrodynamic description of the system. Rather, photospheric viscosity is
implicitly included in the driving emf,Eﬂ(t), which depends upon the photospheric
velocity field, which in turn depends upon a balance of inertial, non-electrodynamic
and viscous forces, Within the B < 1 magnetic ioop, however, viscous dissipation
wakes an explicit showing in an LRC analogue as a phencmenological viscous

resistor =
oL, Rviscous Pr:mslg RJoule

2
and where the Joule rasistance, = Twn/(Axr) . Therefore, the B < 1

RJoule

resistance, R p’ given by equation (32) is the sum of

d R
1lo0 RJoule an Rv:l.scous

over both the chromosphere and corcna, Note that the plasma parameters found

within the summation of equation (32) represert local conditions with ,E” and

where the magnetic Prandtl number is defined by eqn. (22)
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Axt being the field-aligned extent of the region, andthe local cross-field shear
length of the induced currents and velocity fields which is given by equation (26)
if local resonance absorption occurs.
Since the cross-field shear length, Axr, represents the cross-field spatial
extent of the field-aligned current, it is clear that the total field-aligned
current, I“ = ﬂll (Axr)j“. It is important to note that I“ “'Ir == & consequence ‘
of the shear constraint, (¥ x E%'~'O. Note that Ir cannot possible be zero since it is
driven by perpendicular,polarization Er-fieldc wvhich are essential for the

establishment of a non-zero Poynting flux into the loop from its underlying

driver, Therefore, even though j” >> jr seemg to indicate that most of the

e e e i aad e e

induced current is force-free it must be kept in mind that Jﬁ is confined to flow
a filament of thickness Axr whereas jr flows through a filament of thickness
QL>>axr. Therefore the total currents, I = ﬂzl‘Axr)j” and IH = Hﬁiiﬂjr,
are equal as is pointed out in equation (34). It is very important to note
that steady heating of magnetic loops from an underlying driver is always |
associated with Lorentz forces within the loop which induce a £ < 1 velocity
field, This effect is a natural consequence of the capacitive term in equaticn
(28).
A simple way that the Axr can be estimated,which is equivalent to the
derivation in section II.a., is to think of the global structure oscillation
as an exciter of internal field line oscillations within a spatial bandwidth Axr.
In other words, there is a mode coupling between the global structure oscillation
and local field line oscillations at that point where w =w with w-nvA(xr)/R“ being

the local eigenfrequency. Noting a correspondence between the width of a local

frequency resonance, Aw, and the width of the local spatial resonance, Axr, i.e.,

dw Axr
w T TR (39)
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where the Alfven speed's gradient scale length, "a" is defined by equation (25),
Since the width of a frequency resonance depends upon dissipation through an
oscillators "Q" value, i.e.,

& =~

1
- . (40)

————

is
where Q = 4/ L/C/R Athe ratio of the cscillator's natural impedence to the

resistive impedence, so must the width of a spatial resonance depend upon the

' 1" 1"
magnetic loop system's local Qlocal value, i,.e,,
Ax
a Qlocal
where
1 ( ’.E.
Qlocal = R \ C ) (42)
local .

local

Noting that R corresponds to the local resistance described by equations

local
(32) and (33), and that the local natural impedence is proportional to the

local Alfven speed, equation (42) reduces to,

&

4x
.l ) ;
‘ Qoeay = 1 (L+px g HQ 8)) (f'l ) Re o (43)

where the magnetic Reynold's number, Remag’ is defined by equation (27) and
where H(1 = B) is the Heavyside step function which is used to illustrate that

the viscous resistor does not appear in P 2 1 regions, Using equation (43) in

D
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equation (41) and solving for Axr immediately yields equation (26). Therefore,
for a specific driving frequency, & (e.g., & loop's global resonance frequency,
u%) absorption will occur along resonant field lines of width Axr given by
equation (26), provided the condition for the existence of spatial resonances

is satisfied, i.e., A (xr - xr.')albx”-olu. In this regard, the local
resistances, normalized to the natural impedence of the entire magnetic loop

ZR J C/L , depend upon the magnetic Reynold's number

system, i'e"Rlocal'. local

in two different ways depending upon whether or not local resonance absorption

is occurring, viz.,

v local
R . ; | =1 _ locally
local ML + Prmag'“(l B)) vA . mag’ non-resonant (44)
R - /3 (2 -2/3 (1+Ppr  HQ - B))1/3 Re-1/3_ locally
local £ mag mag ' resonant

4

These normalized resistances are also related to the global quality, lecbal’

of the entire loop system defined as the ratio of the system's natural

impedence, »/ L/C, to the total resistance in the circuit, i.e,,

-1

- R
leobal " | photosphere local (46)

chromosphere
corona

As 1 have already mentioned, local resonance absorption does noc necessarily

occur everywhere along the magnetic loop system. However, this process does

(45)
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occur at least in the coronal portion of the magnetic loop wheré the local

resonance condition is easily satisfied.

