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ABSTRACT

In this, the first of a series of papers, we investigate the variation

along a magnetic field line of the energy and pitch angle distribution of high

energy electrons injected into a cold hydrogen plasma containing either an

open. or closed magnetic field structure. The problem is formulated as a time-

indepondent Fokker-Planck Equation for the electron number distribution as a

function of the electron energy, electron pitch angle and the structure of the

global magnetic field.

We present. a simple analytic solution valid in the small pitch angle regime

and for a slowly varying magnetic field. For the more general situation lie

use a numerical code for solvin g the Nkker-i'lanck Cquation,and we find that

the analytic expression agrees well with the numerical results to values of

the pitch angle much larger than expected. F'or most practical pplications

one may confidently use the analytic expression instead of having to resort to

lengthy numerical computations.

These results may be useful for a variety of astrophysical applications.

Our primary concern is to use these results to study the non-thermal models of

the impulsive phase of solar flares. in subsequent papers we shall use the

results of this paper to calculate the e:.pected x-ray and microwave radiation

from a flaring loop and compare tht$se res:il is with the high resolution data

currently becoming available.

Subject_ Ileradincys;: Atomic Processes, Sun: flares, Sun: X-rays, Sun:Radio Radiation

*Also Dopartment of Applied Physics
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I. INTRODUCTION

Hard x-rays and microwave radiation observed during the impulsive phase of a

solar flare provide us with a means for inferring the characteristics of the

distribution of energetic -electrons within the flaring plasma. Although it is

now widely accepted that the hard x-rays and microwaves are the result of

coulomb bremsstrahlung and gyrosynchrotron mechanisms respectively, there is

stilt no consensus as to the form of the electro,r distribution function within

the flaring loop nor as to the relative importance of the various candidate

processes which may affect or determine the characteristics of this distribution.

Various models describing the operative physical processes have been

proposed, broadly classified as thermal or non-thermal models (see Emslie and

Rust 1979 and references therein). The non-thermal models may be subdivided

into thick or thin target beamed electron models and trapped electron models.

The prime differences between these models have often been taken to lie with

the spectral distribution of accelerated electrons and the characteristics of

the background plasma. (For a discussion of these models the interested reader

is referred to Sturrock 1980, p. 215,and to Brown and Smith 1980).

Principally two types of mechanism have been suggested by which a situation

giving rise to the emission of thermal hard x-ray bremsstrahlung from a flare

may be obtained. What is required is the bulk heating of the loop plasma to

a ten►perature of ;410 8 K as suggested by Chubb, Krepl i n and Friedman

(1966) to explain their early observations of hard x-rays of energies 20 keV

and above.

One type of mechanism suggested by Matzler et al (19713) involves the	 ,A

-rcv,orsible adiabat c compression and heating of the plasma. There are, however,

both observational and theoretical problems with this model (see Elcan 1900).

Another type of mechanism is to accelerate electrons to high energies in the
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reconnection region and to inject these electrons as a high current beam into

the ambient flare plasma of low density. Plnsma -beam instabilities generate

turbulence (ion-cyclotron or ion -acoustic, Kendell and Kennel 1971 0 also

Duijveman, Hoyng and Ionson 1981; Emslie 1981b) which enhances the electrical

resistivity of the plasma and rapidly dissipates the electron beam depositing

the beam energy as heat in the ambient plasma. The development of thermal

models has been previously discussed (e.g., Brown, Melrose and Spicer 1979;

Smith and Lilliequist 1979; Smith and Auer 1980; Emslie 1981a) and we shall not

concern ourselves with such models here.

The purpose of this series of papers is to analyze the general character-

istics of the "non-thermal" models. All previous analyses of these models

(e.g., Ramaty and Lingenfelter 1967; Lin and Hudson 1971; Brown 1972; Takakura 1972;

Petrosian 1973; Kane 1974) have been limited to total flux calculations and have

either ignored the dispersion in phase space of the accelerated electrons or treated

such in an approximate manner. The high spatial resolution capabilities of the

HXIS experiment on the SMM and various on-going observational programs using the

VLA and other high resolution microwave instruments will soon provide us with

detailed hard x-ray images and microwave maps of flares during the impulsive

phase. In order to utilize these observations we need to evaluate the distribu-

tion of high energy electrons along the flare loop and calculate the resultant

x-ray and microwave radiation as a function of pCisition along the loop.

In this paper we present the results of our analysis oil steady state

distribution of energetic electrons within the flare plasma. We use the time

independent Fokker-Planck equation to determine the steady state distribution

in pitch angle, energy and height above the photosphere of the electrons as they

spiral along the magnetic field lines and collide with the particles in th@

ambient plasma. In subsequent papers this distribution will be used to calculate

the characteristics of the resultant x-ray and microwave radiation. In SII
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we present the general features of this problem and the equations to be used

in its solution. Some approximate analytic solutions are discussed in 51I1,

and the results of the numerical analysis are presented in M. In W

we present a summary and our conclusions.

r

y
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II. THE MODEL

The model we are investigating, which encompasses thick -targets thin-target and
trap aspects of non-thermal hard x-ray models, is the following; Nigh energy electrons
with some initial energy spectrum and pitch angle distribution are injected at
some height above the photosphere either into a closed magnetic loop structure

or into an open field structure (see Figure 1). These electrons, Spiraling

along the field lines, undergo collisions with the background particles (atoms,

ions and electrons) and these collisions, in addition to the variations in the

magnetic field structure, diffuse the energetic electrons' distribution function

in phase space. Note that wave-particle interactions, which may be important

under certain circumstances, are not dealt with in this paper. In order to

calculate the radiation from the electrons, we must first evaluate the distribu-

tion in phase space of the electrons.

