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IMPULSIVE PHASE OF SOLAR FLARES 1.
CHARACTERISTICS OF HIGH ENERGY ELECTRONS

John Leach* and Vahe Petrosian*
Institute for Plasma Research
Stanford University
Stanford, CA
ABSTRACT

In this, the first of a series of papers, we investigate the variation
along a magnetic field line of the energy and pitch angle distribution of high
energy electrons injected into a cold hydrogen plasma containing either an
open or closed magnetic field structure. The problem is formlated as a time-
independent Fokker-Planck Equation for the electron number distribution as a
function of the electron encrgy; electron pitch angle and the structure of the
global magnetic field.

We present a simple analytic solution valid in the small pitch angle regime
and for a slowly varying magnetic field. For the more general situation we
use a numerical code for solvina the Fokkér-Planck Equation,and we find that
the analytic expression agrees well with the numerical results to values of
the pitch angie much larger than expected. For most practical applications
one may confidently use the analytic expression instead of having to resort to
lengthy numerical computations.

These results may be useful for a variety of astrophysical applications.
Our primary concern is to use these results to study the non-thermal models of
the impulsive phase of solar flares. In subsequent papers we shall use the
results ;f this paper to calculate the expected x-ray and microwave radiation
from a flaring loop and compare these results with the high resolution data

currently becoming available.

Subject Headings: Atomic Processes, Sun: Flares, Sun: X-rays, Sun:Radio Radiation

*Also Department of Applied Physics
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1. INTRODUCTION

Hard x-rays and microwave radiation observed during the impulsive phase of a
solar flare provide us with a means for inferring the characteristics of the
distribution of energetic 2lectrons within the flaring plasma. Although it is
now widely accepted that the hard x-rays and microwaves are the result of
coulomb bremsstrahlung and gyrosynchrotron mechanisms respectively, there is
still no consensus as to the form of the electroa distribution function within
the flaring loop nor as to the relative importance of the various candidate
processes which may affect or determine the characteristics of this distribution.

Various models describing the operative physical processes have been
proposed, broadly classified as thermal or non-thermal models (see Emslie and
Rust 1979 and references therein). The non-thermal models may be subdivided
into thick or thin target beamed electron models and trapped electron models.

The prime differences between these models have often been taken to lie with
the spectral distribution of accelerated électrons and the charactcristiés of
the background plasma. (For a discussion of these models the interested reader

is referred to Sturrock 1980, p. 215,and to Brown and Smith 1980).

Principally two types of mechanism have been suggested by which a situation
giving rise to the emission of thermal hard x-rvay bremsstrahlung from a flare
may be obtained. What is required 1is the bulk heating of the loop plasma &o
a temperature of s108l( as suggested by Chubb, Kreplin and Friedmnan
(1966) to explain their early observations of hard x-rays of energies 20 keV

and above.

One type of mechanism suggested by Matzler et al (1978) involives the -
reversible adiabatic compression and heating of the plasma. There are, however,
both observational and theoretical problems with this model (see Elcan 1980).

Another type of mechanism is to accelerate electrons to high energies in the
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reconnection region and to inject these electrons as a high current beam into
the ambient flare plasma of low density. Plasma-beam instabilities generate
turbulence (ion-cyclotron or fon-acoustic, Kendell and Kennel 1971. also
Duijveman, Hoyng and Ionson 1981; Emslie 1981b) which enhances the electrical
resistivity of the plasma and rapidly dissipates the electron beam depositing
the beam enirgy as heat in the ambient plasma. The development of thermal
models has been previously discussed (e.g., Brown, Melrose and Spicer 1979;
Smith and Lilliequist 1979; Smith and Auer 1980; Emslie 1981a) and we shall not
concern ourselves with such models here.

The purpose of this series of papers is to analyze the general character-

istics of the "non-thermal" models. All previous analyses of these modgls

(e.g., Ramaty and Lingenfelter 1967; Lin and Hudson 1971; Brown 1972: Takakura 1972;
Petrosian 1973; Kane 1974) have been limited to total fjux calculations and have
either ignored the dispersion in phase space of the accélerated electrons or treated
such in an approximate manner. The highuspatial resolution capabilitiéé‘of the

HXIS experiment on the SMM and various on-going observational programs using the

VLA and other high resolution microwave instruments will soon provide us with
detailed hard x-ray images and microwave maps of flares during the impulsive
phase. In order to utilize these observations we need to evaluate the distribu-
tion of high energy electrons along the flare loop and calculate the resultant
x-ray and microwave radiation as a function of position along the loop.

In this paper we present the results of our analysis on the steady state
distribdtion of energetic electrons within the flare plasma. We use the time
independent Fokker-Planck equation to determine the steady state distribution
in pitch angle, energy and height above the photosphere of the electrons as Eﬁéy
spiral along the magnetic field Tines and collide with the particies in the
ambient plasma. In subsequent papers this distribution will be used to calculate

the characteristics of the resultant x-ray and microwave radiation. In sII
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we present the general features of this problem and the equations tc be used
in its solution. Some approximate analytic solutions are discussed in SIII,
and the results of the numerical analysis are presented in SIV. In sV

we present a summary and our conclusions.

At
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I1. THE MODEL

The model we are investigating, which encompasses thick-target, thin-target and
trap aspects of non-thermal hard x-ray models, is the following: High energy electrons

with some initial energy spectrum and pitch angle distribution are injected at
some height above the photosphere either into a closed magnetic loop structure
or into an open field structure (see Figure 1). These electrons, spiraling
along the field lines, undergo collisions with the background particles (atoms,
jons and electrons) and these collisions, in addition to the variations in the
magnetic field structure, diffuse the energetic electrons® distribution function
in phase space. Note that wave-particle interactions, which may be important
under certain circumstances, are not dealt with in this paper. In order to
calculate the radiation from the electrons, we must first evaluate the distribu-
tion in phase space of the electrons. )

Two characteristics of the background p1asﬁa simﬁlify this calculqtiqn

significantly.

a) The time scale for energy loss by collisions is

0 . 2
Teoll T E/Eco]1 = Eﬁlwﬂro nclnA M)

l

where E = y- 1 is the electron kinetic energy in unitJ of mecz. 82= 1-1/72,

]All energies will be expressed in these units unless otherwise specified.

