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Abstract

This article addresses the important problem of electrodynamic coupling of

$<l stellar coronal loops to underlying 0;,1 velocity ffields. A rigorous analysis

has revealed that the physics can be represented by a simple yet et{u.iva ent LRC

circuit analogue. This analogue points to the existence of global structure

oscillations which resonantly excite internal field line oscillations at a spatial

resonance within the coronal loop. Although the width of this spatial resonance

as well as the induced currents and coronal velocity field., explicitly depend upon

viscosity and resistivity, the Auonan.t form of the generalized ele.trodynacr',,c

heating function is virtually independent of irreversibilities. This is a classic

feature of high quality resonators that are externally driven by a broad-band

source of spectral power.

The major results of this article are:

(1) The heating function, EH , field-aligned electron current,and cross-field ion

polarization current are explicit functions of the $,>,l velocity field's spectral

power junction, e.g., EH=6.28xi09(Teff/Qcor)(Rloop/Rglobal)<Ipv6>photo(ergs/cm3-sec.
0

The essential feature of a resonant heating mechanism is that magnetic loops

with different lengths, and hence different global resonance frequencies,

are heated at a rate that critically depends upon the amount of spectral

ii
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power found at the resonance frequency, v o.

(2) This heating function results in the following implicit equations for the

maximum temperature, T, and base pressure, P:

photo 2/7
T a 3.36 x 104 

Toff 
exp (0.361 

or/IP) < 1/2p'e >v	 ok0

k	 photo 5/7
P M 

1.3^ x 10	
exp ^ 1.S1 fcorl 'f	 Teff < 1/2 pvB v	 dynes /cm2}

cor	 ti'	 o

which are in remarkable agreement with observations of solar coronal loops.

(3) Solar applications require nonlinear modifications that do not alter (1) and

(2) above but which dramatically increase the cross-field size of the

coronal dissipation site from kilometers to thouaan& of kilometers. Preferential

viscous heating of the ions is also predicted as well as a 10 -16 km/ sec coronal

velocity field.
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RESONANT ELECTRODYNAMIC HEATING OF STELLAR CORONAL LOOPS:

AN LRC CIRCUIT ANALOGUE

I. Introduction

One of the most outstanding problems faced by solar and stellar physicists

is an understanding of the cause and effect relationship between inner (e.g.,

photospheric) and outer (e.g., coronal) atmospheric dynamics. Central to this

problem of global coupling within a stellar atmosphere is the role playcJ by

magnetic fields. Magnetic fields typically thread the inner and outer atmospherea

of a star and thus one cannot disregard the potentially important role that

associated electrodynamic processes could play in effecting an "electrodynamic

coupling" of these two regions.

A useful parameter that identifies the dominance of "electrodynamic coupling"

over, for example, mechanical coupling of the inner and outer atmosphere by

	

acoustic waves is the lasma beta 	
2 2

p	 ,	 = vs /vA (vs -sound speed; vA Alfven

speed). Specifically, electrodynamic coupling within a stellar atmosphere

dominates mechanical coupling whenever the plasma beta is less than unity within

the outer atmosphere, i.e., Oouter < 1, and of the order of unity within the

inner atmosphere, i.e., P 
inner 

;Z^ 1. Thus, mechanical dynamics such as convective

and/or differential-rotation velocity fields within the 
Dinner 

;^s l atmosphere

can couple to and drive casually related phenomena, such as heating, within the

@outer < 1 outer atmosphere through various electrodynamic processes associated

with the interconnecting magnetic field. This is in contrast to a mechanically

coupled stellar atmosphere which would require a 0 ;,'^ 1 outer atmosphere.
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It in now widely believed that the d P1 1 inner (photosphere) and 0 < 1

outer (corona) atmosphere of the Sur, are electrodynamically coupled since

extrapolations of the observed photospheric magnetic energy into the corona

exceeds the in-situ thermodynamic energy (i.e., d < 1). Furthermore, it

appears that the solar corona is typically structured, comprising a variety

of closed, loop-like regions of enhanced radiative output, i.e., coronal loops

(c.f., Withbroe and Noyes, 1977; Vaiana and Rosner, 1978). In this article

I will focus upon the electrodynamic coupling of solar coronal loops to their

underlying driver -- the 0 P: 1 photospheric velocity field. However, this by

no means restricts the applicability of the following analysis to the solar

setting. Indeed, the results of this article are generally applicable to any

stellar atmosphere and for that matter any cosmic plasma that satisfies the

conditions on the plasma p as described above.

The specific goals of this article are to:

( i) Determine both the resistive response (i.e., an electrodynamic heating function, EH)

and the reactive response (i.e., the induced currents and velocity fields) of

magnetic loops in terms of the spectral power of an underlying $;,l velocity field

such as the solar photosphere.

^`.	 (ii) Utilize the heating functi ,n, Ex , to an energy balance model which yields the

resulting thermal state (i.e., maximum temperature and Lase pressure) of a loop,
F

also in terms of the spectral power of the $,>,1 velocity field.



With regard to (i), there have been a number of attempts at developing a coronal

heating function, E8 (c.f., reviews by Wentsel, 1978; Hollweg ,1979 ; Kuperus,

lonson and Spicer, 1981). For example the solar physics community has proposed

heating by Alfven waves, fast waves, slow waves, Alfvenic surface waves,

electrical currents, magnetii>. reconnection -- a seemingly endless list of

possibilities. Unfortunately, there is a very serious problem which appears

to be rapidly spreading throughout the solar and into the stellar communities.

This problem is associated with the fact that each of the above mentioned

mechanisms are being thought of as unique in their own 'right. This, however,

is simply not true since they are all based upon a unifying foundation of

electrodynamics whose principle ingredients are u.:pacitance -- the ability or

a magnetoplasma to store electric and kinetic energy, inductance -- the ability

to store magnetic energy, and resistance -- the ability to convert the above

electrodynamic energy into thermodynamic end products such as heat. another more

practical problem with the plethora of proposed heating mechanisms is that they

do not result in a hma,ing function which is explicitly correlated with the

properties of the 0 ;2^ 1 driver of the corona, viz., the underlying photospheric

velocity field. Thus, it has been virtually impossible to develop a complete

thermodynamic model that allows us to appreciate coronal loop heating in terms

of synchronously observed mechanical activity within the photosphere.

Although some authors have invoked electrodynamic circuit analogues in an

attempt to consolidate the many different aspects of electrodynamics into a

simple formalism, their approach has for the most part been somewhat too

phenomenological as well as limited in scope. Specifically, they have primarily



s

i

4

addressed flare problems in terms of transient 
L/RJoule 

discharges (c.f., Alfven,

1977 and references therein), They have not, however, considered continuously

driven systes» and have also v irtually disregarded the critically important capacitive

properties of the magnetoplasma t 'Thus, although their basic phenomenological treatment

deserves commendation, the concept of electrodynamic circuit analogues should

be rationalized by a more complete and self-consistent treatment. Therefore,

upon investigating the important global cause and effect relationship between a

coronal loop and its p ;^ l driver, one should keep in mind the possibility that

the electrodynamics of such a system can be represented by a simple yet equivaten t

driven "LRC" circuit. If this is the case, then a
	 powerful approach

to the complex problem of "electrodynamic coupling" in astrophysical plasmatwould

be at hand since the electrodynamics of simple LRC circuits is well understood.

of course, the key is in the determination of the equivalent L, R, and C values

which, as we shall see, is relatively simple to do.

