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SUMMARY
A pair of formulas representing the time-average "finite part" electric
and magnetic stored energies for planar antennas are derived. It is also
shown that the asymptotic reciprocal relationship between quality factor and

relative bandwidth exists for planar antennas.

INTRODUCTION

Several years ago, Rhodes published a pair of formulas which represented
the time-average "physically observable" electricl and magnetic stored
energies for planar antennas [1]. Since his formulas arise through the use
of the complex Poynting Theorem in which the volume integrals of the electric
and magnetic fields appear only as a difference, their uniqueness were
questioned by Borgiotti [2] and Collin [3]. Rhodes defended his formulas
by offering a physical interpretation which supported his mathematical con-
clusions given in his earlier paper [reply following refs. 2,3].

Rhodes derived his formulas by adding and substracting terms (which were
finite) to the magnetic and electric volume integral representations (which
were infinite). These infinities come from the volume integrals of the
field components that do not vanish outside the aperture of a planar antenna [11.
The added and subtracted finite terms were identical to the terms produced
by the remaining field components. The subtracted terms were then grouped
with the volume integrals whose contributions were infinite. When the
electric and magnetic volume integrals were differenced, the grouped terms

cancelled identically, leaving what Rhodes defined as time-average "physically

observable" stored energies.
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The purpose of this paper is to derive expressions which represent time-
average electric and magnetic stored energies for planar antennas by using
the concepts of Hadamard's "finite part" of divergent integrals and Schwartz's
"distribution" functions [4,5]. The time-average stored-energy formulas,
based on these concepts, come directly from the time-average electric and
magnetic volume integrals; the complex Poynting Theorem is not used in their
derivation. These time-average "finite part" stored energies are shown to
give exactly the same reactive power expressions as the ones given in
references [1-3 and 6] (with the proper notation change). But, more importantly,
these "finite part" stored energies are shown to establish the asymptotic
reciprocal relationship between quality factor and relative bandwidth for

planar antennas.

APPROACH TO THE PROBLEM
For definiteness the problem of an aperture in an infinite perfectly
conducting plane, lying in the x-y plane, is considered (see fig. 1).
The tangential electric field components (Ex’Ey) and the normal magnetic
field component (HZ), therefore, vanish outside the aperture on the ground
plane. It is the nonvanishing components (Ez’Hx’Hy) on this ground plane
that causes the contributions to the volume integrals to become infinite.

These divergent integrals are given explicitly as [1]
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and E  are electric fields in the aperture. Equations (1) to (3) do not
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exist in the ordinary sense; however, treating the integrands as distributions
will enable one to attach some meaning to these divergent integrals [4,5].
More will be said later about the treatment of the integrands as distributions
in this section.

The terms of the integrands multiplying the F functions are rewritten

as
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where they are to interpreted as distribution functions because interpretations

as ordinary functions do not exist.

equations (1) to (3) combined with

ordinary sense)
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Substitution of these equations into

volume integrals (which do exist in the
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the total electric and magnetic volume integrals are written, respectively,

as
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The integration on the right hand side of equations (7) and (8) is performed
over the region kx2 + kyz > kz. The first term in each of these equations
1s the exact "physically observable" stored energy relationship given by

Rhodes [11, (eqs. (16), (15)). The last term in these equations diverge



when the integrands are interpreted as ordinary functions but converges when the
concepts of “finite part" and distribution "distribution" are introduced into
the interpretation [4,5]. Interpretation of last integrands in equations (7)
and (8) as ordinary functions, therefore, lead to infinite stored energies in
both electric and magnetic fields. Rhodes' concept of “physically observable"
stored energies is based on the complex Poynting Theorem in which the volume
integrals given in equations (7) and (8) appear only as a difference. It was
through this difference that he was able to arrive at his stored energy pair
(first terms in equations (7) and (8) since the last terms cancelled identically)
[1], (egs. (16), (15)). In essence, therefore, the Tast terms in equation (7)
and (8) have been neglected in the definition of "physically observable"
stored energies. In the next section, the last terms in equations (7) and (8)
are not neglected but redefined in terms of the concept of "finite parts” of
divergent integrals [4,5].

