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SUMMARY

A linear analysis and the results of a nonlinear simulation of a magnetic
bearing suspension system which uses permanent magnet flux biasing are presented.
The magnetic bearing suspension is part of a 4068 N-m-s (3000 1lb-ft-sec) labora-
tory model annular momentum control device (AMCD). 1Included in the simulation
are rigid body rim dynamics, linear and nonlinear axial actuators, linear radial
actuators, axial and radial rim warp, and power supply and power driver current
limits.

INTRODUCTION

The basic concept of the annular momentum control device (AMCD) is that
of a rotating annular rim suspended by noncontacting magnetic bearings and
powered by a noncontacting linear electromagnetic motor. A detailed discussion
of the rationale for the AMCD configuration and its potential applications are
presented in reference 1. Earth-based energy storage applications of the con-
cept are discussed in references 2 to 4.

In order to investigate any potential problems in implementing the AMCD
concept, a laboratory model AMCD was designed and fabricated under contract.
This hardware has been delivered and preliminary tests have been performed.

The appendix presents a brief description of the laboratory model, including

a table of pertinent physical parameters; reference 5 presents a detailed
description. Reference 6 presents results of static and low-speed dynamic
tests, which include spin motor torque characteristics and spin motor and mag-
netic bearing drag losses. Reference 6 also briefly discusses permanent mag-
netic flux biasing and rim warp. This paper presents an analysis of the
laboratory model AMCD magnetic bearing suspension system which addresses the
subject of permanent magnet flux biasing and rim warp in more detail. A digital
computer simulation, which is used in the analysis of the laboratory model, is
described in reference 7. Reference 8 presents the development of an analytical
model of the laboratory model magnetic bearing actuator.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements
and calculations were made in U.S. Customary Units.

[a) matrix defined by equation (10)
FA total axial force acting on AMCD rim produced by axial bearings a,
b, and ¢

Fgr force produced by a given radial bearing



FrarFrRbsFRe forces produced by radial bearings a, b, and c, respectively

Fre force command for a given radial bearing

fR] 'FRZ forces on AMCD rim along axes 1 and 2, respectively

{Fy} = LFXa Fxb FXS’T

FxarFxprFxc forces produced by axial bearings a, b, and c, respectively

Ga1 /Ga2 torques on AMCD rim about axes 1 and 2, respectively

Gpr radial bearing transfer Ffunction

Gp forward loop transfer function of axial bearing loop

GpFr forward loop transfer function of radial bearing loop

dRr gap for a given radial bearing

9drar9Rb’ IR gaps for radial magnetic bearings a, b, and c, respectively

9RaCr9IRbC rIRCC gap commands for radial magnetic bearings a, b, and c,
respectively

gdre gap command for a given radial bearing

{ax} = EXa 9xXb 9Xc_]T

9xar9xbrIxc gaps for axial magnetic bearings a, b, and c, respectively

Ha03 angular momentum stored in rim about spin axis

(1] identity matrix

Ipn moment of inertia of rim about transverse axes

Ins moment of inertia of rim about spin axis

Ka position gain of a given axial bearing control loop

Kp equivalent electromagnet gain of a given magnetic bearing

Kn equivalent permanent magnet stiffness of a given magnetic bearing

Kp rate gain of a given axial bearing control loop

(M] matrix defined by equation (23)

mp mass of rim

rcal rICa2-LCa3 rim translations along axes 1, 2, and 3, respectively
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ECA1CrECA2Cr ECA3C rim translation commands along axes 1, 2, and 3,

respectively
Cm mean radius of rim
s Laplace variable
[7] matrix defined by equation (11)
Wa weight of rim

Oa1+/0a2 rim rotations about axes 1 and 2, respectively

Oa1c/9n2c rim rotation commands about axes 1 and 2, respectively

o] damping ratio of axial bearing loop with ideal magnetic bearing

Pg total system damping ratio

l9) damping ratio of axial bearing loop with permanent magnet flux biasing

és spin rate of rim

wg damped natural frequency (eq. 38)

WpH damped natural fregquency of system high-frequency poles

wpr, damped natural frequency of system low-frequency poles

Wp natural frequency of axial bearing loop with ideal magnetic bearing

Wp natural frequency of axial bearing loop with permanent magnet flux
biasing

Matrix notation:

[ ] rectangular matrix

[ 1] inverse of rectangular matrix

[ 1T transpose of rectangular matrix
{1} column vector

L] row vector

Dots over symbols denote derivatives with respect to time.
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EQUATIONS OF MOTION

The equations of motion used in this paper are for a rigid AMCD rim sus-
pended by magnetic bearings attached to a rigid fixed base. They are described
in detail in reference 9. The location of the magnetic bearing suspension
stations with respect to the AMCD axis system is shown in figure 1.

