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Abstract

The cured shape of unsyiAmetric laminates do not always conform to

the predictions of classical lamination theory. Classical lamination

theory predicts the room-temperature shapes of all uosymmetric laminates

to be a Saddle. 'Experimental observations, however, indicate some

unsymmetrie laminates have cylindrical room-temperature shapes. In

addition, some unsymmotric laminates, exhibit two stable room-tempi-

erature configurations, both cylindrical. This paper presents a theory

which explains these charo,;., teris tics. The theory is based on all, eztea-

sion of classical laminaxion theory which accounts for geometric nonlin-

earities. A Rayleigh-Utz approach to minimizing the total potential

energy is used to obcain quantitative information regarding the room-

temperature shapes of square T300/5208 [0 2 /90,2 1,x, and 
(04/904'T 

graphite-

epoxy laminates. It is shown that, depending on the thickness of the

laminate and the length of the side of the square, the saddle shape

eonfiguration is actually unstable. For values of length and thickness

that render the saddle shape unstable, it is shown that two stable

cylindrical shapes exist. The predictions of the theory are compared

with existing experimental data.



Introduction

Most calculations used to predict the response of laminates to

static, dynamic, or thermal loadings are based on what has become to be

known as classical lamination theory (l)r Ill, C3) . This is a linear

theory and is based on thefollowing major assumptions;

(l) the displacements are continuous throughout the laminate,

(2) the Kirchhoff hypothesis regarding undeformed normals is

assumed to be valid,

(3) the strain-displacement relationship is linear,

(G) the material is linearly ele.atic, and

(5) the through-the-thickness stresses are small in comparison to

the in-plane stresses.

The theory smears the individual lamina properties by integrating

the constitutive equations through the thickness of the laminate. As a

result of this integration, force and moment resultants are defined. In

addition, the well.-known A, D, and D matricies are defined. While this

theory is quite capable of accurately predicting static deflections,

natural vibration frequencies and mode shapes, buckling loads and mode

shapes, and thermal expansion coefficients of laminates, there are

physical situations for which the theory fails to predict the correct

answer. Two situations of note are: the inability of the theory to

predict the response of thicker laminates, and, its inability to explain

the behavior of laminates 'near edges. The former problem has been

'	 studied by several investigators (ai), (5; and satisfactory corrections

to the theory have been obtained. The latter problem is now a classic

and has been studied by many individuals, at least for the case of the
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straight free.-edge. A survey of the edge problem has been put forth in

There appears to be another situation for which classical lami-

nation theory fails to give the correct answer. Specifically, it

appears the theory is unable to correctly predict the room-temperature

shapes of thin unsymmetric laminates. Byer [7] has documented the room-

temperature shapes of several families of unsymmetric laminates and

found that the room-temperature shapes of some thin unsymmetric lami-

nntes are closely approximated by right circular cylinders. In addi-

tion, some thin laminates have two room-temperature cylindrical. shapes.

These results are in contrast to the predictions of the classical ,he-

vary. The classical theory predicts the room-temperature shapes of all

unsymmetric laminates to be a saddle with unique (single-.alu€d) curva=

ture characteristics, Specifically, Hyer found that 100 x 100 mm and

150 x 150 mm [02 /902 ] T `x300/5208 graphite-epoxy laminates cured to

become cylindrical at room temperature. In addition, they exhibited a

snap-through or oil-canning phenomenon. The cylindrical shape could be

snapped into another cylindrical, shape which had the same characteris-

tics as the first shape. However, the second cylinder was oriented

perpendicular to the first cylinder and the curvature of the second

cylinder was of opposite sign. Hyer showed that thicker (say, 8-layer)

100 x 100 tuna unsymmetric laminates conformed to the predictions of the

theory.