It is becoming quite apparent that given the drivirng emf, £(t), which is
explicitly correlated with the non-electrodynamically driven, f 2 1 photospheric
velocity field (e.f., equation (35)), it is a simple matter to determine the
electrodynamic response of the magnetic loop. This responie comprises both a
resistive and reactive component., The resistive response is, of course, related
to the electrodynamic heating function, E“, which will be derived in the next
section, The reactive response is both microscopic as well as macroscopic.

The microscopic response is associated witéi the field-aligned current, jiP whichk

is carried primarily by the electron fluid and which, in the context of the
one-fluid model used in this article, can be thought of as a microscopic ingredient
of the plasma, The macroscopic response is associated with the cross-field
polarization current, jr’ which i{s carried primarily by the ion flujd, Tue
polari‘;ation current, jt, results in a Lorentz force, 1¢ X go/c, which drives a
macroscopic velocity field within the magnetic loop. 7These reactances will be
derived in section II.(d) and will yield very important information regarding

the possible development of microscopic nonlinearities such as anomalous transport
and macroscopic nonlinearities such as the conversion of sheared flow fields into

compressible flow fields.

T T U EVR. B s
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(e) The Generalized Efectrodynamic Heating Function, E,

In gensral, the driving emf, e(t:), in the global electrodynamics equation
(28) is best represented as a stationary random variable. This follows from
the fact that the § 3 1 velocity field, y(t), which generates the enf, & (t),
is also s stationary random variable. Kolmogoroff proved in 1940 that every
stationary random process can be represented by a linear combination of harmonic
oscillations, If the duration of the process is very long and we
wvant good accuracy, one must use an increasingly larger number of harmonic
oscillations spaced arbitrarily closely., Formally, this is expressed by the
Fourier-Stieltjes transform. Specifically, the transform ofe(t) and its

inverse are given by

gy = f meiw* d€ (47)
i _.L t ] - e-lwt
€, = t:_"; (27").[t " €(t)dr, (48)

We can readily appreciate that d&v are like {purier coefficients but in this
representation discontinuous jumps in €w are allowed. This formalism therefore
permits analysis of random variables which contain discrete frequencies
superimposed upon a continuous spectrum, a common situation in turbulent

systems such as the solar convection zone., Furthermore, since we are dealing

with stationary random processes, it foliows that the ensemble average of E(e) &nd

d&w are both zero, i.e.,
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€)= (dE,)=0 (49)
where the brackats represent an ensemble average. Since the ensemble average
of products of random variables are in general non-zero, they are physically
significant, Specifically, the spectral "power’ <ﬂt§;uil represented by
k)
WED), = [@EX dE,) = (%), du (50)
and is related to (€* (1) E(1)) via
= ]
w00
where the * refers to the complex conjugate.
Armed with this powerful formalism, it is a simple matter to determine
the generalized electrodynamic heating function, EH vhich is defined by,
4 < 1*(c)1(:)n > (52)
EH m2£ loop
Ll cor
where Uﬁz £ /4 is the volume of thecoronal loop and where R is defined
1l cor loop
by equation (32) which is evaluated by using either equation (44) or (45).
Taking the Fourier-Stieltjes transform of equation (28) yields,
€
1 = — (53)
Rglobal [1+ i(aVa% “Q/Q»leobalj

g
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where Rglobal and leobal are defined by equations (31) and (46). Noting that

* L *
<1 (t)I(t) >-Ln~.d1wd1w> (54)

and using this expression along with eguation (52) results in a generalized

electrodynamic heating function which is given by,

2
® <> R
By = = [, —A 1 p (waw

mle 2 R 52
14”' global

where the "power factor," pf(a) is given by,

1
2
1+ (w/w - wolw) Q

pf(w) = 5 (56)

] |
global i

The well known plot of pf(a» versus afa% is illustrated in Figure 2., Clearly,

for leobal >> 1 the power factor is sharply peaked about w = a$. We shall see

that magnetic loops typically have Q >> 1 allowing a simple evaluation of

global
the integral in equation (55). Specifically, <&2 >w can be taken outside the
integral provided it is evaluated at the resonance frequency w= a%. It is then

a simple matter to evaluate the integral of the power function over frequency,

resulting in a resonant electrodynamic heating given by, ' %

(€2) 7
4 Yo Yo Rloop
EH - > 2 > . (57)
Ty & global R
L cor

global

>
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where w = Zﬂvo has been used, Eliminating leobal = 4 L/C Rglobnl

equation (57) yields a result that is virtually independent of dissipation, i.e.,