The axial gaps, in terms of rim rotations and translations, are given by

r_ [N
9xa (/3/2)rq -(1/2)rp 1| [6a
gXb = —(V3—/2)rm —(]/2)rm 1 eAz (1)
R 0 'm ] (Feas

where gyss 9xpr and gygco are the axial gaps for bearing stations a, b, and c,
respectively, rpy 1is the mean radius of the AMCD rim, 60p7 and 6p7 are rota-
tions of the rim about axes 1 and 2, respectively, and rpca3 1is the translation
of the rim along axis 3. The radial gaps in terms of rim translations are

9Ra 1/2 /3/2

rcal
grb) = | 1/2 -{3/2 (2)
r'ca2
9rc -1

where drzs 9rpr and dgRre are the radial gaps for bearing stations
c, respectively, and rcaj] and

axes 1 and 2, respectively.
forces are

a, b, and
rca2 are translations of the AMCD rim along
The torques on the rim due to the axial bearing

Fxa
Ga1 (f3/2) -(\3/2)rp 0
= Fxb (3)
Gao -(1/2)rq -(1/2)rp |
Fxe

where Gpy and Gpo are torques on the rim about axes 1 and 2, respectively,
and Fyaz, Fxpr and Fyg. are the axial forces produced by bearing stations a,
b, and ¢, respectively. The radial forces resolved along axes 1 and 2 are



FRi 1/2 1/2 -1
— = Frb (4)
Fgro /372 -\3/2 0

Fre

where Fgry and Fgry are forces on the rim along axes 1 and 2 and Fgy, Frpr
and Fp., are the radial forces produced by bearing stations a, b, and c,
respectively. The rim rotational and axial translation dynamics are

Ia0a1 = Ga1 - Hpo3%a2 (5a)
Iafa2 = Gaz + Hag30a (5b)
mAYca3 = Fp - Wa (5¢)

where 1Ip is the rim transverse inertia, mp is the rim mass, Hpgz is the

rim angular momentum about axis 3 (the spin axis), and W is the weight of
the rim,

Fp = Fxa + Fxp + Fxc (6)

Finally, the radial translation dynamics become

LCAT Fg
maA (.. - _ (7)
rea?2 Fr2

MAGNETIC BEARING SUSPENSION SYSTEM

The laboratory model AMCD magnetic bearing suspension system provides
active positioning control of the rim in both the akial and radial directions.

The axial and radial suspension systems are independent and are designed
separately.

Axial System

Assuming three magnetic bearing suspension stations equally spaced around
the rim and ideal rim inertia distribution, it will be shown subsequently that
axial motions of the rim in each of the bearing stations are uncoupled at zero
rim speed. That is, axial motion of the rim in one bearing produces no motion
in the other two bearings. Consequently, at zZero momentum, the axial magnetic



bearing control system decouples into three identical independent systems. Thus,
a single design, using a simplified suspended mass model, can be performed for
each system. Applying this decoupled design approach to the laboratory model
AMCD, the closed-loop magnetic bearing control system parameters required to
produce desired system performance at a given rim angular momentum are obtained
by analyses similar to those in reference 1 but with respect to a fixed base.

To illustrate this approach, the axial system characteristic equation will
be developed with the assumption that the magnetic bearing actuators are perfect
(i.e., force output is equal to force command) and that the force commands are
functions of rim position and rate. Under these assumptions, the bearing force
F as a function of bearing gap g at a given bearing station can be written as

F =Gpg = (Kp + Kgrs)g (8)

where Kp 1is a position gain, KR is rate gain, Gg is the forward loop
transfer function, and s the Laplace operator. The rim rotational and axial
translation equations of motion are given in equations (5). Taking the Laplace
transform of these equations and putting them in matrix form results in

F_;ASZ Hp03s 0 N Gal
-Hp03S Ips? 0 a2 = Ga2 (9)
0 0 mA52 rCA3 FA

In order to simplify the terms in the following development, define
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Ips Hpp3s 0

