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1.0 Preface

The research supported by NASA Grant NSG1295 had at the outset

three major goals:

1. To develop a general method for determining the response

of a structure to combined base and acoustic random

excitation.

2. To develop parametric relationships to aid in the design

of plates which are subjected to random force or random

base excitation.

3. To develop a method to identity the individual acoustic

and base inputs'to a structure wit;1 only a limited number

of measurement channels, when both types of excitation

act simultaneously.

A discrete method of analysis was chosen early in this study

because it provided the flexibility necessary to analyze any type

of structure that might be encountered. Study of both the response

and the input identification problems led to the development of a

computer program which requires as input only the modal parameters

of the structure (natural frequencies, mode shapes, and damning

ratius)-and appropriate excitation or response spectra. This

approach is ideally suited to be coupled with a finite element

program.

This study included both analytical and experimental work,

and it is useful to emphasize the inherent contrast between these

two approaches. In the theory-based analytical phase of this

study, questions were first posed and then answered by the analyst,

1
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whereas in the experimental phase, the questions were posed by the

experimental data itself. The experimenter was then challenged to

find answers to questions which were often unanticipated. The re-

porting of this study has fallen naturally into two parts, one

which describes the theory based approach and the other which des-

cribes the experimental reality.
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2.0 Symbol List

English

a	 Fourier transformed input
acceleration vector

A	 cross section area of
acoustic transmission line

c	 speed of sound in I.ir

C	 damping matrix

Cfa coincident component of force
and base acceleration cross
power spectrum

D	 spatial distribution matrix

E	 elastic modulus

f	 force vector

g	 acceleration of gravity

G	 power spectral density (PSD)

H	 transfer function matrix

I	 identity matrix

L	 length of acoustic trans-
mission line

m	 mass; also modal degree of
freedom index

M	 mass matrix

n	 physical degree of freedom
index

N(w) Fourier spectrum of noise
source

p	 pressure; also transfer
function pole

P(s) characteristic function for
transfer function poles

q	 modal displacement vector

Q	 generalized force; also
quality factor of resonance

Qfa quadrature component of force
and base acceleration cross
power spectrum

S	 Laplace transform variable

t	 time; also plate thickness

Greek

S	 frequency ratio w/w ; also
plate aspect ratio n

2y 	
coherence ratio

r	 modal participation factor

A(s) characteristic function

damping ratio

n	 material damping loss factor

V	 Poisson's ratio

&(x,t)displacement function

P	 mass density

W	 cross spectrum phase angle

W	 frequency, radians/sec.

wn	 natural frequency

Subscripts

a	 base acceleration input process

f	 force input process

14	 material

p	 plate

r	 response variable

s	 specific; also shaker

y	 plate deflection response process

Superscripts

*	 complex conjugate

•	 time differentiation

( }	 (overbar) implies a modal vector
or matrix

3



English (continued)

U	 modal transformation matrix

W(w) Fourier spectrum of output
signal

x	 axial coordinate for acoustic
transmission line

X(w) Fourier spectrum of input
signal

y	 plate deflection response
vec nor

Y	 Fourier spectrum of response
signal

z	 transfer function zero

Z(s) characteristic function for
transfer function zeros

t
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4.0 Part I: Theory-Based Models for Structural Response

t
and Input identification

4.1 Introduction to Part I

The estimation of the vibration response of a continuous

structure to a spatially distributed wide-band random excitation

combines essentially two problems: the identification of the

dynamic properties of the structure and the handling of the sta-

tistics of the multiple excitation and response variables. The

inherent computational complexity of dealing with many variables

which are both dynamically and statistically coupled often means

that for real engineering structures the level of detail is

limited by cost.

At present solutions to the response problem use either the

classic transfer function approach or the non-classical method

of statistical energy analysis (SEA), I Broadly speaking, classi-

cal methods which use continuous system models  offer excellent

spatial and frequency resolution but are limited to highly idealized

structures with simplified boundary conditions. Classical methods

based nn finite system models can handle more realistic engineering

structures but the cost limit on the number of degrees of freedom

in turn limits spatial resolution and frequency bandwidth.

Finally, the SEA method offers wide-band frequency estimates at

the expense of reduced spatial detail caused by the crude averaging

of the spatial modes of response.

This study uses the classical approach on a finite system

model. It is assumed treat the system is known in terms of its

natural modes znd frequencies from either existing analytical solutions or

8



from a finite element program. Dampit ►g ratio assumptions are

made separately based on ex-crimentai data. An efficient compu-

tational strateny called Pro gram RAND is then developed to

perform both dynamic response an d input identification calcula-

tions for a multi-degree-of-free^ci.; (MDOF) structure subjected

to statistically coupled pressure and base excitation.

4.2 Development of Program RAND

4.2.1 Analysis

The analysis proceeds in two steps. First, it is necessary

tc perform a. signal anal:'sis, i.e., to trace the ef';, ct of the

input vector through the structure to the resulting output res-

ponse vector. Next, a stjO stical analysis is made to determine

the spice and time correlations between the input and ,output

vectors.

Consider first the case of a continuous structure excited

by a force process which is random +y distributed in space and

;,iine. The structur'L is divided into n di:,crete elements. Ar

n-dimensional force vector • f(t) causes a displacement response

described by an rl-dimensional di'SpIaCemCIlt veczU ► ' y(t).	 In the

usual fashi;rn the nsudal t ► 'an`,fuMnlatiw ►

is used to tra9?sfoiio ttlu orioinil Qover'rlirlc, 	 difierential

C'4Uation into the U(cLCUlJlLid i;100,11 tc:; Lid tivn

U	

jiq 4- Cq 4 ,
ii

	

i	
_ 'r

46h	 Uere 	 i s the Ulldad6;Jedl vIija l Wdt)'? A, 1, C,	 01 5,1,loYlu S wuu l

,Jr'u^^er'y VL'tli roes, 11k! the r-.z±^^i ; %1'Cu VL-Ctut' Q = TJ 	 c U01 a

t ► 'd1isf0rr1dt1On CJvit t l GVIIL`Ncver C 'ii	 to	 Or M; tilt•

(4-1)

n . s
(4 — i. 1
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transformation is approximately valid for non-proportional damping

whenever-the damping is light.

For reasons of economy of computation it is desirable to deal

with a reduced number of modal equations and modal coordinates

equal to m, where m < n. Such a reduction is warranted, for ins-

tance, whenever a mode does not significantly contribute energy

to the ovt ., response. So the matrices M, C, and K are of order

(m x m), and U is of order (n x m).

