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ABSTRACT

Measurements of detection efficiency, angular resolution, and enerL rasolu-

tion properties of a ga—m-ray telescope used to study celestial gamma rays from

balloon-flight altitudes are described. Nearly monochromatic photons produced at

the rational Bureau of Standards tagged--photon facility were used for the calibra-

tion. Details 'of the photos: beam configuration and properties and results of the

measurements made at photon energies of ?:.1 and 31.1 NeV are presented. Finally,

the data are compared with a Monte Carlo analysis of the instrument properties.
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1. IIiMDVCTION

The determination of the absolute detection efficiency, angular, and energy

resolution of gamma-ray telescopes has long begs a difficult and uncertain

process because of the. lack of suitable sources of high energy monochromatic

photons. Analytic calculations provide a valuable guide for understanding

a telescope's behavior; however, a check of such evaluations by direct measurs-

ments is highly desireable since the complexity of the instruments and the

large variety of possible types of interaction histories that must be considered

in any analysis requires many simplifying approximations whose cummulative

affect is always somewhat uncertain.

Among the various processes that are available for producing gamma rays

suitable for calibration of most gamma-ray telescopes designed for astronomical

studies, only alectron'bremastrahlung and positron annihilation are capable

of yielding photons from 10 MaV to substantially higher energies. Tagged

bremsstrahlung beams were • used to calibrate the OSO-3 high energy datectorl,

and the SAS- 22 ' 3 , and COS-B4 '
5
 gamma-ray telescopes. The main difficulties with

this approach were the relatively large energy dispersion at lower energies and

the small fraction of the total incident bremsstrahlung beam in the appropriate

energy interval for tagging. For example, the calibration beam for COS- BS had

a FWKM dispersion of AE/E-0.60 at 20 MeV and AE/E-0.27 at 100 MeV. The energy

spread resulted primarily from the finite thickness of the target and the size

of tagging counters  required to produce a sufficiently intense photon beam.

New high duty factor, high electron intensity accelerators now coming into

service will make it possible to reduce the problem previously encountered.

A positron annihilation tagged photon method has been reported by Fultz at al.6

but ulth a beam geometry that differs significantly from that used for measure-

mants described here. In the Fultz system, one of the photons is dete--ted in a

plastic detector wrtpped around the positron beam pipe located
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ahead of the annihilation target. This system has the disad •.rantage that photons

in the backward tagging counter have low energies'(.26 to .51 Mev) and must be

detected in a high background of other induced gaaaa rays in this energy region,

while the other photon is nearly forward in the laboratory system and consequently

is badly contaminated with bremsstrahluug photons (e.g., the total bremsstrahlung-

to-annihilation photon ratio in the forward direction is %180 at 20 Mav).*

A method is described here for obtaining the absolute photon detection affi-

ciency and the angular and energy response functions of the Goddard Space Flight

Center (GSFC) digitized spark chamber balloon borne telescope using the NBS

positron annihilation_in-flight facility. The technique utilizes the two coin-

cident photons that are produced from the annihilation of energetic positrons.

In the center-of-mass system the two annihilation photons are emitted back to

back with equal anergids. However, in the laboratory systeem the energies of the

photons depends on the angle between the incident post trorr beam and the photons.

In the method described here; one of the-two annihilation photons, with an energy

of ti 7 MeV, is detected at's fixed angle of 200 with respect to the incident

positron beam. The detection of this photon signals the presence of, or "tags",

the other annihilation photon which is used for the calibration measurement and

which has an energy equal to the positron energy minus 7 MeV.

This paper reports the results of measurements of the absolute detection

efficiency, and,the angular and energy resolution of the GSFC gamma-ray telescope

at 15.1 and 31.1 MeV. Following a brief description of the instrument, the

details of the calibration beam configuration and tagging electronics are presented

and measurements of the tagging efficiency are discussed. The experimental tech-

nique used to reduce tae observed tagged counting rate to absolute efficiency,

and the methods used to determine angular and energy resolution are presented.

Finally, the observed date" are compared with*Monte Carlo calculations for the

instrument.