<g>v My R
[ 0 "] loop
By = 2 — - . (58)
£
m'.:. cor v L/C global
In fact, the power dzain on the driver, E R /R , is apparently totally

H global loop
independent of dissipation. This i4 a classic geature of rescrance phenomena and

does not dmply that inneversibilities are unimpontant, Irreversibilities determine
the fraction A\:o/ v, = W/leobal’ of the available driving emf, <,£2 >vy Vo that
interactswith the electrodynamic system at resonance., Since at resonance the
inductive and capacitive impedences cancel one another, the total power drain on
the driver equals <€i >vg v 1 bal which is explicitly independent of
the dissipation since AvolR

global’

Rloop/Rglobal times the power drain on the driver (i.e., c.f., equation (58)).
An important point to note regarding equation (58) is that resonant heating of
magnetic loops is characterized by an explicit correlation between the spectral
details of the £ > 1 velocity field and the power absorbed by the loop which,

of course, critically participates in determining the loop's thermodynamic state.
Noting that

photo

2 .
<€ >y, = 16T (P 4 )t sz ovyey (59)

G

which includes a factor of two stemming from the fact that there are two sources

of emf, one at each footpoint, equation (58) can be rewritten as

Of course, the power absorbed by the loop is simply
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v}photo vAphot:o /Rloo \ , ehoto
B, = 16T [ = z R—'L' < 1/2 pvg >, v (60)
A cor global o

In the context of the above discussion, this result can easily be derived from
ideal mhd, noting that all electrodynamic energy entering the loop will be in
reality dissipated -- a point stressed by Ionson (1977, 1978) who argues in favor
of an underdamped, high=quality resonant system with leobal >> 1; and also
stressed by Rosner et al. (1978) and Golub et al. (1580) who argue in favor of

an overdamped, low quality system with leobal < 1., Specifically, the net flux

of energy into a loop is the product of the transmittance, ZVKhOtO/vA, the input

signal speed, v§h°t°, the energy density of the 8 2 1 photospheric velocity field,
2 _photo

< 1/2 Vg Vo vo, the number of polarization states which equals two for

electrodynamic disturbances, the number of normal modes which equals two for
low-frequency electrodynamic disturbances in B < 1 plasmas, the number of sources

which equéls two for a magnetic loop with two footpoints, and the fractional

/ Noting algo that the power absorbed

dissipation within the loop,

Rloop Rglobal'

per unit volume is the divergence of the above product of terms with v- ﬂYZcor,

one readily recovers the generalized electrodynamic heating function, E“, given

by equation (60). Since vphOto °‘vph°t°

A sound v SkBT

/m, where T is the
i e

eff ff

effective black-body temperature of the star, the heating function can also be

written as,

9 Teff Rl ) 2 photo ergs
E = 6,28 x 107 [—— —20P <1/2 pvi > —=E ) (61)
H 2 R 8"y 3
Ecor global o cm -sec

T T
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Equations (60) or (61) are of major importance since they clearly reveal
how the electrodynamic heating function scales with the spectral power of the
8 » 1 photospheric velocity field (i.e., goal (i) of the Introduction). The
easential geature of a resonat heating mechanism<d that magnetic Loops with different
Lenaths 'rand hence difgerent global nesonance frequencies, v, = "A/u’co ,

T
ane heated «t a nate that critically depends upon the amount of B2l spectral

power found at vo, viz., <1/2 pvg >5hoco. This is in complete contrast to a
. Yo

non-resonant heating mechanism (i.e,., < 1) which would depend upon the

leobal
total power (i.e., the spectral power summed over all frequencies) rather than

the details of the photospheric velocity field's spectral power function. Thus,
although all electrodynamic energy entering the magnetic loop would be immediately
dissipated by a non-resonant heating mechanism, as has been pointed out by

Rosner et al. (1978) and Golub et al., (1980) there would be no correlation between
the amount of energy absorbed by a loop of length icor {and hence its temperature
and pressure) arnd the photospheric spectral power at vo = VA/ZZcor' Note also
that although the role of the magnetic field, Bo’ appears to be passive for a
resonant heating mechanism, in the sense that it part®cipates in determining a
loop's global resonance frequency, Vo = vklzzcor’ the photospheric power spectrum,
< 1/2 pv: >5h°t° could in itself actively depend upon Eo' In this regard,
independent investigations of the role of magnetic fields in P 2 1 turbulence will

be invaluable in shedding light upon the nature of the photospheric velocity

field's spectral power as it appears in equations (60) and (61),

- v L vl shat. Mmoo e e it i v e e Aot ot o
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(d) The Reactive Electrodynamic Response and the Role of Irnrevarsdbilities

Since the majority of the magnetic loop system is found within the corona,

: . this section will focus upon the reactive response of the coronal portion of magnetic
B loops to electrodynamic driving., Furthermore, I will assume that a local resonance
absorption process is occurring within the corona since the local resonance

condition is easily satisfied.

