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"APPLICATION OF THE LINE-SPRING MODEL TO A CYLINDRICAL 
- SHELL CONTAINING A CIRCUMFERENTIAL OR AXIAL 

PART-THROUGH CRACK"(*} 

by 

F. Delale and F. Erdogan 
Lehigh University, Bethlehem, PA. 18015 

Abstract 

In this paper the line-spring model developed by Rice and Levy is 
used to obtain an approximate solution for a cylindrical shell contain­
ing a part-through surface crack. It is assumed that the shell con­
tains a circumferential or axial semi-elliptic internal or external 
surface crack and is subjected to a uniform membrane loading or a uni­
form bending moment away from the crack region. To formulate the shell 
problem, a Reissner type theory is used in order to account for the 
effects of the transverse shear deformations. The stress intensity 
factor at the deepest penetration point of the crack is tabulated for 
bending and membrane loading by varying three dimensionless length para­
meters of the problem formed from the shell radius, the shell thickness, 
the crack length, and the crack depth. The upper bounds of the stress 
intensity factors are provided by the results of the elasticity solution 
obtained from the axisymmetric crack problem for the circumferential 
crack, and that found from the plane strain problem for a circular 
ring having a radial crack for the axial crack. Qualitatively the 
line-spring model gives the expected results in comparison with the 
elasticity solutions. The results also compare well with the existing 
finite element solution of the pressurized cylinder containing an inter­
nal semi-elliptic surface crack. 

1. Introduction 

In recent years there has been some renewed interest in the 1ine­
spring model which was developed in [lJ for obtaining an approximate 
solution of a plate containing a part-through surface crack. There are 

(*) This work was supported by the Department of Transportation under 
the contract DOT-RC-82007, by NSF under the Grant CME-78-08737, 
and by NASA-Langley under the Grant NGR 39-007-011. 
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a number of reasons for this. First, the accuracy of the results 
obtained from the model turned out to be better than that shown by the 
early comparisons with the solutions found from the finite element and 
the alternating methods [2-6] (see, for example, [7]). Secondly, the 
technique appears to have the potential for important applications to 
a great variety of shell structures of rather complex geometries with 
a relatively small computational effort. Finally, it can be quite 
useful to study certain aspects of the part-through crack problem in 
the presence of large scale plastic deformations (see, for example, 
the interesting recent work by Parks [7,9], and [8] and [10]). 

In this paper the elastic problem for a relatively thin-walled 
cylinder containing a semi-elliptic part-through crack is considered. 
It is assumed that the crack lies in a plane perpendicular to or con­
taining the axis of the cylinder and may be an external or an internal 
surface crack. In formulating the problem, the cylinder is approxima­
ted by a shallow shell and the effect of transverse shear deformations 
are taken into account [11,12]. The edge-cracked strip results used 
in the line-spring model are obtained from an integral equation solu­
tion given in [13]. 

The stress intensity factor for a part-through axial crack located 
inside the cylinder is given in [14-16] where in [14J and [15] the 
finite element and in [16] the boundary integral equation method is 
used to solve the problem. The results found in this paper are com­
pared with those given in [14] as well as the related plane strain and 
axisymmetric elasticity solutions. The stress intensity factors 
obtained from the elasticity solutions for a ring with a radial crack 
under plane strain conditions and for a cylinder containing an axi­
symmetric circumferential surface crack provide upper bounds for the 
results corresponding to an axial and a circumferential surface crack 
of finite length. 
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2. General Formulation 

The part-through crack geometry for the cylindrical shell under 
consideration is shown in Figure 1. It is assumed that the external loads 
are symmetric with respect to the plane of the crack. Thus~ the only 
nonzero net ligament stress and moment resultants which have a con­
straining effect on the crack surface displacements would be the membrane 
resultant Nll and the moment resultant Mll . The basic idea underlying 
the line-spring model consists of (a) representing the net ,ligament 
stresses by a membrane load N and a bending moment M, and the crack sur­
face displacements by a crack opening 0 and a relative rotation e, all 
referred to the midplane of the shell and continuously distributed along 
the length of the crack, (b) approximating the relationship between 
(N,M) and (o,e) by the corresponding plane strain results obtained from 
the solution of an edge-cracked strip or a ring, and (c) reducing the 
problem to a pair of integral equations for the unknown functions N 
and M or 0 and 8 by using the boundary and the continuity conditions 
for the shell in the plane of the crack. 