2. INSTANT DESCRIPTION

The detector is a digitised spark chamber gas"-ray telescope designed to

study celestial gamma rays in the region of energy from 10 to 70 NO, Prior

to the calibration measurements described bar*, the instrument was flown twice

using large (8.7 : 105a3) balloons to study the diffuse gamma-ray emission from

the galactic. center region. A preliminary report on these results, together

with a description of the instrument and a discussion of the data analysis

including calibration information has already been published
708

^ Only a brief

discussion of the instrument !. -i-,cluded here to assist in understanding the

calibration measurements.

A schematic representation of the detector is shown in fig. 1. Two assemblies

of spark chamber modules are separated by a central scintillator plane of thickness

0.63 cm. Each module has an active area of 50 cm x 50 cu --and consists of two

orthogonal wire grids each with 400 wires that are attached to a glass-bonded

mica support frame. The electrical circuit of every wire includes a magnetic

core memory, and these cores together with associated readout electronics are

an integral part of each module.

The upper assembly contains 16 modules spaced by 1.44 cm and interleaved

with 15 aluminum plates-of thickness 0.0183 cm, while the lower assembly contains

4 modules and 3 aluminum plates with a spacing of 5.66 cm. The stack is encased

in a thin aluminum pressure vessel filled with spark gas (99% neon and 1% ethane)

at approximately one atmosphere. A thin window separates the bottom of the

stack from a Cerenkov counter housed in a separete sealed volume along with

system control and data-handling electronics.

The upper portion of the detector is covered by a plastic scintillator dome

averaging 2 cm in thickness. Its purpose is to inhibit triggering of the instru-

ment from charged cosmic radiation. In the upper atmosphere where this instrument
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is designed to operate, the chargad ' particle intensity is 16104 times the intensity

of gamma rays within the energy range of the datecior. This requires that the

antieoincidence doss have a high efficiency to prevent the charged particles

from seriously increasing the instrument dead time.

A gamma ray that enters the instrument may convert to a positron-electron

pair in one of the aluminum plates in the upper assembly. When one or both

of these particles propagate through the remaining telescope, a coincidence

signal between the seintillator and Cerankov counters triggers a high voltage

pulse to the wire planes of each grid, provided that a veto signal from the

anticoincidence. dome is not present. Sparking between orthogonal wire planes

occurs along the residual ion paths left by the particles, and the current pulses

of the spark set the magnetic eores.at the orthogonal coordinates in each module

traversed by the particles. All of the chamber's 16,000 cores then are scanned

and reset sequentially by the readout electronics. The addresses of set cores

are encoded into the data stream, together with other ancillary information.

The readout and Aigh voltage pulser recycle time produces a dead time of approx-

imately 450 msec per event during which further triggers of the instrument

are inhibited.

The solid angle of the instrument is restricted by dividing the sciatillator

and Cerankov planes into a 3 x 3 array of independent equal tiles. Signals

from corresponding vertical pairs are required by the coincidence circuit.

Farther, the Cerenkov counter is used to discriminate against upward-moving

events.

The spark locations for each event, together with a schematic overlay of

the detector elements are plotted on microfilm under computer control. Event

pictures are scanned to select only those with two particle tracks issuing from

a vertex that is located within the spark chamber assembly above the scintillator
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plane. in this way, an unambiguous selection of pair production events is made;
i

and Compton scattering events, nuclear interaction in the module frames, and

interactions in the pressure vessel are eliminated. After the gamma ray converts

to charged particles, the aluminum plates serve as a scattering medium. For

the selected events, analysis is completed by estimating the energy of each

secondary particle using multiple scattering theory. The energy of the incident

gamma ray then is determined and the direct-+on of incidence is found by forming

an energy-weighted bisector of the vertax*in each projected view.

3.	 EXPERIMENTAL MEASUREMENTS

3.1 Beam Configuration

Fig. 2 shows the layout of the calibration beam and-gamma-ray detector.