Two characteristics of the background plasma simplify this calculation

significantly.

a) The time scale for energy loss by collisions is

Tcol l	 E/Ecol l	
Ep/`'pro ncl nA 	 (1)

l

where E = y- 1 is the electron kinetic energy in unitsi of mec20 p2= 1-1/Y2,

I All energies will be expressed in these units unless otherwise specified.

41rr2 = 10-24cm2 , and 
A-1 

is the minimum angle of deflection in the coulourab

integral, typically 1nA = 20. At a density of 10 10 cm - 3 1co11 ` 1 sec far electronsp

with  energy < 10 keV and is correspondingl y longer for higher energy electrons.

Flowever, since the time L/pc for electrons to traverse a typical

magnetic loop (L s 1010cm) is less than a second, the more energetic electrons

penetrate the high density regions and lose energy within less than a second
i
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(cf. Petrosian 1973). It then follows that for the study of the impulsive phase

on time scales longer than this the electrons can be treated as if in steady

state.

b) For electrons with energies 10 to 1000 keV the gyro radius,

r6 - ld (100 gauss/B) cm, is much, shortrr than the characteristic length scales

of the plasma, namely, the density or magnetic field scale heights, which are

of the order of L v 109cm. Con- ,̂ quently,	 electrons on different field lines

are decoupled and the diffusion of the electrons perpendicular to the magnetic

field can be ignored. Thus, the electron distribution varies only along the

magnetic field lines , which we take to be static.

With these considerations the problem is reduced to a three dimensional

time independent diffusion problem: One spatial dimension s along the field line

and two momenta ( parallel and perpendicular to the field lines respectively).

it is more convenient to use as independent variaules the cosine of the electron
A A A	 A

pitch angle, It = p•b (p and B are unit vectors in the direction of the el(.,ctron

momentum and the downward magnetic field), the electron kinetic energy E and a

dimensionless column depth T defined by

dT = ds/ao,
	

01 - 4nr 2 n 1nA = 2 x 10' 13c111-1 (1010c10-3/n)(1nA/20)	 (2)

where n	 is the number density of hydrogen and X0 is a mean free path scale

(the mean free path for electrons of energy E is a0Ea2 ).	 Note that for	 lnA = 20,

T = 1 corresponds to a column depth of 5 x 1022c111_ 2	which, in the quiet sun,

is approximately where the temperature minimum is to be found.

We use the Fokker-Planck method to solve for the diffusion in pitch angle and

energy along a field line of given geometry and field strength. Let f(E,u,T)dEdudT

be the number	 density of electrons with cosine of pitch angle between	 It 	 and

►i	 +	 d 1,, and with kinetic energy between	 E and	 E + dE, lying between
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column depths z and z + dT. The Fokker-Planck equation for the problem becomes

(see e.g., Rosenblutho McDonald and Judd 1957)

oaf	 ( , _02) dlna of	 ^1+	 a ( f) + _C_2_ a L(1-u2) af]
OT	 N1 ao 0 aE a 

04Y2 
ao	 aN	 (3)

where we have ignored terms in the Fokker-Planck expansion which do not contain

the large 1nA coefficient. The first term on the right hand side describes

the mirroring of the particles owing to the convergence of the magnetic field.

The last two terms account for the energy loss and pitch angle dispersion of the

beam through collisions with the ambient particles. The coefficients C 1 preceding

the energy dissipation term and C 2 preceding the pitch angle diffusion term

depend upon the composition of the plasma. Fora partially ionized plasma where

x = ne/n is the fraction of the hydrogen that is ionized

where a is the fine structure constant 	 (eqa2 is the ionization potential

for hydrogen in units of m ec2). Fora fully ionized plasma x = 1 and the

coefficients C 1 and C2 reduce to

C1 1, C2 = 3+Y
	

(5)

so that, for non-relativistic electrons, C 2 - C1.

Other	 than	 hydrogen the solar atmosphere contains only	 helium in signi::--

ficant	 quantities.	 For a helium fraction, by number,` of 10%, the helium's
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contribution to each of the coefficients C 1 and C2 is limited to
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Cie S C^/5. de s CH/3: We shall ignore the slight differences between the

relative contributions of helium to C 1 and C2 and shall absorb this 20 to 30

percent contribution from helium into the uncertainties in the values of 1nA

and the density n. Therefore, we consider a pure hydrogen atmosphere.

We have neglected the energy losses of the electrons due to the electric

field needed to drive the reverse current, an assumption which holds well for

high density and temperature plasmas and for small fluxes of accelerated elec-

trons (cf. Knight and Sturrock 1977; Emslie 1980). The contribution of the

energy loss due to the reverse current electric field can also be included in

the above equation. However, this will complicate the solution considerably

since the strength of the electric field at each level depends on the total flux

of electrons at that depth F(T) ffp Ocf(E,p,T)dEdp ,so that instead of a

single differential equation we would have to consider a coupled integrb-"

differential equation. This is beyond the scope of the present paper and

will be considered in future work.

In the next two sections we discuss some approximate analytic and some

accurate numerical solutions of equation (3).
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III. SOME ANALYTIC SOLUTIONS

In order to solve equation (3) rte need to specify the characteristics of

the plasma which determine the parameters C l , C2 and dlnB/dT, and the boundary

conditions. We assume that particles are injected at the top of the loop

(T = 0), such that the spectrum at T a 0 0 f0(E,u) is specified for 0 < N 5 It

the other boundary condition being that f(E,p vT -) = 0. (The coefficients

Cl and C2 are approximately unity and have only a slight energy dependence.)