As 1 have already discussed, the power drain on the photospheric driver is
explicitly independent of the dissipatioii -- a natural feature of resonance
phenomena., This, however, does not mean that irreversibilities completely
disappear from the problem, 1In fact, the root-mean square amplitude of the
induced current, which is associated with the microscopic (i.e., electronic) and
macroscopic (i.e., fonic) reactance of the plasma contained by the magnetic loop,
does indeed depend upon irreversible processes such as electron-ion collisions.

The microscopic reactance is related to the field-aligned current density, j",
whizh 1s carried by the electrons drifting at velocity V4 along the ambient field,
The macroscopic reactance is related to the cross=field current density, j', which
| through Lorentz forces drives an azimuthal flow of coronal plasma with velocity Vge
Noting that the dominant drag on the ions is viscous drag whereas for electrons it is
Joule drag, it follows that the ratio of ion to electron heating is the ratio of the

} viscous resistance to the Joule resistance, i.e.,

- 1/2 2\ -1

1 o viscous ion heating ~ Ryiscous =~ pyr ~ 8 Ti_. 1+ e (62)
- Joule électron heating R ' mag m 2
2 Joule e Qi
where R represents viscous drag on the azimuthal flow of plasma and
viscous
where Rjoule represents ""Joule' drag on the field-aligned flow of

;
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electrons (c.f., section II. (b)). Again, there appears to be no explicit
dependence upon irreversibilities such as collision frequencies. The appearance
of irreversible phenomena is, however, explicit in expressions for the electron
drift speed, vy the plasma's azimuthal flow velocity, Vg and the width (A“rkor
of the coronal field lines which are sublect to electrodynamic activity.

The width (Axr)co san be easily estimated by noting that a magnetic loop
responds at frequencies other than its global resonance frequency, W, gkven by
equation (38). 1In fact the loop will respond for a continuum of different

dw ~ /
frequencies, w wo/leobal’ where leobal is the global quality of the entire

loop system defined by equation (46). As one might expect, Aa% results in a

continuum of excited spatial resonances whose overall thickness (Axr%or’ is given by
Axr
(&x ) or™ R (63)

cor leobal

where it is understood that R;ir represents the local quality of the coronal
portion of the magnetic loop given by equation (45) and where in this case, Axr
represents the width of a single spatial resonance within the corona given by
equation (26).

The electron drift speed, vy is estimated by noting that,

2 . — 2
I Rglobaxl = TJ/ceL <£ >\)° Y (64)

iiar oo
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d
follows from equation (64) that the electron drift speed normalized to the ion

with I = 1‘L - I“ = TT!»L(Axr)j“ froo equation (34). Since j“ = nev, , it simply

sound speed is given by,

v B T 6 v
B T a cor gleobal \ v
8 Jcor o s ' photo

where equations (26) and (59) have been used. In equation (65) vy represents

the ion sound speed, B /Bo and Te ffl'r represents the ratio of the photospheric

photo
magnetic field to the coronal field and the ratio of the photospheric temperature

to the coronal loop temperature, 6 i“/a represents the ratio of the plasma skin

sk

depth (i.e., &

skin - c/wpe) to the Alfven speed$ scale length (c.f.,

equation (25)), Rcor is the normalized coronal resistance given by equation (45),

leobal is the global quality of the magnetic loop system defined by equation (46)

and (v represents the velocity of the photospheric driver (i.e.

G)phota

2
Vo (Ve)\,o Yo * If we assume that the coronal resistance dominates both
the chromospheric and photospheric resistance =-=- a situation which occurs for

solar applications (c.f., section III), then Q and equation (65)

global ~ Rcor

can be written as

v B, . T ) -1/2 v

d ~ 621 (—photo ) eff ) skin ) L+ pe 12 (e 66)
v B / T £ mag mag v

s /cor o L s / photo

.