This arrangement is similar to one used in an experiment already reported 9 and

further details can be found there. The NBS linear accelerator is capable of

producing a positron beam of energies up to 60 MsV. The beam was pulsed at a

rate of 360 Hertz with a pulse width of 3.5 usec. Average currents of up to 5

nA can be obtained, but in practice the beam was restricted to currents of approx

ima:ely 0.1 nA to prevent pulse pileup in the various detectors. The beam

was focused by a quadrupole pair (not shown in fig. 2) to maximise the number of

photons produced in the forward direction.

A five position target ladder permits a variety of target foils to be

selected remotely. Since the annihilation cross section is proportional to

the atomic number Z of the target material while the bremsstrahlung cross section

varies as Z 2, it is ac,vantageous to select a low-Z material for the target.

One position in the ladder contained a Be foil 44.8 mg/cm 2 thick

which was the primary target used for calibration measurements discussed here.

A thinner foil 9.4 mg/cm2 thick was mounted into a second position in the ladder



to study the effect of multiple scattering in the target foil on the tagging

efficiency. A third position in the ladder contained a Ta foil whose thickness

_vas selected to produce the acme bremsstrahlung intensity as the 44.8 mg/cm2 Be

foil. Comparison of count rates with the Be and Ta foils was useful in verifying`

-. the background due to bremsstrahlung. The remaining two positions of the target

-ladder were 1.27 cm and 2.54 cm diameter holes in 0.64 cm brass that were used

for beam alignment and focusing.

Positrons which did not annihilate in the target were magnetically deflected

through 90' into a shielded beam dump that consisted of an aluminum block. The

integrated output of an electrometer connected to the beam dump was used to

monitor the beam current. A parallel plate ionization chamber and a Nal(TO

counter vere also built into the dump system to monitor Vositron currents and to

aid in initial setup cf the beam.

Energetic positrons produce gamma rays primarily either by means

of the bremsstrahlung process e+ + e ♦ e+ + a + 7 or from annihilation e+	-

+ e ♦ 27• For positron annihilation, the incident positron and photons

are co-planar and the photon energy K is related to the positron total

energy E and momentum P by

.& 	 m

1-(P/(£+m)i cos 8

where m is the electron rest energy and 9 is the angle of emission with respect

to the beam. The observation of a photon in a cone of

half angle b91 at El implies that the second photon will occur in a cone L^ at Cl

given by (see reference 9)

n sin el
tan C-'2

P cos 6C 1 - E cos El

t, sin OF
taL 9£2 a

	

	 1	 (3)
E cos W91 - P cos C1



The bass defining collimator shown in fig. 2 consists of a lead slab 15.2 ca
a

In thickness located 99 cm from the target. One otthe two photons (the tagging

photon)was observed at a fixed angle of 200 with respect to the beam, and the

aparture wall defined a cons angle of 0.850 for this photon. As a consequence

of this fired angle and eqs. (2) and (3), the second photon had to be observed

at an angle that depends upon the positron beam energy. To facilitate different

energies, holes whose diameters and angles were determined by aqs. (2) and (3)

were drilled in the collimator slab. Table 1 su moarizes geometry for a variety

of energies. Roles not is use were plugged with brass cylinders.

The tagging photon, at a fi=en angle of 20 0 , varied in energy from 5.5

to 7.4 NO over the range of positron energies for which the collimator.

geometry was designed. The tagging photon was detected br a NaI(Ti) crystal

12.7 cz diameter by 12.7 ca thick, surrounded by lead arA.boratad polyethylene

Shielding. At the position of this crystal, the collimator defined abeam of

5.2 cm diameter which was small compared to the diameter of the detector. With the

44.8 :1g/cm2 Be annihilation target, the integrated bramsstrahlung intensity

was comparable to the annihilation photon intensity in the tagging counter.

The bremsstrahlung component is r continuous spectrum that varies roughly

as C' up to the beam energy and consequently it can be nearly eliminated by
using a differential discriminator to select . only those events with energies

around the annihilation peak. (See reference 9 for details.)