The parameter dlnB /dT describes the variation of the magnetic field and deter-

mines its influence on the electron beam according to the first term on the right

hand side of equation (3). If the magnetic field and the density variation can

be described by scale heights HQ and Hn , viz, n = no exp(s/Hn ); B = Bo exp(s/HB),
then, in terms of our column depth T we find dlnB/dT = Ao/HB = H n/THB. Clearly

when Hn/HB « 1 (i.e., when the B field is nearly uniform while the density,.

varies rapidly) the magnetic field has an insignificant effect and the electron

distribution is modified by collisions alone. The resulting model is a'thick

target model with the degree of beaming determined by the injected spectrum. In the

other extreme case, when Hn/HB >> 1 (i.e., low and nearly uniform plasma density
R

and rapid field variation) the particles are reflected back and forth between

mirror points of a closed loop configuration leading to a trap model with slow

rate of precipitation, unless the density, n o , is so high that the mirror points

occur at T z 1. for an open field line configuration, particles are reflected

no more than once and escape along the diverging field lines, giving rise to a

situation as described by a thin target model (Datlowe and Lin 1973). However,

it is usually found that the situation is more complicated owing to the variation

of dlna/d •r along the field lines.

In general, equation (3) cannot be solved analytically, and in the next

section we shall describe a procedure for its numerical solution. Here we shall

consider some special cases which allow us to derive exact analytic results.

v
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The purpose of this is to check the accuracy of the numerical results and to

derive some scaling laws which may simplify the presentation of those results.

Case 1: If the plasma density is low and the magnetic field scale

height HB is much smaller than the density stale height fin (so that

dlnB/d T 6 ap/H B » 1 throughout) t then the last two terms on the right-hand

side of equation (3) are negligible ( C1 ¢YO), and we have a situation corresponding
to a collisionless trap model. It is then easy to Show that the distribution function

satisfies the differential equation
T

T	 dl nB dir In ON
0

oof/a' = =of/3ln(1-U2), (6)

giving a distribution function which is independent of energy and has the form

f(T.u) %M-0-P 2 ) e'T lk) ,	 (7)

where fo(p) is the injected pitch angle distribution r;at z = o. This is simply

a description of the adiabatic invariance of B /0-u2). Note that for a6 isotropic

injected pitch angle distribution f. (p)is independent of u and the pitch angle

distribution remains isotropic throughout the atmosphere. for a gaussian injected

distribution the distribution remains gaussian but with a width that increases with T.

Case 2'; If the magnetic field is approximately uniform such that

NB » H  and ao , then the first term on the right-hand side of equation (3)

is negligible. However, even when d1nB /dT = 0, analytic solutions cannot

be obtained except in the small pitch angle [(1 - 1,) « 1] regime. Before presenting

the solution for the general small pitch case, we first consider the following two

cases, which, though unphysical, expose the nature of the results for the physical

case and which may be used for testing the numerical code (see Appendix).

a) Energy loss term with no pitch angle scattering (C 1 = i, C2 = 0,

dlna/dT = 0).	 In this case it is useful to define

f/R, do - 02dE, n = E2/(E+l) (8)
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so that for a given (and constant) pitch angle v equation (3) and its solutions are

	

4(u.n ► z) — #
0 (1. ++ n) .	 (9)

where Oo(n) is related to the injected spectrum %(C) through definitions (0).

For non-relativistic energies n a E 2 a 04/4. and

	

'f{F.NT). = fo(C +^) • 0 +'r/ E2)"	 (10)

(b) Pitch angle diffusion with no energy degradation (C 1 =0, C2= 3q

dlna/dT = 0). In this case analytic solutions are possible only for small pitch

angles. If we define

	a2/2 F 1 - it << 1 and t - C2rt/O' 	,y2 ,	 (1l )

where a is approximately equal to the pitch angle, then the differential

equation (3) reduces to

of _ 1 a (a af)
aT a as	 as

which has the solution
00

	

f(T,a) -1 e_W?' A G)) Jo (wa)dw ,	 (12)
i
O

where Jo is the Ressel function of order zero and A(w) is determined by the boun-

dary conditions. For example, if the injected pitch angle distribution is gatmsian,

fo (a) Y (a)e_a2/ao With ao << 1, then multiplication of both sidesof equation (12)
O

by Jo (w a) and integration over all a for T = 0 gives
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A(ti )/w	 fo(a)JQ(w CA)ada *0 e-I(^
► aa/2)2l

fo

substituting this into equation (12) we obtain

f(E,O,T)^+ ^^ exp -	
02.

ao+4T	 a2

c) The general small pitch angle case with a uniform magnetic field

(C1 = 1, C2Q 34 , d1nB a 0). In this case we have again oL2/2 (1-u)« 1 so that

with the help of definition (8) equation (3) is reduced to

as^ (PC - 3-, a=I a ^ A	 ( )

	

3+y DT an	 as aaa	
15

which has the general solution (separable in Y,n and a).

=f 
e-aye- An 

B(x)da C(n)^w^	 Jo (wa)A(w ) dw	 (16)

0	 0

where

(n) = exp	 nC2 do	 2+En	 (17)

	

If 2	 ^n)l

and B W arid A ((d} are determined from the boundary conditions. For an

injected ' gaussian pitch angle distribution f(E, ►► ,r = 0) = fo(E)(2/a2)e-a2/ao

where a2 << 1,	 from equation (8) we can obtain an expression for

¢o (n) - fo[E(n)1 /0(n). Then, following procedures similar to those in deriving
..-^

equations (9) and (14), equation (16) generates

	

f (E, ji,T) = fo(n+T) B sn+T)	 2 2	 exp {-	 az --^ ,
U2 + ln^	 02 + ln^0	 0

z.	 .