Since each mode is governed by a scalar equivalent to the

matrix equation (4-2), a modal transfer function can be obtained by

Fourier transformation for each modal coordinate. For instance,

for the p th mode

qp = 
Q S IP HP(W)

	
(4-3)

where Qs'p = 
QP

/MP is the specific modal force. When all the mode

response amplitudes are known the modal response vector q must be

transformed back to the physical space vector y by the transforma-

tion (4-1).

All of the preceding signal operations that are required to

relate the vectors f and y can be summarized in the signal vector

block diagram shown in Figure 4-1.

f	
__-
	 Y

UHM U

Fig. 4-1	 Forcc. input Transfer Hatr•ix
i
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This diagram uses the convention that the output vector is obtained

by premultiplying the input vector by the transfer matrix. The

matrix RI(w) is a diagonal modal transfer function matrix consisting

of the individual transfer functions H p (w). The physical-space

transfer matrix H  is seen to be related to the modal-space transfer

matrix by the equation

H  = U H M UT 	(4-4)

Next the statistical relations which correspond to the signal

vector block diagram can be determined by Fourier transforming

related time domain correlation matrices. For instance, to the

real coordinate transformation y = Uq there corresponds the fre-

quency domain power spectrum relation

Gy (w) = UGq (w) UT 	(4-5)

and where the elements of G refer to the one-sided spectra cus-

tomarily used in engineering calculations, and the sin g le subscripts

y and q refer to the y and q vector processes, respectively. This

simple notation has been used rather than the more customary

double subscript notation in order to avoid confusion later when

more than one input vector process contribute to the overall res-

ponse. For the complex transformation q = H(w) Q s the statistical

relation is

Gg(w) = 11	
G 

(w) HT (W)	 (4-6)

s

where the (*) denotes the complex conjugate. All the other trans-

fo rnrations implied by the matrix products in equation (4-4) are

real, and they will each have a power spectrum relation similar

to equation (4-5) . The over^il l power spectrur,i relation bet,ti , een the

11



input vector process f and the output process vector % is then
*= 1	 -1

Gy = U H M U'GfU M H UT 	(4-7)

where the indication of the dependence on the freq ,jency w has been

dropped and the substitutions M -T = M-1 and HT = N have been

made. From an operational point of view the response spectrum

matrix in equation (4-7) is obtained in the same manner as in equa-

tion (4-6): that is, by premultiplying the input spectrum matrix

by the conjugate transfer matrix H  and post-multiplying by the

transposed transfer matrix 11 TT.

The above procedure of first developing the vector signal

block diagram and then drawing out the corresponding power rela-

tions provides a powerful and convenient operational tool for

more complicated processes. As a second example, consider the

response of a continuous :structure to a base input which is uniform

spatially but random in time. The vector signal relation between

a, the Fourier transform of the base input acceleration vector

x(t),and the Fourier transformed absolute displacement response

vector Y has the block diagram representation shown in Figure 4-2.

Taken as a whole, the transformations in Figure 4-2 constitute

-U (H + - - I) M U T M	 Y

w2

Fig. 4-2	 Case In ,ut Transfer Matrix
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the physical-space transfer matrix

-1

N 1 	U(H + ^ I) M 	 u 
T 
M	 (4-8)

W

to draw out the power relations for this process the same opera-

tional approach used in the previous example is followed:

-I	 -1
Gy	 LI(R* + 1

	
I) M	 U T M Ga M LI M (II + 1 ^ I )LIT 	(4-9)

w	 w^

whore again matrix transposition has been omitted for the syr ►metric
-1

matrices M, M	 N.

As a third exawplc, the previous two examples are combined

^,y asS.kvinq that the farce excitation and base excitation processes

act simultaneously oil 	 structure, and further, that they are

stdtiSti;3ll -V coupled. The vector signal block diagram for this

case is shown in figure 4-3.

Fill. 4-3 Combined Input Vector Processes

To draw cut the power relations for the process tihown in

f i q ure 4-? the savie operational approach i' t-ol lowed a^ wi th the

previou s e,,^m; les.	 There is. hoWever, a new flock di,101, 3m oPeI'd-

0011 of Sr1n111111g StAt j StiCall .V Cou p led vectors	 roilkilres .l
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corresponding new power relation. This relation can be written in

the following partitioned matrix form:

T
*	 ;	 T

	

G	 H 	 --f-- Gfa- --(4-10)

	

y	 -Ha	 Gaf Ga	-Ha

where Gfa is the cross power spectral density matrix which des-

cribes the statistical coupling between the f and a input pro-

cesses. The compact relation of equation (4-10) is more easily

interpreted in the expanded form:

Gy . = Hf*Gf H f T - H
f* Gfa 

H a T - H
a* Gaf 

H f T + Ha* G  H a T	 (4-11)

The first term on the right-hand side of equation (4-11) is given by

equation (4-7); the last term is given by equation (4-9). Each of the

middle two terms, because they represent cross power terms between

two separate vector processes, are non-symmetr y : matrices. They

are, however, conjugate transpozcs of each other, so that their

sum yields a matrix with the Hermitian symmetry required for Gy.

As a final example, consider the input identification problem
f

associated with the system shown in Figure 4-3. It is assumed that

t
the output process and only one of the two statistically coupled

input processes are known. For example, imagine that the signal

vectors y(t) and f(t) are known and are available for statistical

processing but that the spectral matrices G a and Gfa associated

with the base input process are not known. If the cross process

14



matrix Gfa were known, it would in principle be possible to rearrange

equation (4-11) and to reconstruct the unknown matrix Ga . As an alter-

native, since y(t) and f(t) are available, it is possible to compute

another cross power matrix Gfy . The additional information provided

by Gfy makes possible the deduction of both G a and Gfa . We consider

here only the reconstruction of G a . The strategy for this approach

is based on the following partitioned cross power relation for the

system shown in Figure 4-3:

T

GfY = _ f_ Gfa	 HfT	
(4-12)

ay	 af; Ga	 -Ha

The upper matrix equation of equation (4-12) is

Gfy = G  HfT - Gfa 
HaT	

(4-13)

Premultiply equation (4-13) by Hf and substitute into equation (4-11)

to obtain

Ha* G  H a T = G  + Hf* G  HfT - (Hf* Gfy + Gyf HfT )	 (4-14)

This equation can be used to determine G  in terms of spectrum

matrices derivable from the input processes f(t) and the output

process y(t).