[a] = | -Hpg3s Ips? 0 (10)

0 0 mA?f_J

and
(V3/2) -(1/2)rg 1

(r] = | -(/3/2)rp -(1/2)ry 1 (1)
0 I'm 1



Equation (9) becomes

[ ]{ré{é} { }- [ *(Fg) (12)

The bearing forces are functions of the bearing gap displacements {gx} and
commands {gxc} as given by

<Fx> = GF(<9XC> - <9x)> (13)

where Gy is defined by equation (8). Converting gaps to angles and displace-
ments by using equation (1) results in

[ ]{'-——} GF[T] [T] EEZ\SE} {IERS} (14)
([al + Gl [T]){—-——}— GplT] [T]{ ————— } (15)
LCA3C

The system characteristic equation becomes

or

det|[a] + GF[T]T[T]I =0 (16)
Expanding the determinant and making appropriate substitutions results in

[ﬁAsz + 3(KRs + KAX]<I§A52 + (3/2>rm2(KRs + KAijz + HA03sz> =0 (17)

Making the thin rim assumption

MAL R
Ip = 2 (18)




and setting Hpg3z to zero allows equation (17) to be simplified to

K Kp \3
2, R i S I
<% taa3 S tmps) T (19)

which illustrates the zero-momentum decoupling mentioned earlier. Referring
to equation (17), it can be seen that the translational roots are obtained from

mas2 + 3(Kgs + Kp) = 0

and are unaffected by the system momentum. The natural frequency of a single
station becomes

K
wn = —A_
mA/3

with a damping ratio of

Kr

2 V KA (mA/3)

In order to examine the effects of momentum, the second product term of equa-
tion (17) is expanded to yield

2 2 2 2¢ \2
s4 + 3rm KR 53 + HA03 + 3I.'m KA + § rm KR 52
IA IAZ IA 2 IA
2\2 2g \2
3Im 3 Im“Kp
+ 2(5 K—> KrKps + <§ T ) =0 (20)

With the use of equation (18), equation (20) can be expressed in terms of the
zero-momentum natural frequency and damping ratio of a single station as
follows:
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H
_9_9_§> + 20 + 202)wp2)s2 + dpwy3s +wpd =0 (21)

4 4 3
s dpwn,s? + < T

Using the parameters of the laboratory model AMCD (described in the appendix)
with Kp set at the laboratory model design goal (ref. 5) of 262.7 N/mm

(1500 1b/in.) and assuming rated momentum (4068 N-m-s or 3000 lb-ft-sec), the
damping ratio of the dominant system roots can be plotted against the damping
ratio of a single bearing station at zero momentum as shown in figure 2. The
implication of figure 2 is that if no practical limitations on rate gain exist
then acceptable system performance is possible by designing for independent
station control.

The roots of equation (21), which represent the system poles, have some
interesting characteristics which warrant discussion. At zero momentum there
are, of course, two identical sets of poles. As the rim momentum increases,
the poles form a set of high-frequency and a set of low-frequency complex poles.
One set of poles increases in natural frequency as the rim momentum increases,
and the other set decreases in natural frequency. The damping ratio is the
same for each set of complex poles. For purposes of illustration, consider a
damping ratio o0 of 1.65 which, from figure 2, should result in pg of 0.7
at full speed. With this value of p and the same parameters used to generate
figure 2, the zero-speed poles of equation (21) become

(s + 63.2)2(s + 554.9)2

Figure 3 shows the motion of the low-frequency poles in the upper left quadrant
of the s-plane as rim speed is varied from 0 to 2700 rpm. Figure 4 is a similar
plot for the high~frequency poles. If the poles are complex at zero rim speed,
both sets start at the same location in the s-plane and separate as rim speed
increases.

Radial Design
The radial design problem is somewhat simpler than the axial design since
momentum coupling is not involved. One consideration for the radial system,
however, is rim growth at high speeds. A method of compensating for this in
the laboratory model AMCD is presented in reference 5. As was the case with

the axial system, the radial system will only be discussed in general terms.