(13)

(14)

(18)
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In the non-relativistic limit t(n) 	 n a E	 B/,3 and equation (18) becomes	 1

C	 z+	 {a2/(a2+f(E.u.T) a fo(C E)C^ [2/(Q2 lnC))e	 0

'

	

	 (19)

C a (1 + T/E2)•

It is normally more convenient to use the flux of particles, F(E,N,T),

instead of their number density, f(E,u,T), where the flux and number density are

related by F(E,u,T) = csf(E,N,.T). The relationship between F(E,p,T) and the

injected flux at T = 0, Fo(F,ti,) is similar to the relationship between f(ENT)

and fo(E,p) as given in equations (18) and (19) these relationships being

obtained by replacing f and f  by F and F o and by changing g(n)/s(n+T)

to [P(n)/R(n+T)]2 in equation (18) and r' k to 
C-k 

in equation (19).

As is evident, the shapes of the pitch angle distributions at various T are

identical provided the scaling parameter c is constant.' Similarly, for an injected

power law flux spectrum FO(E) « E-a , the"ratio of the energy spectra at . various

depths T to the injected spectrum have the same shape for constant values of ^.

In the next section we shall explore the extent to which this scaling law

holds for large pitch angles and for non-uniform magnetic field configurations.
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IV. NUMERICAL RESULTS

We have solved equation (3) numerically using a modified version

of the program developed by Walt et al (1968) for the related problem of

auroral electrons (see also Walt 1967). For a prescribed injection spectrum

f(E,t!) at T " 0, ti►e program solves for f(E 0 11,t) for V > 0, utilizing

either a reflecting or nonreflecting boundary condition at ti►e top

of the atmosphere (TN 0), thereby calculating the electron distribution

function for a closed or open field line configuration respectively

(see below).	 The detai ls of the procedure are described in the

appendix along 4th the results of our testing the numerical code against the

analytic results described in the previous section. We now present some

numerical results for the electron distribution function for the nine models
P.

described in fable 1. We use model l as our standard model and as a bay.	 f, 0-

coillparison so that we may Observe tho effects of the parameters describing the

Ambient plasma, the magnetic field configuration And the injected spectrum on

the rl ecttron distribution function.

Model 1 has An injected electron spectrum

.7r(L,,I>o,'ri=o) f: r;Q (^,^I) - ^1^^^^	 exp-PCt	 10	 (^Q^
6

with a2 = 0.01 and a - 5 (a typical value from solar bard x-ray

bursts), a fully ionized hydrogen atmosphere with a 	 uniform

ver'ti call imigneti c field  and an O) ell , i. e. 11oo -refl ecti ng , boundary condition at

tho top: This m1cAns that electrons which retui ln to -r - n and therefore have

pitch a ►ogle cos ines It < 0 are allowed to exit frori the top of the atmosphev*

and arty lost from the calculation. In 1'i quro 2 we show the evolution of the

electron flux with depth 1s a function of pitch angle for this model. The

evolution of the flux distribution is similar for different energies provided

r
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the depth Y is suitably scaled. For all except the highest energies, that is,

at non-relativistic energies, the scaling expressed by the numerical results

is the scaling z - E2 ,	 (see equation (19) with C a constant].

Consequently, the curves in Figure 2 are labelled according to their value

of the parameter z/E 2. This scaling of r E2 is to be expected as the electron

mean free path is proportional to the square of the electron energy for non-

relativistic energies. Near to the top of the atmosphere most of the electrons

of a particular energy E were originally electrons injected at T .. 0 with an

energy slightly in excess of E and which have lost only a small fraction of

their energy and which have been deflected only slightly away from their original

pitch angle. As can be seen,the forward beans of electrons is still clearly

defined and only slightly broader than the beam at injection. These curves

also show that, even at small T/C 2 , there is an,, albeit negligible, component

to the flux of electrons with p < 0. This effect is due to those few electrons

which, despite the extremely low probability of being scattered through 'very

lame angles of the order of ir, have been scattered within the atmosphere suffi-

ciently that they have returned towards the top of the atmosphere. In the

process they have also lost a substantial amount of energy, indicating that

these electrons originally	 possessed energies considerably higher than

E and were, therefore,	 injected in fewer number [see equation (20)l.

At successively deeper levels in the atmosphere, i.e., at larger values of

r/E2 , the flux distribution as a functiod ► of pitch angle becomes increasingly

more uniform and the forward beam broadens, reflecting the fact that at great

depths the number of electrons with kinetic energy	 E to be found at any —

pitch angle comprises a very broad range of electrons injected at the top of the

atmosphere with many different energies and with many different pitch angles.
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At greater depths still, the total number of electrons at any energy falls (as

is to be expected),but the beam is still well defined,

The scaling	 described by equation (19), which was obtained from the

small pitch angle approximation, appears to be valid through to much larger

Fitch angles. It breaks down at higher energies due to increasing relativistic

effects W 1 +T/£2) and the fact th ,,t ej,jr injected spectrum has an arbitra-

rily imposed cutoff at an electron 	 energy of 1 MeV We also find that,,

in agreement with equations ( 18) and ( 19), the curves in Figure 2 may be approxi-

mated by gaussians to a good ,degree of accuracy even out to large pitch angles

where the flux ratios have dropped to insignificant levels ( a fraction of one

percent of the forward, [p = 1], fluxes). The widths of these gaussians also

agree with those expected from equation (19) as shown by the inset in Figure 2

where the analytic gaussians (solid tines) are compared to the numerical

In Figure 3 we show the energy spectrum at various depths for model 1,

with the ordinate being the integrated electron flux in the forward direction.