where equation (45) for Rcor has been used. For the case of solar magnetic

loops, equation (66) can be further simplified by noting that Bphoto/Bo >~ 3,38,

o -3 ~ 1n-
epe/T TR0, 8k = 1078 ang 8~ g, e,

T
skin 1

i | Bl . . o e mlh PR
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v solar v
(.VA_) ~42x107 (a4 )% e/ (—VL) : 67
s / cor 8 288 s / photo
The azimuthal flow velocity, ("e)co:' is estimated by noting that,

i

1/2¢ & w =q 2R (68)
o global global

vhere & = (v rBozl/c is thecoronal loop's capacitive emf. Equation (68)

G)co
results in the following expression for the coronal flow velocity, normalized to

the coronal ion sound speed;

v B T 1/2 v

8 2, photo eff 1/2 6 (69)
v B T leobal v

s /cor o s / photo

which, for the solar parameters used earlier, reduces to

v, solar - v
= = 0.25 (1 + Pr ) 1/6 Rel/6 o . (70)
vs cor mag mag vs h
photo

The size of the solar coronal region within which the resistive and reactive

activity described by equations (61), (66) and (70) occurs is given by equation

(63) for (Ax'r)cor :

(&x )

—-feor 3 Q@ spr HYP g3 (71)
. mag mag

where equation (26) for the width of a single resonance, Axr, has been used

. -1
along with leobal" Rcor'
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[e) Nonlinear Effects

Knowledge of the plasma reactince derived by a linear formalism is very
useful in determining the relevance of various nonlinear processes. For
example, microscopic nonlinearitics associated with the destablization of
the field-aligned electron current could result in an anomalous increase in
the electron collision frequency, vanomalous’ given by equation (14). Such
microscopic nonlinearities can only occur if (Vd/vn)cor > 1 and would result
in both anomalous current dissipation and anomalous viscous dissipation.
Since the magnetic Prandtl number, Prmag’ as derived from viscous dissipation
of sheared, incompressible flows)depends upon the ion collision frequency which

in turn depends upon the electron collision frequency (¢.f., equation

(11)), it follows that the anomalous Prandtl number, Pranomalous, is given by
mag

-1

anorialous mi 1/2 me u?i
Pr___ = Pr. o ~ B 1+ £ (72)
mag mag m, m CF

i

— -

where v >~ @ , has been used (i.e., equation (14)). Thus the ratio of
anomalous pi

ion to electron heating described by equation (62) could be significantly

affected by the onset of microscopic plasma turbulence. 1In addition, the

thermal vs., nonthermal energy partitioning of the "heated" electrons is affected,

with the nonthermal component becoming increasingly enhanced as the ratio

(vd/vs)cor increases beyond unity (c.f., Ionson, 198l). The width of the

spatial resonance, Axr, would also be increased since the magnetic Reynold's

number, Re , depends upon the electron collision frequercy. In fact, Rema
mag B
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would decrease with the development of microscopic plasma turbulence also resulting

in a decrease in the macroscopic flow velocity, (ve)cor, described by equation
(70).

A second possible nonlinearity that could develop would be driven by the
macrcscopic flow field, (ve

)cor

compressible component could be generated if (ve/vs) « In this case it

) cor™!

would be necessary to consider viscous heating of compressible flows which is
much more efficient than viscous heating of sheared flows (c.f., Hollweg, 1979),
In fact the relevant coefficient of viscosity used in deriving the magnetic

Prandtl number would be u” rather than ul. Therefore, if (ve/vs)cor ~ 1 then

/2

compressible ~

1 2,2
the magnetic Prandtl number, Prmag S(mi/me) (Qi/vi). In general

however, the flow is not completely compressible., Since (ve/v‘):or is a measure
of compressibility, the effects of compressibility can be approximated by using

the following expression for the Prandtl number: -

m 1/2 O 2 v 2
Pr _’?rcompressible _ ( i ) i ) . (73)
mag mag m v v
e i s Jcor

This could also significantly affect the ratio of ion to electron heating as well
as the width of the spatial resonance, Axr.

It is quite clear that the ion to electron heating rate depends critically
upon the plasma conditions of the system of interest as well as whether or not

microscopic and/or macroscopic nonlinearities develop. Note that if both types

« Although for a linear analysis this is a sheared flow,

'

LT
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of nonlinearities occur, then the anomalous ion collision frequency,
vi - (me/uxi)ll2 “%1’ should be used in equation (73). It is important to
note that the question of nonlinearities can only be properly addressed by

first investigating the linear response -- specifically, the reactance
discussed in section II. d. It will become apparent in the next section that applications

to solar coronal loops will require nonlinear modifications.
I1I, Solar Applications

In order to apply the physics of electrodynamic coupling described in
section II,, it is necessary that we have some knowledge of the magnetothermo-
dynamic conditions characteristic of the particular plasma setting of interest,
As a demonstration of how this physics can be utilized, a specific application
to solar magnetic loop systems will be presented,