In a similar fashion an equation for 
Hf* 

Sf H f T can be

obtained:

Hf* G  H fT = G  + Ha * G  HaT + (Ha * Gay Gya HaT )	 (4-15)

This equation can be used to determine Gf in terms of spectrum

matrices derivable from the input process x and the output process y.

15



Response estimation by the use of equation (4-11) and input

identification by the use of equations (4-14) and (4-15) appears

'	 deceptively simple. In fact, the amount of computation and

measurement effort implied by these equations can be quite large.

The questions of computational strategy and efficiency are taken

up in the next section.

4.2.2 Computational Strategies and Efficiency:

Program RAND is designed to efficiently compute power

spectral density (PSD) and intearated power spectral density

(IPSD) for two modes of operation: a forward (i.e., response)

analysis and a backward (i.e., input identification) analysis.

A basic, program strategy is that the major portion of the compu-

tations are performed in a reduced modal space. The modal space

is determined by examining the modal power participation

matrices (described below) and selecting only those modes which

actively generate significant response power. In general, the

number of active modes m is less than the number of original

physical degrees of freedom n, and the original system equations

are reduced to a smaller and simpler uncoupled set.

Further program efficiency is obtained by segregating the

real and imaginary parts of complex matrices in such a way that

complex matrix multiplication is replaced by a real dyadic

operation called an overlay multiplication. Another program

eff4-iency is provided which allows the user to spatially window

a specific node in the system and to determine the power spectrum

or integrated power spectrum for that node alone in all forward

or backward modes of operation, thereby reducing computation as

well as printout.

16



4.2.3 tlethod of Response Computation;

Equation (4-11) can be recast into a compact notation as

Gr = Gr/f + Gr/a - Gr/fa
	

(4-i6)

where the "r" subscript implies the response variable which can

be displacement (y), velocity (, ), and acceleration (y). The "/"

symbol denotes "the response with respect to"; f implies force

input, a the acceleration input, and fa, the cross power between

the force and base inputs. Therefore, Gr/f is the partial res-

ponse PSD due to a force input only; Gr/a is the partial response

PSD for base acceleration only, and Gr/fa is the partial response

due to the cross PSD between the two random input processes. G 

is the total response power and could be written as
	 ^a

:I

G  = G r/f, a, fa
	 (4-17)

As indicated earlier, the majority of the operations are performed

in modal space. The transformation from modal space to the physical

domain is performed by the operation

G r, = uGruT 	(4-18)

where the tsar over the response PSD denotes a modal quantity.

Therefore, equation (4-16) can be reformed into a nodal expression

as

Gr, - G
r/f + Ur/a - ^ /fa

	
(4-19)

The input power spectra are assumed to be separable in time and

space; therefore, the partial power spectra become

G = G 	 D
	

(4-20)

17



where D is a matrix which describes the spatial correlation between

the response degrees of freedom or the two random input processes.

The modal partial PSO in equation (4-19) can be written as

*6r/t = Gf(w) Rf* Df AfT
	

(4-21)

*—
^ /a = Ga (w) Ha Da a T
	

(4-22)

-6r/fa = ( Cfa(w) 
+ JQfa (w)) (y (lyfa + 151a) HT )	 (4-23)

where C fa and Qfa are the coincident and quadrature components of

the cross PSD of the force and base inputs, H f = H is the modal

transfer function relating modal force to displacement, and

Ha = 11 + (1/w 2 ) I is the base acceleration modal transfer function.

The D matrices are modal power participation matrices which

are used in the response analysis to identify modes which actively

generate significant power. The modal distribution matrices can

be expressed as

-1 T	 -1
Df = R U Df Utt	 (4-24)

-1	 -1
Da =t1	 UT III Da MU 11	 (4-25)

-1	 -1

Dfa =	
U Dfa M U Ff	 (4-26)

where the unbarred D's represent the spatial distribution matrices

in the physical domain. Note that the modal power participation

matrices need only be computed once and that they remain constant

throughout the problem solution. Also, the complex operations in

the above equations are performed using the special overlay

multiplications.

18



The.complete output information for every degree of freedom

is not always needed. In that case the response matrix can be

spatially winJowed at a selected node i. This process will produce

only the real co-power term since the quad-power term for a main

diagonal element is always zero. A row matrix can be formed by

partitioning the i th row from the modal matrix and designating

it as pi. The scalar power at node i then becomes

G  = pi Gr pi	(4-21)

where the su perscript i indicates that a windowing process has

been imposed on the physical PSD matrix.

The integrated PSD is obtained by an Euler integration pro-

cess applied to matrices in modal space. This scheme was selected

since it only requires the PSD matrices at step w k , thereby avoiding

the difficulties of saving previously evaluated matrices for inte-

yratiun. Therefore, the integrated PSD is

G(wk) - 
G(wk- 1 ) 

+ G(_ IAwk
 + ^"'k - 11	

(4-28)

MILTe ( ' ) sYmbol denotes a modal integrated PSD and where

AW^ = 4'i:Yl - ^,^ is the new step, and aw
k- 1 - wk - wk-

1 is the

ulv step.

The rat ` at which the program steps through frequency solu-

tion is detervined automatically by the program which uses

the half po^vvr width of the nearest mode as its basic step in

1"



frequency. In order to ensure convergence or to improve accuracy,

the program allows for subdividing steps and/or concentrating

computations at selected modes of importance.

4.2.4 Method of Input Identification Computations:

The general problem of identifying a spatially non-uniform

input process is very complex both computationally and experi-

mentally. A reasonable level of complexity can be obtained by

assuming both force and base acceleration input distributions

are spatially uniform. Therefore, D  and D a are set to a one

matrix and the input identification process is performed at a

single nodal point on the structure which would correspond to

an experimental accelerometer output.

To estimate the base acceleration input PSD, equation (4-14)

can be written as

Gr/a - Gr/f,a,fa + Gr/f - Gfr/f,a,fa	
(4-29)

where Gr,/a is the partial power response due to the input base
acceleration, to be identified,

Gfa is the total response of the system due to
all effects,

G r,/ , is the partial response due to the uniform force
input PSD,

Gfr/f,a,fa i
n s the cross power between the input force

(SD and the response of the system due all
effects.