In the formulation of the crack problem for the shell, the deriva­
tives of the crack surface displacement and rotation are used as the 
unknown functions which are defined by 

a~ u(+O,y) = Gl(y) , '}y Bx(+O,y} = G2(y) (la,b) 

The notation and the dimensionless quantities used in the formulation 
are given in Figure 1 and in Appendix A. It is shown in [17] that the 
general problem for a symmetrically loaded shell containing a through 
crack may be reduced to the following system of integral equations: 

1 1 
2 

J 
Gl(t} J 
t-y, dt + 

-1 -1 

i klj(y,t)Gj(t)dt = 2TIF1(y), -1 < y < 1, 

1 

l::i.f A4 
-1 

G2 (t) 

t-y 

1 

dt + f 
-1 

2 h f k2j (y,t}Gj (t}dt = 2TI a F2(y), -l<y<l, 
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00 

kll(y,t) = J [2 ~ a2Qj(a) - 1] sina(t-y)da , 
o 

00 

k12 (y,t) = I 2a2 ~ Nj(a)sina(t-y)da 
o 

_ ' 2 fco 4 pjCm~-va2)Qj(a) . 
k2l (y,t) - - IT i (KPj-l)(A2m~-A2la2) slna(t-y}da 

o J 

k22 (y,t) 

subject to 
1 

2 fco 4 p~(mj-va2)N. (a) 
= - I4 [A2 

E (KP~-1)(A2m?-~2a2) 
1 J 2 J 1 o 

- K(1-v)2arl + (1-v2)/2]sina(t-Y)da 

1 

f Gl(y)dy = 0 

-1 

, J G2(y)dy = 0 . 

-1 

(3a-d) 

(4a,b) 

The problem is formulated as a stress disturbance problem in which a 
homogeneous stress solution for the uncracked shell is separated through 
a superposition and it is assumed that the stress and moment resultants 
applied to the crack surfaces are the only external loads. Thus, Fl 
and F2 appearing in (2) are 

F,(y) = Nxx(+O,y) , F2(y) = Mxx(+O,y), -l<y<' (5a,b) 

The parameters r" mj , and Pj' (j=1, ... ,4} are functions of the trans­
form variable a and are given by 

r
l 

= [a2 + 2 1/2 
d l-v)] (6) 

mj = Pj + a2 , Re(mj ) < 0, (j=l , ..• ,4) , (7) 
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and Pl, ... ,P4 are the roots of 

p4 _ KA 4 p3 + (2KA2A2a2 - 2KA4a2 + A4)p2 + (2KA2A 2a2 - KA4a2 
2122212 2 

2 
- KA4a2 + 2A4 - 2A2A2)a2p + (A2_A2) a4 = 0 

1 212 . 2 1 (8) 

From (6-8) it may be shown that for large values of lal we have 

1 1 r1(a) = -Ial [1 + 11 } 2 + O(::-zr)] , 
K -v a a 

(9) 

2 p. p. 1 
mj(a) = -Ial [l + 2;2 - 8~4 + O(~)] , OO} 

where the roots Pj of the characteristic equation (8) are bounded for 
all values of a. 

The functions Qj and Nj , (j=1, ... ,4) which appear in the kernels 
(3) are found from 

where 

Rj(a) = i[Qj(a)f1(a) + Nj (a)f2(a)] , (j = 1, •.• ,4) , 

1 

fk(a) = I Gk(t)eiat dt, (k=1,2) 
-1 

and R1, ..• ,R4 are obtained from 

4 
E mjRj (a) = 0 , 
1 

)( 2 2m'-A2m~+A2a2m~) . 
4 Rj(a A2Pj J 2 J 1 J = -laf

1
(a) , 

E A2m?-A21a2 
1 2 J 

4 R.{a)pJ4mJ. _ i(l-v)K (r2+a2 )f
2

(a) , 
J - 2 2 1 E (KP.-l)(A22m~-A~a2) aA 

1 J 

I, R.(a)PJ~mJ' _ i(l-v) af (a) 
.. J - 2 2 r (KPj-l)(A~mj-Afa2) A 
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The formulation given above refer to a shallow shell containing 
a crack along the principal plane of curvature coinciding with X2X3 
plane (Figure 1). The principal radii of curvature R1 and R2 are 
defined by 

1 a2 Z 1 a2Z 
r=-arz'R

2 
=-~, 

1 1 2 
(14a,b) 

where Z(Xl ,X2) is the distance of the point on the middle surface to 
the tangent plane X1X2. Thus, for the circumferential crack shown in 
Figure la, R2=R and Rl=oo (giving Al=O), and for the axial crack. shown 
in Figure lb Rl=R and R2=oo (giving A2=O). 