4wr§ = 10"24cm2, and A"V §s the minimum angle of deflection in the couloumb

10 -
cm 3 Teoll & 1 sec forelggﬁronﬂ

integral, typically 1nA = 20. At a density of 10
with energy < 10 keV and is correspondingly longer for higher energy electrons,
However, since the time L/gc for electrons to traverse a typical

magnetic loop (L s lolocm) is less than a second, the more energetic electrons

penetrate the high density regions and lose energy within less than a second
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(cf. Petrosian 1973). It then follows that for the study of the impulsive phase
on time scales longer than this thc electrons can be treated as if in strady
state.

b) For electrons with energies 10 to 1000 keV the gyro radius,
rg ® 10 (100 gauss/B) cm, is much, shortcr than the characteristic length scales
of the plasma, namely, the densify or magnetic field scale heights, which are
of the order of L s=109cm. Consoquently, electrons ondifferent field lines
are decoupled and the diffusion of the electrons perpendicular to the magnetic
field can be ignored. Thus, the electron distribution varies only along the
magnetic field lines , which we take to be static.

With these considerations the problem is reduced to a three dimensional
time independent diffusion problem: Ong spatial dimgnsion s along the field line
and two momenta (parallel and perpendicular to the field lines respectively).

It is more convenient to use as independgnt variavlies the cosine of the‘?1ectron
pitch angle, u = 5-5 (ﬁ and B are unit vectors in the direction of the é]nctron
momentum and the downward magnetic field), the electron kinetic energy E and a

dimensionless column depth 1 defined by

-1 13

o cm"(lolocm'3/n)(1nA/20) s (2)

b= = 2 = -
dy = ds/Ao. A 4nro nlInh=2x10

where n is the number density of hydrogen and Ao is a mean free path scale

(the mean free path for electrons of energy E is AOEBZ). Note that for 1nA = 20,

22 -2

v = 1 corresponds to a colum depth of 5 x 10°“cm™“ which, in the quiet sun,

is approximately where the temperature minimum is to be found.

We use the Fokker-Planck method to solve for the diffusion in pitch ang]é”;nd
energy along a field line of given geometry and field strength. Let f(E,u,v)dEdudt
be the number density of electrons with cosine of pitch angle between u and

n + dy, and with kinetic energy between E and E + dE, lying between
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column depths <t and < + dvr. The Fokker-Planck equation for the problem becomes
(sce e.g., Rosenbluih, McDonald and Judd 1957)

C C
f dinB of 13 (fy ., "2 3 rn_ .2y 3f
Tt ’ 2dr o T§ o€ (B gy2 a2 O [(1-u?) 3 (3)

where we have ignored terms in the Fokker-Planck expansion which do not contain
the large 1InA coefficient. The first term on the right hand side describes

the mirroring of the particles owing to the convergence of the magnetic field.

The last two terms account for the energy loss and pitch angle dispersion of the
beam through collisions with the ambient particles. The coefficients Cl preceding
the energy dissipation term and c2 preceding the pitch angle diffusion term
depend upon the composition of the plasma. For a partially ionized plasma where

X = "e/“ is the fraction of the hydrogen that is ionized

C. =X + (]-X) ]"(8272[‘:/““) cz h.gs + '(1:7) c]

1 F T2 M (4)

where a 1is the fine structure constant (202 is the ionization potential

for hydrogen in units of mecz).For a fully ionized plasma x =1 and the

coefficients C] and 02 reduce to

C] =1, C2 = (5)

so that, for non-relativistic electrons, C2 = C].

Other than hydrogen the solar atmosphere contains only helium in sigai="

ficant quantities. For a helium fraction, by number,” of 10%, the helium's
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contribution to each of the coefficients Cl and c2 is limited to

cle < clls, ¥ < c/3. We shal ignore the slight differences between the
relative contributions of helium to ¢, and ¢, and shall ubsorb this 20 to 30
percent contribution from helium into the uncertainties in the values of 1nA
and the densfty n. Therefore, we consider a pure hydrogen atmosphere,

We have neglected the energy losses of the electrons due to the electric
field needed to drive the raverse current, an assumpfion which holds well for
high density and temperature plasmas and for small fluxes of accelerated elec-
trons (cf. Knighi and Sturrock 1977; Emslie 1980). The contribution of the
energy los; due to the reverse current electric field can also be included in
the above equation. However, this will complicate the solution considerably
since the strength of the electric field at each level depends on the total flux
of electrons at that depth F(x) = jfuﬁcf(E,p,Tszdu S0 that instead of a
single differential equation we would have to consider a coupled integro-"
differential equation. This is beyond thé'scope of the present paper and
will be considered in future work.

In the next two sections we discuss some approximate analytic and some

accurate numerical solutions of equation (3).
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II1. SOME ANALYTIC SOLUTIONS

In order to solve equation (3) ve need to specify the characteristics of
the plasma which determine the parameters Cy» c2 and dinB/dr, and the boundary
conditions. We assume that particles are injected at the top of the Toop
(v = 0), such that the spectrum at « = 0, fo(E,u) is specified for 0 <y s 1,
the other boundary condition being that f(E,p,x»=) = 0. (The coefficients
C] and c2 are approximately unity and have only a slight energy dependence.)
The parameter dInB/dt describes the variation of the magnetic field and deter-
mines its influence on the electron beam according to the first term on the right
hand side of equation (3). If the magnetic field and the density variation can
be described by scale heights "B and Hn, viz, n = o exp(s/"n); B = Bo exp(s/HB).
then, in terms of our column depth « we find dInB/dt = A /HB = H /rH . Clearly
when H /HB << 1 (i.e., when the B field is nearly un1form vhile the density
varies rapidly) the magnetic field has an 1ns1gn1f1cant effect and the electron
distribution is modified by collisions alone The resulting model is a th1ck
target model with the degree of beaming determined by the injected gpectrum. In the
other extreme case, when Hn/HB >> 1 (i.e., low and nearly uniform plasma density
and rapid field variation) the particles are reflected back and forth between
mirror points of a closed loop configuration leading to a trap model with slow
rate of precipitation, unless the density, Ny? is so high that the mirror points
occur at t2 1. For an open field line configuration, particles are reflected
no more than once and escape along the diverging field lines, giving rise to a
situatiég as described by a thin target model (Datlowe and Lin 1973). However,
it is usually found that the situation is more complicated owing to the variation
of diInB/dc along the field lines. -