II. The Physics of Global Electrodynamic Coupling

Figure 1 illustrates both the prototype physical system that will be

investigated and its equivalent electrodynamic circuit which will be derived

below. The physical system comprises both a 0 e 1 magnetic loop and an

underlying region of p ;^; 1 velocity fields which electrodynamically couple to

and drive electrodynamic activity within the 0 < 1 loop via the interconnecting

magnetic field BB . The magnetic loop contains plasma at both coronal and

chromospheric temperatures, the transition occurring along the externally
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generated potential magnetic field, B, The field-aligned scale length of
PV

the coronal portion of the magnetic loop will be denoted as 
cor, 

while the

scale length of the chromospheric portion will be denoted as 
Lchroma 

in

addition, the field-aligned scale length of the A ; b 1, photospheric velocity

fields which interact with the magnetic loop will be denoted by 
Aphoto' 

The

cross-field scale size of system will be denoted as f l which represents the

diameter of the magnetic loop in the corona, chromosphere and photosphere.

For simplicity I I will be assumed to be the same in all three regions -- an

assumption that will not adversely affect the analysis presented in this article.

The main field Bis generated by a primary dynamo that is external to

the loop's local mechanical driver. This is probably the case for many stellar

coronal loops in which large scale velocity whose characteristic time scale

exceeds the loop's Alfven transit time, are responsible for the overall potential

magnetic field structure. It is the relatively smaller scale 0 Ps 1 velocity

fields whose characteristic; time scale is of the order of the loop's Alfven

transit time, which drive the loop into a non-equilibrium electrodynamic state

resulting in the flow of electrical currents along (i.e., force-free) and

across (i.e., non-forcefree) the ambient field 
Ao

. The equivalent LRC circuit

is illustrated in hindsight'" the derivation to follow and models the electro-

dynamic behavior of the physical system. Specifically, the 0 ;^ 1 velocity fields

act as a secondary voltage generator, supplying a time dependent emf,f„ which

drives an equivalent current, I, though an equivalent loop inductance, L,

resistance, 
Rloop' 

and capacitance, C, as well as through an equivalent photo-

Fpheric resistance, 
R photo `
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tat pan.<'.vation of the GtobaE Etec Aodynan;ZOA Cq=tlilt

Magnetohydrodynamic systems are inherently wn'linear. However, experience

in handling such complex systems has shown that critically important characteristics

become apparent by appropriate linearization. In this ragcrd, the following

equations will be linearized with nonlinear modif`L.ations being considered later in

the article:

	

47T	 aj
	 X (p x E)	 (1)
N	 .^.

C	 at	
N

	

•	 ¢ 0	 (2)
OW

g
b Y	 ^.+E + —_-_—_ ,,	 (3)

av , x s
IV	 N

P at + FN V _ •0 • P + Pp, + c	 (4)

where

PpI	 (5)
N	 N ry

z _	 0 v	 (6)
I., N

µl = P P 2	 /(1 + vi/ f"2)	 (1)

u	 ul {l + 02 / vi)	 (8)

4TTv

	

_	 2 e
	

(g)

W
pe

d

1



and where the electron collision frequency, ve , and ion collision frequency,

A, are given by:

ve ^'e-i + ve-neutral + vanomalous

vi 7 (me
/mi)1/2 

V  for T  ao Ti,

with the electron -ion collision frequency, ve-` , given by:

50.0 (ne/Te3/2) see 
.1

the electron-neutral collision frequency, ve-n given by:

v	 = 1.95 x 10
-9 

n T 112 sec 1

	

e-n	 n P

and with the anomalous collision frequency, 
vanomalous' 

of electrons with a

non-thermal level of low frequency (W C pi) electrostatis plasma waves being

given by:

	

m^	
W	 ( )

vanoalous ^ p	 ^e	 nekBTe	 pi	
14

where W is the energy density of the plasma microturbulence. Such plasma

microturbulence could develop if the electrical currents exceed various

threshold conditions (c.f., Papadopoulos, 1977; Ionson et al., 1979; Rosner

et al., 1978; Hinata _, 1980).

The electrodynamics equation ( 1) is given in terms of the local current

density, 1, and electric field, E. In analyzing this equation Z will adopt
PW

a cylindrical coordinate system in which x jj represents a direction parallel to

(10)

(11)

(12)

(13)



the ambient field, BB , and in which xl represents a direction perpendicular to

the field. The perpendicular unit vector, x i, contains two bases, viz., x0

which corresponds to the azimuthal direction and 
I  

which corresponds to the

radial direction. In addition, variations in plasma parameters such as the

Alfven speed will occur only in the x i, and I  
directions.

In order that the Poynting flux be directed primarily along the ambient

field, lo , it follows that (N x « 0 (i.e., approximately shear disturbances).

Note that the field aligned perturbation in the magnetic field is not identically

zero thereby resulting in a small component of the Poynting flux in the x 

direction. This is important since it allows the "'interior" of a coronal loop

;'e
to receive electrodynamic energy "exterior" regions of a loop. Note also that

the condition ( o x E),^ ^^ 0 is equivalent to disturbances that are approximatelyOW

incompressible (i.e., OW — 0) thereby rationalizing the use of an incompressible

momentum equation (4). Although nonlinearities could convert shear into

compressible disturbances therefore requiring use of a compressible momentum

equation (Hollweg, 1981), it is important to first consider the linearized,

shear system. Ir Rection M(e), I will briefly discuss some simple nonlinear

modifications of the linear analysis.

a
Under the -,onstraint that (V x E) ^^ N 0 it follows that D l (7 • E l) - Qi Ey ^' Q

and thus equation (1) can be written in the following component form:

•	
aj F;

•
^2	 of	 +	 ax.z 

(PWl ^'1) - 
012 E^^ 0	

(15)
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9

	

4n 14	 _ 
a2O '

	

a__	
2+ ^lx^f 	

0

ll

Noting in hindsight that W Nr >> a/N0 due to a local resonance absorption

process that will be discussed later, it follows that E  << E r ; and since

I CC E the I curren% is carried primarily by j . Using Ohm's law (i.e.,

	

1 ^Wl	 ^	 r

equation ( 3)) the electrodynamics is therefore described by,

4?T	 a2j r 	 a2	
a
^ - a2	

aj r 	L a3(v8B )

	

c 2	 at 2	
+	

OX ist	
^t	

ax2	
a + c 

	 0 (17 )

	

it	 ii

4H
a2 j	 a2	

ajr	 2	
aj	

_ 1 a3(vaB )

	

1 	 _ (is)

	

C 	
a2 + c 	c ax(1axrdt	

c

	

Since C	 0 (i.e., aj r /3xr -.-'dj jj01x jj), equations (17) and (18) are redundant.

This redundancy is primarily a consequence of the ( N x Kh — 0 constraint. Thus

it is necessary to consider only one of the above equations since they both contain

a complete electrodynamic description. In this regard I will focus upon equation

(18), rewritten in the following form.

	

4'`	
-

c2 j ,. - a2	 0	

- H 1	
6 (v0B0 /c)

H	 -1	
a3(v8B 

/c)	 19

	

c2 

ot2	

2	
( ^)	 ax^ 2% at(^ )	 ax^^axrat	

)

	

.-	 x

where H(1-0) is the lteavyside step function and with 0 as the plasma beta

H(1-0) = 0 for S > 1 and - 1 for 0 < 1) and where the second term on the

left hand side of equation (18) has been neglected since it is small compared to the

other terms.
i

1

f

(16)
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The third term on the left hand side of equation ( 19) contributes only

in 0 < 1 regions and represents the hydrodynamic reactance of the plasma to

externally applied emfe associated with the 0 Z 1 velocity fields (i.e., the

right hand side of equation (19)). The 0 < 1 reactance term cancan readily be

determined via the force balance equation (4) valid in A < 1 regions, i.e.,

6V X 'B	l 
a	

2
P	

c	
+ µI #Wl Nl.