Let now 

N11 = Noo ' Mll = Moo (15a,b) 

be the uniform membrane load and the bending moment applied to the 
shell away from the crack region and N(X2) and M(X2) the stress and 
moment resultants which are equivalent to the net ligament stresses in 
-a<X2<a or -l<y<l. The "input" functions which appear in the integral 
equations (2) may then be expressed as 

1 1 Fl(y) = I (-aoo+a) , F2(y) = 6E (-moo+m) , (16a,b) 

for the crack located on the outside and 

1 1 Fl(Y) = I (-aoo+a) , F2(y) = 6E (moo-m) (17a,b) 

for the crack located inside the cy1inder(*) where 

(~ 

_ Noo _ 6Moo 
aoo - 11 ' moo - liT (lBa ,b) 

In both cases the applied moment M is such that the crack tends 
to open under bending of the shell, and the net ligament moment 
is assumed to constrain the crack surface rotation, hence the 
change in sign of F2 in (16) and (17). 
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and 

a(y) 
6M(X2) 6M(ay) N(X2) = Nlay) , m(y) = h

2 
h = 2 (l9a,b) 

The stresses a and m are linearly related to the crack surface dis­
placement a u(+O,y) = 0/2 and rotation Sx(+O,y) = e/2. This relation­
ship may be obtained from the related plane strain problem by expressing 
the rate of change of the potential energy in terms of the crack closure 
energy and the change in gross compliance as follows: 

2 
1-\)2 K2 = 1 [ h ~ + mh .£Q.] 

E 2 a aL 6 aL (20) 

where K is the total mode I stress intensity factor at the crack tip 
and L is the length of the edge crack. If we now let 

K = Ih (a gt + m gb) , (21) 

fran (.20) we obtain 

a(y) = E[Ytt(y)u(+O,y) + Ytb(Y)S/+O,y)] , 

m(y) = 6E[Ybt(y)u(+0,y) + Ybb(Y)Sx(+O,y)] , (22a,b) 

where + and - signs are to be used for the outer and the inner cracks, 
respectively and 

a Ctbb 1 Cttt 
Ytt = h(1-\)2) ~ , Ybb = 36(1-\)2) ~ 

_ 1 Ct tb _ a Ctbt 
Ytb - - 6(1-\)2} -X- ' Ybt - - 6h(1-\)2} -X- ' 

A _ 2 
u - Cttt Ctbb - Cttb (23a-e) 

L 
Ctij = ~ fo gigj dL , (;,j = t,b) • (24) 
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The crack depth L is assumed to be a known function of y (Figure 1). 
Referring to the definitions (l), u and 8x may be expressed as 

y y 

u(+O,y) = f Gl(t)dt , 8x(+0,y} = f G2(t}dt . (25a,b) 
-1 -1 

Substituting from (25) and (22) into (2) the final form of the integral 
equations is found to be 

y y 1 G (t) 
-Ytt{y} f Gl (t}dt + Ytb(y) f G2(t}dt + d-rr I ~ -- dt 

-1 -1 -1 

1 
+ d-rr I [kll{y,t}Gl(t) + k12(y,t}G2(t)]dt = - crE ' -l<y<l , 

-1 

y y 1 () 

I J 
a ( l-v2 ) f G2 t +Ybt(y} Gl(t}dt - Ybb(y} G2(t}dt + 2-rrh).4 -'- .. dt 

-1 -1 -1 

a fl _ -moo + 2-rrh [k21 {y,t)Gl (t} + k22 (y,t}G2{t}]dt - + 6E ' -l<y<l 
-1 

(26a,b) 

where the upper {i.e., -} and the lower (i.e., +) signs are to be used 
for the outer and ·the inner crack, respectively. 

3. Compliance Coefficients 

The functions gt and gb which appear in (21) and which give the 
membrane and bending components of the stress intensity factor are 
obtained from the corresponding plane strain crack geometry. 

For the circumferential crack, the appropriate geometry is that 
of an infinite strip with an edge crack. On the other hand, for the 
axial crack the proper plane strain problem would be that of a ring 
having a radial edge crack. In a recent study the ring problem was 
formulated in terms of a singular integral equation [18]. The results 
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given in [18] show that for cylinders with values of h/R which may be 
considered a "shallow shell", the ring results are reasonably close to 
the strip results. Also for small values of h/R the convergence of 
the numerical solution of the ring problem is not very good. Hence, 
the complete parametrization of the problem for the purpose of obtain­
ing gt and gb (which would be functions of h/R as well as L/h) becomes 
rather complicated: In thi s paper, therefore, the edge-cracked strip 
results will be used for both the axial and the circumferential crack 
prabl em. 