The equations of motion for the rim in the radial direction are

o F
m “CA'l - -R'l (22)
rca2 Fro




where FR] and FRZ are defined by equation (4). In order to simplify the
terms in the following development, define

1/2 /372
M = | 1/2 -{37/2 (23)
-1 0

The force command for a given radial bearing Fprc can be written as

Frc = Gpr(9rc - 9R) (24)

where Gpgr is the forward loop transfer function of the radial loop, 9grc is
the radial gap command, and gg is the radial gap. The force produced by a
given bearing becomes

Fr = GprFRC (25)

where Ggr is the radial bearing transfer function. The total bearing forces
become

Fra 9raC ~ 9Ra
FrRb ) = GrrGBR (9IRbC ~ 9Rb (26)
Fre 9rcC ~ 9Rc
The radial forces along axes 1 and 2 become (from eq. (4))
- 9rRaC ~ 9Ra
FRri T
_ = GprGer[M} ~ (9IRbC - 9Rb (27)
FRr2
9RcC ~ 9Rc
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In terms of rim displacements, equation (27) becomes (from eg. (2))

Fry ICAIC ~ ICAl
= GpgCGpglM TIM (28)

§R2 fca2c — tca2

Using equation (22), equation (28) can be written as

T rcal realre
(mas2[1) + GpgGpglM [m){r Ciz} = GpgGpglM T(M) {rcizc (29)

where [I] is the identity matrix. The system characteristics equation becomes
2 T )| =
det |(mas2[1] + GprGpgriMl "[M]) | = 0 (30)

Expansion of this determinant results in

(mas? + 1.5GpRGeR )2 = O (31)

If perfect actuators are assumed (i.e., Ggr = 1) and if Gpgr 1is a function of
position and rate, then the radial system design reduces to that of a second-
order spring mass system.

PRACTICAL CONSIDERATIONS

Initial tests with the laboratory model AMCD have provided insight into
limitations of two hardware design approaches taken. These approaches, which
are also discussed in reference 6, are (1) completely unidirectional layup of
composite materials in the rim and (2) permanent magnet flux biasing for the
bearings. Other hardware characteristics that warrant discussion are dis-
tributed bearing elements and magnetic bearing power driver and power supply
current limits.

Rim Fabrication

The laboratory model AMCD rim was fabricated by wrapping a graphite filament
tape, impregnated with resin, on a special spindle producing 100-percent circum-
ferential fibers (ref. 5). As discussed in reference 6, this makes the rim
susceptible to creep in a direction parallel to the spin axis; this results in
deviations of the rim out of the spin plane which produces an equivalent dis-
turbance input to the axial bearings as the rim spins. 1In the laboratory model
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AMCD, static deviations of the rim have been measured to be a maximum of

1.651 mm (0.065 in.) to a minimum of 0.2032 mm (0.008 in.) depending on how the
rim is stored. These numbers are total deviations (measured from peak to peak)
and were measured midway between suspension stations with the rim suspended.

The rim deviations, or warp, include two high and two low points per rim revolu-
tion which approximate a sine wave disturbance at twice the wheel spin frequency.
The origin of the basic two cycle per revolution shape of the warp is unknown.

By experimenting with different methods of storing the rim, it was found that
rim deviations could be held consistently to within 0.381 mm (0.015 in.) peak

to peak.

Permanent Magnet Flux Biasing

As mentioned earlier, the AMCD laboratory model magnetic bearings utilize
permanent magnet flux biasing. Advantages of this technique include: (1) A
linear relationship between force and current at a given operating point can
be easily obtained; (2) with permanent magnets supplying a gortion of the flux,
the power required to suspend the rim in a 1g (1g = 9.8 m/s< (32.2 ft/sec2))
environment is reduced. This technique does, however, present some problems
from a control system standpoint. In order to discuss these problems, the
linearized mathematical model of the AMCD laboratory model magnetic bearing

actuator, derived in reference 9 (eq. (43)), is incorporated into equation (13)
to yield

{Fx} = KBGF({gXC} - {gx}) + Km{gx} (32)

where the force command is represented as the current to the electromagnet.
Equation (14) then becomes

al S = kpGplT) TIT) [ (===~ ==== T] (7] (=== (33)
rca3 BYF ICA3C rCA Ica3

and the system characteristic equation becomes
get|(al + [TIT(T) (RgGp - Kp)| = O (34)
Expanding the determinant and making appropriate substitutions results in
[mAs2 + 3KgKgs + 3(KBKA - Km)] {E[ASZ + 3/2 rmzKBKRs

+ (3/2) rp? (KBKA - Km)]2 + H1!2\0352> =0 (35)
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Expanding the rotational part results in

2 2
4, 3y 2KpKgs3 , |BA03 | 3rp? (KeKa - Kn) .3 rm?KgKR 2

2\2 2

3 'm 3 Z(KBKA - Km!