Using the correspondence B/at i W and noting in hindsight that the reactance

is maximum when a/at - vAa/aXII it follows that

	

b3 (v0Bo /c) N	 dj3	 4TTvA2	 d2 j

Pr	 ^,	 +	 21

t

—^—`	 ^`	 C )

	

&xI,1Xrat ^.	 ma^	

bx 2 3t	 c2	 bx2 

	

r	 Ii

where the magnetic Prandtl number Prmag is defined as the ratio of momentum

diffusion to magnetic diffusion, i.e.,

	

41T	 m	
1/2	

v 2
	 -1

Pr	 Is
mag PG2 n	 me	

^i

Using, equation (21)s the local electrodynamics equation (19) reduces to,

4TT
	 -	 4TTvA'	 ^^	 a3 (veB0/c)

c2 _
—̂t2 - ^1 (1 t K ( 1 - O)Prmag)	 J2k H(1-)	c2	 .^..-t2! ,, h ( ^-1) 

BxIIaxr^
	 (23)

r	 Ij

(2p)

3
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►	 and cae begins to see the emergence of a simple "LRC" circuit analogue -- the

first term representing an inductive reactance, the second term representing

a Joule and viscous resistance, the third term representing a capactve reactance

and the teas on the right hand side representing the external source of emf which

drives the currents,

Equation ( 23) describes the local electrodynamics of the system. A

description of the global electrodynamics is obtained by integrating equation

(23) over the volume of the system. In performing this integration it is

important to note- the possible occurrence of a local resonance absorption

process in the P < 1 magnetic loop. This process has been discussed in some

detail by a number of authors (e.g., Hasegawa and Chen, 1976; Kappraff and

Tataronis, 1977; Ionson, 1977, 1978, 1981; Ott et al., 1979). Although most

of these discussions are strictly applicable for specific plasma parameters

(e.g., collisionless or collisional analyses), Ionson (1981) has presented

the concept in a relatively unified manner which T will briefly review for the

case of a collisional plasma (i.e., the electron pressure E-field which supports
rw

kinetic Alfven waves is small, compared to the resistive E-field).

Noting that there is a cross -field variation in the Alfven speed, dvA/dxr,

it follows that for a particular driving frequency, W 7absorption of electro-

dynamic energy could. occur within a small spatial bandwidth, Ax r , centered about

a spatial resonance located at x  - 
xres• 

For a specific x 11 , a spatial

resonance exists only if vA(xr
 = xres)ra/ax+O

 w at some point in the ar-direction-

a condition that is not necessarily satisfied. However, if this resonance

condition is satisfied, the spatial bandwidth, Ax r , can readily be estimated from

equation (23) by expanding the Alfven speed About the spatial resonance and
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-^, -.

noting that the inductive and capacitive L%.actances cancel one another at the

7
spatial resonance, x  = xres' Lee, 4TTa2j11 /c2at 141Tv

A (x res 11 1l1/11`11

A consequence of matching the inne.% 	 solution to the outer reactive

solution (i.e., the ideal mhd solution) _a that the resistive term in equation

(23) equals the firit order contribution of the expanded capacitive term, i.e.,

,r(1 + Pr	 H (1- 0)) w T^ 47f w ( Ax
r)max

_ (24)

(AX r ) 2 ac 

where	 ^I
d(,tn vA)

a =	 ^ (25)
r

and where the correspondence 6/ Z3x -0 iTT/(Axr) has been used.	 Solving equation

(24) for Ax 	 yields,

Ax 	
/3
	

1/3
(

= TT1 -1/3Pr	 H(1	
^)}1/3 

Re(1 + (2' )A
l	k1

magmag

where the magnetic Reynold's number, Re	 , is defined as,
mag

41T 
vlocal 2

ARe

mag	
Tj

1 (27)

c2I II
Y

where W ax iro VT/I ii has been used with A representing the field-aligned extent

of the local region. It should be noted that Ax r as defined by equation (26)

depends upon local plasma parameters such as the resistivity, T1, Alfven speed,

.,

1
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localvA	
, the magnetic Pran4tl number, Prmag and the field-aligned extent of the

local region, A ll* It is also important to note that equation (26) implicitly

assumes the existence of a spatial resonance.

Keeping in mind that Axr can be interpreted as the local (i.e., along the

'	 magnetic field), checacteristic cross-field shear length of the induced' current

and velocity fields, equation ( 23) can be simply integrated over the volume of

the system. This results in a description of the system's global electrodynamics

which is represented by the following global electrodynamics equation:

L d?I -+ R	 dI + I = d t

	dt2
	 global dt	 C	 dt

where the equivalent inductance, L, capacitance, C, resistance, Rglobal'

current, I, and driving emf, £',(t) are given by,

L =	
2_

	

Tic	 "

7,c2

C =

4iTvA2

Rglobal Rloop + Rphoto

loo	
^i (1 + Pry ) 2 ./ (pxr) 2

R p chromosphere	 B	 ^^

corona

_ photo photo
Rphoto	

(AX )2

r photo

(28)

(29)

(30)

(31)

(32)

(33)

F
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I - TUj (AX 
r'jI1- 

'T 14 1 ^ r	 (34)

' ,L 

v

e 

B

E (t) 	 c	 (35)
)photo

(b) DiAcuab.ion of an Ef.ectudynairilc CiAcuit Anatogue

It's clear from equation ( 28) that the global electrodynamics of the

magnetic loop system can be modelled via a simple LRC circuit analogue. The

equivalent circuit elements described by equations (29)-(33) obviously represent

averages over the loop and its underlying mechanicai driver. Specifically,

III 
and v  found in equations ( 29) and (30) represent a characteristic length

of the system and a characteristic average value for the Alfven speed whose

explicit dependence upon spatial details of the system is at this stage not

overly important. In fact, since the majority of the system resides within the

corona where the Alfven speed is at its maximum value, the expressions for the

inductance and capacitance can for all practical purposes be written as,

41

L a	
cor	

(36)^

Tre 
2

c2
C	 cor	

(37)
^+ T( vA

where it is understood that vA refers to the coronal Alfven speed. An important

point to be made here is that the magnetic loop naturally supports global structure

oscillations at a characteristic frequency, o ,	 given by,

r

Ai



1Tv

W _	 1
	 A.

o ^ L	 cor

One such example of global structure oscillations which are characterized by

high shear are Alfvenic "surface" waves (c.f., Ionson, 1977, 1978; Wentzel,

1979, and references within these articles). It is important to

note that Alfvenic "surface" waves * not require a discontinuous Alfven speed
profile.	 In fact,	 any degree of nonuniformity will support their

existence. Hollweg (1981) has also stressed the importance of global loop

resonances. Thus it appears that the formalism presented in this article casts

the concept of gtobat structure oscillations and resonances into a unified

picture. That is, according to the derived electrodynamic circuit analogue,

these global oscillations can be interpreted as global LC oscillations. Of course,

this point was missed by previous proponents of electrodynamic circuit analogues

since they, in their purely phenomenological treatment, did not account for a

critically important energy storage element -- the capacitance. The capacitance

is important because it describes the hydrodynamic reactance of the plasma to

imposed emfs, an essential feature of all hydromagnetic oscillations. This can

be simply understood by noting that the energy stored by the capacitor is

1/2 C 42 where C = C 
0 
K (the free space capacitance across field lines being

Co = Y,0ATi and K being the plasma dielectric) and where _ I Eis the averagel 

electric potential across the field lines. Since the low-frequency dielectric

K	 l + c 2/v2, one can see immediately that the energy stored by the capacitor

comprises two parts, viz., the electric field energy per unit volume, E i/8TT and

the polarization energy per unit volume, c 2Ej/81TVA. Noting thatvl =c El/Bo,

is

(38)
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the polarization energy is therefore in the form of kinetic energy,

lj2pv. In fact, the so-called polarization current ^p°l' is defined such

that J:	 x Bo/c - pX, resulting in p̂ol ^ c2E^^/4TrvA, which is consistent

with a derivation ofp° l ' using particle orbit theory.