For the strip the functions gt and 9b are obtained from the results 
given in [13] which are valid for 0<L/h<0.8 and may be expressed as 

gt(~) = ~ (1.1216 + 6.5200~2 - 12".3877~4 + 89.0554~6 

- 188.6080~8 + 207.3870~lO - 32.0524~12] , 

gb(~) = Imf (1.1202 - 1.8872~ + 18.0143~2 - 87.3851~3 

+ 241.9124~4 - 319.9402~5 + 168.0105~6) (27a,b) 

where ~ = L(X2)/h = L(ay)/h. From (27) and (24) the functions Uij' 
(i,j=t,b) may be determined as follows: 

= ~2 I.? C(n) ~2n = e-2 \.2 C(n) e-n Utt ~ ~ tt ~ 'Ubb ~ ~ bb ~ , 
n=O n=O 

_ _ ~2 \.8 C(n) e-n 
utb - Ubt - ~ ~ tb ~ . 

n=O 

The coefficients c~j) are given in Table 1. 
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4. Solution for the Cylindrical Shell 

The solution of the prob~em is obtained for a uniform membrane 
loading Noo and for a bending moment Moo applied to the shell away from 
the crack region and for the Poisson's ratio v = 0.3. Even though 
L(X2) = L(ay) describing the crack shape can be any single-valued func­
tion, the problen is solved only for a semi-elliptic surface crack 
given by 

L = Lo/l-(X2/a)2 = Lolf=YL • (29) 

The solution of the integral equations (26) is of the form 

<Pi(t) . 
Gi(t) = 2 ~ , (1=1,2) (-l<t<l) 

(l-t ) 2 

(30) 

where <Pl and <P2 are bounded functions. The functions <Pi may be deter- . 
mined from (26) to any desired degree of accuracy by using the Gauss­
Chebyshev integration procedure [19]. After obtaining <Pl and <P2 the 
unknowns cr andm representing the net ligament stresses may be deter­
mined from (22) by using (23-25), (27) and (28). The stress intensity 
factor K(Y) may then be obtained from (21) and (27). For a Poisson's 
ratio v = 0.3 and for various crack geometries and loading conditions 
the calculated results are shown in Figures 2-7 and Tables 2-11. 
Tables 2-9 give the normalized stress intensity factor at the deepest 
penetration point y=O, L=Lo of a semi-elliptic surface crack in a 
cylindrical shell under uniform membrane loading or bending. The 
normalizing stress intensity factor ko is.the corresponding value 
for the plane strain problem under tension or bending and is given 
by 

k = Ko _ Noo L 
o I - - Ih gt(t;) t; =....Q. 

V'1T lIT h 0' 0 h' 
(31) 

for membrane loading, and 
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I' k = ~ = 6Ma> Ih Lo 
o ;:; h2,- gb(~o)' ~ =--

7T Y7T 0 h 
(32} 

for bending. 
Figures 2 and 3 show the comparison of the shell results with the 

stress intensity factors obtained from the corresponding axisymmetric 
and plane strain problems. As (Ri(Ro) + 1 the shell results approach 
the flat plate solution kp [21] having a part-through semi-elliptic 
crack of the same geometry and relative dimensions. It may be noted 
that, as expected, the shell stress intensity factors are generally 
smaller than the corresponding two-dimensional values. Even though 
the shell results are given for 0.74«Ri/Ro}<1, because of the nature 
of the theory used in the shell analysis, namely the shallow shell 
theory, for (Ri/Ro) < 0.9 the results may not be very accurate. From 
Figure 3 one may also observe that the difference between shell and 
the plane strain results decrease with decreasing crack depth (Lo/h)*. 

Some sample results for the distribution of the stress intensity 
factor along the crack front are given in Tables 10 and 11 and in 
Figures 4-6. The normalization factors ko used in these tables and 
figures are also those given by (31) and (32). The variable ~ used 
in the presentation of these results is the usual parametric angle of 
the ellipse shown in the insert of Figure 4. For small values of ~ 

the stress intensity factors given by the line-spring model are neither 
reliable nor meaningful and therefore are not presented. 

The only shell results which exist in literature and which are 
obtained by using a method other than that of the line-spring are the 
stress intensity factors in a pressurized cylinder containing an 
internal semi-elliptic axial crack [14-16]. Figure 7 shows the com­
parison of the stress intensity factors obtained from the line-spring 
model and those given in [14] which are found by using the finite 
element method. The parameter ~ is again defined by the insert in 

(*1 The plane strain cylinder results given in Figure 3 are obtained 
from [18] and the axisymmetric crack results shown in Figure 2 
are from [20]. 
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Figure 4. The stress intensity factor ratio F shown in Figure 7 is 
defined by 

K , 
F = pRi ;;oTI/Q 

- 1T 0 h 

(33) 

where K = k{; is the stress intensity factor along the crack front, p 
is the internal pressure and Q = [E(k)J2, E being the complete elliptic 
integral of the second kind. The results given in Figure 7 include 
the effect of the pressure p acting on the crack surface. Considering 
the gross approximations involved in the formulation of the problem by 
using the line-spring model, and the fact that the finite element 
results themselves may contain a few percent error,the agreement between 
the two results seems to be quite good. The plane strain results 
given in Figure 3 suggest that the accuracy of the results given by 
the line-spring model could perhaps be improved further if the ring 
rather than the flat plate solution is used to derive the functions 
gt and gb to express the stress intensity factor (see equations (21) 
and (27)). 
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APPENDIX A 