In general, equation (3) cannot be solved analytically, and in the next
section we shall describe a procedure for its numerical solution. Here we shall

consider some special cases which allow us to derive exact analytic results.
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The purpose of this is to check the accuracy of the numerical results and to

derive some scaling laws which may simplify the presentation of those results.

Case 1: .lf the plasma density is low and tha magnetic field scale
height Hg is much smaller than the depsity stale height Hn (so that
dinB/dt = ).olllB >> 1 throughout), then the last two terms on the right-hand
side of equation (3) are negligible (c‘=c2=o), and we have a situation corresponding
to a collisionless trap model. It is then easy to show that the distribution function

satisfies the differential equation

1
affox = =af/aln(1-p2), ?nf dInB 4 - 1n Bl3) (6)

(4
giving a distribution function which is independent of energy and has the'form

Flram) = £,(0-(1-2)e ) | (7

where fo(u) is the injected pitch angle distribitionat « = 0. This is simply
a description of the adiabatic invariance of B/(1-y%). Note that for adliéotﬁopic
injected pitch angle distribution fo(u) is independent of y and the pitch angle

distribution remains isotropic throughout the atmosphere. For a gaussian injected

distribution the distribution remains gaussian but with a width that increases with 7.

Case 2: If the magnetic field is approximately uniform such that

H, >> Hn and Ays then the first term on the right-hand side df equation (3)

B
is negligible. However, even when dinB/dtr = 0, analytic solutions cannot

be obtained except in the small pitch angle [(1-u) << 1] regime. Before presenting

the solution for the general small pitch case, we first consider the following two

cases, which, though unphysical, expose the nature of the results for the phySica]

case and which may be used for testing the numerical code (see Appendix). s
a) Eneray loss term with no pitch angle scattering (C1 =1, C2 = 0,

dinB/dt = 0). In this case it is useful to define

¢ = f/B, dn = p2dE, n = Ez/(E+1) (8)



n

so that for agiven (and constant) pitch angle y equation (3) and its solutions are

A
e =5t = dlune) g (Ee ), (9)
where ¢ (n) 1is related to the injected spectrum fo(E) through definitions (8).

For non-relativistic energies n *® E2 = g%4, and

¥

H(Eamr) = T EArNED) - (1 4y €15 (10)
| . ‘
(b) Pitch angle diffusion with no energy degradation (C]=0, c2= 3%1~,
dinB/dr = 0). In this case analytic solutions are possible only for small pitch

angles. If we define

02/2 5V -n<<1 and 71 = Czr/ﬁﬁyz , (M)

where « is approximately equal to the pitch angle, then the differential

equation (3) reduces to

f

— ]
ar @ on da
which has the solution
[+ - Z-u
f(r,0) '”'[ e ™ "A(w) Jo(wa)dm , (12)
"o

where Jo is the Bessel function of order zero and A(w) is determined by the boun-

dary conditions. For example, if the injected pitch angle distribution is gawssian,
a2/ a2 v e . .

fo(“) = (Z%Qe oa*/ag ith “g << 1, then multiplication of both sides of equation (12)

(¢}
by Jo(m a) and integration over all o forr 1 = 0 gives
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f - x2
A WS - ] £ (), (o adada = -1 a 21 (13)

substituting this into equation (12) we obtain

f(E,n,1) = ( 22 ___) exp { ol } (4}

+ 2447
as 4 u°+4r

¢) The general small pitch angle case with a uniform magnetic field
(C]a 1, C,= 3%13 9%2§-u 0). In this case we have again a2/2 = (1-p)<< 1 so that
with the help of definition (8) equation (3) is reduced to

4g"y2 (04 _ 29) . 1 3 (.2
3ty (3r T/ a?d (“aa) (15)

which has the general solution (separable in x,n and gQg

$(t,n,a) =/ e ATe M B(A)dlj[e:(n)]“'z J, (wa)A(w)dw , | (16)

0 4]

where

c 200y \%
) = 2 gn! - (E
£(n) = exp t " dn§ (E;é%%y) (17)

and B(A) ard A (w) are determined from the boundary conditions. For an
injected gaussian pitch angle distribution f(E,u,r = 0) = fo(E)(Z/ag)e'“zldﬁ ,
where ag <<V,  from equation {8) we can obtain an expression for

¢,(n) = £ [E(n)}/B(n). Then, following procedures similar to those in deriving

equations (9) and (14), equation (16) generates

2 2
f E, , T = f ( + B(") ex {_ —m..g..__.—-} ’
(Esust) = folnte) 2Ry 2 + g p 2+ ne

(18)
gz e Emt .
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In the non-relativistic Jimit g(n) = nk = E'i « g//2 and equation (18) becomes

£(Eou,t) = fo(CkE)C-"IZ/(Gg"‘ ln;)]e"“zl(“g* )nc)l
(19)
g (14 t/Ez).

It is normally more convenient to use the flux of particles, F(E,u,t),
instead of their number density, f(E,n,t), where the flux and number density are
related by F(E,u,t) = cBf(E,u,1). The relationship between F(E,u,tr) and the
injected flux at v = 0, FO(E,u) is similar to the relationship between f(E,u,t)
and fo(E.u) as given in equations (18) and (19), these relationships being
obtained by replacing f and f, by F ard F  and by changing 8(n)/8(n*t)
to [fs(n)/ﬁ(n%r)]‘2 in equation (18) and ;'k to ;'!i in equation (19).