To explain the behavior of unsymmetric laminates, it was assumed

that it would be necessary to incorporate a nonlinear effect into clas-

sical lamination theory. The existence of two room-temperature shapes

aw
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i.e. the two cylinders) essentially ruled out a linear extension to the

theory since a linear extension would lead to the prediction of a

unique shape, albiet perhaps not a saddle shape, Furthermore, since the

out-of-plane deflections of the :;.asymmetric laminates were on the order

of many laminate thicknesses, geometric non, nearities were felt to be

an important effect. Thu gs, in an effort to explain the behavior of

unsymmetria laminaten, classical lamination theory was extended to

include geometric nonlinearities through the strain--displacement rela-

tionship. This extension was applied to the analysis of the COn/90naT,

n-1,2,..6 family of laminates. This family was chosen for study because

this class of laminates always exhibits a snap-through phenomenon, there

is data available for different thickness C0 n/90n 1 T laminates, and due.

to some of the Aid , 13W and Di j terms being zero with this family, the

algebra associated with this family of laminates is simpl,ier than the

algebra associated with other families. The analysis of the room-

temperature shapes of this family of laminates is the subject of this

paper. The paper traces the development of the analysis which success-

fully predicts the existence of two room-temperature cylindrical shapes,
and compares the predictions with the available data.

"problem Formulation

Since a problem .formulation which includes geometric nonlinearities

would result in nonlinear governing equations, it was assumed from the

beginning that obtaining a closed-form exact solution for the unsym-

metric laminate problem would be difficult and not really necessary.

The occurence of the cylindrical, shape is so prevalant with thin lami-

nates that it was hypothesised that one is dealing with a fundamental
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phenomenon rather than some higher order effect. Thus any good mpprox-

imato theory would reveal the mechanics of the problem. The pro!nlem is

Idealized as follows. A curd l&;nnate (and uncured prepreg) is flat at

the elevated curing temperature, fig. la. Ao the laminate cools, it is

assumed it is free from any external mechanical forces which produce net

work. it is Assumed the out-of-plane. deflections develop only because

of the differences in thermal expansion properties of the individual

lamina. This idealization ignores the effects of any mechanical con-

straints the autoclaving and vacuum bagging process may exert on the

laminate. Upon cooling, the laminate deforms into one of the shapes

given by figs. lb , c and d. Of these shapes, the one that actually

occurs is the one associated with a minimum of the total potential

energy, The shape scenario given by figs, lb, c and d includes the

saddle shape observed for the thicker laminates and predicted by the

clL,:,6ical theory, and the two possible cylindrical shapt.s observed for

the thinner laminates. It is assumed that in attaining these shapes,

geometric nonlinearities are important.

Since it is assumed external tractions are not important during the

cooling process, the total potential energy, including the effects of

thermal expansion, is given by [$),

W - fWdVol,	 (1)

Vol

i

W 2 Cijkleij ekl $ijeijAT,

where W equals the strain energy density.

constants of the material and the 0 j are

elastic conatants and the coefficients of

erial. Both the elastic properties and t'

(2)

The Cijkl are the elastic

coefficients related to the

thermal expansion of the mat-

ze thermal expansion coeffi-

;kx



5

cients are assumed to be temperature-indepondant. The e ij are the

strains in the material and AT is the temperature change in the material

due to cooling from curing. in eq. (2), since the problem is a plane-

stress formulation, i< and j assumi the values 1 and 2. These values are

not directly related to the principal material directions of the lamina,

but rather, 1 and 2 are associated with the x and y directions of the

laminates (see fig. 1). 'Thus the following relations apply:

2	 ()ell=,
Ox

2
e4)22^` C

O^ 	 ^,.^^,

y

Q	 a2w
ell = ^xa - z !W ► 	 ( )

with

0	 2
PO ax + 2 (aX) 	 (6)

CO ay° + ^ (ate 2>, and	 (7)
y	 Y	 y

x 2 (aye + 8x + (a-X)% Y)).	 (s)

As usual., z-0 is the midplane of the .laminate. The quantity u° is

the laminate midplane displacement in the x-direction, v° is the lami-

nate midplane displacement in the y-direction, and w is the out-of-plane

displacement of the midplane.

»	 Equations (6) - (g ) represent the principal departure from clas-

sical lamination theory and include the usual, approximations associated

with thin-plate theory when employing the nonlinear geometric effects in

'1
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the strain-displacement relations. These approximations assume the

elongation and shearing strains and the squares of the rotations are the

same order of magnitude and this order is small compared to unity (9)

(101.

For a laminate the Gijkl 's can be related to the gij 's, the reduced

stiffiivsses, and the 0i j 's can be related to the &i j ' s and dcx , ay , and

%y, the laminate thermal expansion coefficients in the x-y coordinate

system. Expanding eq. 2 yields

I41 2 Quell + ^)12e11e22 
+ 

2a11e12 2 Q22e22	
(9)

(^n'x + a12o'y)e11AT - (&12"x + ^22ey)e22AT .