Since the hydrodynamic reactance of the 0 ?. 1 plasma (i.e., related to C)

is associated with electrodynamically -induced velocity fields, one must also

self -consistently include viscous dissipation. Therefore, just as Joule

dissipation is an importance source of resistance, R Joule , to current flow,

so is viscous dissipation since it tends to prevent the electrodynamic charging

of the 0 < 1 plasma capacitor by inhibiting the development %f polarization

velocity fields within the magnetic loop. Although viscous drag is also important

within the 0 P 1 photospheric driver, it does not explicitly appear in the

electrodynamic description of the system. Rather, photospheric viscosity is

implicitly included in the driving emf,E, ( t), which depends upon the photospheric

velocity field, which in turn depends upon a balance of inertial, non-electrodynamic

and viscous forces. Within the 0 < 1 magnetic loop, however, viscous dissipation

makes an explicit showing in an LRC analogue as a phenomenological viscous

resistor, R
viscous Pr

mag RJoule where the magnetic Prendtl, number is defined by eqn. (22)

and where the Joule resistance, RJoule
	

'I' ll/(AXr) 2 . `.therefore, the 0 < 1

resistance, Rloop, given by equation (32) is the sum of 
RJoule 

and 
Rviscous

over both the chromosphere and corona. Note that the plasma parameters found

within the summation of equation (32) represent local conditions with A li and
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Ax  being the field-aligned extent of the region, anithe local cross -field shear

length of the induced currents and velocity fields which is given by equation (26)

if local resonance absorption occurs.

Since the cross-field shear length, Axr, represents the cross-field spatial

extent of the field-aligned current, it is clear that the total field-aligned

current, I 	 TTZI (Ax r) j 
I1• 

It is important to note 
t%'&t 

L j ,
i 
" Ir -- a consequence

of the shear constraint, (v x	 0 Note that Ir cannot possible be zero since it is

driven by perpendiculars polarization E r-fields which are essential for the

establishment of a non-zero Poynting flux into the loop from its underlying

driver. Therefore, even though j11 
>> 

j r seems to indicate that most of the

induced current is force-free it must be kept in mind that j i ; is confined to flow

a filament of thickness Ax  whereas j r flows through a filament of thickness

£l»Axr . Therefore the total currents	
I  - TU

I(Axr ) j 
I1 

and I ii - TU!jjjr,
are equal as is pointed out in equation ( 34). It is very important to note

that steady heating of magnetic loops from an underlying driver is always

associated with Lorentz forces within the loop which induce a P < 1 velocity

field. This effect is a natural consequence of the capacitive term in equation

(28) .

A simple way that the Ax  can be estimated ,which is equivalent to the

derivation in section II.a., is to think of the global structure oscillation

as an exciter of internal field line oscillations within a spatial band,Adth Axr.

In other words, there is a mode coupling between the global structure oscillation

and local field line oscillations at that point where wo-w with w=7tvA (xr WIt being

the local eigenfrequency. Noting a correspondence between the width of a local

frequency resonance, Aw, and the width of the local spatial resonance, Ax r , i.e.,

0w ^ LXr
(39)w	 a
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where the Alfven speed ' s gradient scale length, "a" is defined by equation (25).

Since the width of a frequency resonance depends upon dissipation through an

oscillators "Q" value, i.e.,

t 	̂ Q
(40)

where	 L/C/R athe ratio of the oscillator's natural impedence to the

resistive impedence, so must the width of a spatial resonance depend upon the

magnetic loop system's local 
''Q 

local" value, i.e.,

A'K	 1r ^.
a =

Qlocal

where

1 ( rL^
Qlocal	 R	 1 V C	 (42)

local	
local

Noting that 
Rlocal 

corresponds to the local resistance described by equations

(32) and (33), and that the local natural impedence is proportional to the

local Alfven speed, equation (42) reduces to,

Z
Ax

Qlocal	
[ C 1 (l + Pry H(1-0))	 r Reba	 (43)

	

g	 1	 g

where the magnetic Reynold ' s number, Re g , is defined by equation ( 27) and
ma

°a

where H(1	 is the Heavyside step function.which is used to illustrate that

the viscous resistor does not appear in a 1 regions. Using Equation (43) in

j

w.

(41)
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equation (41) and solving for 
Ax  

I mediately yields equation (26). Therefore,

for a specific driving frequency, t4 (e.g., a loop ' s global resonance frequency,

o) absorption will occur along resonant field lines of width Ax r given by

equation (26), provided the condition for the existence of spatial resonances

is satisfied, i.e., 
vA (xr . xres ) a/ax11

-r w, In this regard, the local

resistances, normalized to the natural impedence of the entire magnetic loop

system, i.e., Rlocal 9 Rlocal C/L , depend upon the magnetic Reynold's number

in two different ways depending upon whether or not local resonance absorption

is occurring, viz.,

local

TT(1 + Pr	 H(1- ^j} v-A -- 
Re-1 locally	

(44)local	 mag	 vA	 mag non-resonant

/3 a -2/3	
1/3	 -1/3 locally

local
_	

)	
(1 + Pr	 H(1 - 0))	 Rek^	 mag	 mag ' resonant

These normalized resistances are also related to the global quality, Qglobal'

of the entire loop system defined as the ratio of the system's natural

impedence, ,,/ L/C, to the total resistance in the circuit, i.e.,

-1

Q	
Rlocal	 (46)

global	 photosphere
chromosphere
.corona

As I have already mentioned, local resonance absorption does n:,t necessarily

occur everywhere along the magnetic loop system. However, this process does

(45)

l
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occur at leant in the coronal portion of the magnetic loop where the local

resonance condition is easily satisfied.

It is becoming quite apparent that given the driving emf, E(t), Which to

explicitly correlated with the non-slectrodynamically driven, 0 ;2^ l photospheric

velocity field (c.f., equation (35)), it is a simple matter to determine the

electrodynamic response of the magnetic loop. This reepon +ie comprises both a

resistive and reactive component, The resistive response is, of course, related

to the electrodynamic heating function, EH, which will be derived in the next

section. The reactive response is both microscopic as well as macroscopic.

The .microscopic response is associated with the field -aligned current, jgl, which

is carried primarily by the electron fluid and which, in the context of the

one-fluid model used in this article, can be thought of as a microscopic ingredient

of the plasma. The macroscopic response is associated with the cross-field

polarization current, j r , which is carried primarily by the ion fluid. Ti,e

polari^ation current, j , results in a Lorentz force, 
xx 

x B /c, which drives a
r	 ro

macroscopic velocity field within the magnetic loop. These reactances will be

derived in section II.(d) and will yield very important information regarding

the possible development of microscopic nonlinearities such as anomalous transport

and macroscopic nonlinearities such as the conversion of sheared flow fields into

compressible flow fields.
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a
	

(a) The GenewUzed Electudynamic Heat&tg Fwic -ionv EH

In general, the driving emf,E(t), in the global electrodynamics equation

(28) is best represented as a stationary random variable. This follows from

the fact that the b ;^1 1 velocity field, va(t), which generates the emf, £(t),

is also a stationary random variable. Kolmogoroff proved in 1940 that every

stationary random process can be represented by a linear combination of harmonic

oscillations.	 If the duration of the process is very long and we

want good accuracy, one must use an increasingly larger cumber of harmonic.

oscillations spaced arbitrarily closely. Formally, this is expressed by the

Fourier -Stieltjes transform. Specifically, the transform of C(t) and its

inverse are given by

0
C(t) =

.. 
eiwt d8w	 (47)

m

With

E = lm	
1

E(t)dt.	 (48)W t--- 
( -L)f
 2 it 	 t	 i t

We can readily appreciate that 
dFW

 are like %ourier coefficients but in this

representation discontinuous jumps in EW are allowed. This formalism therefore

permits analysis of random variables which contain discrete frequencies

superimposed upon a continuous spectrum, a common situation in turbulent

systems such as the solar convection zone. Furthermore, since we are dealing

with stationary random processes, it follows that the ensemble average of £(t) and

dt are both zero, i.e.,
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(E(0)= (dEW)so
	

(49)

where the brackots represent an ensemble average. Since the ensemble average

of products of random variables are in general non -zero, they are physically

significant. Specifically, the spectral "power` 
4W 

is represented by

(dV)W=(d d w )=(E )wdw	
(50)

and is related to (E*(t) E(t))via

J cc	 (51)

where the * refers to the complex conjugate.