As is evident, the shapes of the pitch angle.distributions at various v are
identical provided the scaling parameter ¢ is cohstant? Similarly, for an injected
power law flux spectrun F (E) « E"S, the ratio of the energy spectra at various
depths v to the injected spectrum have the same shape for constant values of .
In the next section we shall explore the extent to which this scaling law

holds for large pitch angles and for non-uniform magnetic field configurations.

e Rk B e T B LT TR
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IV. NUMERICAL RESULTS

We have solved equation (3) numerically using a modified version
of the program developed by Walt et al (1968) for the related problem of
auroral electrons (see also Walt 1967). For a prescribed injection spectrum
£(E,n) at v = 0, the program solves for f(E,u,v) for « > 0, utilizing
either a reflecting or non-reflecting boundary condition at the top
of the atmosphere (v= 0), thereby calculating the electron distribution
function for a closed or open field line configuration respectively
(see below). The details of the procedure are described in the
appendix along with the results of our testing the numerical code against the
analytic results described in the previous section. We now present some
numerical results for the electron distribution function for the nine models
described in Table 1. We use model 1 as our stan&ard model and as a baz  for
comparison so that we may observe the effects of the parameters dcscribing thé
ambient plasma, the magnetic field configuration and the injected spectrum on
the electron distribution function.

Model 1 has an injocted electron spoctrum

F(E,pn>0,v=0) FO(E,'I) & I\(t‘) ’ exl-‘{lﬁ ‘E*} ’ (20)
with ui = 0.0 and § =5 (a typical value frog solar hard x-ray
bursts), a fully donized hydrogen atmosphere with a  uniform
vertical-magnetic field and an open, i.e, non-reflecting, boundary condition at
the top.  This means that electrons which retwn to 1 = 0 and therefore have
pitch angle cosines p < 0 are allowed to exit from the top of the atmosphere
and are lost from the calculation. In Figure 2 we show the evolution of the
electron flux with depth as a function of pitch angle for this model. The

evelution of the flux distribution is similar for different encrgies provided
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the depth v is suitably scaled. For all except the highest energies, that is,
at non-relativistic energies, the scaling expressed by the numerical results
is the scaling 1 « Ez. [see equation (19) with ¢ = constant).
Consequent)y, the curves in Figure 2 are labelled according to their value

of the parameter r/Ez. This scaling of v « Ez

is to be expected as the electron
mean free path is proportional to the square of the electron energy for non-
relativistic energies. Near to the top of the atmosphere most of the electrons
of a particular energy E were originally electrons injected at t = 0 with an
energy slightly in excess of E and which have lost only a small fraction of
their energy and which have been deflected only slightly away from their original
pitch angle. As can be seen, the forward bean of electrons is still clearly
defined and only slightly broader than the beam at injection. These curves

also show that, even at small T/Ea. there is an, a]bgﬁt negligible, component
to the flux of electrons with y <« 0. This effect is due to those few electrons
which, despite the extremely low probabiiity of being scattered through‘Very
large angles of the order of w, have been scattered within the atmosphere suffi-
ciently that they have returned towards the top of the atmosphere. In the
process they have also lost a substantial amount of energy, indicating that
these electrons originally possessed energies considerably higher than .

E and were, thercfore, injected in fewer number [see equation (20)].

At successively deeper levels in the atmosphere, i.e., at larger values of
T/Ez, tge flux distribution as a function of pitch angle becomes increasingly
more uniform and the forward beam broadens, reflecting the fact that at great
depths the number of electrons with kinetic energy E  to be found at any =
pitch angle comprises a very broad range of electrons injected at the top of the

atmosphere with many different energies and with many different pitch angles.
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At greater depths still, the total number of electrons at any energy falls (as

is to be expected),but the beam is still well defined.

The scaling described by equation (19), which was obtained from the
small pitch angle approximation, appears to be valid through to much larger
pitch angles. It breaks down at higher energies due to increasing relativistic
effects (¢# 1 +r/E2} and the fact th.t vur injected spectrum has an arbitra-
rily imposed cutoff at an electron k'nvii: energy of 1 MeV. We also find that,.
in agreement with equations (18) and (19), the curves in Figure 2 may be approxi-
mated by gaussians to a good .degree of accuracy even out to large pitch angles
where the flux ratios have dropped to insignificant levels (a fraction of one
percent of the forward, [p = 1), fluxes). The widths of these gaussians also
agree with those expected from equation (19) as shown by the inset in Figure 2
where the analytic gaussians (solid lines) are compared to the numerical

values (points). _ - "

In Figure 3 we show the energy spectrum at various depths for model 1,
with the ordinate being the integrated electron flux in the forward direction.
At the top of the atmosphere the energy spectrum is the injected spectrum, E'G.
However, as the beam moves through the atmosphere, the Tower energy electrons
lose energy more rapidly than the higher energy electrons and soon their.numbers
become depleted, giving rise to :he humped spectrum that forms throughout the
atmosphere.

Integration of equation (18) over pitch angle, dy = ada, yields,

using the etectron flux F(x,E) rather than the electron density f(t,E),

2 Y
F(x,E) = (é“("‘(]‘?%')*) Fo(n'M') a Fo(c‘E)/c‘ R (21)_.

which implies that, in the non-relativistic limit and for a power law injected elec-

tron spectrum FO(E) « E“G, the maxima of the above curves occur at Ez

max = v/6. As

P
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shown by the inset in Figure 3 this relationship holds well for numerical results.