(axy-0 for this family of laminates.) The problem has now been reduced

to one of finding the deformation a°, v°, and w as functions e)f x and y

which, through eqs. (2) - (9), minimize eq. (1). As previously men-

tioned, approximate solutions to u°, v°, and w are sought. In seeking

realistic approximate solutions, two basic assumptions are made. ri'rst,

it is assumed that even in attaining the cylindrical shape, the midplane

elongatl.on strains, e* and e o , do not vary much from the linear predic-

tion (i.e. eX and sy independent of x and y). second, it is assumed

that to the order of the nonlinearity considered here, the midplane

shear strains are negligible i.e. C* - 0. Since for [0 n/9011 1 lami--

nates classical, lamination theory predicts C'to be zero and PX and

CO to be constant, these two assumptions could be lumped into one by

saying it is assumed that even in attaining the cylindrical shapes,

magnitude of the midplane strains do not vary much from the predictions

of the classical, theory. However, for rationalizing the choice of the
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functional form of thu approximate solutions, the two issues are`ean-

arated.

it is assumed w(x,y) is of the form

w (x ,Y) " 2 (ax2 * bY2 )
	

(10)

a and b being constants. With this functional form for w, both the

classical lamination solution, a - -b, and alther of the two cylindrical

shapes, fig. lc and d, can be approximated. For fig. lc the solution

can be a # 0, b - 0 while for fig, Id the solution can be a - 0, b 0 0.

Using the kinematic assumptions rcgording the midplane strains, cx,

y, and gxy, the approximate zviuMions for u° and v° are given by

3	 2abxy

V* (x, y) - dy - b9 6 .... ab4 
 
	 (12)

c and d being constants. Using eqs. (ll) and (12) in eqns. (6) - (8)

yields

Ox c - a4Y_	 (13)

a	 d.,abxx	 (14)
Y	 4

e000.	 (15)
XY

Note that if it were not required to have e ° be zero, the third term inxy
each of eqs. (ll) and (12) would not need to be included and then the

second term in eqs. (13) and (14) would not appear. However, with the

(0n/90n ] T fa- ly, it is felt in-plane shear strains are impossible and

this is the prime factor in choosing the functional form for u° and v°.

'It this point a, b, a and d are considered as generalized coordi-
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nates and are to be datermin`d. The problem of finding a minimum for

til ^,otal potential energy, W, becomes a problem of finding solutions to

the values of a, b, c, and d so that the first variation of W is zero,

1.e.

SSW - (^a)da + (ab)6b * ()dc + ()cSd 0	 (16}

This variation is done. with all the assumptions in they Introduction

with the exception of (3).

Calculations Associated with the Solution

The x-y-z coordinate system in fig. 1 is assumed to be situated

such that at the elevated curing temperature the laminate is defined by

the region

-Lx/2 < x < Lx/2

-Ly/2 < y < Ly/2
	

(17)

-h/2 < z < h/2 .

With these limits on the spatial variables and with the various material

properties involved, eq. (1) takes the form

1'x/2 	 fL y / 	 jh/2

W •	
f 

	 W(a,b,c,dvQijsax)ay,AT,x,y,z)dxdydz. (18)

x--T^x/2 y--Ly /2 ZW-h/2

The involved, but stra:.ight-forward, process of substituting eqs. (10)

and (13) - (15) into eqs. (3) - (5), substituting these results into eq.

(9), performing the spatial integrations in eq. (18), and finally taking

the first variation, eq. (16), leads to an equation of the form;

N - f1 (a,b,c,d)6a + f2 (a,b,e,d)db +

f3 (a,b,c,d)6c # f4 (a,b, c,d)cSd = 0 .
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Equation (19) immediately leads to four equations;

f1 (a , b, c, d)	 Clcb + C2ab 2 + 2C3ab - 8llc +

D11a - C4 cb + 20502 - C6db +	
(20)

D 12 -» C7db + C8ab2 + C9b2 +

(L2,/48)NTb + MT + (0 /48) N b w 0

f2(a,b,c,d) - -Clac + C 2 
a 

2 
b + 2C3a2 04 4c + 2C5a2b + D12  -

C6da - C7da + C8a2b + 2C9ab -T 22d -	 (21)

D22  + (L2/48)NTa + (Lx/ 48)NTA  + MTw 0

f3 (a,b,c,d) " AIZa Crab hlla + Al2d - C 4ab - NT - 0 ,	 (22)

f4 (a ' b,c,d) A 12 - C6ab - B22  + A 22 - C 7ab - N 
R 0 .