Armed with this powerful formalism, it is a simple matter to determine

the generalized electrodynamic heating function, E H which is defined by,

EH	
24	 < I ( t)I( t )Rloop >

iT,Q k1 cor

where TTA2 
'^corA 

is the volume of the coronal loop and where 
Rloop 

is defined

by equation (32) which is evaluated by using either equation (44) or (45).

Taking the Fourier -Stieltjes transform of equation ( 28) yields,

G L^
IW R
	 [1 + i(4vw - w AOQ	 ]	 (53)
global	 0	 o	 global

(52)
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where R
global and 

Qglobal are defined by equations (31) and (46). Noting that

I*(t)I(t) > =r te < dl dIW >
	

(54)

and using this expression along with e quation (52) results in a generalized

electrodynamic heating function which is given by,

2

Ex = 4 _ <E >W R 100 p ( W)dW

TTY ^ 	 R2	
f

l^e	 global

where the "power factor," pf(44 is given by,

p f(W)	 1	 2 2
[1+W

 o/W) Qglobal,

The well known plot of p f(tO versus t 
o
i s illustrated in Figure 2. Clearly,

for Qglobal >> 1 the powerfactor is sharply peaked about W - o. We 	 shall see

that magnetic loops typically have Qglobal >> 1 allowing a simple evaluation of

the integral in equation (55). Specifically, <F. 2  W can be taken outside the

integral provided it is evaluated at the resonance frequency W = W . It is then
0

a simple matter to evaluate the integral of the power function over frequency,

resulting in a resonant electrodynamic heating given by,

(55)

(56)

F2) 
P 

r vo	 R
4	 loop

EH	

Me cor	

Q 
global	

Rglobal

(57)
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where o = 2TT 
o 

has been used. Eliminating Q	 L/C R	 from
global	 global

equation (57) yields a result that is virtually independent of dissipation, i.e.,

E s 	
4>vo TT 	 R loop _	 58 ( 4 N t 	( )

H	
Met 

cor 
	 L/C	 Rglobal

In fact, the power drain on the driver, EHR global 
/R
loop' is apparently totally

independent of dissipation, TUA .iA a dame 6eatune vs he6cy ance phenomena and

doers no.t .imply that iAAevehbifa.i.P,.Wed au unimpoAtaitt. Irreversibiltties determine

the fraction 
A o/vo = 

TT/Qglobal' of the available driving emf, < C
2 
>N,o vo , that

interacts with the electrodynamic system at resonance. Since at resonance the

inductive and capacitive impedances cancel one another, the total power drain on

the driver equals	 <E >vo Ayo
/R 

g
lobal which is explicitly independent of ill

the dissipation since AV OrROf course, the power absorbed by the loop is simply
o global

R loop /Rglobal 
times the power drain on the driver (i.e., c.f., equation (58)).

An important point to note regarding equation (58) is that resonant heating of

magnetic loops is characterized by an explicit correlation between the spectral

details of the 0 1 velocity field and the power absorbed by the loop which,

of course, critically participates in determining the loop's thermodynamic state.

Noting that

photo

< ^2 >^,o -, 16 TT (v photo I^/c) 2 <1/2, pv^2> h

which includes a factor of two stemming from the fact that there are two sources

of emf, one at each footpoint, equation (58) can be rewritten as

(59)

V
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'It
 photo	

VA 

photo	
^R	 photo

E = 167T	 . 	 loop 	 < 112 Pv2 > v	 (60)

H
	

VA	 Acor	 Aglobal	
8 vo 0

in the context of the above discussion, this result can easily be derived from

ideal mhd, noting that all electrodynamic energy entering the loop will be in

reality dissipated -- a point stressed by lonson (1977, 1978) who argues in favor

of an underdamped, high-quality resonant system with Qglobal » 1; and also

stressed by Rosner et al. ( 1978) and Golub et al. ( 1580) who argue in favor of

an overdamped, low quality system with Qglobal < 1. Specifically, the net flux

of energy into a loop is the product of the transmittance, 2vA oto NA , the input

signal speed, 
vPhoto

si	 the energy density of the	 1 hotos heric velocityg	 P	 A	 .	 gY	 Y	 P	 P	 Y field

< 1/2 
the 

:'poov0, the number of polarization states which equals two for

electrodynamic disturbances, the number of normal modes which equals two for

low-frequency electrodynamic disturbances in 0 < 1 plasmas, the number of sources

which equals two for a magnetic loop with two footpoints, and the fractional

dissipation within the loop, R loop 
/
Rglobal* Noting also that the power absorbed

per unit volume is the divergence of the above product of terms with 0 -' 1T/I
cor

one readily recovers the generalized electrodynamic heating function, E H , given

by equation (60). Sincevphoto =..vphoto s N/ 3k T	 /m where T	 is the
A	 sound	 B eff i	 eff

effective black-body temperature of the star, the heating function can also be

written as,

9 r
T
	 R1oon	

photo
ergs

	

EH 6.28 x 10
R	

1/2pv8>V3(61)

 global	 °	 cm -sec
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Equations (60) or ( 61) are of major importance since they clearly reveal

how the electrodynamic heating function scales with the spectral power of the

0 ;b l photospheric velocity field (i.e., goal (i) of the Introduction). The

e,men,ttae 6eatune on a neeonxtt heating meehaw:4wih that magnetic toopa with d 66enent

to ath6, • 'and hence V66enent g.tobat tezonance 6nequenaao 	 v  - 
v, /2

A oro

she heated e t a hate that W t4catty depends upon the amount o6 UZl bpec twt

2 photo
potue,	 This is in complete contrast to at 6ocu^d at v viz.;i;z. , < 1/2 pv >g vo	 p

non-resonant heating mechanism (i.e., Qglobal < 1) which would depend upon the

total power (i.e., the spectral power summed over all frequencies) rather than

the details of the photospheric velocity field 's spectral power function. Thus,

although all electrodynamic energy entering the magnetic loop would be immediately

dissipated by a non -resonant heating mechanism, as has been pointed out by

Rosner et al. (1978) and Golub et al. ( 1980) there would be no correlation between

the amount of energy absorbed by a loop of length 
Acor (

and hence its temperature

and pressure) and the photospheric spectral power at V  vA
/
21cor. Note also

that although the role of the magnetic field, B o , appears to be passive for a

resonant heating mec,;hanism^ in the sense that it part = cipates in determining a

loop's global resonance frequency, 
v 
	 vA/21Coro the photospheric power spectrum,

photo
1/2 pv 2 >^	 could in itself actively depend upon B o . In this regard,

independent investigations of the role of magnetic fields in P ;^: 1 turbulence will

be invaluable in shedding light upon the nature of the photospheric velocity

field's spectral power as it appears in equations (60) and (61).
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(d) The Reactive EteetwdWomie Reaponae and the Rote oS 1AAevzu ibi"e,6
j

Since the majority of the magnetic loop system is found within the corona,

this section will focus upon the reactive response of the eohonat portion of magnetic

loops to electrodynamic driving. Furthermore, I will assume t 1lat a local resonance

absorption process is occurring within the corona since the local resonance

condition is easily satisfied.