The notation and dimensionless quantities (Fig. 1) 

Xl 
x =-a 

U 
u =_1 

a 

8x = 81' , 

_ Nll 
Nxx - liE ' 

X X3 
y = -1. z =-a ' a 

U2 _ W v =- w--a 

8y = 82 ' 

N 
N =~ 
yy hE' 

a 

N 
N =-R xy hE 

M11 M22 M12 
Mxx = h2E ' Myy = h2E ' Mxy = h2E 

V1 V2 
Vx = hB ' Vy = hB ' 

a4 a4 
A4 = 12{1-v2) ~ , Ai = 12(1-v2) ~ , 
112 

B - 5 E 4 _ 12(1 2) a2 
_ E - '6 2 ( 1 +v) ,A - -v 112"' K - IIT4 

Ul' U2, W: components of the displacement vector, 

81' 82: rotations of the normal, 

N;j' (;,j=1,2): Membrane stress resultants 

M; j' ( ; , j = 1 ,2) : Moment resultants 

V;, (i=1,2): Transverse shear resultants 

R1, R2: Principal radii of curvature 
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(A.7) 



Tab 1e l. Coefficients C~~) which appear in eqs. (28) 
lJ 

n C(n) : C~n) C(n) 
tt tb bb .. 

0 1.9761 1.9735 1.9710 I.. 

1. 11.4870 -2.2166 -4.4277 
2 7.7086 21.6051 34.4952 
3 15.0143 -69.3133 -165.7321 
4 280.1207 196.3000 626.3926 
5 -1099.7200 -406.2608 -2144.4651 
6 3418.9795 644.9350 7043.4169 

7 -7686.9237 -408.9569 -19003.2199 
8 12794.1279 -159.6927 37853.3028 

9 -13185.0403 -988.9879 -52595.4681 

10 7868.2682 4266.5487 48079.2948 , 

11 -1740.2463 -2997 • 1408, -25980.1559 
\ 

6334.2425 12 . 124.1360 -6050.7849 

13 8855.3615 

14 3515.4345 

15 - 117 44. 1116 

16 4727.9784 

17 1695.6087 

18 -845.8958 

r 

... 
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Table 2. Normalized stress intensity factor k/ko at the deepest 
penetration point L=Lo' y=O of an outer semielliptic cir­
cumferential crack in a cYli~er under uniform membrane 
loading Noo; A2 = [12(1-v2 )] 4 a//Rh, v=0.3. 

L = 0.2h L_ = 0.4h 
- -

A2 a=h a=2h a=4h a=8h a=h a=2h a=4h 

0 0.817 0.883 0.930 0.961 0.507 0.627 0.741 
0.5 0.817 0.883 0.930 0.961 0.509 0.628 0.742 
0.75 0.816 0.882 0.930 0.961 0.509 0.628 0.742 
1.0 0.880 0.929 0.960 0.626 0.741 
1.5 0.876 0.926 0.959 0.620 0.736 
2.0 0.922 0.956 0.727 
4.0 0.893 0.939 0.670 
6.0 0.916 
8.0 0.893 

Lo = 0.6h Lo = 0.8h 

0 0.245 0.336 0.451 0.582 0.073 0.104 0.149 
0.5 0.248 0.339 0.454 0.583 0.074 0.106 0.151 
0.75 0.250 0.341 0.455 0.585 0.076 0.107 0.152 
1.0 0.341 0.455 0.585 0.109 0.154 
1.5 0.341 0.453 0.583 0.112 o. 157 
2.0 0.448 0.577 o. 158 
4.0 0.408 0.532 0.158 
6.0 0.476 
8.0 0.428 
-- -
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a=8h 

0.837 
0.837 
0.837 
0.836 
0.833 
0.827 
0.784 
0.728 
0.676 

0.216 
0.219 
0.220 
0.221 
0.223 , 
0.224 
0.214 
0.197 
0.182 



Table 3. Normalized stress intensity factor k/ko at the deepest 
penetration point L=Lo' y=O of an outer semi-elliptic 
circumferential crack in a cylindrical shell under uniform 
bending moment Moo. 