^	 23)

The constants C1 - C9 are defined in the Appendix and Aij , Bij and Dij

have the familiar definitions associated with laminates. The other

definitions used in eqs. (20) - (23) are,

h/2

INX - AT  (Q ax + Ql2ay)dz '	 (24)
-h/2

h/2
Ny . AT ! (Ql2ax + Q2 2ay)dz ,	 (25)

..

t

11/2

h/2

Mx AT 1 (411ax 
+ a12'y)zdz ,	 (26)

-h/2
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h/2

My • AT j 012% 
+ g22

0t
y) zdz

_h/2

These quantities are immediately recognizable as the effective in-plane

thermal loads, NT and NT, and the effective thermal moments, MT and My.

It should be noted that when Lx-Ly-0, the coefficients C1 through C9 are

all zero and eqs. (20) - (23) reduce to the equations of classical lami-

nation theory.

Solution of Equations, Numerica a. Results

Solutions to eqs. (20) - (23) were obtained by solving eqs. (22) and

(23) for c and d in terms of a and b and substituting these relations

into eqs. (20) and (21). Thus eqs. (20) and (21) become coupled cubic

equations for the quantiCites a and b. These two resulting equations

have the characteristics of being able to be reduced to a single cuL,:c

equation for either a or b. Such an equation would have either one or

three real roots. This reduction approach was not used, however, and

eqs. (20) and (21), in terms of a and b, were solved numerically. Solu-

tions were obtained for several laminates using elastic and thermal

expansion properties of T300/5208 graphite-epoxy. It was assumed the

curing temperature of T300/5208 is 177° C (350° F) and that the lami-

nates are cooled to a room temperature of 21° C (70° F). The material

properties used in the calculations were:

E1 = 181 GPa (26.2 x 10 6 psi)

E2	10.3 GPa (1.49 x 106 psi)

v12 = 0.28

G12 - 7.17 GPa (1.04 x 10 6 psi)

t

(27)
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otL 	 -0,106 x 10-6/° C (-0.059 x 10-6/° )	
E

a2 w, 25.6 x 10"
6
/° a (14.2 x 10-6/° F)

The elastic properties were taken from [2l while the thermal expansion

coefficients were taken from (111. Solutions were obtained for square

laminates (Lx-LyRL) ranging from 0 to 150 no ic,t length on a side. Two

thicknesses were considered, [02/902 1 T and (04 /900 T . Experimental data

were available for some checking of these two thickness cases. Figure 2

shows the characteristics of the predicted room-temperature shapes of

the (02/902 ] T laminate and fig. 3 shows the characteristics for the

thicker laminate. Each figure illustrates the effect of the size of the

Laminate, L, on the room temperature shapes.

Immediately obvious from the figures is the existence of three

possible room-temperature shapes of the laminate if the, lengths of the

sides are greater than some critical. value. For both 1<i^. ,,aates, at L-0

the room-temperature shape is the saddle predicted by classical lamina-

Lion theory, am-b. Th is solution is denoted by point A on figs. 2 and

3. As the sides of the laminate increase in length, say to L=25 mm for

the [02 /902 1 T
 laminate of fig. 2, the shape is still predicted to be a

saddle but one which is shallower than the one predicted by the clas-

sical theory. As the lengths of the sides increase, the saddle shape is

still predicted to exist but it gets shallower and shallower. At some
a

critical length, the solution bifurcates. For the thinner laminate the

critical length is 35 mm while for the thicker laminate the critical

•	 length is 71 mm. The bifurcation point is denoted as B on the figures.