{a) Resonant ELeatrodynamic Heating ef Svkar Coronal Loops

Serio et al. (1980) have recently generalized the scaling laws derived
by Rosner et al. (1978) to include solar coronal loops whose height exceeds
their pressure scale height., These scaling laws, which are fairly consistent

with observations are given by

-0'04£car

3 1/3 _
T 1.4 x 10 (Plcor) exp N K (74)
P
-Oosfl
5 .1.17 ,~0.83 cor ergs .
Eloss = 10" P L.or  ©xp 7 3 (75)
P cm -sec

where T is the maximum temperature of the coronal loop, P the base pressure,

£b = 0,12 x 103T cm, the pressure scale height and where E is the average

loss
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energy per unit volume that is lost through chromospheric and coronal radiation.
In equations (74) and (75) it has been assumed that the energy deposition scale

height is large compared to the loop length since we are dcaling with a global

»

heating mechanism.
Golub et al, (1980) have also derived an empirical relationship between
the base pressure of coronal loops and the average strength of the underlying

« Assuming that the coronal magnetic field,

photospheric magnetic field, Bphoto

Bo, can be estimated by a simple dipole extrapolation of B (1.e.,

photo

3
i
Bo/Bphoto (2.£cor/2£c°r + Lcor) =~ 0,296 with a dipole displacement of

2£cor), their relationship becomes,

2
cm

=
P =2.1%x10° nz'é (—M— (76)

From equations (74) and (76) it is possible to determine the magnetothermodynamic
state of a coronal loop as a function of its maximum temperature, T, and length,

£cor° Specifically,

3 1,24
P = 3.64 x 1020 (T ) exp( °°') (d"“es ) (77
£ 2 2
cor P ¢m
-5 T1.875 0.75£cot
Bo = 1,41 x 10 (410.625 exp ( 7 (gauss) (78)
cor P

and, noting an exponential drop in the coronal density with height, the coronal

Alfven speed is given by,

B
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arvatisss o v 0 Y

3 T0.875 0.1'/4.66Qr cm
A 2,68 x 10 F;BTTE;- exp [ =7 ( py ) (79)
cor P
aan fvom

In order that the temperature, T, be eliminated equations (77) - (79) it is
necessary to utilize equation (75) for Blona’ noting that

EH " E1oss (80)
where EH is the generalized electrodynamic heating function given by equation

(55). A simultaneous solution of equations (77) - (80) will then result in a
scaling of loop temperature, T, and base pressure, P, with the loop size,

gcor’z;’ and the spectral power of the photospheric velocity field,

2 photo
<1/2 Ve >y (i.e., goal (ii) as stated in the Introduction).

To determine the relevant form of electrodynamic heating (i.e., resonant
or nonresonant) it is first necessary to estimate the global quality, leobal’

of the loops. This can be easily done by using the following parameters as

edtimates in equations (27), (44) - (46).

4T v
e=n_ -12 .,  Fhoto 6 . ~ 7 .
Tbhoto 7 5.9 x 10 °° sec; va 10" cm/sec; zphoto 5 x 10" em; ﬁphoto ;
Pe
LT v
e=i ~13 chrom 6 7
Téhrom = > 2 x10 sec; v, ~ 3 x 10 cm/sec; Lchrom ~5x 10 cm; Echrom
wpe
o ve'i 17 7
- = ~5x10 ' sec; v, ~6 x 10 . ~ 100 . .
cor Y AN cm/sec; boop ~ 107 em; Bop ~ 0e1
pe

Y Py S o R Ty, A

35




e

B . 2

The results are:

RePOt o 4 x 107; R ~10"7
l0ag photo

ReFT® L4 x 1005 PrPT™ ~43; ~2x10"°
mag mag chrom

12 4

Recor ~2x10 Prcor ~4.,3; R ~2x10
mag mag cor

J L/C =~ 0.24 Ohus

-1 3
leobal Rcor ~35 %10

where it has bee.. assumed that local resonance absorption cccurs within the
corona (i.c., equation (45) for was used tc estimate’zcor). The rationale

for assuming tha*% local resonance absorption occurs within the corona is based
upon the faci that the global resonance frequency of the entire magnetic loop

system depends primarily upon coromal rather than chromospheric and photospheric

conditions (c.f., equation 38)).