As discussed previously, it is not reasonable to require an ex-

periment to produce all the data required to specify equation (4-29)

^G



i	 i	 i
Grua = G' (w) GrCa , (4-31)

t

i as

1

In a similar fash-;on, equation (4-15) can be windowed at node

i	 ii	 i
L`1 f = C;r,	

Gr•r'a 
d 

Gar t4-33)

v

completely. Therefore, the windowing process must be applied to

reduce equation (4-29) to

i	 i	 i	 i	
(4-30)Gr J l Gr 

+ 
G
r/f - Gfr

Note that the subscripts to the first and third terms have been

dropped since they are the responses due to all effects. Equation

(4-30) implies the following:

G 	 the accelerometer response at nodal position 1

Gr/f is the input force PSD at nodal position i which
by assumption is the same at any node

Gis the cross PSD information between the input
fr force PSD and the output accelerometer at node i.

This PSD contains a coincident and quadrature component.

To deLer;rnine an estimate of the input base acceleration PSD,

the program applies a white noise PSD to the base in order to

characterize the system power response, denoted as G rua ,. Then

the base input to node i can be written as

where G;(w) is the identified base input acceleration PSD obtained
d

frow information at node i. Solving for Ga using equations (4-30)

and (4-'31) produces

i
Ua (wl - i — ( Gr• + G

r/f 
- Gfr)

Grad,
(4-32)



where Ga r is the cross PSO between the base acceleration and

accelerometer output as node i. As in the previous case, a white

noise force PSO is applied to obtain the force power response

Gr/f'• Then the identified force input PSD obtained from infor-

mation at node i is

Gf(w) G [Gr + 
G
r/a + Gard	 (4-34)

r/f'
4.3 Results of RAND Computations

4.3.1 Combined Base and Acoustic Excitation of
a Simple Oscillator:

The combined base and acoustic excitation of a simple oscil-

lator has been studied both analytically and byusing Program

RAND. Originally the exact analytical solution for this case was

developed to rigorously check the program logic of RAND. However,

since the simple oscillator is a prototype for each of

the modes of a MDOF system, the analytical solution gives valuable

insight into the convergence and resolution properties of the

discrete frequency operations of RAND.

For example, consider the acceleration response of a one DOF

system of mass m, natural f-equency w n , and damping ratio c. For

the combined force and base excitations characterized by the

spectra Gf (w), G ( . ,I), and 
Cfa 11w) + Rfa(w) 

the response is

Gy (^) =	 l

(1-^2 ) + (2cti)2

G	 2 C	 Qfa	 (4-35)
X v4 

t^ 

2 t -TF - Z —

+ (1 + 4^ 2 b2 ) Ga(w)

,_



where s = w/wn . The term which contains C fa , the coincident cw"-

nent of the cross power, appears with a rcgative sign. This reflects

the fact that the separate responses to the force and to the base

inputs are in opposi*inn to each other. In contrast, the term

which contains Qfal the quadrature component of the cross power,

appears with a positive sign and has a smaller magnitude than the

Cfa term, at least for 2{a < 1. For the case where the input spectra

are constant with frequency the integrated mean squared acceleration

response is

ty2> = 1 im Gfwn	 + n l	 4;2
	 2C fa

wn R
--^ 10l-

	
m0-0.m	 J

`^	 (	 ; )
* 2^ Qma n Rn(1-2(1-2^2)^,^2)_1 + ,► 1-2

2r.- 1-^2

^r(1+4c2+ Gawn	 ;
(4-36)

The terms involving A represent the overall output power contributed

by the resonant portion of the transfer functions. Additional terms

involving o are non-resonant contributions to the output which con-

tinue to grow with frequency. Since the resonant contributions

occur just in the narrow band of frequency at wn , a good estimate

of the integrated response over a finite bandwidth which includes

the resonance can be obtained by dropping the limiting operation

a-,- in equation (4-36;.

An idea of the extreme range of the input coupling effect can

be obtained by examining the special case where Qfa 
'g 

and

Ga 
= G

f/m2 = Cfa/m = G
0 . This corresponds to the case where the

force and base inputs are fully coherent and the resonant contri-
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butions of the two input spectra are nearly equal. Substitution into

equation.(4-36) yields, for the finite upper frequency ratio R,

< Y2> 
x GOY
	

(4-37)

Thus the resonant contributions cancel each other and only the

non-resonant response remains. By changing the phase . of the co-

power term, Cfa/m = -G0 , the overall response becomes

< Y2 > = GOan (s +)	 (4-38)

where the power contribution due to resonance is four times that

caused by G  or Ga alone. Figure 4-4 shows the results of a RAND

computation for a related extreme case where Qfa t 0. The phase

between the base and force input is described by the phase angle

^ = tan 1 (Qfa/Cfa)'

In summary, the resonant power response ranges from near zero

(coherent signals cancel), up through a factor of two (simple sum

of ancorrelated powers) to a maximum of four (coherent signals add

for a signal factor of two, a power factor of four). Note that

this range will be reduced whenever the inputs are not equal or

are not fully coherent. It is clear that the effect of coherence

and phase of the cross power can be very significant. Similar

effec-ts are apparent in t1DOF system responses, to be discussed later.

4.3.2 Acoustic Excitation of a Beam

A simple ten degree-of-freedom beam was chosen to investigate

the effects of the spatial correlation of the acoustic input and

the effects of the beam boundary conditions. Figure 4-5 shows the

center node acceleration response PSD when the beam is clamped

24
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at each end and is subjected to a base input as well as either a

spatially correlated pressure input (solid line),or a spatially

uncorrelated pressure input (dashed line). All inputs are cons-

tant with.frequency (white noise) and no correlation exists

between the base or acoustic inputs. It is evident that the

asymetric modes (every other mode) do not participate in the

response when the pressure is spatially correlated. Participa-

tion is strong for these modes, however, when the pressure is

spatially uncorrelated. The area under the uncorrelated curve

is, therefore, larger than that under the uncorrelated curve,

resulting in a higher integrated response for the uncorrelated

case.

Figure 4-6 shows the effect of boundary conditions on the inte-

grated acceleration power response. The solid line represents

simple supports while the dashed line represents clamped supports.

The discrete jumps in the curves occur every time that a partici-

pating mode is passed. Since the simply supported beam has the

lowest natural frequency, its response starts to build first.

The two curves then alternate in height for a time until the

clamped curve finally begins to maintain a higher integrated

value than the simply supported curve. These results indicate

that stiffer boundary conditions will give a somewhat higher

integrated response, but it is felt that this will not be a major

variable in response or input prediction.