At the top of the atmosphere the energy spectrum is the injected spectrum, C a.

However, as the beam moves through the atmosphere, the lower energy electrons

lose energy more rapidly than the higher energy electrons and soon their.numbers

become depleted, giving rise to `he humped spectrum that forms throughout t119

atmosphere.

Integration of equation (la) over pitch angle, d i, = ada,	 yields,

using the electron flux F(T,E) rather than the electron density f(T,C),

?.
F(,r,E)	 (Q	 Fo(nft) -• Fo( r,_F)/rh (21).^,a.

which implies that, in the non-relativistic limit and for a pourer law injected elec-

tron spectrum Fo(F) K F-a , the maxima of the above curves occur at 
Emax = T

/6. As

F,
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shown by the inset in Figure 3 this relationship holds well for numerical results.

Furthermore, at non -relativistic energies and for a power law injected spec-

trum, the flux in the forward direction normalized to that at the top,

-(6+1 )

zF(T,E ,u= 1 ) /Fo(E,p-l) = r	 2 / (l+ap 1nc)	 (22)

depends only on the parameter C. Figure 4 compares the values of this ratio with

the values obtained from the numerical calculations. For 30 keV and 70 keV eiec-

trons the agreement is excellent for the range of values of the parameter C perti-

nent to solar flares. For 750 keV electrons we also compare the numerical

results with the fully rel ativistic form of equA ion (la) and present this in

the upper of the two curves for 750 keV. it is evident that the relativistic

fonn indeed becomes necessary at high energies.	 Note that the

analytic expression begins to deviate significantly ( >.?o%) only at depths

,r/E2
 > 0.3 where the electron flux is less than one percent of the injected

flux (see Figure 2). Figures similar to Figures 3 and 4 may be drawn for the

flux at any particular forward pitch angle but, given the good agreement between

the results and the analysis as displayed in Figure 2, those figures obtained

would clearly be very similar to Figures 3 and 4 which have been drawl) using

the integrated forward flux.

Finally, if we integrate the above spectra over all depths, we obtain the

spatially-integrated energy spectrum (which determines the radiation spectrum

of the whole, unresolved loop).

CO
F(F) ^^ r(T,F)dr :;	 (4(-q I- F0 (n+T)d .^ _ R? (i,)	 F F' dE'	 2

/	
.^ p( )	 )

n	 o	 E3(n'^'^) E
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which, for Fo(E), E-a

F(E) s E-3+1 02 a E-d+2 ( - 2E + ----)
	

(24)

Note that this result is not restricted to the small pitch angle regime.

This can be demonstrated by integrating equation (3) first over p and then

over T which gives

+1	 +1

	

dECF E 	 Fo(E) ^	 u(T = uF(E,u,T)d p	 F ( E , N ,T)du	 (25)
	B2	 -1	 -1

Integration of this gives equation (23) which was derived from the special case

of tiro =1.

In Figure 5 we plot F(E) versus E for model 1 showing an agreement between

our results and the above relationship which is especially good at lore energies.

This agreement breaks down at higher° energies for two reasons: (i) F(E) -> E-d+l

at extreme relativistic energies, and (2) the presence of an upper cutoff

in the energy of the injected beam.

Also shown in Figure 5 is the same function for models 5 and 9, both of

which display a similarly good agreement with the analysis. Model 5 has a value

of d = 3, and modes 9 is, parametrically, most distant from model 1 and from the

approximations used in the analysis of model 1.

In ^summary, the excellent agreement between our numerical results and the

above analysis of model 1, in addition to providing us with ample demonstration

of the accuracy of the numerical results, i ndicates that the analytic respilts^..-

hold to a high degree of accuracy well outside the regimes of validity suggested
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by the approximations used (that is to large pitch angles) and that the

analysis provides a good description of the evolution of the electron beam

throughout the atmosphere.

Results For Other Models

We now consider the results from the other models described in Table 1

and compare them with those from model 1.

Model 2 has a strongly converging magnetic field throughout the atmosphere

but retains the open boundary condition at T ^ 0. The effect of the converging

magnetic field is to enhance the broadening of the pitch angle distribution with

depth and to increase significantly the number of electrons which are moved to

negative pitch angle cosines and return towards the top of the atmosphere.

However, despite the presence of the magnetic field which converges by a factor

of roughly thirty from T = 0 to T = 1, the narrowness of the injected pitch

angle spectrum is such that the downward traveling electron beam contains

about two orders of magroitude more electrons than are removed from the L-2am

by the magnetic mirroring so that the beam stays well defined throughout the

atmosphere.

Model 3 is as model 2 but investigates the effects of reflecting those

electrons with 11 c 0	 at T	 = 0	 back into the loop ►with u > 0.	 This

mimics the effects of having the electrons in a closed and synunetric loop

configuration (see Fig. 1). However, since the number of electrons exiting

with It < 0 is relatively small, the effects of this change on the boundary

condition at T = 0 is negligible.

Model 4 is the same as model 1 except that it has an atmosphere

►which is fully ionized down to a column depth of b x 10 19c111 -2 and	 ,^--

then becomes fully neutral as rapidly as can be handled by the

nutiterical code and assumes chromospheric densities throughout the

^•••wining depths. 1'htos, model	 introduces a transition region and has changing
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values of the parameters C 1 and C2 {see equation (4)). The effects,

however, on the overall electron distribution, of having a partially ionized

atmosphere, are small with the beam being only slightly affected below the

transition region (cf. Emslie,1978).