It is quite obvious that the global quality of typical solar magnetic
3
1 g e€Co ~ -
oops is extremely large (i.e., leobal 3x10) at least under the

constraints of a linear theory. Therefore, the resonant form of the heating

- - e - ake o et . bl 0 ms bl
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y
; . function, E“, described by equation (61) should be used in the energy balance
i‘ described by eguations (75) and (80). This results in the following ’‘mplicit
f equations for the maximum temperature, T, and base pressure, P:
E . 3
; 4 2 photo] 2/1

T=3.,36 x 10 [reff exp (0'36£éor/£p) < 1/2pve >Vo o (81) |

6/7
4 photo
1,38 x 10 2 2
P= =S exp <1.51 'ecorup) [Teff <1/2 Ve ] (dynes/cm) (82)
cor 0
where R has been used,

loop ~ Rglobal
' In order to solve equations (81) and (82) explicitly for © and P as a

function of loop length, Lcor' it is necessary that we know the spectral
power of the photospheric velocity field. As a demonstration, the power
spectrum illustrated in Figure 3e has been assumed. This spectrum corresponds
' to observations of solar plage regions where densities are of the order of

10"7 gm/cms.

Illustrated are two major peaks, one at intermediate periods
| : (300 > T > 100 sec) (Orrall, 1966; Woods and Cram, 1981) and one at longer

periods (T > 400 sec) (Harvey, 1980)., Figure 3d illustrates how the global

resonance period versus loop length scaling, T, = Tb(zcnr), maps the spectral

powver function of the photospheric velocity field into EH = EH(Ecor) via

p Btk
e i aaaadamaiadiael

equation (61) (c.f., Figure 30),T = r(ﬂcor) via equation (81) (c.f., Figure 3b)

and P = P(£~or) via equation (82). Also plotted in Figures 3a and 3b are

observations of active region loops (Landini et al., 1975; Pye et al., 1977)

which absorb power from the "intermediate regime'" of the photospheric spectral
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power function; large-scale loop structures (Maxson and Valana, 1977) which
2 are electrodynamically coupled to the "local power minimum" region of the

photospheric spectral power function; and very large scale active loops (Pye et al., 1977)
£ which can absorb power from the "long period" regime of the photospheric spectral

?
4
E
; power function,

(b) The Reactive Response and the Role of Tarevers.ibilities dn Sofar Coronal Loops

Using the results of Fig. 3, Fig. 4 illustrates howthe natural impedence, J L/c,

-2
magnetic loops scales with the loop length, Acor' Noting that (ve/vs)phot ~5%10 7,

magnetic Prandtl number, Prmag’ and magnetic Reynold's number, Remag of solar i
° |
|

these parameters are used in equations (45), (46), (67), (70) and (71) for

%
, i
’ leobal’ (Vd/vs)cor’ (Ve/vs)cor ‘md(Axr)c(_)r -Which were derived from a linear analysis, i.’
linear _ _-1/3 -1/3 _ 1/3 |
= I "‘
leobal (1 + Prmag) Remag (83) 5
|
" v linear {
| 10 .
d =~ 2,1 x10 1 (L+pr ) 1/2 Rel/2 (84) |
Ve mag mag |
} cor ,
| |
i
v \linear |
8 -2 -1/6 |
« >~ 1425 x 10 (L+Pr ) 1/ Re1/6 (85) |
VS mag mag i

} cor
s linear linear
4 ; . (mr)cor 0.1 'Ecor/leobal (86)

i
i
3
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which yield the results illustrated in Figure 5. One noteworthy feature of

this illustration is the extremely large Q-values leading one to believe that

the microscopic and/or macroscopic reactance stemming from a linear theory could
be quite appreciable., It is important to note from this figure that although
microscopic nonlinearities associated with anomalous current dissipation are
wiimpontant (i.e., becauge (vd/vs)cor << 1) macroscopic nonlinearities associated
with the conversion of a sheared, incompressible coronal flow into a partially
compressible flow probably are important because (ve/vs)cor ~1l, This is

consistent with Hollweg's (1981) independent analysis of the problem, Therefore,

as discussed in section II.e., equation (73) for Prcompressible should be used,

mag
This will result in increased viscous dissipation which lowers the Q-value of

the loops, thereby resulting in both a broadened spatial resonance and a decrease

in the coronal flow velocity, c'i.'e.,

nonlinear _ 1.6 x 10-2 Pr-l/lz Re1/4 (87)
global mag mag
v nonlinear
g ~ 2.2 x 107 prl/8 gel/8 (88)
v, mag mag
cor
nonlinear _ nonlinear
(Axr)cor 0.1 zcor/leobal (89)

Figure 6 illustrates the nonlinear reactance and Q-values described by equations

(87) - (89) for the case of solar magnetic loops. Note that although the quality,

1
;;:bi:ear’ is significantly smaller than that estimated from a purely linear
analysis, it is still larger than unity validating use of the resonant
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heating function, E . This must be so since it is the resonant characteristics

H
of the system which nonlinearly supports the compressibility oZ the flow,
Therefore, the results depicted in Figures 3 and 4 remain unchanged,

As is evident in Figure 6a, the cross-field size of the coronal dissipation
site has dramatically increased from the order of kilometers (c.f., Figure 5a
and Ionson, 1977, 1978) to the order of thousands of kilometers due to the
nonlinear modifications presented here. This is an extremely important result
since there has been a great deal of concern regarding how solar coronal loops

can be heated throughout their entire volume (c.f., Hollweg, 1979).