Furthermore, at non-relativistic energies and for a power law injected spec-

trum, the flux in the forward direction normalized to that at the top,

§+]

[y

Fleo s )/F(En=l) = 5 2/ (] Ing) (22)

depends only on the parameter r. Figure 4 compares the values of this ratio with
the values obtained from the numerical calculations. For 30 keV and 70 keV eiec-

trons the agreement is excellent for the range of values of the parameter r perti-

nent to solar flares. For 750 keV electrons we also compare the numerical
results with the fully relativistic form of equation (18) and present this in
the upper of the two curves for 750 keV. It is evident that the velativistic
form indeed becomes necessary at high energies. FNote that the
analytic expression begins to deviate significaﬁtly (>é0%) only at depths
-r/E2 > 0.3 where the electron flux is less than one percent of the injected
flux (see Figure 2). Figures similar to Figures 3 and 4 may be drawn for the
flux at any particular forward pitch angle but, given the good agreement between
the results and the analysis as displayed in Figure 2, those figures obtained
would clearly be very similar to Figures 3 and 4 which have been drawh using
the integrated forward flux.

Finally, if we integrate the above spectra over all depths, we obtain the
spatially-integrated energy spectrum (which determines the radiation spectrum

of the wﬁo1c, unresolved loop).

B(ntr)

@ © 2 ') ctomsm
F(E) = [ r(x,E)dr = ] («‘ML) Fo(nte)de = 62(n) f Fo(E')E"  (23)
N ‘E ,

0 0
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which, for F_(E)= E™°
- -8+ -
FE) B2 e g2 0 L 3B s ) (24)
Note that this result is not restricted to the small pitch angle regime,
This can be demonstrated by integrating equation (3) first over u and then

over 1t which gives

+1 +1
gf(f_i‘?')= FO(E) (o) , u(x) =j; wF(E,n,1)dp !; F(E, pyt)dy . (25)

Intecration of this gives equation (23) which was derived from the special case
of wu(o) =1. .
In Figure 5 we plot F(E) versus E for model 1 showing an agreement between

our results and the above relationship which is especially good at low energies.

- . R Y
This agreement breaks down at higher energies for two reasons: (i) F(E) » E 8+
at extreme relativistic energies, and (2) the presence of an upper cutoff

in the energy of the injected beam.

Also shown in Figure 5 is the same function for models 5 and 9, both of
which display a similarly good agreement with the analysis. Model 5 has a value
of § = 3, and mode? 9 is, parametrically, most distant from model 1 and from the
approximations used in the analysis of model 1.

In summary, the excellent agreement between our numerical results and the
above analysis of model 1, in addition to providing us with ample demonstration
of the accuracy of the numerical results, indicates that the analytic results .__

hold to a high degree of accuracy well outside the regimes of validity suggested
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by the approximations used (that is, to large pitch angles) and that the
analysis provides a good description of the evolution of the electron beam

throughout the atmosphere.

Results for Other Models

We now consider the results from the other models described in Table 1
and compare them with those from model 1.

Model 2 has a strongly converging magnetic field throughout the atmosphere
but retains the open boundary condition at v = 0. The effect of the converging
magnetic field is to enhance the broadening of the pitch angle distribution with
depth and to increase significantly the number of electrons which are moved to
negative pitch angle cosines and return towards the top of the atmosphere.
However, despite the presence of the magnetic field which converges by a factor
of roughly thirty from =t =0 to v = 1, the narrowness of the injected pitch
angle spectrum is such that the downward traveliné electron beam contains
about two orders of magnitude more electrons than are removed from the boam
by the magnetic mirroring so that the beam stays well defined throughout the
atmosphere.

Model 3 is as model 2 but investigates the effects of reflecting those
electrons with n <0 at+ = 0 back into the loop with u > 0. This
mimics the effects of having the electrons in a closed and symmetric loop
configuration (see Fig. 1). However, since the number of electrons exiting
with < 0 s relatively small, the effects of this change on the boundary
condition at « = 0 is negligible.

Model 4 is the same as model 1 except that it has an atmosphere
which is fully ionized down to a colum depth of 5 x 10‘9cm"2 and i
then becomes fully neutral as rapidly as can be bhandled by the
numerical code and assumes chromospheric densities throughout the

remaining depths. Thus, model 4 introduces a transition region and has changing
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vélues of the paremeters Cl and C2 [see equation (4)). The effects,
however, on the overall electron distribution, of having a partially fonized
atmosphere, are small with the beam being only slightly affected helow the
transition region (cf. Emslie 1978).

Figure 3 shows the energy spectrum as a function of depth for model 1.

A similar plot for models 2 through 4 shows that the energy spectrum at each
depth is almost completely insensitive to the changes in the parameters introduced
with these models and the humped spectrum is maintained with the same scaling
Esax“ 1. This is as expected because models 2 through 4 remain primarily
collisional in their treatment of the beam despite the introduction of the
coriverging magnetic field, etc., and therefore exhibit the same scaling as

model 1.

In general, we therefore conclude that for a narrow injected pitch angle
distribution the change in the plasma parameters and the introduction of a
reasonable magnetic field configuration have a negligible effect on the evolu-
tion of the electron beam within the upper part of the target and tend to
make the electron flux more uniform in the lower paris where the beam flux is
less than 0.1% of the injected beam flux.

Model 5 1is identical to model 1 but has a harder electron
energy spectrum with & = 3 (corresponding to the hardest observed x-ray
spectra) in place of § = 5. Having more high energy electrons in the beam
at the top of the atmosphere simply leads to having more electrons with medium
energy at large pitch angles lower in the atmosphere and a larger number of
electrons reflected back upwards with y < 0. Otherwise this model, like
model 1, agrees well with the analytic expression given by equation (79) indjgated,
for example, in Figure 5.