Figure 3 shows the energy spectrum as a function of depth for model 1.

A similar plot for models 2 through 4 shows that the energy spectrum at each

depth is almost completely insensitive to the changes in the parameters introduced

with these models and the humped spectrum is maintained with the same scaling

2 a T. This is as expected because models 2 through 4 remain primarily
Emax

collisional in their treatment of the beam despite the introduction of the

converging magnetic field, etc., and therefore exhibit the same scaling as

model 1.

In general, we therefore conclude that for a narrow 'injected pitch angle

distribution the change in the plasma parameteirs'and the introduction of a

reasonable magnetic field configuration have a negligible effect on the rvolu-

Lion of the electron beam within the upper part of the target and tend to

make the electron flux more uniform in the lower parrs where the beam flux is

less than 0.1% of the injected beam flux.

Model 5 is identical to model 1 but has a harder electron

energy spectrum with 6 = 3 (corresponding to the hardest observed x-ray

spectra) in place of a = 5. Having more high energy electrons in the beam

at the top of the atmosphere simply leads to ha y ing more electrons with medium

energy at large pitch angles lower in the atmosphere and a larger number of

electrons reflected back upwards with p < 0. Otherwise this model, like

model 1, agrees well with the analytic expression given by equation (19) indj„cated,

for example, in Figure 5.

Model 6 has a much broader injected gaussian pitch y angle distribution;.

ao = 0.125. In Figure 6 we show the evolution of the electron flux distribution

for this model where, comparing Figure 6 with figure 2, we can see that the
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effect of having a broader injected beam is solely to give rise to a broader beam

traveling downwards through the upper atmosphere. 	 However, the shape of the

flux distribution at greater depths becomes identical to the shape of the

distribution function at the same depths in Figure 2. 	 Remembering that the

curves in Figures 2 and 6 give the beam evolution with r 	 scaling as	 E2,

we can see that for each energy there is a depth below which the shape of the

distribution function in pitch angle is independent of the injected gaussian

width.	 This is to be expected from equation (18) owing to the fact that	 lnC

increases slowly with T until it eventually overwhelms 	 ao	even for the broad

I
injected beam.	 Thus, below a certain depth the electron flux distribution

relaxes to a smooth form and then slowly isotropizes.	 Only at exceptionally

large depths where the electron flux is negligible does the distribution become

sufficiently isotropic that the forward component is not easily discernable.

" The inset in Figure 6 is similar to that in Figure 2 apd shows the extent to

which the small pitch angle approximation agrees with the numerical results
9

for this model.	 Considering that the injected spectrum is broad, this agreement

is better than might have been expected, the agreement holding well out to

large pitch angles.

Model 7 is the same as model 1 with the exception of now having an injected

pitch angle spectrum which is uniform for positive	 U .	 The evolution of the

pitch angle spectrum with depth is shown in Figure 7 and again we see that the

shape of the spectrum at the two greatest depths is nearly identical to those

in Figures 2 and 6 despite the extreme form of the injected spectrum.

' In models 8 and 9 the magnetic field is non-uniform (as in models 2 and 3)

but with an injected spectrum which is uniform as in model 7.	 In addition, model 9

has a reflecting boundary at the top.	 little needs to be remarked upon for models

8 and 9 other than that, as expected, the effects of the vertical converging mag-

netic field and the reflecting boundary condition are to give almost a symmetric
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pitch angle distribution with f(u) u f(-u) at each depth, the discrepancy being

the leakage of electrons to lower energies by collisions. For comparison with

Figure 3 the energy spectrum evolution with depth of model 9 is shown in

Figure B. It can be seen that,even for model 9 which is parametrically most

distinct from model 1, the energy spectrum retains the same form with the peak

in the spectrum moving to higher energies with increasing depth in accordance
I r
	

with Y - Finax2 as shown in the inset.
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V. SUMMARY AND CONCLUSIONS

1. If the injected spectrum is strongly concentrated in the direction

of the magnetic field lines (small pitch angles), plausible variations in the

parameters describing the plasma and the field configuration have significant

effects only at large depths and large pitch angles where the beam density has

fallen by several orders of magnitude. Otherwise, the analytic results of

equations (18) and (19) give an acceptably accurate description of the evolu-

tion of the beam.

2. Even when the injected electrons are weakly beamed or not beamed at

all (uniform pitch angle distribution), the scaling derived from the small

pitch angle regime seems to be valid except at small optical depths (see

Figures 6 and 7).

3. At large depths the pitch angle distribution"is independent of the

injected distribution, evolving to a smooth and broad distribution.

q . The energy spectrum evolves independently of the injected pitch angle '

distribution and agrees quite well with the analytic approximation given by

equation (21).

5. Most significantly we find that for most practical applications

equations (18) to (24) may be used instead of having to resort to detailed

numerical calculations.

In future papers in this series we intend to utilize the results discussed

and described here to calculate the radiation observed from a flaring loop.

Using the complete electron flux distributior^,vie will be able to calculate the

polarization and directivity of hard x-rays from the loop, the hard x-ray flux

as a function of position along the loop and the details of the microwave flux

including its dependence on the magnetic field structure defining the loop.

.
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With results from current observational programs at the VCA (Marsh et al 1980)

and the high resolution data from NXIS (Hoyng et al 1981), to mention but two

of the many sources of high quality observational data, we hope to be able to

use our results as a powerful diagnostic tool for the further understanding of

F the impulsive phase of flares.