Another interesting feature of this analysis is the prediction of an 11-16 km/sec

coronal velocity ifield (c.f., Figure 6b) and the preferential viscous heating of the

ions, i.e.,

viscous jon heating compressible 8 |
b i ~ ;
Joule electrci heating Prmag 10 (90)

Both of these effects could be responsible for the widespread observations of

coronal line broadening (c.f., Feldman and Behring, 1974; Acton et al., 1981).

IV, Conclusion

The major emphasis of this article has been the physics of global electrodynamic
coupling between a B<1 magnetic loop and an underlying B>l mechanical energy reservoir,
A rigorous analysis of this problem has revealed that the physics can be represented
by a simple yet equivalent LRC circuit analogue. This analogue points to the

existence of global structure oscillations (i.e., v°=vA/2£cor) which resonantly

N ]
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excite internal field line oscillations at a spatial resonance within the magnetic
loop (i.e., Axt being the width of the spatial resonance). Although the width of

this spatial resonance as well as the induced currents, and jr explicitly depend

W
upon viscosity and resistivity, the resonant form of the generalized electrodynamic
heating function, EH’ is virtually independent of irreversibilities. This is a
classic feature of high quality resonators that are externally driven by a broad

band source of spectral power. This follows from the fact that at resonance the
heating function depends solely upon the resistance, R, and the emf which can
Antenact with the loop, < €a>vAvo, i.e., Ey =< E" >vA\’o/R' Since the interaction
bandwidth, Avo, also depends upgn the resistance, i.e., Avolv°~1/Q = RJPE73, it
follows that Ejo< Ea>vv°/ﬁ76' which is explicitly independent of R, In addition,
since < C >\J W<lspv2>v it becomes clear how the heating function scales with the
spectral powetofunctionoof the mechanical driver. The essential feature of a resonant

heating mechanism is that magnetic loops with different lengths and hence different

global resonance frequencies are heated at a rate that critically depends upon the

amount of BRl spectral power at the resonance frequency, Vor

As a demonstration, this physics was applied to the solar setting. A linear
analysis resulted in extremely large Q-values for solar coronal loopé implying very
narrow spatial resonances of the order of kilometers and a coronal flow velocity

of the order of the sound speed. The electron drift velocity was found to be orders

of magnitude less than the ion sound speed and therefore microscopic plasma instabilities

were not important. However, in light of the large coronal flow velocity it was
necessary to consider nonlinear modifications to the linear analysis stemming from
the development of a compressible component to the coronal flow. The nonlinearly
generated compressible component of the flow allows the use of a viscosity coefficient

which dramatically increases the rate of viscous dissipation. As such, the steady
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state quality of solar coronal loops is decreased to Q-15 which results in broad

spatial resonances of the order of thousands of kilometers, a coronal velccity field

of the order of 10-16 km/sec and preferential viscous heating of the ions, The

; nonlinear modifications, however, do not change the temperature (pressure) scaling 1
E‘ of solar coronal loops with their length. This follows from the fact that the system

is still highly resonant (i.e,, Q>1) allowing one to utilize the resonant form of
the heating function derived from a linear analysis. It is remarkable that such a
simple theory is so consistent with a variety of observational constraints, despite

the neglect of nonlinearities other than those addressed in this article. i
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Figure 1.

Figure 2.

Figure 3.

Figure 4.
Figure 5.

Figure 6,
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Figure Captions

Prototype magnetic loop system and equivalent LRC circuit,

Power factor, pf(w), versus the frequency normalized to the resoance

frequency, W,

Illustration of how the solar photospheric power spectrum electrodynamically
couples to coronal loops. The data points refer to active region loops

(i.e., X's ; Landini et al., 1975; Pye et al., 1977), large-scale structures
(i.e., crosses; Maxson and Vaiana, 1977) and very large scale active loops
(i.e., circles; Pye et al., 1977).

Characteristic properties of solar coronal loops with @L/ﬁcorﬁo.l.

Results of a linear analysis applied to solar coronal loops.

Results of a nonlinear analysis applied to solar corvnal loops.
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