Mouel 6 has a much broader injected gaussian pitchk angle distribution;
ag = 0.125. In Figure 6 we show the evolution of the electron flux distribution

for this model where, comparing Figure 6 with Figure 2, we can see that the
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effect of having a broader injected beam is solely to give rise to a broader beam
traveling downwards through tha upper atmosphere. However, the shape of the
flux distribution at greater depths becomes identica) to the shape of the
distribution function at the same depths in Figure 2. Remembering that the
curves in Figures 2 and 6 give the beam evolution with v scaling as Ez,
we can see that for each energy there is a depth below which the shape of the
distribution function in pitch angle is independent of the injected gaussian
width. This is to be expected from equation (18) owing to the fact that 1Ing
increases slowly with v until it eventually overwhelms ag even for the broad
injected beam. Thus, below a certain depth the electron flux distribution
relaxes to a smooth form and then slowly isotropizes. Only at exceptionally
large depths where the electron flux is negligible does the distribution become
sufficiently isotropic that the forward component is not easily discernable.
The inset in Figure 6 is similar to that in Figure 2 and shows the extent to
vwhich the small pitch angle approx1mat1on agrees with the numerical results
for this model. Considering that the anected spectrum is broad, this agrcement
is better than might have been expected, the agreement holding well out to
large pitch angles.

Model 7 is the same as model 1 with the exception of now having an injected
pitch angle spectrum which is uniform for positive u. The evolution of the
pitch angle spectrum with depth is shown in Figure 7 and again we see that the
shape of the spectrum at the two greatest depths is nearly identical to those
in Figures 2 and 6 despite the extreme form of the injected spectrum.

In &odels 8 and 9 the magnetic field is non-uniform (as in models 2 and 3)
but with an injected spectrum which is uniform as in model 7. In addition, model 9
has a reflecting boundary at the top. Little nceds td be remarked upen for m;§é1s
8 and 9 other than that, as expected, the effects of the vertical converging mag-

netic field and the reflecting boundary condition are¢ to give almost a symmetric
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pitch angle distribution with f(u) = f(-u) at each depth, the discrepancy being
the leakage of electrons to lower energies by collisions. For comparison with
Figure 3 the energy spectrum evolution with depth of iodel 9 is shown in

Figure 8. It can be seen that, even for model 9 which is parametrically most
distinct from model 1, the energy spectrum retains the same form with the peak

in the spectrum moving to higher energies with increasing depth in accordance

2

X as shown in the inset.

with v « Ema
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V. SUMMARY AND CONCLUSIONS

1. If the injected spectrum is strongly concentrated in the direction
of the magnetic field lines (small pitch angles), plausible variations in the
parameters describing the plasma and the field configuration have significant
effects only at large depths and large pitch angles where the beam density has
fallen by several orders of magnithde. Otherwise, the analytic results of
equations (18) and (19) give an acceptably accurate description of the evolu-
tion of the beam.

2. Even when the injected electrons are weakly beamed or not beamed at
all (uniform pitch angle distribution), the scaling derived from the small
pitch angle regime seems to be valid except at small optical depths (see
Figures 6 and 7).

3. At large depths the pitch angle distribution‘is independent of the

injected distribution, evolving to a smooth and broad distribution.

4. The energy spectrum evolves independently of the injected pitch angle °

distribution and agrees quite well with the analytic approximation given by
equation (21).

5. Most significantly we find that for most practical applications
equations (18) to (24) may be used instead of having to resort to detailed

numerical calculations.

In future papers in this series we intend to utilize the results discussed
and described here to calculate the radiation observed from a flaring loop.
Using the complete electron flux distribution,we will be able to calculate the
polarization and directivity of hard x-rays from the loop, the hard x-ray flux
as a function of position along the loop and the details of the microwave flux

including its dependence on the magnetic field structure defining the loop.
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With results from current observational programs at the VLA (Marsh et al 1980)

and the high resolution data from HXIS (Hoyng et al 1981), to mention but two
of the many sources of high quality observational data, we hope to be able to
use our results as a powerful diagnostic tool for the further understanding of
the impulsive phase of flares.

The model as it stands has several limitations which will receive atten-
tion in the future pursuit of this work. The effects of reverse currents may,
under certain physical conditions of the ambient plasma (see Emslie 1980, 1981b),
be of significance in determining the evolution of the flux of accelerated
electrons in a flare 1imb and are intended to be included in the model to give
it greater applicability for a broader range of flare parameters. Similarly,
the effects of wave particle interactions on the encrgy spectrum at energies

below that of maximum flux will also be investigated. -,

B - S—a——re
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APPENDIX

A. Description of the Numerical Code

We consider a (horizontally uniform)1-dimensional plasma atmosphere with a
density structure corresponding approximately to the low corona and chromosphere
and inject electrons at the top of the atmosphere, designated as « = 0,

The electrons are injected according to a prescribed pitch angle distribu-
tion with the electron’s pitch angle being measured as the angle between the
electron's instantaneous velocity vector and the magnetic field Vine which is
in the downward direction along'a flare loop (see Figure 1). Thus, downward
moving electrons have positive pitch angle cosines; 0 < w = 1. These electrons
then travel through the plasma atmosphere undergoing collisions with the cold
plasma particles and being adiabatically scattered by the converging B field.
They thus change their pitch angle and energy and are allowed to return to the
top of the atmosphere, then having negative pitch ang]g cosines. As the electrons
can only diffuse from high to low energy and no process exists within our forinu-
lation for accelerating electrons to higher cnergies, the most convenient stepping
parameter for the numerical analysis is the energy of the beam eleqtron. The
electron flux disteibution is calculated over a three diminsional phase space
(E,n,1) which is stratified into energy layers with each layer consisting of a
grid in (u,t) Space and being of constant value in energy space (see Figure A-1).
The code generates the value of the electron flux at each grid point in a (v,t)
plane of energy Ei from the given input fluxes at © = 0 and the flux values at
the oveéiying (u,t) plane of energy Ei—] > Ei'

The input flux is specified at the top of the loop, v = 0, as a spectrum in
energy and forward pitch angle, i.e., for the 0 <y =<1 and E <1 MeV half~
plane. The flux values on the (u,t) grid corvesponding to the largest electron
energy are just the input f]uxesvspecified at the top of the lcop for that

erergy (1 MeV).
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Once the flux values on one energy plane are calculated satisfactorily
the code steps down one energy step to the next energy plane. The fiuxes from the
preceding plane just calculated are scaled for the new energy and, along with the
specified input flux at that emergy, a zeroth order (u,v) grid of fluxes is gener-
ated. The code then iterates over this energy plane until a satisfactory conver-
gence of the flux values to those values satisfying equation (3) is found. A

th order (.,v)grid of electron fluxes is obtained which is stored as part

final n
of the results and is used to generate the zeroth order(u,t) gr’:l for the next
energy level down. Iteration on each (u,7)grid is obtained by sweeping down from
the top of the atmosphere (v=0) to the bottom and then returning to ¢ = C.