The validity of introducing the concept “finite parts" in divergent
integrals may be justified by recalling the mathematical steps leading up to
the divergent integrals. In determiring the volume integral representations
for the E,, HX, and Hy components, an interchange in the order of integration
was assumed valid. This interchange is guaranteed to be valid only if the
integrand is continuous over the range of integrations and if the integral
is uniformly convergent. Even though E,, Hy, and Hy have integrable
singularities at kx2 + ky2 = k2, they produce discontinuous integrands in
the volume integrals. It is at the points on this circle that causes the
volume integrals of these components to diverge. To include these points in
the existing stored energy integral representations of these components
necessitates special consideration in order to produce meaningful results. The

use of the concept of "finite parts" of divergent integrals allows one to take
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only the finite parts of the integrals and disregard the infinities associated
with ends points of the integrals. Therefore, these points are included

in the evaluation of these divergent integrals but the infinities are moved

by the concept of "finite parts" of divergent integrals. The inclusion of
this circle of values in the other field components contributes nothing to

their energy integrals, and hence, can be included without special attention.

"FINITE PARTS" OF THE DIVERGENT INTEGRALS OF THE
ELECTRIC AND MAGNETIC VOLUME INTEGRALS
In this section the divergent integrals in equations (7) and (8)
(last term in each) are examined in detail from the standpoint of interpreting
the integrands as "distributions" and not as ordinary functions; the latter
interpretation, as noted earlier, leads to divergent integrals.

Let
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which converges due to the properties of Fx [1]. Since the integration is

outside the circle kx2 + ky2 = k2 and the integrand is an even function of
both kX and ky’
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Integration by parts twice yields
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Since the left side of equation (10) converges the right side must converge
as a whole although the 1ndividua] terms may produce divergent parts (first
and second terms); the existence of the first two terms on the right side

has been called by Hadamard the "finite part" of the divergent integral [4,5].

With the notation FP denoting the "finite part,"
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equation (10) becomes
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Therefore, 12 becomes
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The second terms in the divergent parts of equations (7) and (8) are

now examined in terms of their finite parts; let,
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which converges due to the properties of Fx and Fy [1].

Integrating by parts first on ky and then kx’ I3 becomes
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The finite part of the double integral is defined as the terms in the square

brackets:
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The time-average electric and magnetic stored energies are now defined

in terms of finite parts as
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where the indjvidual finite parts are gjven by equations (13) or (14),
(18), or (19) and (24) or (25).
The reactive power, whjch wjll be needed in determining the relative

bandwidth, is given as*

*lote that no new definitjon js needed here because the difference in the
usual volume jntegrals is the same as <Wg>pp - <H >¢p
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which agrees with the representations given in references [1] to [31, and [6].

Q AND RELATIVE BANDWIDTH
The quality factor Q is defined in terms of the finite part stored

as

o & e T Hhypp]
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w = angular resonant frequency (31)

where <we>FP and <W e”Fp 2TE given, respectively, by equations (27) and

(29) and Pr is the radiated power given by [1]
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where I, 1is the free space impedance and Re denotes the real part.
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Substituting equations (27) and (29) into equation (31) Q becomes
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The relative bandwidth is defined as*
BM. = —5— Pr
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w = angular resonant frequency

*Note that no new definition is needed here because the difference in the
usual volume integrals is the same as <we>FP - <wm>FP
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The purpose of this sectjon is to show that at resenance the asymptotic

relationship between Q and relative handwidth is given by

Q= 5 (35)

This will he accomplishad by explicitly taking the freguency derivative

shawn in equatien (34):
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The derivative with respect to k of the double integrals in equation (39)
is determined via the generalized Leibnitz formula [7], with the modifications
that the integrands and their derivatives with respect to k exist as

distributions. Performing the differentiations, therefore, 1/B.W. becomes
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At resonance the derivatives of the F's' are zera and the terms in the square
brackets are precisely the finite parts of integrals defined, respectively,

in equations (11), (16) and (22); therefore,

*For a parallel circuit 1 = V(k) Y(k) and at resonance Y is a minimum;
therefore, the voltage V(k) 1is a maximum, hence, dV/dk| = 0 since

resonance
V(k)« E,, then 3E,/3k| = 0. Therefore, oF ] Jkox jk.y

X X" lresonance 7ﬂ¥- Ir ax(x,y,k) e *e Y dxdy = 0.
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w = angular resonant frequei:,

This equation is identical to equation (33), thus, proving the asymptotic

relationship between them as given by equation (35).

CONCLUSTON
The concepts of Hadamard's “finite part" of divergent integrals and
Schwartz's "distribution" functions are used to derive a pair of formulas
representing the time-average "finite part" electric and magnetic stored
energies for planar antennas. The asymptotic reciprocal relationship
between quality factor and relative bandwidth known to exist in circuits is

shown to be valid for planar antennas.
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