+ 2{35 = | KpKr(KgKp - Kp)s + |5 € =0 (36)
( " ) BKR (KpKA = Kp) |2 m Ia

Making the substitutions

7T v v
5 - (XsKa - Km)
n - mA/3

and

KpKRr
2 V(KBKA— Km) (mA/3)

equation (36) can be put in the following form:

2
H
s4 + 4Pigs3 + <-%9§> + 201 + 202)B,2[s2 + 4piy3s + DRt = 0 (37)
A

which is the same form as equation (21). As illustrated by figure 2, if no
practical limit on rate gain exists, then acceptable system performance at full
rim speed can be obtained. 1In the case of the AMCD laboratory model, an upper
limit was imposed by a rim bending mode being driven unstable (ref. 5). The
upper limit on rate gain, from reference 5, was calculated to be 66.3 A-s/m
(20.2 A-sec/ft) with a position gain of 19571 A/m (5965 A/ft). This results

in p = 0.365 (using the value of Ky from ref. (9)) and &, = 157.86 rad/s.
Using the relationship Hpg3 = Ia30g, the curve of figure 5, which is a plot

of the damping ratio of the dominant system poles versus rim speed, can be
generated. As mentioned earlier in the discussion of equation (21), equa-

tion (37) has two sets of complex poles which are equal at zero rim speed. As
the rim spins up, the natural frequency of one set of poles becomes higher than
the zero-speed value and for the other set it becomes lower. Figure 6 is a plot
of the damped natural frequency of the poles of equation (37) versus the rim

13



spin speed. The damping ratio of both sets of poles is the same. The damped
natural frequency, defined as

wg = wy |1 - p2 (38)

is the frequency contributed to total system response by each set of poles and
is the frequency at which the gain peaks for a set of underdamped poles on a
magnitude frequency response plot. (For a discussion of frequency response
methods and transient analysis by transfer function, see ref. 10.) Note from
the figure that the low-frequency, or dominant, poles have a damped natural
frequency wpy, equal to twice the rim speed at approximately 500 rpm and equal
to the rim speed at approximately 830 rpm. The crossover at twice rim speed

is significant because the fundamental frequency of the rim warp is at this
speed. Because of the increased motion of the rim in the bearing gaps at this
resonance point, the linearization of the magnetic bearing actuators is no
longer valid. Some insight, from a linear analysis standpoint, into the
dynamics of large motions of the rim in the bearing gaps can be gained by refer-
ring to figures 7 and 8. These are plots of Kg and Kp versus their corre-
sponding operating points in the bearing gaps. With rate and position gains
fixed at 66.3 A-s/m (20.2 A-sec/ft) and 19571 A/m (5965 A/ft), Bn and P vary
over the same range of operating points as shown in figures 9 and 10.

Distributed Bearing Elements

As described in the appendix, each magnetic bearing station consists of
four magnetic elements top and bottom for the axial suspension and four elements
mounted around the inside of the rim for the radial suspension. The axial posi~-
tion sensor is mounted in the center of the top four bearing elements, and the
radial position sensor is mounted in the center of the radial elements. This
means that the bearing forces are being applied at points displaced from the
point at which position is sensed. Incorporating the bearing element and sensor
positions into equation (32) results in a negligible change in the system charac-
teristic equations. The effects of rim warp and nonlinear bearing characteris-
tics combined with distributed bearing elements produced a dynamic system model
which was best investigated using the digital computer simulation described in

reference 7.
Power Driver and Power Supply Current Limits
The laboratory model AMCD magnetic bearing power drivers (described in
ref. 5) have a voltage limit of +20 V. This voltage limit, in conjunction with

the bearing coil resistance, results in an equivalent current limit of 13.13 A.
In addition, the system power supply has a current limit of 30 A.