The process is repeated until the results after each pair of sweeps have converged

to within a prescribed error.

Boundary conditions can be imposed at the top to allow for electrons
exiting with yu < 0 to either be lost from the region of the calculations
(simulating an open field configuration) or to be reflected back wi;h
positive u's to simulate a closed field configuration symmetric at ¢ = 0
(see Figure 1). Electrons with w > 0 at the bottom of the atmosphere are
lost as are electrons which have their energy degraded to less than the minimum

energy, which we have set at 10 keV.

B. Tests of the Numerical Results

In order to assess the accuracy of the code, we compare the numerical
results with those of the analytic results described in §III. Note that
some of the cases considered here have no physical meaning and serve solely as
examples for which the analysis is tractable. _

Case 1: If we sct the coefficients C, and C, in equation (3) equal to

zero and ‘inject electrons with a pitch angle distribution fo(u) = -kIn{1- u2),
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then, according to equation (7) we expect the pitch angle distribution to vary

with depth in the form f(t,u) = k{ ¥ - In(1-p2)} , that is, curves of f(r,u)
versus -In(1-42) at constant 7T, or depth, will be straight lines which are'
parallel for different depths and vertically positioned according to the value
of kr at each depth. In Figure A-2 we have plotted our numerical evaluation
of f(r,u) against corresponding values of -In(1-p2) for suveral depths. As

the electron's pitch angle is being affected adiabatically by the magnetic field,
there is no energy dependence or energy loss in the process by which the electron
beam evalves and, therefore, Figure A-2 is identical for all electron energies.

As can be seen from Figure A-2, the numerically evaluated f(xt,u) behaves
exactly as expected throughout the atmosphere except at large depths where the
difficulty of prescribing the injectec flux in finite sized pitch angle bins
for values of y close to unity [where -1n(1-p2) becomes very large] becomes
evident. .

Case 2a: If we now set €, =1 anq C, = dinB/dv = 0, we mimic a situa-
tion where the electrons lose energy by 6611isions within the atmospheré but do
not change their pitch angle. If we injact a spectrum ¢0(E) = fo(E)/B(E) = n"6=
[EZ/(E + 1)]"5, i.e., a power law in n [recall that n = EZ(E + 1)], then,
according to equation (10),we expect the electron distribution tobe described
at each depth by ¢(E,u,t) = (v/u + n)'a. In Figure A-3 we have plotted
(6(Eouyr) M8 - o(Em, 0)71/8

that this should be independent of E and proportional to «</u. As is evident

}for three values of u, versus depth t and note

the numerical results agree perfectly with the expected analytic relation.
Case 2b: Finally, to check the accuracy of the treatment ¢f diffusion
in pitch angle we set C] = dInB/dv = 0, 02 = (3 +y)/4 and inject into the

atmosphere a beam with gaussian pitch angle distribution. Equation (14)

describes the evolution of such a gaussian beam but is an approximation valid
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at small pitch angles. Plotted against o2, gaussian distributions at each

depth, as given by equations (11) and (14), would be straight Vines of slope
-1/(a? + 47), and these are shown as solid lines in Figure A-4 (for ag = 0.01).
The points and broken lines are the results from our numerical analysis at
several depths <. As can be seen, for small pitch angles the numerical

results agree with the expected result to a high accuracy. Furtherpore, as
discussed in S§IV, we note that the small pitch angle approximation is

valid to larger angles than expected,especially at higher depths. At every
depth the approximate analytic expression deviates from the numerical result
only when the fluxes have dropped to less than one percent of the fluxes in the

forward direction.

ACKNOWLEDGMENT
We would Vike to thank Dr. Gordon Emslie for a critical reading of the
manuscript and for many valuable comments and discussions. We are also indebted
to Drs. M. Walt, W.E. Francis and ¥.M. McDonald for providing us with the computer
code which has formed the basis of our numerical work and for helpful discussions.
This work was supported by the National Aeronautics and Space Administration

under Grant NSG 7092.



30
REFERENCES

Brown, J.C., 1972, Solar Phys., 26, 441.
Brown, J.C., Melrose, D.B. and Spicer, D.S., 1979, Ap.J., 228, 592.
Brown, J.C. and Smith, D.F., 1980, Rep. Prog. Phys., 41, 125.

Chubb, T.A., Kreplin, R.W. and Friedman, M., 1966, J. Geophys. Res., 71, 3611.

Datlowe, D.W. and Lin, R.P., 1973, Solar Phys., 32, 459.
Duijveman, A., Hoyng, P., and Ionson, J.A., 1981, Ap.J., in press.
Elcan, M.J., 1980, Ph.D. Thesis, U.C.S.D.

Emslie, A.G., 1978, Ap. J., 224, 241,

Emslie, A.G., 1980, Ap.J., 235, 1055.

Emslie, A.G., 198la, Ap. J., submitted.

Emslie, A.G., 1981b, Ap. J., 244, in press.

Emslie, A.G. and Rust, D.M., 1979, Solar Phys., 65, 271.

ry

Hoyng, P. et al, 1981, Ap. J. (Letters), in press.

Kane, S.R., 1974, in Coronal Disturbances, IAU Symp. 57, G. Newkirk, Jr. (ed.),

p. 105.
Kindel1, J.J. and Kennel, C.F., 1971, J. Geophys. Res., 76, 3055.

Knight, J.W. and Sturrock, P.A., 1977, Ap. J., 218, 306.

Lin, R.P., and Hudson, H.S., 1971, Solar Phys., 17, 412.