The model as it stands has several limitations which will receive atte n-

tion in the future pursuit of this work. The effects of reverse currents may,

under certain physical conditions of the ambient plasma (see Emslie 1980, 1981b),

be of significance in determining the evolution of the flux of accelerated

el ectrons in a flare limb and are intended to be included in the model to give

it greater applicability for a broader range of flare parameters. Similarly,

the effects of wave particle interactions on the energy spectrum at energies

below that of maximum flux will also be investigated. t,
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APPENDIX

A.	 Description of the Numerical Code

We consider a(horizontally uniform)l-dimensional plasma atmosphere with a

density structure corresponding approximately to the low corona and chromosphere

and inject Electrons at the top of the atmosphere, designated as T 4 0.

The electrons are injected according to a prescribed pitch angle distribu-

tion with the electron's pitch angle being measured as the angle between the

electron's instantaneous velocity vector and the magnetic field line which is

in the downward direction along a flare loop (see figure l). Thus, downward

moving electrons have positive pitch angle cosines; 0 < u -; 1 	 These electrons

then travel through the plasma atmosphere undergoing collisions with the cold

plasma particles and being adiabatically scattered by the converging Q field.

They thus change their pitch angle and energy and are allowed to return to the

top of the atmosphere, then having negative pitch angle cosines. As the electrons

can only diffuse from high to low energy and no process exists within our formu-

lation for accelerating electrons to higher enemies, the most convenient stepping

parameter for the numerical analysis is the energy of the beam electron. The

electron flux distribution is calculated over a three dimins oval phase space

(E,t,,T) which is stratified into energy layers with each layer consisting of a

grid in (u,T) space and being of constant value in energy space (see figure A-1).

The code generates the value of the electron flux at each grid point in a (u,T)

plane of energy E i from the given input fluxes at T = 0 and the flux values at

the overlying ( u,T) plane of energy Ei-1 > Ei'

The input flux is specified at the top of the loop, T = 0, as a spectrum in

energy and forward pitch angle, i . e., for the 0 < p s 1 and E < 1 MeV half—

plane. The flux values on the (u,T) grid cor,4,^ponding to the larg es t electron

energy are just the input fluxes specified at the top of the loop for that

energy 0 MeV) .
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Once the flux values on one energy plane are calculated satisfactorily

the code steps down one energy step to the next energy plane. The fluxes from the

preceding plane Just calculated are scaled for the new energy and, along with the

specified input flux at that energy, a zeroth order (p,T) grid of fluxes is gener-

ated. The code then iterates over this energy plane until a satisfactory conver-

gence of the flux values to those values satisfying equation (3) is found. A

final nth order(t,T)grid of electron fluxes is obtained which is stored as part

of the results and is used to generate the zeroth order(p,T) gr,J for the next

energy level clown. Iteration on each(p,T)grid is obtained by sweeping down from

the top of the atmosphere ( Y=0) to the bottom and then returning to T = 0.

The process is repeated until the results after each pair of sweeps have converged

to within a prescribed error.

Boundary conditions can be imposed at the top to .allow for electrons

exiting with p < 0 to either be lost from the region of the calculations

(simulating an open field	 configuration) or to be reflected back with

positive V 's to simulat-e a closed field configuration symmetric at T = 0

(see Figure 1). Electrons with u > 0 at the bottom of the atmosphere are

lost as are electrons which have their energy degraded to less than the minimum

energy, which we have set at 10 keV.

B. Tests of the Numerical Results

In order to assess the accuracy of the code, we compare the numerical

results with those of the analytic results described in §II1. Note that

some of the cases considered here have no physical meaning and serve solely as

examples for which the analysis is tractable.

Case 1: If we set the coefficients C l and C2 in equation (3) equal to

zero and inject electrons with a pitch angle distribution f (p) = kln(1- u7),
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then, according to equation (/) we expect the pitch angle distribution to vary

with depth in the form f(z,u) = ki 	 - ln(1-v?)) , that is, curves of f(T,p)

versus -ln(1- u 2 ) at constant z, or depth, will be straight lines which are

parallel for different depths and vertically positioned according to the value

of kT at each depth. In Figure A-2 we have plotted our numerical evaluation

Of f(T,p) against corresponding values of - , In(1-u2 ) for s .weral depths. As

the electron's pitch angle is being affected adiabatically by the magnetic field,

there is no energy dependence or energy loss in the process by which the electron

beam evolves and, therefore, Figure A-2 is identical for all electron energies.

As can be seen from Figure A-2, the numerically evaluated f(T,p) behaves

exactly as expected throughout the atmosphere except at large depths where the

difficulty of prescribing the injectec'; flux in finite 	 sized pitch angle bins

for values of p close to unity [where -ln(1-U 2 ) becomes very large) becomes

evident.

Case 2a: If we now set C 1 	1 and C2 dlnB/dT = 0, we mimic a situa-

tion where the electrons lose energy by collisions within the atmosphere but do

not change their pitch angle. If we injact a spectrum 0 o (E) = fo (E)/g(E) = n-a=

[E2/(E + 1)1 -6 , i.e., a power law in n frecali that	 n = E2(E + 1)), then,

according to equation (10),we expect the electron distribution to be described

at each depth by ^(E,u,T) = (T/u + n) -a • In Figure A-3 we have plotted

{^(E,u,T)-1/a - ^(E,p, 0) -1/6 far three values of p, versus depth T and note

that this should be independent of E and proportional to T/ tip. As is evident

the numerical results agree perfectly with the expected analytic relation.