14



SIMULATION RESULTS AND DISCUSSION

In order to evaluate the effects of rim warp, permanent magnet flux biasing,
distributed bearing elements, and power driver and power supply current limits,
the digital computer simulation, described in reference 8, was developed. Fig-
ure 11 contains plots of peak-to-peak rim motion in a given axial magnetic bear-
ing (peak-to-peak motion was the same in all stations) versus rim spin speed
for the full nonlinear model with two rim warp amplitudes. The two amplitudes
were 0.9525 mm (0.00375 in.) and 0.1905 mm (0.0075 in.) which produced peak-to-
peak static deviations measured midway between suspension stations of 0.381 mm
(0.01'5 in.) and 0.762 mm (0.030 in.), respectively. Figure 11 also contains
plots of peak system current for the same rim warp amplitudes versus rim spin
speed. For comparison purposes, simulation runs were made using a single point
nonlinear axial bearing model and a single point linear axial bearing model,
each with power driver and power supply current limits removed. The results
are presented in figures 12 and 13.

The main points to be made about these results are: (1) Rim motion is
stable through the resonance excited by the rim warp for all cases. (2) The
rim speed at which resonance occurs, for all cases, is very close to that pre-
dicted by figure 6. (3) The resonance peak, for the rate gain considered, was
approximately twice the warp peak amplitude. (4) The amplitudes and shapes of
the plots for the single point linear and single point nonlinear bearings were
very similar, and these plots showed only slight differences from the plots for
the nonlinear distributed case.

All of this tends to lend considerable confidence in subsequent linear
analyses using the single point linear bearing model. However, the simulation
runs differed from the actual hardware performance in two ways. First, the
laboratory model was unable to attain a stable spin speed in excess of 475 rpm.
Second, the radial current increase, as the rim was spun up, was much lower in
the simulation than in the laboratory model. Recent tests, with a new magnetic
bearing system installed in the laboratory model, have identified a static
imbalance of the rim in the radial direction. Since the radial rim warp was
the only anomaly included in the simulation, it appears likely that the major
increase in current, as rim speed was increased in the laboratory model tests,
was due to the static imbalance.

In an effort to identify possible mechanisms for dynamic instability, simu-
lation runs were made using the full nonlinear model with increasing values of
warp amplitude. The system became unstable at a warp amplitude of 0.3226 mm
(0.0127 in.). The speed at which the instability occurred was approximately
770 rpm. The cause of the instability was a reduction in effective gains due
to power supply and power driver limits being exceeded. It is interesting to
note that the system became dynamically unstable before rim motion became large
enough to trigger the backup bearing system.

In order to investigate the effects of zero-speed single station damping
ratios on system stability, further runs were made using the warp amplitude of
0.3226 mm (0.0127 in.) but with zero-speed single station damping ratios of
0.2 and 0.7. With a damping ratio of 0.2, the speed at which the system went
unstable was reduced to approximately 410 rpm. When the damping ratio was

15



increased to 0.7, the system was stable over the same range even though the
power driver and power supply current limits were exceeded.

To summarize, the results obtained from the simulation were: (1) With rim
warp as the only anomaly included in the radial system, no power supply or power
driver limits were exceeded for axial rim warp values up to 0.1905 mm (0.0075 in.)
peak to peak, and the system exhibited stable operation. Results for distributed
nonlinear, single point nonlinear, and single point linear axial actuators were
similar. (2) By increasing the value of the axial warp amplitude, a mechanism
for dynamic instability for the axial system was identified. This mechanism
was the reduction in effective gains due to power supply and power driver limits
being exceeded. (3) Dynamic instability occurred before rim motion became large
enough to trigger the backup bearing system. (4) Under conditions where dynamic
instability was possible, zero-speed single station damping ratio had a sig-
nificant effect on the speed at which the instability occurred.

CONCLUDING REMARKS

A linear analysis and the results of a nonlinear simulation of a magnetic
bearing suspension system which uses permanent magnet flux biasing has been
presented. The magnetic bearing suspension is part of a 4068 N-m-s
(3000 lb~ft-sec) laboratory model AMCD. 1Included in the simulation were rigid
body rim dynamics, linear and nonlinear axial actuators, linear radial actuators,
axial and radial rim warp, and power supply and power driver current limits.

The linear analysis of the magnetic bearing suspension system for the
laboratory model AMCD indicated that stable system operation can be achieved
by utilizing independent single station axial control. The single station
bearing control system design can be performed using zero rim speed parameters.
System performance at rated rim speed is influenced by the zero-speed single
station damping ratio.