Figure 4-7 shows a family of backbone curves for integrated

response of the beam center node versus phase angle	 tan- 1(Co/Qd)

of the cross power between the base and spatially uniform acoustic
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inputs, for two support conditions. Omitted is the cosine-like

variation with respect to each straight backbone line. (Each of•

actual curves in the family would have shapes similar to the

curve shown in Figure 4-4.) Figure 4-1 demonstrates the substantial

effect that statistical coupling between base and acoustic inputs

can have on the random response of structures. Similar effects

will be demonstrated for a plate (Section 4.3.4).

4.3.3 Single Point Force Excitation of a Plate

During the development of RAND a number of solutions were

run and comparisons made with existing analytical solutions in

order to verify Program RAND. For example, RAND results were

compared with an analytical solution by Wittig f3) for the mean

square velocity of a rectangular, simply supported plate subjected

to a random point force having a white noise input spectrum. The

results of this comparison are shown in Figure 4-8. The RAND

solution utilizes only sixteen degrees of freedom and therefore

accounts for a very small portion of the.modes included in the

analytical solution. Still, however, convergence is rapid and

the two solutions are in good agreement. The question of conver-

gence i .s discussed further in the next section.

4.3.4 Combined Base and Acoustic Excitation of a Plate

Next we consider in more detail a plate response problem

where the excitation is more realistic than in the previous

example. For this example an aluminum plate is chosen which measures

4 ft. by 3 ft., with a thickness of 0.2 in. This thickness is

chosen to insure a fundamental frequency low enough to be affected

by the low end of the input spectra. she plate is assumed to be

simply supported on all four edges. hodal damping is assigned a
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value of z = .05 for the first mode and assumed to decrease for

higher modes so that the product cw n remains constant. Such

a plate has-sixty-four natural frequencies below 1000 Hz. Only

eighteen of these modes participate when Pxcited by either a

uniform pressure or a base input. The input spectra ranges in

frequency from 30 to 1000 Hz as shown in Figure 4-9.

At first the base and pressure inputs are assumed to be

statistically independent. The integrated displacement responses

for these independent inputs, computed separately by RAND, are

shown in Figure 4-10. Evident from this figure is the fact that

the displacement response converges rapidly for both inputs, and

is almost entirely determined by the first few participating

modes. One can conclude from this that any instrumentation (such

as a strain gage) that relies solely on displacement response for

input identification would be completely ineffective at mid and

high frequencies. Because both inputs are spatially uniform,

the response is symmetric and the largest response occurs at

the center of the plate. The magnitude of the integrated RMS

response due to both inputs is 0.115 in., or approximately one-

half of the plate thickness,

The integrated acceleration responses for independent pressure

and base inputs are shown in Figure 4-11. They exhibit an entirely

different character than the displacement responses in that con-

vergence is not evident. The integrated response increases a

tittle as each participating mode is encountered. Acceleration

response data is clearly preferable to displacement response data

1
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for the identification of inputs over a wide frequency range. The

spatial distribution of acceleratioq over the plate (not shown

here) is again symmetric, and indicates that the center of the

plate has a higher response by a factor of almost two over any

other plate location. This suggests that the center of the plate

acts as a collector of energy and is, therefore, the best site for

the location of an accelerometer.

The effect of statistical coupling between the base and

pressure inputs can be investigated using the same plate model

described above. The base and pressure PSO characteristics

are chosen to be white noise, their respective power amplitudes

sized to cause a roughly comparable response of the plate if

applied separately. Fig. 4-12 shows the integrated acceleration

response at the center node of the plate for several variations

in cross power phase angle * and for two values of the coherence

ratio (all assumed constant with frequency). Note that the inte-

grated response can range from a low value of 4 g's RMS to a high

of 30 g's'RMS depending on the phase between the base and acoustic

inputs, a result consistent with the simple oscillator study

discussed earlier in Section 4.3.1 For a phase angle of 90 0 the

response is equal to 22 g's RMS. This value is nearly equal to

the response that would occur if the two inputs were uncorrelated.

This large range of possible responses is directly attributable to

the statistical coupling between the base and pressure inputs,

since these inputs have remained unchanged in this plate response

example. This emphasizes the need to assess the magnitude and

phase characteristics cf any statistical coupling between inputs.
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4.4 Parametric Design Guidelines for Plates Subjected
to Random Excitation

Parametric relationships for plates subjected to random exci-

tation are developed separately for a pressure input and for a

base input. Consider first the forced response of a damped single

degree of freedom system of mass M, resonance quality factor Q

and natural frequency wn . Proportionality relations for the mean

square responses for displacement and acceleration are:

GfQ
mean square displacement —M2-3	 (4-39)

n

mean square acceleration ^- GfQwn	 (4-40)

where G  is the input force power spectral density taken to be a

constant nearwn • The response of the single degree of freedom

system can serve as a model for the resonant modes of a plate with
"i

the exception that the effect of a modal participation factor must

be included for each mode. Consider next that the effect of
s

damping and modal participation factor are held constant, and only

the plate mass and its natural mode frequencies are varied. The 	 t;

plate mass m is simply

m = pabt	 (4-41)

where a = mass density
!H

a,b = plate length and width

t = plate thickness

The fundamental frequency of the plate is

1wn2 = D

	

f(a)2 + (a)
2J

2
	(4-42)

L

x
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3
where D - plate bending stiffness - E tV2).

As the mass and fundamental frequency of the plate is varied

so will the mass and the frequency of each higher mode be varied

accordingly. The total response to all the modes will then be a

summation of modal responses, each similar to eqn (4-39) for dis-

placement, or eqn (4-40) for acceleration. Parametric relations

for the RMS response of the plate are obtained by substituting

eqns (4-41) and (4-42) into eqns (4-39) and (4-40), and then taking

the square root of the resulting expression. These relations are

shown in Table 4-1. The parameters can be divided into three

groups representing the effects of plate geometry, plate material,

and plate thickness. (n refers to the material loss factor).

These groups are represented by the symbols D and A for the displace-

ment and acceleration response respectively, and with the subscripts

G, M, and t to denote geometry, material and thickness. Figures

4-13 through 4-17 present plots of the effects of geometry, material

and thickness on plate response.

Figures 4-13 and 4-14 show the dependence of the geometric para-

meters AG and DG on the aspect ratio B of the plate for several

values of the plate width b. Displacement parameter D G decreases

monotonically with increasing a. In contrast, acceleration para-

meter AG reaches a maximum at a = 1.33 and then slowly decays.