The higher energy tagged photon (photon 1 in fig. 2) traversed the

collimator and entered the gams -ray telescope tUch was situated approxi-
• a

sately 8 . 5 m from the target. At this distance, the beam was 7.2 cm in

diameter at 31 KeV and 13.4 cm in diameter at 15MaV; dimensions which were

small compared to the aperture of the detector. Provisions were included

to translate the telescope remotely in the two orthogonal directions normal

to the bum axis so that local variations in sensitivity within the instru-

=ant could be studied or averaged during calibration measurements. Also, the

instrument could be tilted with res^ -ct to tta iv.a= to examine affects of zenith

angle on the sensitivity and energy and angular resolution functions of the

detsctor.

Among the photons that entered the instrument in the more forward direc-

tion _with respect to the beam axis, the majority (90 to 95% depending on the

range of angles and energies in table 1) were due to the bramsstrahlung back-

ground. (The charged particle backgrounds were rejected by the instrument

anticoincidence scintillator dome.) Those photons observed in coincidence

with the photons in the tagging detector, however, were due to the positron

annihilation process and were the events used in this _ calibration. The

- energy dispersion of the, annihilation photon beam was detern ned by the colli-

mator geometry and was nominally 3%.

A condition on the intensity of the beam was set by limiting the event

rate so that the probability of more than one pair image was sash in any readout

of the instrument. If a is the probability* of a pair conversion within the

detector volume (c ti 5% at 30 Met'), ^ is the total number of gates rays per

bean, burst, T is the image retention time of the detector ( ; 	 1 ;:sec) and

E is the burst duration (b - 3.5 usec), the upper liit condition or. the intensity

set by the instrument characteristics is

NET /6 ^ 0.1	 (4)

Tor the valuaS ineicaLwU &Lovs,	 i^ten! ity of N < I



photons per burst. Annihilation events ware only about 52 of the total flux,

however, and so the limiting annihilation rate was N a 0.3 par burst which

was somr.what loss restrictive than the limit required  to avoid pile-up affects

from the total intensity (annihilation plus bramsstrahlung) in the tagging

counter. In practice, beam current was limited to % 0.12 nA with a corresponding

annihilation intensity of i ti 0.02 photons per burst.

Not all of the tagging events were accompanied by coincidence photons

in the more forward aperture. Multiple scattering of the positrons in the

annihilation foil altered the incident beam directions by rms angular intervals

which were comparable with opening angles subtanded by the holes in the colli-

mator wall. Thus, the precise angular and energy correlation implied by

eqs. (2) and (3) were blurred resulting in a reduction in.the incidence counting

rate. The spatial extent, position and focusing of the Incidaant positron

beam also influenced the coincidence rate due to the geometric constraints

of the collimator. In practice, the beam could be tuned to provide a beam

cross section centered on the target with a diameter-of %1.5 cm. Finally,

bremsstrahlung could produce photons in the tagging detector in the same

energy interval as the annihilation photons. Because of these affects,

it was necessary to measure the fraction of the tagging detector counts

that were accompanied by photons in the forward aperture, hereafter called

the tagging efficiency. For this purpose a second raI(T£) detector diameter 25.4

cz and thickness 25.4 cm long was moved into the forward beam ahead o: the ga=a

ray telescope in fig. 2. Hayward et a1. 9 have described this instr=ent and

the canner in which coincidence measurements between the two ral(TL) counters

were made. In summary, the counting rate of the larger crystal, gated by the

tagging counter and the beam gate, was date Wined and cc •-rected for the smell

fraction (1.1X) of the events that did not interact in the Sal(TL), or because

of the response function of the detector, produced signals too smell to be

tountad (10.12).
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The ratio of the corrected coincidence rate to the singles ra:!!h .kt the telling
i

counter was then the tagging efficiency. Typical^y, this value ranged from

20 to 402 0 depending on the energy, aperture geometry, and alignment and focus

of the beam: During calibration measurements of the gamma-ray telescope, the

tagging efficiency was observed before and after each measurement session, and

their values are summarised in table 2.