The nonlinear simulation indicated that for rim axial warp amplitudes up
to 0.1905 mm (0.0075 in.) peak to peak and for system operation where power supply
and power driver limits were not exceeded, the linear and nonlinear axial bearing
models gave similar results and the system was stable, as predicted by the linear
analysis. For this warp amplitude range, however, the simulation runs differed
from the actual hardware performance in two ways. First, the laboratory model
was unable to attain a stable spin speed in excess of 475 rpm. Second, the
radial current increase, as the rim was spun up, was much lower in the simu-
lation than in the laboratory model. Recent tests, with a new magnetic bearing
system installed in the laboratory model, have identified a static imbalance
of the rim in the radial direction. Since the radial rim warp was the only
anomaly included in the simulation, it appears likely that the major increase
in radial current, in the laboratory tests, was due to static imbalance.

By increasing the value of the axial rim warp in the simulation, a mech-
anism for dynamic instability was identified. This mechanism was the reduction
in effective axial system gains due to power supply and power driver limits
being exceeded. Dynamic instability occurred before rim motion reached a level
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that would have triggered the backup bearing system. Under conditions where
dynamic instability was possible, zero-speed single station damping ratio was
found to have a significant effect on the speed at which instability occurred.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

January 22, 1981
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APPENDIX

LABORATORY MODEL AMCD

This appendix presents a brief description of the laboratory model AMCD
assembly. A more detailed description of the subsystems are given in refer-
ence 5. The laboratory model, shown in figure Al, consists of a graphite-epoxy
composite rim which is 1.6 m (63 in.) in diameter, weighs 22.5 kg (49.5 1b), and
is designed to rotate at a speed of 2741 rpm. At this speed the rim momentum
is 4068 N-m-s (3000 lb-ft-sec). The rim is suspended by three equally spaced
support stations. Magnetic bearing elements located in the support stations
interact with a low-loss ferrite material, embedded in the rim, to produce
radial and axial suspension forces. Electromagnetic stator elements, also
located at the support stations, push and pull against 72 equally spaced samar-
ium cobalt permanent magnets, embedded in outer edge of the rim, to produce
spin torques. The stator element drive electronics are commutated by signals
from a Hall effect device which senses the position of the magnets.

In order to prevent damage to the rim in the event of a magnetic suspen-
sion failure during spin tests, the AMCD laboratory model includes a backup
bearing system. The backup system includes six bearings (two per suspension
station) which are designed to slow and support the rim. The bearing design
provides hydrostatic air pads for radial control and hydrodynamic air pads for
axial control. The backup and suspension bearing assemblies are attached to
an aluminum baseplate. A vacuum cover (not shown) fits over the bearing-motor-
rim assembly and also attaches to the baseplate. The cover is used for high-

speed spin tests only.

Figure A2 presents a close~up of one of the suspension stations. There
are four magnetic bearing elements, top and bottom, for the axial suspension
and four elements mounted around the inside of the rim for the radial suspen-
sion. The center structure mounts the axial and radial position sensors for
this station. The sensors consist of a variable impedance bridge with an
active and a reference coil. They are sensitive to anything that changes the
inductance of the active coil in the sensor probe such as the close proximity
of a magnetic material. 1In the AMCD rim the ferrite material is sensed. Fig-
ure A3 is a cross—-section drawing taken through a bearing station and shows the
rim, bearings, and spin motor elements in more detail. The magnetic bearing
gaps with the rim centered are 2.54 mm (0.7 in.). Pertinent physical parameters
of the laboratory model AMCD are listed in table Al.
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APPENDIX

TABLE Al
PHYSICAI PARAMETERS OF LABORATORY MODEL AMCD
Spin inertia, Ia3, kg-m2 (slug—ft2) . . . « « « . « « + « « . . . 14.36 (10.6)
Transverse inertia, Ip, kg—m2 (slug-ftz) e e e e e e e s e e e 7.18 (5.3)

Mean radius of rim, rg, m (£E) .+ « « o o 0 0 e e e e e e e e e 0.8 (2.625)
Mass of rim, ma, kg (slugs) . . « « o « « ¢« ¢ o ¢ ¢ o o o oo . . 22.48 (1.54)
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Figure Al.- AMCD laboratory model.
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Figure 1.- Locations of magnetic bearing suspension stations a, b,
with respect to AMCD axes 1, 2, and 3.
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