L = 0.2h L_ = 0.4h 
- -

"2 a=h a-2h a=4h a-8h a-h a=2h a=4h 

0 0.804 0.875 0.926 0.959 0.441 0.579 0.710 
0.5 0.804 0.875 0.926 0.959 0.443 0.581 0.712 
0.75 0.803 0.874 0.925 0.958 0.443 0.580 0.711 
1.0 0.872 0.924 0.958 0.578 0.709 
1.5 0.867 0.921 0.956 0.570 0.703 
2.0 0.916 0.953 0.692 
4.0 0.884 0.934 0.621 
6.0 0.909 
8.0 0.883 

Lo = 0.6h Lo = 0.8h 

0 0.132 0.238 0.373 0.526 -0.012 0.017 0.065 
0.5 1 0.135 0.241 0.376 0.529 -0.010 0.019 0.068 
0.75 0.137 0.243 0.377 0.529 -0.008 0.021 0.069 
1.0 0.243 0.377 0.529 0.023 0.071 
1.5 0.242 0.374 0.526 0.027 0.074 
2.0 0.367 0.519 0.075 
4.0 0.313 0.459 0.072 
6.0 0.386 
8.0 0.326 

-- --- L.....-..-- --------- ----- .. ~~ -----
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a=8h 

0.819 
0.819 
0.819 
0.818 
0.814 
0.806 
0.753 
0.686 
0.624 

0.140 
0.143 
0.145 
0.146 
0.148 
0.148 
0.132 
0.108 
0.088 r 

.. 
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Table 4. Normalized stress intensity factor k/ko at the deepest 
penetration point y=0, L=Lo of an inner semi-elliptic 
circumferential surface crack in a cylindrical shell under 
uniform membrane loading Noo • 

L_ = 0.2h L = 0.4h 

:\2 a=h a-2h a-4h a-8h a=h a=2h a=4h 

0 0.817 0.883 0.930 0.961 0.507 0.627 0.741 
0.5 0.810 0.879 0.928 0.960 0.497 0.618 0.735 
0.75 0.804 0.875 0.926 0.959 0.487 0.610 0.729 
1.0 0.870 0.923 0.957 0.600 0.722 
1.5 0.858 0.916 0.953 0.579 0.704 
2.0 0.907 0.948 0.685 
4.0 0.870 0.926 0.613 
6.0 0.902 

8.0 0.881 

Lo = 0.6h Lo = 0.8h 

0 0.245 0.336 0.451 0.582 0.073 0.104 0.149 
0.5 0.240 0.330 0.444 0.576 0.073 O. 103 0.147 
0.75 0.236 0.324 0.438 0.570 0.073 0.102 0.145 
1.0 0.318 0.431 0.563 0.101 0.143 
1.5 0.305 0.414 0.546 0.101 0.140 
2.0 0.398 0.529 0.137 
4.0 0.350 0.467 0.133 
6.0 0.422 
8.0 0.392 

- L. __ 
~ -
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a-8h 

0.837 
0.833 
0.829 
0.824 
0.812 
0.798 
0.739 

. 0.687 

0.646 

0.216 
0.213 
0.210 
0.207 
0.200 
0.194 
0.177 
0.168 
O. 163 



Table 5. Normalized stress intensity factor k/ko at the deepest 
penetration point y=O, L=Lo of an inner semi-elliptic 
circumferential surface crack in a cylindrical shell 
under uniform bending moment Mm. 

L 0.2h L 0.4h 
-

1.2 a=h a=2h a=4h a=8h a=h a=2h a=4h 

0 0.804 0.875 0.926 0.959 0.441 0.579 0.710 
0.5 0.797 0.870 0.923 0.957 0.429 0.569 0.703 
0.75 0.789 0.866 0.921 0.956 0.418 0.559 0.696 
1.0 0.860 0.917 0.954 0.547 0.687 
1.5 0.847 0.909 0.950 0.522 0.666 
2.0 0.900 0.945 0.643 
4.0 0.859 0.920 0.557 
6.0 0.894 
8.0 0.871 

Lo = 0.6h Lo = 0.8h 

0 0.132 0.238 0.373 0.526 -0.012 0.017 0.065 
0.5 O. 125 0.230 0.364 0.518 -0.013 0.015 0.062 
0.75 0.119 0.222 0.356 0.511 -0.013 0.014 0.060 
1.0 0.214 0.347 0.502 0.013 0.057 
1.5 o. 197 0.326 0.481 0.012 0.053 
2.0 0.306 0.460 0.049 
4.0 0.244 0.382 0.042 
6.0 0.327 
8.0 0.289 I ---
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a=8h 

0.819 
0.814 
0.809 
0.803 
0.789 
0.772 
0.702 
0.640 
0.592 

0.140 
0.136 
0.133 
0.129 
0.120 
0.112 
0.089 
0.078 

I 0.070 r 

10 
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Table 6. Normalized stress intensity factor k/ko at the deepest 
penetration point y=O, L=Lo of an outer semi-elliptic 
axial surface crack in a cylindrical shell under uniform 
membrane loading Noo 