3.2 Xlectronics

Fig. 3 shows a schematic of the electronics employed in the calibration

measurements. The upper dotted area describes the logic of the Samoa ray tele-

scope showing how the nine scintillator and Cerenkov counters, as described

earlier, combined to form a trigger signal provided no signal was present in the

anticoincidence dome and when the readout electronics was not actively processing

an earlier event. Such a signal signified a neutral event (*r-ray) had inter-

acted to produce charged secondaries (e+, a-) in the pair-production plates

interleaving the spark chamber modules above the scintillator plane (See fig. 1).

In. order to include the additional requirements of a signal in the tagging detector

and a beam gate, the anticoincidence scintillator dome signal lint was broken

and routed out of the instrument to a coincidence module whose other input

- was derived as shown schematically in the lower dotted box of fig. 3.

4. DATA ANALYSIS AND RESULTS.

Calibration measurements were made on five separate occasions. During

each session, the spark event data were recorded on magnetic tape using the

hard line connection shown in fig. 3. In add;- Ion, the gated tagging detector

counts (T • G) and the instrument trigger cou-its (A • B • C • T • G • Z) along with other

secondary data including the beam dump counting rate, the beam current, and

t
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the instrumeat anticoincidence dome rate were all recorded for each seasureaant

interval. As noted earlier, tagging efficiencies were observed before and after

each session. lurthersore, periodic checks of the bean focus were made wing

the boas-defining aperture in the ladder. The background due to bressstrahlung

vas verified to be negligible through the'use of the Ta target, and the effects

of accidental coincidence were found to be unimportant by introducing loft=

delays in one leg of the coincidence networti.

The spark chamber'event data were analyzed in the same manner as flight

data7 ' 8 . In this procedure, source tapes were used to uAt computer-generated

plots of each orthogonal view of the spark chamber assemoly. The events Were

scanned by a trained observer to select those that clearly shows two secondary

charged particles that originate at.a vertex that was located below the top

deck. This signature unambiguously identified that the y + e + + a interaction

occurred in the spark chamber volume. Some of the actual pair production events

slight have bean rejected by the rigid selection criteria; however, the observed

instrument sensitivity naturally included the selection efficiency. Each

accepted event was "structured ,7,8 on an intaractive computer display terminal.

in this step, spark coordinates of each secondary electron were identified in

both orthogonal view . finally, the energy of the electron-positron pair was

evaluated using multiple scattering theory, 'and the direction of the incident

gamma ray was determined with respect to the chamber coordinates using an energy-

weighted bisector of the two electrons.

Table 2 summarizes the calibration data used to measure the efficiency of

the telescope at 31.1 and 15.1 MeV. As described above; the product of the

tagging efficiency and the tagging detector counts represents the number of

gamma rays from two photon annihilations in the beam target with are incident

on the telescope. Of t:lat total, only a small fraction interact in the telescope

and cause a trigger to occur, and still smaller fraction produce acceptable events
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that meet scanning selection criteria. The instrument's efficiency then was

determined from the ratio of accepted events-ta the product of tagging counts,

tagging efficiency, and live-time fraction. The 'live-time fraction is determined

by

	

L • 1-p(1-rT) 
T	 (R)

with an uncertainty

	

T	 0)
- Here .p•`is the`realdout"time -of the telescope• (450 -msec), r is the counting _rate

in the A-dome (r = 2500 cps during calibration), T is the anticoincidence pulse

width (1.0 usec), and n is the total number of detector counts in time T.

It is evident from table 2 that the majority of the sessions were devoted

to 31.1 MeV at vertical incidence where the technique was developed. However,

the times devoted to each catagory of energy and direction are roughly equal.

Observations that were suspect is a result of poor tuning or high current with

resulting pile-up in the tagging counter have been eliminated from the results

of table 2. The uncertainties expressed in this table are one standard-deviation

- - - ---estimates based on counting statistics only. Other uncertair.c.es , inr example,

= drifts -in -the beam focus and cross sectional area could--produce systematic-biases

as well as additional random error. For these reasons, the average value for-

7 31.1 MeV at 0.0 degrees incidence is a simple average rather than a weighted

m!an. It -should b, noted,. however,, that. the..individual measurements are in

s tatis ticaLagr&ement.