For lengths greater than the critical length, three zoom temperature

shapes, each represented by a different branch on the figures, can
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possibly exist. These branches are denoted as BC, BD, and BE on the

figures. Branch HD represents a continuation of the saddle shape

(a- -b) but the other two branches represent a radical departure from a

saddle shape. Branch BC represents a shape which has a large curvature

in the x-direction and practically no curvature in they-direction, fig.

le. On the other hand, branch BE represents a shape which has a large

curvature in the y-direction and very little curvature in the x-direc-

Lion, fig. 1d. The shapes associated with these latter branches can be

considered cylindrical because as the laminate gets larger, i.e. L

increases, the one curvature asymptotically approaches zero while the

other curvature asymptotically approaches a non-zero constant value. As

seen from the figures, the latter two branches have certain symmetry

characteristics. These symmetry characteristics are such that for a

given length, the values of a and b associated with branch BC are equal,

respectively, to the values of -b and -a associated with branch BE.

Figures 2 and 3 show both laminates exibi,t similar behavior. There

are differences however. The two main differences are that the curva-

tures for the thicker laminate are less than the curvatures for the

thinner laminate, and, the critical length for the thicker laminate is

greater. Thus, compared to a (0 2 /902 1 T laminate, a [0 4 /904 I T can be

made larger before the trl.,phe-shape phenomenon occurs.

Stability of the Predicted Shapes

With multiple solutions to a nonlinear problem, the question arises

as to the stability of the various solutions. If any of the solutions

do not represent a stable solution, those solutions will not be physi-

cally realizable. Equating the first variation of the total potential
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energy to zero yields equilibrium positions of the laminate which either

maximize or minimize the total energy. For stable equilibrium, the

total potential energy must be mimimized. Thus, for stable equilibrium

the second variation of the total potential energy, 6 2W, must be pos-

itive definite.	 Stability theory (123 for this discretized system,

stability of the r+q ,,! -01br um positions for the laminate is possible if

and only if the following matrix of coefficients is positive definite:

afI 	afl	 af1	 afl

Da	 ab	 ac	 ad

af 2 	 af2	 af2	 af2

Da	 ab	 8c	 ad
	

(2s)

af3	 af3	 af3	 af3

as	 D 	 ac	 ad

a f 
4	

a f 
4
	 af4
	

a f 4

as	 ab	 ac	 ad

For a given equilibrium solution at a given length, e.g. the saddle

solution of the triple-valued solution at L=100 mm, each element of the

matrix is evaluated numerically by substituting in the values of a, b,

c, and d corresponding to that solution. If each of the principal

minors of the matrix are positive definite, the matrix is positive

definite and the solution corresponds to a stable equilibrium solution.

Otherwise the solution corresponds to an unstable equilibrium solution.

Using this scheme for the solutions shown in figs. 2 and 3, it was found

that the paddle solutions corresponding to the single-valued solutions,

segments AB in the figures, were stable. On the other hand, the saddle

solutions corresponding to the triple-valued solutions, segments BC in

the figures, were unstable. The other two branches of the triple-

,m^BH'
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valued solutions, segments BD and AP, represent stable solutions.

Physically this means that for square laminates of the [02/902]T

family, if the length of the sides of the laminate exceed 35 mm, the

saddle shape does not exist. Instead, two cylindrically shaped equili-

brium configurations exist. If the laminate is from the thicker

[04 /900 T family, the length of a side must exceed 71 mm before the

saddle-shape equilibruum configuration disappears and dual cylindrical

shapes appear. The ,fact that two stable cylindrical equilibrium solu-

tions are predicted to exist is felt to be significant since it corre-

lates well with the the reported snap-through phenomena associated with

these types of Laminates.

Experimental Results

Shown on fig. 2 are two data points. These points correspond to

the curvatures of cylindrical (0 2 /902 ), laminates as measured by Hyer.

Figure 3 shows one data point. This point corresponds to the curvature

of a [+45 4 /-454 ] T saddle-shaped T300/5208 graphite-epoxy laminate as

measured by Pagano and Hahn (13). The comparison between magnitudes of

the predicted and experimentally measured curvatures is fair. More

importantly, however, the character of the measured shapes, i.e. cylin-

drical or saddle, compares well with the predictions. For the 150 x 150

mm Laminate shown in fig. 2, only the major curvature of 11 laminates

were measured in the original work and the average curvature and the

range are shown here arbitrarily as a y-direction curvature, b. These

curvatures could have just as easily been called an x-direction curva-

ture. In this case the experimental data would have been associated

with the variable a. Also the major curvature from the one 100 x 100 mm
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specimen is also arbitrarily associated with the y- direction curvature.