L = 0.2h L = 0.4h 

:\1 a=h a=2h a=4h a=8h a=h a=2h a=4h 

0 0.B17 0.883 0.930 0.961 0.507 0.627 0.741 
0.5 0.822 0.886 0.932 0.962 0.518 0.635 0.748 
0.75 0.826 0.888 0.933 0.963 0.527 0.642 0.752 
1.0 0.890 0.934 0.963 0.649 0.757 
1.5 0.894 0.936 0.964 0.663 0.766 
2.0 0.938 0.965 0.773 
4.0 0.935 0.964 0.775 
6.0 0.959 
8.0 0.954 

Lo = 0.6h Lo = 0.8h 

0 0.245 0.336 0.451 0.582 0.073 0.104 0.149 
0.5 0.255 0.346 0.461 0.590 0.076 0.108 o. 154 
0.75 0.264 0.355 0.468 0.597 O.OBO 0.112 0.159 
1.0 0.364 0.477 0.604 0.118 0.165 
1.5 0.384 0.494 0.619 0.130 O. 178 
2.0 0.509 0~631 0.192 
4.0 0.532 0.651 0.225 
6.0 0.641 
8.0 0.622 
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a=Bh 

0.837 
0.841 
0.844 
0.847 
0.853 
0.857 
0.860 
0.848 
0.834 

0.216 
0.223 
0.229 
0.235 
0.250 
0.264 
0.299 
0.303 
0.294 



Table 7. Normalized stress intensity factor k/ko at the deepest 
penetration point y=O, L=Lo of an outer semi-elliptic 
axial surface crack in a cylindrical shell under uniform 
bending moment Moo 

L_ = 0.2h L = 0.4h 
-

1.1 a=h a=2h a=4h a=8h a=h a=2h a=4h 

0 0.804 0.875 0.926 0.959 0.441 0.579 0.710 
0.5 0.810 0.878 0.927 0.960 0.445 0.590 0.718 
0.75 0.814 0.880 0.929 0.960 0.465 0.598 0.723 
1.0 0.883 0.930 0.961 0.606 0.729 
1.5 0.887 0.932 0.962 0.621 0.740 
2.0 0.934 0.963 0.747 
4.0 0.930 0.961 0.747 
6.0 0.956 

8.0 0.951 

Lo = 0.6h Lo = 0.8h 

0 0.132 0.238 0.373 0.526 -0.012 0.017 0.065 
0.5 o. 143 0.250 0.385 0.536 -0.008 0.022 0.072 
0.75 0.154 0.260 0.394 0.544 -0.003 0.027 0.078 
1.0 0.272 0.405 0.553 0.034 0.085 
1.5 0.295 0.425 0.570 0.047 0.100 
2.0 0.442 0.585 o. 115 
4.0 0.464 0.605 0.148 
6.0 0.588 

8.0 0.563 
--
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a=8h 

0.819 
0.823 
0.827 
0.831 
0.837 
0.842 
0.843 
0.828 
0.812 

0.140 
0.148 
0.155 
0.163 
0.180 
0.197 
0.232 
0.231 
0.217 

~----
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Table 8. Normalized stress intensity factor k/ko at the deepest 
penetration point L=Lo, y=O of an inner semi-elliptic 
axial surface crack in a cylindrical shell under uniform 
membrane loading Noo 

L_ = 0.2h L = 0.4h 

"1 a=h a=2h a=4h a=8h a=h a=2h a=4h 

0 0.817 0.883 0.930 0.961 0.507 0.627 0.741 
0.5 0.813 0.880 0.929 0.960. 0.501 0.621 0.737 
0.75 0.810 0.878 0.927 0.960 0.498 0.618 0.734 
1.'0 0.876 0.926 0.959 0.615 0.732 
1.5 0.873 0.924 0.958 0.611 0.728 
2.0 0.922 0.957 0.725 
4.0 0.916 0.953 0.718 
6.0 0.950 
8.0 0.946 

Lo = 0.6h Lo = 0.8h 

0 0.245 0.336 0.451 0.582 0.073 0.104 0.149 
0.5 0.243 0.333 0.447 0.578 0.074 0.104 0.148 
0.75 0.243 0.331 0.445 0.576 0.075 O. 105 0.149 
1.0 0.331 0.443 0.574 0.107 0.150 
1.5 0.333 0.444 0.572 0.112 0.153 
2.0 0.444 0.571 0.158 
4.0 0.451 0.570 0.177 
6.0 0.569 
8.0 0.561 
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a=8h 

0.837 
0.834 
0.832 
0.830 
0.827 
0.825 
0.819 
0.811 
0.802 

0.216 
0.215 
0.215 
0.215 
0.217 
0.221 
0.237 
0.242 
0.241 



Table 9. Normalized stress intensity factor k/ko at the deepest penetration 
point L = Lo, y = 0 of an inner semi-elliptic axial surface crack 
in a cylindrical shell under uniform bending moment Moo. 