Case 2b: Finally, to check the accuracy of the treatment of diffusion

in pitch angle we set Cl = d1nB/dT = 0, C2 = (3 +Y )/a and inject into the

atmosphere a beam with gaussian pitch angle distribution. Equation (14)

describes the evolution of such a gaussian beam but is an approximation valid

4
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at small pitch angles. Plotted against o z , gaussian distributions at each

depth, as given by equations (11) and (14), would be straight lines of slope

-1 /( gyr0 + 41), and these are shown as solid lines in Figure A-4 (for ao 0.01).

The points and broken lines are the results from our numerical analysis at

several depths T. As can be seen, for small pitch angles the numerical
r

results agree with the expected result to a high accuracy. Furthermore, as

discussed in SIV, we note that the small pitch angle approximation is

valid to larger angles than expected,especially at higher depths. At every

'	 depth the approximate analytic expression deviates from the numerical result

only when the fluxes have dropped to less than one .percent of the fluxes in the

forward direction.
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FIGURE CAPTIONS

Figure 1„ The two magnetic field structures that we consider. One is an

open field structure with electrons injected (at T = 0) at some height

above the photosphere with reflected electrons being allowed to leave

freely once they reach T = 0 with u < 0.	 The other structure is the

closed symmetric field structure where the electrons are injected at the top

Of the loop (T = 0) down towards the photosphere symmetrically in both

directions. The electrons which return to -% = 0 with u r 0 	 are then

reflected back into the volume of positive T to simulate the electrons

crossings from one leg to the other.

Figure 2. The form of the electron flux pitch angle distribution at several depths

in the atmosphere for a narrow injected beam (model 1) as obtained from

the numerical results. Electrons with a pitch angle of zero degrees are

streaming along the magnetic field lines downwards towards the photosphere;

those with a pitch angle in excess of 90 degrees are moving upwards.

The depths are scaled with the square of the electron energy as explained in

the text. The inset shows a comparison of the numerically derived values

(points) to those expected front the analytic expressions of equation (18)

(solid lines).

Figure 3. The form of the electron flux energy spectrum at several depths in the

atmosphere for model I. At injection the beam has a flux spectrum of the

form E-' but low energy electrons lose energy by collisions faster than

high energy electrons and are rapidly depleted in number within the atmosphere.

The spectrum then develops a hump which moves to higher energies at greater

Mdepths according to E vmai	
= T/d as shown in the inset.
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Figure 4. A comparison of the numerical results with the analytic expression

ofequation (22) at three energies. The upper diagram which is for energies of

30 and 70 keV uses the non -relativistic expressions for t which should

be a good approximation at these energies. The lower diagram is for

an electron energy of 750 keV and shows a comparison of the numerical
i

results with two forms of equation (22), the lower one using the non-
i

relativistic expression for c and the upper one using 'he relativistic	 j
1{

expression for C.

Figure S. The energy spectrum of the spatially integrated electron flux for three

of our models: model 1 (our standard model); model 5 ( which is the same as

model 1 except that it has a harder injected electron energy spectrum); and

model 9 (which is the most different from model 1 [see Table 11). According

to the analysis the total electron flux energy spectrum should have a partic-

ularly simple form as given by equation (24) and `shown by the solid lines.

The points represent the numerical results for the three models.

Figure 6. Same as Figure 2 , but for model 6.

Figure 7. The same as Figure 6 but for a beam which is isotropic in pitch

angle at injection (model 7). Though the injected beam is not

a gaussian,	 the form of the pitch angle spectrum at the two greatest

depths is the same as those for• model's 1 and 6.

Figure a. The electron energy spectrum at several depths in the atmosphere

for model 9. As can be seen from Table 1, model 9 is most distinct from

model 1 in terms of its parameters, yet, as a comparison with Figure 3 will

show, model 9 retains the same basic form for the energy spectrum as model 1.

This is to be expected as, for both models 1 and 9, the electron beam is

primarily collisionally modified.
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Figure A	 A schematic respresentation of the three dimensional phase space

of the electron number distribution. The phase space is stratified into

(horizontal) energy planes, with each plane being a grid in pitch angle
e	

and depth within the atmosphere over which the electron number distribution

is evaluated. The electron flux is specified tiver the positive pitch

angle half of the T = 0 plane surface (shown shaded), the lower boundary

being put at T = for which the number distribution is taken to be
i
i	 identically zero. The other half of the T = 0 surface (unshaded) corres-

ponds to electrons with u < 0 at the top of the atmosphere, and these

electrons can be either allowed to leave this region of phase space and

lost front the calculation (open field configuration of Figure 1) or be

reflected back into the region with u > 0 and added to the alheady specified

injected flux (closed loop in Figure 1).

Figure A-2. The results of testing that part of the code handling the inter-

action of the electron beam with the converging magnetic field. The solid

lines shore f(11,T) as given by equation (7) with fo(p) = -kln(1-01;

the points represent the numerical results. The right hand side of the

diagram is for downward travelling electrons, the left hand side for

reflected electrons travelling upward. The depth parameter, T, is related

to the convergence of the magnetic field in the form ,r = in {B(T)/B(0)).

Figure A-3. The results of testing the part of the code describing the energy

degradation only for electrons with pitch angle it = 1.000, u = 0.9563

and It = 0.788. The solid lines represent equation (9) for an injected

electron spectrum ^0 (E,1a,T) = ( C2/E+l )_ a ; the dots represent the

numerical results.
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Figure A-4. The results of testing that part of the code dealing with the

diffusion of the electron's pitch angle by collisions for an injected

gaussian pitch angle distribution. Note the excellent agreement between

the numerical results (points) and the analytic expressions (solid lines)

for small pitch angles.
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