The results summarized in table 2 are plotted in fig. 4, togethe.-.vilh

curves calculated using a Monte Carlc prograr tailored to this spark chamber

telescope. Here, the ordinate is the product of the efficiency and the active

area (2500 cm2) of the instrument. The actual calculated efficiency values

are reduced by a factor of 1.3 in order to Normalize them to the calibration
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data. This factor is not unexpeeted.in view of several simplifying approximations

that tend to overestimate efficiency in the Monti Carlo approach. Some of these

approximations include chamber edge effects where , eseaping particles can trigger

the antieoineidence system, the simple threshold for signals in the sciatillators

and Cerenkov counters, and the event selection effects mentioned above wherein

actual scanning some events may be rejected when their vertex is not clearly

defined in the event pictures. The analytic approach, when anchored with observed

data as in fig. 4, provides ; useful means of extending the information on sensi-

tivity to other angles and energies.

Measures of energy and angle resolving ability of the instrument are obtained

for the same set of events by comparing the observed quantities with the known

energy and direction of the calibration beam. Fig. 5a summarizes the projected-

view rms angular resolution as a function of energy compared with the functions

predicted by the Monte Carlo program. The full three dimensional angular uncer-

tainty is larger than the values of fig. 5a by r. Fig.,5b shows the energy

resolution obtained for the 31.1 MeV data. This distribution is skewed towards

low energies since energy is essentially inversely related to the angular devia-

tion due to multiple scattering which is a symmetric distribution. The width of

this distribution is 36%.of the mean value. The number of events at 15.1 MeV

are too few to provide a meaningful histogram, but they too have a width ti 351

of the mean of 15 MeV. Monte Carlo simulations suggest AE/E ti 35 for all energies

from 15 to 70 MeV. Above 70 MaV, dev-ations of particle trajectories due to

multiple scattering are dominated by uncertainties in track coordiantes due to

the quantized nature of wire grid spark chamber coordinate measuring capabilities.

5. SUMMARY

A tagged photon beam produced from in-flight annihilation of positrons that

was developed at hBS provided a nearly monoenergetic beam of photons useful for

VYll -YrYti..S ..r t.. :tv ► .. in t..e vN riJ rYN`a •.VYI 10 ►V 50 !'!ZY at the lYDJ linear
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accelerator. Measurements of the GSFC balloon-borne gamma-ray telescope pro-
.t

pertiss at 15 and 31 MeV furnished data for verifying and normalizing the

Monte Carlo analysis of the telescope performance.
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FIGURE CAPTIONS

.	 a .

Fig. 1.

	

	 Schematic of the GSFC medium -snorgy digitized spark chamber
gamma ray telescope.

Fig. 2.	 A plan view of the positron and annihilation photon beam
geometry used for the gamma ray telescope calibration
measurements. Detection of photon 2 at a fixed angle of
20 served to tag the coincident photon 1 as the companion
annihilation photon. The collimator allows angle 8, to
be changed to accommodate geometries appropriate for i
range of energies (sea table 1).

Fig. 3.

	

	 Block diagram of the electronics logic and data system used
for the tagged calibration measurements. The upper dashed
box represents the coincidence and event processing electro-
nics integral to the GSFC gamma ray telescope, altered as
noted, to incorporate the tagging logic derived as shown in
the lower dashed box.

Fig. 4.	 The observed area (2500 cm2) x efficiency of the gamma ray
telescope. The uncertainties are one standard deviation
based on counting statistics alone. Solid curves are cal-
culAted Monte Carlo results divided by •1.3 to normalize
them to observed data (see text for details).

Fig. 5.	 Observed resolution functions for the gamma ray telescope.
Fig. 5a shows data and calculated (Monte Carlo) results,
given by the solid curve, for the angular resolution in
a projected plane. Full three dimensional angular uncer-
tainty is larger by a factor r. In fig. 5b the observed
event energies determined by multiple scattering measure-
ments are shown together with the overall mean of 29.6 MeV
given by the dotted line. The spread of this distribution
is ^:35%.
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