The effect of material selection on displacement and acceleration

response is shown in Figure 4-15. The displacement and acceleration

parameters DM and A. each shows a dependence on modulus E and

density p which differs greatly from the modulus-to-density ratio

commonly used in the design of precision aerospace instruments.

As a result such inexpensive metals as steel and brass
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f

compare favorably with the expensive metal beryllium as far as

random response is concerned.

Figures 4-16 and 4-17 show the effect of thickness on response.

The effect of thickness on displacement response is very pro-

nounced. In contrast, the effect of thickness on the accelera-

tion response is relatively mild.

All of the parameter effects described above have been veri-

fied by RAND. Typically the response of a particular plate can

be determined for a given input. The geometry, thickness and ma-

erial properties can then be changed arbitrarily and the new

response predicted to within a few percent by using the parametric

relationships.

The development of corresponding parametric relationships

for base excitation follow the same approach as for the pressure

case. In this development there is one major difference: it

becomes evident that one can address either the relative or the

absolute plate response. RAND studies show that the majority of

the response of a plate to a base input is produced by motion of

the plate relative to its supports. Using D'ALembert's Principle,

the forcing function for this relative response is proportional

to the mass per unit area pt. This suggests that the parameters

for base response can be obtained from the pressure response

parameters simply by multiplication of the latter by the factor

Pt, as shown in the bottom half of Table 4-1. Note that only

the geometry parameter is unchanged. Changes in the material and

thickness parameters will yield response predictions for the base

44
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input case which differ from the corresponding prediction for

pressure input. As before, the accuracy of these base response

parameters have been verified by Program RAND.

The purpose of this parametric study was to develop the

r	 ability to predict changes in response due to changes in struc-

tural configuration and as a result to be able to predict the

response of a newly designed plate by comparing its physical

characteristics to a plate with a known response. The above
t

parametric relationships accomplish this goal.

4.5 Conclusion to Part I

Program RAND is a practical and useful tool for making res-

ponse and input identification estimates for any multi-degree-

of-freedom structure subjected to botn base and acoustic inputs.

Displacement response computations, suitable for stress and sway

space estimates, converge quickly and require only a low frequency

representation of the structure. On the other hand, accelera-

tion response computations, suitable for the estimation of g loads

and for designing subassembly tests, do not converge quickly.

In the latter case, the structural model must have good fidelity

over a bandwidth which includes all frequencies of significant

excitation. In the case of an acoustic input this bandwidth may

extent to 10 KHz.

Practical limitations to the RAND estimation procedure do

not relate to the program itself, but rather to the program inputs.

The limited fidelity of the finite element model used to charac-

terize the structure has already been mentioned. A second input

limitation, looking ahead to Part II of this study, results from
a
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the difficulty of accurately measuring the random base or acoustic

excitations. As far as model fidelity is concerned, perhaps a

reasonable approach is to use Program RAND for low frequency dis-

placement studies, and for acceleration studies up to mid frequency

range. Truly high frequency problems will probably best be studied

using the technique of Statistical Energy Analysis. Input accuracy

limitations are discussed in part II.
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5.0 Part II: Ex eriment-Bas
and InPuten	 ca o

5.1 Introduction to Part II

In describing the experimental portion of this study a distinc-

tion has been wade between low resolution and high resolution ex-

periments. This distinction reflects the historical fact that

originally only a low resolution Fast Fourier Transform (FFT) ana-

lyzer was available for use in this study. Subsequently a high

resolution capability was added to the analyzer. Although the low

resolution results are in some respects inferior in quality to the

high resolution results, there are advantages and disadvantages

associated with both types of measurements. Consequently there

is much to be learned by contrasting the low and high resolution

measurements, and they have been given equal emphasis in this

report.

5.2 Laboratory Test Description

A simple schematic of the test set up for combined base and

acoustic inputs is shown in Figure 5-1. The corresponding instru-

mentation layout is shown in a more detailed fashion in Figure

5-2. With this equipment it was possible to excite the plate

by a base input, by an acoustic input, or by combined base and

acoustic inputs. Note that in the combined input case both the

base and acoustic excitation are caused by the same source,

namely the MBT495 Random Noise Generator. This means, of course,

that th., base and acoustic inputs are fully correlated statis-

tically, and the nature of the cross power spectral density between

these excitations is wholly determined by the frequency transfer

characteristics of the base and acoustic channels which exist

between the noise source and the aluminum plate.
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In the experiments the procedure was to measure input and res-

ponse spectra under various conditions of excitation and then to

compare these spectra with those predicted by Program RAND. In

order for RAND to be executed it is necessary to specify the dynamic

modal parameters of the plate. The required parameters are the

modal damping ratio vector ^, the modal frequency vector f•and the

mode shape matrix U. Modal damping ratios can only be determined by

experiment, and much effort was expended in this study attempting

to obtain reliable damping estimates. On the other hand, frequency

and mode shape estimates can either be made experimentally or by

the use of a computer-aided finite element analysis. Probably the

preferred approach is to determine these parameters wholly by

experiment, since no idealized assumptions are required as with

the finite element modelling process. And with the availability

of computer-based modal analysis systems the experimental approach

may also be easier. Unfortunately in this study no such modal

ana l ysis system was available. Mode shape estimates were therefore

based on a finite element analysis using Program SAP IV. Damping

and frequency data was obtained experimentally.

The question of boundary conditions requires special attention.

The analytical approach embodied in Program RAND utilizes the prin-

ciple of linear superposition, and the ideal assumption is made that

a base input, of infinite source impedance, acts independently of

the acoustic input, which has zero source impedance. The experi-

mental reality is rather more complex. As will be detailed below

in the treatment of input loading effects, both the shaker and the

W
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loudspeaker possess a finite source impedance. Further, these

inputs are dynamically coupled: for instance, the base input level,

as measured by the plate fixture accelerometer will be caused to

change merely by turning on the acoustic input. The RAND assumptions

are still valid and the RAND predictive procedure is still appli-

cable to real structures; it is Just that particular care must be

taken concerning boundary conditions in a test situation. Consider

for example that we want to compare RAND predictions with experiment

for the case of acoustic input only. Since the analytical approach

assumes infinite source impedance for the base input and, in this

case, the base input amplitude is assumed to be zero, the proper

experimental procedure is clearly to mechanically block the shaker

input. Alternatively, a pure base input test, without any acoustic

interaction, would require removing the loudspeaker, or, better yet,

to remove any acoustic effects by operating in a vacuum. The diffi-

culty with boundary conditions occurs only when it is desired to

test one input at a time. Practically speaking, there will always

be combined inputs in a field situation, and the RAND procedure

will rigorously apply.