L 0.2h L = 0.4h 
-

1.1 a=h a=2h a=4h a=8h a-h a-2h a=4h a=8h 

0 0.804 0.875 0.926 0.959 0.441 0.579 0.710 0.819 
0.5 0.799 0.872 0.924 0.958 0.434 0.573 0.706 0.815 
0.75 0.796 0.869 0.923 0.957 0.430 0.568 0.702 0.813 
1.0 0.867 0.921 0.956 0.565 0.699 0.811 
L5 0.864 0.919 0.955 0.560 0.694 0.807 
2.0 0.917 0.954 0.691 0.805 
4.0 0.911 0.950 0.682 0.797 
6.0 0.946 0.788 
8.0 0.942 0.777 

Lo = 0.6h Lo = 0.8h 

0 O. 132 0.238 0.373 0.526 -0.012 0.017 0.065 0.140 
0.5 O. 128 0.233 0.368 0.521 -0.012 0.017 0.064 0.139 
0.75 0.128 0.231 0.365 0.518 -0.010 0.018 0.064 0.138 
LO 0.230 0.363 0.516 0.019 0.065 0.138 
L5 0.233 0.363 0.513 0.024 0.069 0.141 
2.0 0.363 0.513 0.074 0.145 
4.0 0.369 0.515 0.091 0.161 
6.0 0.507 0.164 
8.0 . 0.495 0.161 

- ---- , - --------
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Table 10. Distribution of the normalized stress intensity 
factor k/ko along the crack front in a cylindrical 
shell containing an inner or outer semi-elliptic 
circumferential surface crack (see insert in 
Fig. 4), A2 = 2, a=4h, Lo=0.4h, v=0.3. 

Outer Crack Inner Crack 

.?P.. Membrane Bending Membrane Bending 
'IT Loading Loading 

1.0 0.727 0.692 0.685 0.643 
0.894 0.719 0.689 0.678 0.641 
0.789 0.694 0.680 0.658 0.637 
0.684 0.655 0.665 0.625 0.628 
0.578 0.604 0.643 0.580 0.615 
0.473 0.544 0.618 0.527 0.597 
0.367 0.477 0.583 0.465 0.569 
0.263 0.406 0.538 0.399 0.529 

Table 11. Distribution of the normalized stress intensity factor 
k/ko along the crack front in a cylindrical shell con­
taining an inner or outer axial semi-elliptic surface 
crack (see insert in Fig. 4), v=0.3. 

Inner Crack Inner Crack Outer Crack 
a=h, .2h a=4h 0.8h a=4 

-
£<k Tension Bending Tension Bending Tension Bending 

'IT 

1.0 0.812 0.799 O. 161 0.078 0.773 0.747 
0.894 0.807 0.797 O. 160 0.082 0.7611 0.743 
0.789 0.792 0.792 0.157 0.094 0.736 0.731 
0.684 0.766 0.782 O. 153 0.109 0.693 0.710 
0.578 0.730 0.765 0.147 0.124 0.637 0.683 
0.473 0.685 0.739 O. 138 0.139 0.572 0.652 
0.367 0.628 0.700 0.126 0.149 0.500 0.612 
0.263 0.559 0.642 0.114 0.154 0.426 0.562 
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Figure 1. 
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The geometry of a circumferential or an axial part­
through surface crack in a cylindrical shell. 
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Comparison of the stress intensity factors obtained from 
the line-spring shell model and the axisymmetric elas­
ticity solution [20J. (a) Stress intensity factor at 
the deepest penetration point of an external semi-elliptic 
circumferential crack in the shell, (b) same as (a) for 
an internal surface crack, (c) elasticity solution for the 
external axisymmetric crack, (d) the internal axisymmetric 
crack. (For Lo=0.6h, ko=4.035 oo~' kp=0.582 ko' 
00: uniform axial stress, a=8h) 
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Figure 3. 
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Comparison of the line-spring shell stress intensity 
factor at the deepest penetration point of an internal 
axial surface crack (dashed lines) with the corresponding 
plane strain ring solution (full lines) [18j~a=8h 
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Figure 4. Variation of the stress intensity factor plong the front 
of a semi-elliptic external circumferential surface 
crack in a cylindrical shell. A2 = 2, a.= 4h, Lo = O.4h. 
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Same as Figure 4, for internal surfa~e crack (A2=2, 
a=4h, Lo=O.4h). 
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Figure 6. Variation of the stress intensity factor for a semi­
elliptic internal axial surface crack in a cylindrical 
shell. 
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Comparison of the line spring shell results (dashed lines) 
with the finite element solution (full lines) [14] for a 
pressurized cylinder containing a semi-elliptic internal 
axial surface crack. 
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