Marsh, K.A., Hurford, G.J., Zirin, H. and Hjellming, R.M., 198C, Ap.J., 242, 352.
Matzler, C., Bai, T., Crannell, C.J. and Frost, K.J., 1978, Ap. J., 223, 1058.
Petrosian, V., 1973, Ap. J., 186, 291.

Ramaty, R. and Lingenfelter, R.E., 1967, J. Geophys. Res., 72, 879.

Rosenbluth, M.N., McDonald, D.M. and Judd, D.L., 1957, Phys. Rev., 107, 1.

Smith, D.F. and Auer, L.H., 1980, Ap. J., 238, 1126. ' e
Smith, D.F. and Lilliequist, G.G., 1979, Ap. J., 232, 582.

PRECEDING PAGE BLANK NOT FILMEC

i



31

Sturrock, P.A., 1980, in Moncgraph from Skylab Solar Workshop 1I (Colorado

Univ. Press). |
Takakura, T., 1972, Solar Phys., 26, 151,
Walt, M., 1967, in Aurcra and Airglow (Reinhold), B.M. McCormac (ed.), p. 287.

Walt, M., McDonald, W.M. and Francis, W.E., 1968, "Penetration of Auroral

Electrons into the Atmosphere", in Physics of the Magnetosphere,

ed. R. Carouillano and J.F. McClay, Reinhold, New York, p. 534.



32
FIGURE CAPTIONS

Figure 1. The two magnetic field structures that we consider. One is an
open field structure with electrons injected (at v = 0) at some height
above the photosphere with reflected electrons being allowed to leave
freely once they reach v = 0 with y < O. The other structure is the
closed symmetric field structure where the electrons are injected at the top
of the loop (v = 0) down towards the photosphere symmetriéally in both
directions. The electrons which return to « = 0 with »w < 0  are then
reflected back into the volume of positive ¢ to simulate the electrons
crossings from one leg to the other.

Figure 2. The form of the electron flux pitch angle distribution at several depths
in the atmosphere for a narrow injected beam (model 1) as obtained from
the numerical results. Electrons with a pitch a;gle of zero dcgrge; are
streaming along the magnetic field lines downwards towards the photosphére;
those with a pitch angle in excess of 90 degrees are moving upwards,
The depths are scaled with the square of the electron energy as explained in
the text. The inset shows a comparison of the numerically derived values
(points) to those expected from the analytic expressions of equation (18)

(solid lines).

Figure 3. The form of the electron flux energy spectrum at several depths in the
atﬁosphere for model 1. At injection the beam has a flux spectrum of the
form E'5 but lTow energy electrons lose energy by collisions faster than
high energy electrons and are rapidly depleted in number within the atmesphere.
The spectrum then develops a hump which moves to higher energies at greater
2

depths according to E .., = t/8 as shown in the inset.
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Figure 4. A comparison of the numerical results with the analytic expression

of equation (22) at three energies. The upper diagram which is for energies of ;
30 and 70 keV uses the non-relativistic expressions far g which should

be a good approximation at these energies. The lower diagram is for

an electron energy of 750 keV and shows a comparison of the numerical

results with two forms of equation (22), the lower one using the non-
relativistic expression for ¢ and the upper one using "he relativistic
expression for .

Figure 5. The energy spectrum of the spatially integrated electron flux for three
of our models: model 1 (our standard model); model & ( which is the same as
model 1 except that it has a harder injected electron energy spectrum); and
model 9 (which is the most different from model 1 [see Table 1]). According
to the analysis the total electron flux energy spectrum should have a partic-
ularly simple form as given by equation (24) and ‘shown by the solid Vines.

The points represent the numerical results for the three models.

Figure 6. Same as Figure 2 , but for model 6.

Figure 7. The same as Figure 6 but for a beam which is isotropic in pitch
angle at injection (model 7). Though the injected beam is not
a gaussian, the form of the pitch angle spectrum at the two greatest

depths is the same as those for models 1 and €.

Figure Q. The electron energy spectrum at several depths in the atmosphere
for model 9. As can be seen from Table 1, model 9 is most distinct from
model 1 in terms of its parameters, yet, as a comparison with Figure 3 will
show, model 9 retains the same basic form for the energy spectrum as maz;l 1.
This is to be expected as, for both models 1 and 9, the electron beam is

primarily collisionally modified.
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Figure A-1. A schematic respresentation of the three dimensional phase space
of the electron number distribution. The phase space is stratified into
(horizontal) energy planes, with each plane being a grid in pitch angle
and depth within the atmosphere over which the electron number distribution
is evaluated. The electron flux is specified over the positive pitch
angle half of the v = 0 plane surface (shown shaded), the lower boundary
being put at v = « for which the number distribution is taken to be
identically zero. The other half of the v = 0 surface (unshaded) corres-
ponds to electrons with u < 0 at the top of the atmosphere, and these

electrons can be either allowed to leave this region of phase space and
lost from the calculation (open field configuration of Figure 1) or be

reflected back into the region with u > 0 and added to the already specified

injected flux (closed Yoop in Figure 1).

Figure A-2. The results of testing that}part of the code handling the ihter~
action of the electron beam with the converging magnetic field. The solid
Vines show f(u,t) as given by equation (7) with fo(u) = -kIn{1-n2);
the points represent the numerical results. The right hand side of the
diagram is for downward travelling electrons, the left hand side for
reflected electrons travelling upward. The depth parameter, t, is related

to the convergence of the magnetic ficld in the form =* = In{B(x)/B(0)}.

Figure A-3. The results of testing the part of the code describing the energy
degradation only for electrons with pitch angle y = 1.000, » = 0.9563
and y = 0.788. The solid lines represent equation (9) for an injected

electron spectrum ¢O(E,u,r) = (Ez/EM)—6 ; the dots represent the

numerical results.
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Figure A-4. The results of testing that part of the code dealing with the
diffusion of the electron's pitch angle by collisions ¥or an injected
gaussian pitch angle distribution. Note the excellent agreement between
the numerical results (points) and the aralytic expressions (solid lines)

for small pitch angles.

Sl
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