Finally, we consider the question of data averaging. Whereas

the analytically derived spectra produced by the RAND predictive

procedure have in effect already been averaged mathematically, the

experimental data produced by the base input and plate response

accelerometers and by the microphone vary randomly, and must be

sufficiently averaged to reduce the amount of statistical variation

to acceptably small levels. A figure of merit for the adequacy of
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Y 2 ' G
x G x

Gxx YY

(5-1)

this averaging is the confidence level as measured by the equivalent

degrees of freedom of the chi-square distribution model of the

sampling process. Although the question of confidence level was

addressed in these experiments it was not systematically monitored

and is not reported on here. A second figure of merit which indi-

cates the quality of data estimates is the coherence ratio. This

parameter is related to the signal -to-noise ratio of the data, and

is conveniently available on the FFT Analyzer. It was consistently

monitored during all tests. A brief review of the coherence ratio

follows.

A common situation which arises in structural vibration measure-

ment, which we shall refer to as output noise contamination, is

shown in Figure 5-3.

N(w)

X(W)
	

w(w) +
H(w)	 Y(W)

Figure 5-3 Output Noise Contamination

In the Fourier domain, a linear dynamical structure, charac-

terized by its transfer function H(w), receives an excitation X(w)

and responds at a level W(w). An independent noise source of strength

N(w) is present at the output. Define the coherence ratio 
Y2 

as
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where Gii (w) refers to the usual one sided power spectral density.

Eqn (5-1) can be rewritten as:

Y2(w) _+ 1	 (5-2)
nn

with 0
<Y2

<1 as ->Gnn/Clww>0.

Similarly, noise contamination is possible at the input as

shown in Figure 5-4.

N(w)

X(W)	 + W(W) 
H(w)	 Y(w)

Figure 5-4 Input Noise Contamination

Under the same assumptions, the coherence ratio is

Y 2 (w) 	 + 1	 (5-3)
nn xx

with 0 <Y2<1 as ->Gnn/Gxx>0.

Both input and output noise contamination occurred during the experi-

ments and will be discussed further below.

5.3 Low Resolution Experiments

5.3.1 Modal Damping Ratio Estimates

Early damping measurements were made in the frequency domain

using an FFT analyzer which possessed only a base band capability.

Base band refers to the bandwidth of a s pectrum which extends from

zero frequency to a selectable upper frequency. The nominal

frequency resolution of the analyzer is then the base bandwidth
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divided by the number of spectral lines provided by the particular

analyzer configuration. Nominal resolution for the 400 spectral

line analyzer (in base band operation) is given in Table 5-1 as

a function of base bandwidth setting.

Base Bandwidth	 Nominal
Setting	 Frequency

Resolution

0 - 500 Hz	 1.25 Hz

0 - 1000 Hz	 2.5 Hz

0 - 2000 Hz	 5	 Hz

Table 5-1 Frequeng Resolution for Baseband Operation

As an example, low resolution estimates of the quality factor Ql

of the first plate mode (f1 =240 Hz) varied from 25<Q1<100 depending

on base band setting. The actual Q of the first mode, determined

later by using an analyzer with a uigital frequency expansion (Zoom)

capability, was about 109. The actual half power bandwidth of the

first mode is therefore about ,U = 2.2 Hz. Clearly none of the
above base bandwidth settings (Table 5-1) can adequately resolve

the sharp resonance peak of the first plate mode.

Time domain estimates of damping ratio were also attempted.

The log decrement of the transient decay envelop of the plate were

measured after passing the plate response signal through a band

pass filter centered at the particular mode frequency of interest.

Damping estimates were improved by this technique. For example,

the first mode quality factor ranged from 76<Q<89. The method

proved, however, to be tedious and inconvenient. It was also suspect
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from a theoretical point of view: the plate dynamic characteristics

were being windowed by the electronic filter which possessed its

own dynamic characteristics.

The proper estimation of damping is crucial to the success of

any scheme of structural response or input identification estima-

tion. And proper estimation of damping requires the use of instru-

mentation which has adequate resolution. It will be shown below

in this report that there are certain advantages to making low

resolution measurements of the input and output spectra in structural

dynamic studies. The requirement of high resolution measurements

for damping, however, remains unchanged.

5.3.2 Excitation and Response Spectra

Typical examples of low resolution excitation and response

spectra for the plate are shown in Figure 5-5, for the case of

base input, and in Figure 5-6, for the case of acoustic input.

In both cases a broad band input excitation extends from nearly

zero to 2000 Hertz. The five major peaks in the plate response

spectra correspond to five participating normal modes predicted

by a combined SAP IV and RAND analysis, as shown in Table 5-2.

SAP
Mode
Number

SAP
Resonant
Frequency

RAND
Participation

Experimental
Resonant
Frequency

1 252.2 Hz X 250	 Hz

2 391.1
3 622.8
4 626.7 X 605
5 755.5
6 954.6
7 981.2
8 1192 X 1105
9 1300

10 1324
11 1373 X 1310
12 1545 X 1445

Table 5- 2 Comparison of Finite Element (SAP)
an xper^ entaT^ a requencies
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The SAP IV finite element model has yielded frequency estimates

which are acceptably close to the experimental values, although

the question of accuracy of the finite element model is not an

important issue, since we have already pointed out that the modal

parameters (frequencies, damping ratios, and mode shapes) are

best obtained experimentally using modal analysis equipment. Note

that a spurious small response peak occurs at approximately 1200

Hz. This was not predicted by the combined SAP/RAND analysis and

wan not included as a transfer characteristic of the plate in any

subsequent RAND response predictions or input identifications.

Again, were modal analysis equipment available, this response

detail would be routinely incorporated in the plate model repre-

sentation of Program RAND.

We turn now to the question of the quality of these spectra

estimates. As stated above, the spectra have been sufficiently

averaged timewise to the point of negligible statistical variation.