As I have already discussed, the power drain on the photospheric driver is

explicitly independent of the dissipatioec 	 a natural feature of resonance

phenomena. This, however, does not mean that irreversibilities completely

disappear from the problem. In fact, the root-mean square amplitude of the

induced current, which is associated with the microscopic (i.e., electronic) and

macroscopic (i.e., {onic) reactance of the plasma contained by the magnetic loop,

does indeed depend upon irreversible processes such as electron-ion collisions.

The microscopic reactance is related to the field-aligned current density, j119

whi^.h is carried by the electrons drifting at velocity v  along the ambient field.

The macroscopic reactance is related to the cross-field current density, j r , which

through Lorentz forces drives an azimuthal flow of coronal plasma with velocity ve,

Noting that the dominant drag on the ions is viscous drag whereas for electrons it is

Joule drag, it follows that the ratio of ion to electron heating is the ratio of the

k	 viscous resistance to the Joule resistance, i.e.,

1/2	 2	 -1

viscous ion heating 	 ._r Rviscous 
Pr	

Mi	
1+ 

Vi

Joule electron heating 	
RJoule	 mag	 me	 2i

where R
viscous 

represents viscous drag on the azimuthal flow of plasma and

where R	 represents "Joule" drag on the field-aligned flow of
-Joule

(62)
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electrons (c.f., section II. (b)). Again, there appears to be no explicit

dependence upon irreversibilities such as collision frequencies. The appearance

of irreversible phenomena is, however, explicit in expressions for the electron

drift speed, vd , the plasma ' s azimuthal flow velocity, v6, and the width ( Axr)k-or

of the coronal field lines which art sub ject to electrodynamic activity.

The width ( Axr )co€an be easily estimated by noting that a magneti4 loop

responds at frequencies other than its global resonance frequency, Wo , given by

equation ( 38). In fact the loop will respond for a continuum of different

frequencies, A o
~ wo/4global' 

where 
Qglobal 

is the global quality of the entire

loop system defined by equation (46). As one might expect, A 
o
r esults in a

continuum of excited spatial resonances whose overall thickness (Axr)cor' is given by

Ax

(Ax	
r

r cor	
Rcor Qglobal

)
	

(63)

where it is understood that 
Rcor 

represents the local quality of the coronal

portion of the magnetic loop given by equation (45) and where in this case, AX 

represents the width of a single spatial resonance within the corona given by

equation (26).

The electron drift speed, vd , is estimated by noting that,

I2 Rglobal	
TT of C jL <E> 

yo 0

	
(64)



with I a I l . Iii TTAL(Axr)J II from equation (34). Since j 1I nevd , it simply

follows from equation (64) that the electron drift speed normalized to the ion

"	 sound speed is given by,

- d	 1.1 x 102	 B 
hot° -	 Teff-	 6s_ kin R-1 Q1/2	 V0

v	
( B
	 )	 T	 )	 a	 cor global ( v

s cor	 o	 s photo

where equations (26) and (59) have been used. In equation ( 65) vs represents

the icon soiAnd speed, B photo /B0 and Teff/T 
represents the ratio of the photospheric

magnetic field to the coronal field and the ratio of the photospheric temperature

to the coronal loop temperature, 
6 
skin /a represents the ratio of the plasma skin

depth (i.e., &skin a c/cWpe) to the Alfven speed'S	 scale length (c.f.,

equation (25)), Rcor is the normalized coronal resistance given by equation (45),

Qglobal is the global quality of the magnetic loop system defined by equation (46)

and (vd phote) represents the velocity of the photospheric driver (i.e.

v	 (v2)	 . if we assume that the coronal resistance dominates both8	 8 vo 0

the chromospheric and photospheric resistance -- a situation which occurs for

solar applications (c.f., section III), then Qglobal "'
Rcor and equation (65)

can be written as

vd

cor N

	 Bphoto	 j Teff	 skin_)	
-1/2 112
	 v8 )

v

s

	
62.1	 B 

o	
l	 1 T
	 A 

1 
	 1+ Prrmag l	 Remag	 v 

s 
I 
Photo 

(66)

^ 

where equation (45) for 
cor 

has been used. For the case of solar magnetic

loops, equation ( 66) can be further simplified by noting that B photo 
/$o

 - 3.38,

Teff /T =" 2x10
-3
 bskin/Al y 10 -8 , and a I k . i.e.,

1

I
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(65)



(68)

r,

solarv.

va
	 4.2 x 10 (1 + P as )

-1/2 Re
g 	--

s cor	 B	 g	 e photo

The azimuthal flow velocity, 
(ve)cor0 

is estimated by noti

1/2 C 
^2 
W d2
o Qglobal 

I 
Rglobal

where ^ s (ve) cor BoAL /c is the coronal loop's capacitive emf. Equation (68)

results in the following expression for the coronal flow velocity, normalized to

the coronal ion sound speed;

1/2
y8	 Bphoto	 Teff	 1j2	

ve

= 2	 Q	 (69)
vs cor	

Bo	 T	 global ^
vs photo

which, for the solar parameters used earlier, reduces to

6
v	

solar ^ 0.25 (1 + Pr	
)-1/6 

Re 
1/6	 v$	 ^	

(70)
vs cor	

mag	 mag	
vsphoto

The size of the solar coronal region within which the resistive and reactive

activity described by equations (61), (66) and (70) occurs is given by equation

(63) for (Ax )r cor

(Ax r 
cor _ 7T1/3 ( 1 + Pr	

1/3 Re -1/3

t 
	 mag)	 mag

where equation (26) for the width of a single resonance, Axr , has been used

along with Qglobal- Rcor'

(71)



Knowledge of the plasma reactwnce derived by a linear formalism is very

useful in determining the relevance of various nonlinear processes. For

example, microscopic nonlinearities associated with the destabli.zation of

the field-aligned electron current could result in an anomalous increase in

the electron collision frequency, 
vanomalous' given 

by equation (14). Such

microscopic nonlinearities can only occur if (vd/vs)cor > 1 and would result

in both anomalous current dissipation and anomalous viscous dissipation.

Since the magnetic Prandtl number, Prmag , as derived from viscous dissipation

of sheared, incompressible flows depends upon the ion collision frequency which

in turn depends upon the 	 electron collision frequency (c.f., equation

(11)), it follows that the anomalous Prandtl number, 
prennomalous0 

is given by
mag

	

2	 -1

anopalousmi 1/2
	

me	 W i
Prmag 0 Prmag	1 +	 m	

2	 (72)
e	 i	 S2i

where v	 =.W has been used (i.e., equation (14)). Thus the ratio of
anomalous	 pi

ion to electron heating described by equation (62) could be significantly

affected by the onset of microscopic plasma turbulence. In addition, the

thermal vs. nonthermal energy partitioning of the "heated" electrons is affected,

with the nonthermal component becoming increasingly enhanced as the ratio

(vd/vs)cor increases beyond unity (c.f., Ionson, 1981). The width of the

spatial resonance, Ax 
r

, would also be increased since the magnetic Reynold's

In fact, Rnumber, Re
mag

, depends upon the electron collision frequency.	 amag
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would decrease with the development of microscopic plasma turbulence also resulting

in a decrease in the macroscopic flow velocity, 
(vS)cor. 

described by equation

(70).	 . I

A second possible nonlinearity that could develop would be driven by the

macroscopic flow field, (v6)cor. Although for a linear analysis this is a sheared flow, a

compressible component could be generated if 
(v6/vs)cor"'l• 

In this case it

would be necessary to consider viscous heating of compressible flows which is

much more efficient than viscous heating of sheared flows (c.f., Hollweg, 1979).