For the data point in fig. 3, the curvature of the specimen was never

measured directly. The out-of-plane deflection across the diagonals of

a 63.5 mm (2.50 In.) square laminate was measured and the curvature was

computed from this measure. Again this single curvature measurement was

arbitrarily associated with the variable b.

It should be noted in fig. 2 that the x--direction curvature for the

100 x 100 mm laminate was measured to be slightly negative. The theory

predicts this curvature to be slightly positive. The reason for the

descrepancy is not clear. However, it is not felt to be due to mea-

suring error in the experimental determination of curvature. This

points needs further investigation.

Discussion

Despite the lack of large amounts of quantitative experimental data

to compare with the complete range of the numerical predictions, the

results of the work reported here are quite encouraging. First, the

theoretical calculations predict the disappearance of the saddle shape,

a phenomenon observed by many investigators. Second, the snap-through

or appearance of two stable equilbrium states is predicted, anothk+r

phenomenon observed by investigators. Finally, the transition from

stable single-valued saddle solutions to stable cylindrical solutions is

•	 linked with a size effect. The figures show that both the thickness of

the laminate and the length of the side determine whether the cylin-

drical shape exists or whether the saddle shape exists. This investi-

gator, as well as others, has felt a size effect exists in unsymmetric

laminates and the model put forth here lends some credence to that
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notion.

While the predictions presented here exhibit all the important

features associated with unsy ►mnetrie laminates, several comments are in

order before closure. first, the solution presented here is a one-term

Galerkin, or Rayleigh-Ritz, solution. Thus the solution is, as with all

one-term Galerkin solutions, over-constrained. This deficiency can be

remedied by using more terms, and hence more generalized coordinates, in

the assumed functional forms for a°, v°, and w. Modifying the current

approach this way would probably change the numerical values associated

with each solution branch of figs. 2 and 3 but not the main features

of bifurcation and triple-solution. Second, the effects of moisture

absorption, viscoelastic relaxation, or any other mechanism that alters

the intrcrral stress state of the laminate is felt to be i,nnurtant for

laminat«s with lengths near the critical length. Alteration of the

internal stress state most likely influences the numerical value of the

critical length. Thus a laminate sized just above the critical length

could, with time, actually be sized just below the critical length due

to any of the above mentioned time-dependent effects. Related to this

is the fact that unsymmetric laminates sized near their critical length

could exhibit "strange" behavior, requiring practically no force to snap

them from one shape to another. More than likely, these multiple shapes

would be some barely .stable combination of shallow cylinders And shallow

saddles.

Finally, the analysis presented here is based on symmetric curing

(symmetric about the z=0 plane) of the laminate and, as noted above, the

lack of any effects to alter the internal stress state over and above

t
aq,.
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that due to temperature change during the cool-down from curing. The

result is that for lengths greater than the critical length, two sim-

iliar shapes are possible. Each of these shapes has the same possi-

bility of actually occurring. however, any external perturbation which

is unsymmetric with respect to the midplane will cause one or the other

of the two possible cylindrical shapes to be favored. Such a pertur-

bation could be unsymmetric curing (due to unsymmetric cooling) , unsym-

metric moisture aboorbtiono or any other process over which our control

is limited. Thus in reality it may require, for example, more force to

snap the cylinder of fig. le to the cylinder of fig. Id than it does to

make the reverse snap.

I I ' ll, -- _,^__ -1



C1 0
A11L2/48

C3 w B	 L2/48

Cy Al2L2L2/2304

C A22L2/48

C2 . A11 L4/1280

C4 . Al21X/48

C6 - Al2Ly/48

C8 " A22L4/1280

Appendix

09 = 822L2/48

The coefficients A11 , A1V A22 ,
 1111 and B22 have the familiar defini-

tions associated with classical lamination theory.
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Fig. l Laminate Shapes: (a) at the elevated curing temperature, and

at room-temperature. (b) a saddle shape, (c) a cylindrical

shape, (d) another cylindrical shape.
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Fig. 2 Roam-temperaturc shapes of square (0,/90„], 7300/5208 graphite-
G	 4 1

epoxy laminates
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Fig. 3 Room-Temperature shapes of square (04/9041T T300/5208 graphite-

epoxy laminates
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