In fact the relevant coefficient of viscosity used in deriving the magnetic

Prandtl number would be p 11 rather than µl. Therefore, if (vS /v
s ) cor ~ 1 then

g	 r	
c 

g

compressible a O(mi/me)1/2 (0i/vithe ma ). In generalmagnetic Prandtl number, Pr 	 =

however, the flow is not completely compressible. Since 
(v9/vs)2 

is a measure

of compressibility, the effects of compressibility can be approximated by using

the following expression for the Prandtl number;

1/2

Pr	
-0 Pr compressible	 mi

mag	 mag	 m
e

N2 V,)2
i 	

(73)
vi	 vscor•

This could also significantly affect the ratio of ion to electron heating as well

as the width of the spatial resonance, Ax
r

It is quite clear that the ion to electron heating rate depends critically

upon the plasma conditions of the system of interest as well as whether or not

microscopic and/or macroscopic nonlinearities develop. Note that if both types

l
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of nonlinearities occur, then the anomalous ion collision frequency,

vi -+ (me /mi
) l/2 

pi , should be used in equation (73). It is important to

note that the question of nonlinearities can only be properly addressed by

first investigating the linear response -- specifically, the reactance

discussed in section II. d. It will become apparent in the next section that applications

to solar coronal loops will require nonlinear modifications.

III. Solar Applications

In order to apply the physics of electrodynamic coupling described in

section II., it is necessary that we have some knowledge of the magnetothermo-

dynamic conditions characteristic of the particular plasma setting of interest.

As a demonztAation of how this physics can be utilized, a specific application

to solar magnetic loop systems will be presented.

(a) Ruonant Hecttod!►1ami.c Heat6ig a6 Sotat Cononat Loopb

Serio et al. (1980) have recently generalized the scaling laws derived

by Rosner et al. (1978) to include solar coronal loops whose height exceeds

their pressure scale height. These scaling laws, which are fairly consistent

with observations are given by

-0.04.E
T a' 1.4 x 103 (PIcor)1/3 exp	 I 

cor	
oK	 (74)

p

E	 105 P1.17 283 exp	
-
0.51cor	 ergs	

(,75)corloss	 f	 3
p	 cm -sec

where T is the maximum temperature of the coronal loop, P the base pressure,

ICp — 6.12 x 103T cm, the pressure scale height and where 
Eloss 

is the average

--
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energy per unit volume that is lost through chrow)spheric and coronal radiation.

In equations (74) and (75) it has been assumed that the energy deposition scale

height is large compared to the loop length since we are dealing with a global

heating mechanism.

Golub et al. (1980) have also derived an empirical relationship between

the base pressure of coronal loops and the average strength of the underlying

photospheric magnetic field, 
Bphoto" 

Assuming that the coronal magnetic field,

Bo , can be estimated by a simple dipole extrapolation of 
Bphoto 

(i.e.,

Bo/Bphoto x. (2Acor
/21,

cor 
+ cor)3 0.296 with a dipole displacement of

	

2A 
cor ),  

their relationship becomes, 	 t

P - 2.1 x 10 .6 ate_0	 2
cm

From equations (74) and (76) it is possible to determine the magnetothermodynamic

state of a coronal loop as a function of its maximum temperature, T, and length,

Icor Specifically,

3
P 3.64 x 1010T 
	 eXp	 f cor	 d n2s	

(77)

	

car	 p	 cm

	

1.875	 0.75A2
Bo = 1.41 x 10-5	

T0.625	
exp	

k 
COr	 (gauss)	 (78)

AP
	 p

and, noting an exponential drop in the coronal density with height, the coronal

Alfven speed is given by,

(76)
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3	 ,x0.875	 0.1%4 eor	 cm
vA 2.68 x 10 0,.— 1̂  exp „ ,..,—
	

(79)

fcor	 p

In order that the temperature, T be eliminated fre equations (77) - (79) it is

necessary to utilize equation ( 75) for 
Eloss' 

noting that

EH .. 
Eloss	

(80)

where EH is the generalized electrodynamic heating function given by equation

(55). A simultaneous solution of equations ( 77) - (80) will then result in a

scaling of loop temperature, T, and base pressure, P, with the loop size,

Aear.9 L1 , and the spectral power of the photospheric velocity field,

2 photo
[ 1/2 v2	 (i.e., goal (U) as stated in the Introduction).

To determine the relevant form of electrodynamic heating (i.e., resonant

or nonresonant) it is first necessary to estimate the global quality, Qglobal'

of the loops. This can be easily done by using the following parameters as

Utima;tM in equations (27), (ors) - (46).

4Ti 
ye-n -12	 photo	 6	 7

r; 	 OW 5.9 x 10	 sec; v	 10 cm/sec; A	 ^i5 x 10 cm;
photo	

w	
A	 photo	 photo

pe

47 
ye-i	 -13	 chrom	 6	 7

r	 =	 N 2 x 10	 sec; v	 3 x 10 cm/sec; 1	 5 x 10 cm; chrom
-chrom	 2	 A	 chrom

pe

cor = 4^ 'r 
5 x 1017 sec; v – 6 x 10 7 cm/sec; I	 — 1010 cm; 0	 —0.14,	 A	 cor	 cor

pe

a ~ x	 0.1 e
i	 cor



36

The results are:

Re photo	 photo., 4 x 107; R	 'w10-9

carom	 9	 chrom	 -9Re carom.4 x 10 ; Pr mag +r 43; R chrom '. 2 x 10

Re cor 2 x 1012 ; Pr cor ,, 4.3; R	 N 2 x 10-4
mag	 mag	 cor

L/C — 0.24 Ohms

-1 N	 3
Q	

N
global R 

cor 5 x 10

where it has bee.. assumed that local resonance absorption occurs within the

corona (i.e., equation (45) for was used tc estimate R cor)' The rationale

for assuming that local resonance absorption occurs within the corona is based

upon the fact that the global resonance frequency of the entire magnetic loop

system depends primarily upon coronal rather than chromospheric and photospheric

conditions (c.f., equation 38)).

It is quite obvious that the global quality of typical solar magnetic

loops is extremely large (i.e., Qglobal ~ 3 x 103 ) -- at least under the

constraints of a linear theory. Therefore, the resonant form of the heating
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function, EH , described by equation (61) should be used in the energy balance

described by equations ( 75) and (80). This results in the following ±.mplicit

equations for the maximum temperature, T, and base pressure, P:

photo 2/7
T - 3.36 x 104 IT eff exp (0.364

 or/'gyp )
 < 1/2pv0 >v 	OK

O 1

4	 photo 6/7
P . 1.3^ x 10	

exp 1.51 1
cor /gyp 

Teff < 1/2 pv9 
vo	

Caynes/cm ^ (82)
cor	 ) [

where Rloop 
N Rglobal has been used.

In order to solve equations (81) and (82) explicitly for and P as a

function of loop length, 
fcor, 

it is necessary that we know the spectral

power of the photospheric velocity field. As a demonstration, the power

spectrum illustrated in Figure 3e has been assumed. This spectrum corresponds

to observations of solar plage regions where densities are of the order of

10 7 gm/cm3 . Illustrated are two major peaks, one at intermediate periods

(300 > T > 100 sec) (Orrall, 1966; Woods and Cram, 1981) and one at longer

periods ( T > 400 sec) (Harvey, 1980). Figure 3d illustrates how the global

resonance period versus loop length scaling, T o = 0(Acor), maps the spectral

paver function of the photospheric velocity field into EH - EH(icor) via

equation (61) (c.f., Figure 3c), 
T - 

t(4cor) via equation (81) (c.f., Figure 3b)

and P = P(A
car ) 

via equation ( 82). Also plotted in Figures 3a and 3b are

observations of active region loops (Landini et al., 1975; Pye et al., 1977)

which absorb power from the "intermediate regime" of the photospheric spectral

(81)
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(83)

(84)

(85)

(86)

power function; large-scale loop structures (Maxson and Vaiana, 1977) which

are electrodynamically coupled to the "local power minimum" region of the

photospheric spectral power function, and very large scale active loops (Pye et al., 1977)

which can absorb power From the "long period" regime of the photospheric spectral

power function.

(b) The React.Lve Rupomse and the Rote ob 14,teven4.ib.i,f.Lt.ea .in SoLcm Cohonat Loop.6

Using the results of Fig. 3, Fig.. 4 illustrates howthe natural impedence,

magnetic Prandtl number, Pr mag
	 mag
, and magnetic Reynold's number, Re 	 of solar

magnetic 'loops scales with the loop length, 
'cor' 

Noting that (v0/vs)ohoto~ 5 x 10-2,

these parameters are used in equations (45), (46), (67), (70) and (71) for

Qglobal' (vd/vs ) cor , (v8 /v9
)eor and (Ax 

r)cor 
which were derived from a linear analysis, i

linear - 
TT
-1/3	 -1/3	 1/3

pglobal	
(1 + Prnag )	 Re 1/3

linear

',d	
- 2.1. x 

10-1.0 
(1 + Pr	

)-1/2 
Re 

1/2

vs

	

	mag	 mag
cor

(7S

linear

I—)c or

	ma	 a1.25 x 10 -2 (1 + Pr )-1/6Re1/6
 g	 g

)	
0.1

linear	 linear

rcor	
cor/Qglobal
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which yield the results illustrated in Figure 5. One noteworthy feature of
i

this illustration is the extremely large Q-values leading one to believe that

i
the microscopic and/or macroscopic reactance stemming from a linear theory could

be quite appreciable. It is important to note from this figure that although

microscopic nonlinearities associated with anomalous current dissipation are

wti.mpoh tan t (i.e., because (v
d/vs )cor <<
	 macroscopic nonlinearities associated

with the conversion of a sheared, incompressible coronal flow into a partially

compressible flow probably are important because (v9
/vs )cor ~ 1. This is

consistent with Hollweg's (1981) independent analysis of the problem. Therefore,

as discussed in section II.e., equation (73) for 
pcompressible 

should be used.
mag

This will result in increased viscous dissipation which lowers the Q-value of

the loops, thereby resulting in both a broadened spatial resonance and a decrease

in the coronal flow velocity, r.,L.j

nonlinear	 -2	 -1/12	 1/4
Q	

6 x 10
global 	

1.	 P 
m	

Re
mag	 ma
g	 (87)

nonlinear
v^	

=,. 2.2 x 10 -3 Pr-1/8 Re 
1/8
	 (88)

—VS)
 

mag	 mag
cor

(4Y)nonlinear — 0.1 '
	 /

Q nonlinear	
(89)

r	
cor 

cor

Figure 6 illustrates the nonlinear reactance and Q -values described by equations

(87) _ (89) for the case of solar magnetic loops. Note that although the quality,

nonlinear, is significantly smaller than that estimated from a purely linear
4global

analysis, it is still larger than unity validating 	 use of the resonant

i
^
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heating function, EH . This must be so since it is the resonant characteristics

of the system which nonlinearly supports the compressibility of the flow.

Therefore, the results depicted in Figures 3 and 4 remain unchanged.

As is evident in Figure 6a, the cross -field size of the coronal dissipation

site has dramatically increased from the order of kilometers (c.f., Figure 5a

and Ionson, 1977, 1978) to the order of Chow andb of kilometers due to the

nonlinear modifications presented here. This is an extremely important result

since there has been a great deal of concern regarding how solar coronal loops

can be heated throughout their entire volume (c,f., Hollweg, 1979).

Another interesting feature of this analysis is the prediction of an 11-16 km/sec

coronal velocity field (c.f., Figure 6b) and the preferential viscous heating of the

ions, i.e.,

viscous ion heating	 y Prcompressible ,r 10 8	(90)
Joule elects".& heating	 mag

Both of these effects could be respon s̀fble for the widespread observations of

coronal line broadening (c.f., Feldman and Behring, 1974; Acton et ala, 1981).

TV. Conclusion

The major emphasis of this article has been the physics of global electrodynamic

coupling between +a ^<l magnetic loop and an underlying 8>1 mechanical energy reservoir.

A rigorous analysis of this problem has revealed that the physics can be represented

by a simple yet equivalent LRC circuit analogue. This analogue points to the

existence of global structure oscillations (i.e., v o =v A/2R'cor) Which resonantly
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r

excite internal field line oscillations at a spatial resonance within the magnetic

loop (i.e., Ax  being the width of the spatial resonance). Although the width of

this spatial resonance as well as the induced currents, j
11 

and j r explicitly depend

upon viscosity and resistivity, the neaonant form of the generalized electrodynamic

heating function, EH , is virtually independent of irreversibilities. This is a

classic feature of high quality resonators that are externally driven by a broad

band source of spectral power, This follows from the fact that at resonance the

heating function depends solely upon the resistance, R, and the emf which can
i	 I.

.m	
C

.meet with the loop, < C >VAVO , i.e., EHcc< E >V
Avo/R. Since the interaction

0	 0
bandwidth, AV0 , also depends upon the resistance, i.e., AV0/v0-1/Q - R C/L, it

i
follows that EHcc< E >Vvo Ij L C which is explicitly independent of R. In addition,

a	 ^ o
since <	 > V Q<^pv >V it becomes clear how the heating function :scales with the

0	 0
spectral power function of the mechanical driver. The Essential feature of a resonant

heating mechanism is that magnetic loops with different lengths and hence different

global resonance frequencies are heated at a rate that critically de pends upon the

amount of %Zl spectral power at the resonance frequency, V0.

As a demonstration, this physics was applied to the solar setting. A linear

analysis resulted in extremely large Q-values for solar coronal loops implying very

narrow spatial resonances of the order of kilometers and a coronal flow velocity

of the order of the sound speed. The electron drift velocity was found to be orders

of magnitude less than the ion sound speed and therefore microscopic plasma instabilities

were not important. However, in light of the large coronal flow velocity it was

necessary to consider nonlinear modifications to the linear analysis stemming from

the development of a compressible component to the coronal flow. The nonlinearly

generated compressible component of the flow allows the use of a viscosity coefficient

which dramatically increases the rate of viscous dissipation. As such, the steady

s

t'
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state quality of solar coronal loops is decreased to Q-15 which results in broad

spatial resonances of the order of thousands of kilometers, a coronal velocity field

of the order of 10-16 km/sec and preferential viscous heating of the ions. The

nonlinear modifications, however, do not change the temperature (pressure) scaling

of solar coronal loops with their length. This follows from the fact that the system	 '

is still highly resonant (i.e., Q>1) allowing one to utilize the resonant form of

the heating function derived from a linear analysis. It is remarkable that such a

simple theory is so consistent with a variety of observational constraints, despite

the neglect of nonlinearities other than those addressed in this article.
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t	 Figure Captions

Figure 1. Prototype magnetic loop system and equivalent LRC circuit.

Figure 2. Power factor, pf (w), versus the frequency normalized to the resoance

frequency, o•

Figure 3. Illustration of how the solar photospheric power spectrum electrodynamically

couples to coronal loops. The data points refer to active region loops

(i.e., X's	 ; Landini et al., 1975; Pye et al., 1977), large-scale structures

(i.e., crosses; Maxson and Vaiana, 1977) and very large scale active loops

(i.e., circles; Pye et al., 1977).

Figure 4. Characteristic properties of solar coronal loops with Zj/^cor-Q.1.

Figure 5. Results of a linear analysis applied to solar coronal loops.

Figure 6. Results of a nonlinear analysis applied to solar coronal Loops.
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