However, a plot of the coherence ratio, shown in Figure 6-7, indi-

cates that the signal-to-noise ratio is sharply reduced at a number

of critical frequencies. In this Figure the base excited plate

response is presented as a semi log plot to allow study of regions

of very large resonant response as well as regions of very low

ar.tiresonant response. Resonant and antiresonant responses are

most easily described analytically in terms of the poles and zeros

of the transfer function, which can in general be written in the

form

	

H(s) - k(s-zI)(s-z2)--- : Ws)	 (5-4)r
s-pl s-p2 ---	 s

,M
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where the transfer function zeros z l , z2--- are roots of the equation

Z(s) = 0, and the transfer function poles p l , P2--- are roots of the

characteristic equation P(s) - 0. For very lightly damped structures

these poles and zeros occur in conjugate complex pairs which are

located very near to the imaginary axis. The plate response spec-

trum PSD Gp (w) is related to the base input spectrum G b(w) by the

equation

Gp(w) - Gb (w) (H(w)i 2	(5-5)

where H(jw) is the frequency response function obtained from the

transfer function H(s) simply by setting s-jw. A resonance occurs

when IH(jw)l 2 is maximum. This in turn occurs when the value s-jw

is very close to (effectively is equal to the imaginary part of) a

transfer function pole p l , P2--- etc. Similarly an antiresonance

occurs when IH(jw)l 2 is a minimum. This in turn occurs when the

value S= jw passes very close to (again, effectively equals the

imaginary part of) a transfer function zero zl , z2--- etc. A

resonance is a global characteristic of the structure and exists

independently of the spacewise nature of the input. An antiresonance,

on the pother hand, is a local characteristic of the structure; that

is, it applies to a particular location only. Further, the location

of the antiresonance, both spatially and in frequency, depends on

the spatial distribution of the input excitation.

Consider now the two antiresonant responses which occur approx-

imately at 825 Hz and at 1350 1Iz as shown in Figure 5-7. Since

the damping of the structure is very small, the antiresonant res-

ponse is also very small (zero damping would result in truly a zero
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response). Clearly such a small signal will be corrupted by ever

present backgrc...id noise. Hence a sharply reduced value of the

coherence ratio. Since this noise contamination occurs at the

output (response) of the transfer function H(w) we have an example

of output noise contamination as shown in Figure 5-3.

Significant reduction in the coherence ratio also occurs at

the resonant frequencies. However, the mechanism for this - an

input noise contamination caused by input loading effects - is

obscured in this data because of inadequate resolution of the FFT.

The details of the input loading phenomenon will be taken up later

during the discussion of the high resolution experiments.

5.3.3 Response Prediction Using Program RAND

At this point an attempt was made to compare the plate :,*:tense

level obtained experimentally with the same response level predicted

by Program RAND. The RAND model of the plate used damping ratios

determined by free vibration decay measurements, natural frequencies

obtained by FFT measurement, and mode shapes obtained by finite

element analysis. Four separate experiments were conducted using

base input excitation only. The base input and plate response

spectra-were measured using the low resolution FFT analyzer. Be-

cause the FFT analyzer could not resolve the sharp response peaks

adequately, there was little hope that experimentally measured

response spectra would agree with the corresponding spectra pre-

dicted by RAND. However, FFFT measurements of the rather slowly

varying broad band input spectra could be expected to be fairly

good. And the integrated area of the response peaks, that is, the

63



overall power of each resonance, would also be fairly accurate

because the FFT algorithm accurately computes the correct power of

the time windowed signal, independent of resolution adequacy. The

results of these four runs are given in Table 5-3. The agreement

between experiment and Program RAND is rather satisfactory, parti-

cularly when it is remembered that the excitation data input to

RAND suffered from noise contamination and tie input spectrum was

poorly resolved. Reasons for the relative success of the predic-

tion procedure in the presence of these error producing effects

will be discussed later after the high resolution results have

been presented.

Pun
No.

Total Overall
Experimentil

Response
Program RAND Error

1 40.4 92 44.8 g2 +.45 dB

2 41.1 35.2 -.67

3 54.3 40-9 -1.2

4 48.1 37.3 -1.1

Table 5.3 Plate Response Estimates: Base Input, low Resolution Spect-a

5.3.4 Input Identification Using Program RAND

The input identification mode of Program RAND takes as input

data the response spectrum of a structure, accounts for the transfer

characteristics of the structure. and then computes the spectrum

of the excitation applied to the structure. The use of a low

resolution FFT analyzer for input identification mode measurements

will not be satisfactory since the analyzer must resolve th- details

of a response spectrum which consists of many sharp resonant peaks.
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Nevertheless, it is instructive to look at an early example of an

input spectrum identification provided by the RAND procedure using

data obtained by the low resolution FFT analyzer, shown in Figure

5-8. A comparison with the actual input spectrum (not shown)

shows that the input spectrum estimate is of poor quality as

anticipated, particularly near the resonant frequencies at 250 Hz,

505 liz, 1105 Hz, 1310 Hz and 1445 Hz. But the most important aspect

of this spectrum estimate is that it is dominated by three peaks

which are very obviously in error, since the actual spectrum was

relatively flat with frequency. The presence of these peaks has

nothing to do with the low resolution of the FFT analyzer. The

first two peaKS, at 825 liz and at 1350 Hz, are caused by the poor

signal-to-noise ratio at the two antiresonances described above

in Section 5.3.2. At an antiresonant frequency the transfer

characteristic of the structure decreases nearly to zero. The

structural response, as measured by an accelerometer and estimated

by an FFT analyzer, does not decrease nearly to zero ( as it should

theoretically, and as Program RAND expects) because of the presence

of noise. The only explanation for this non-vanishing response,

as far as Program RAND is concerned, is that the input must have

a very sharp peak. Thus erroneous peaks will always appear in

the input identification estimate at each antiresonant frequency

of the structure. From a practical point of view the antiresonance-

induced error can be avoided by simply instructing Program RAND to

set the input ident i fication estimate to zero for a small band of

frequency about each antiresonance, a process called blanking.
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The implication of this phenomenon is that the transfer charac-

teristic.of the structure which is stored in RAND must explicitly

include antiresonant frequencies as well as resonant frequencies.

It is also clear that the input identification procedure will

break down in the region of an antiresonance, and that a portion

of the input spectra will be lost because of an inadequate signal-

to-noise ratio.

The third large source of error in Figure 5-8 extends over a

band of frequency 1800<f<2000 Hz. This is caused by the fact that

the transfer characteristic stored in Program RAND includes only

five modes and is therefore only representative of the structure

out to a frequency of, say, 1600 Hz. The error can be removed by

simply including an additional . (sixth) mode, thereby extending

the fidelity of the transfer characteristic to 2000 Hz.

The problems described in this section were discovered during

early low resolution input identification runs, and they called

attention to the importance of assuring adequate bandwidth for

the structural transfer characteristic and to the value of anti-

resonant frequency blanking. These refinements were routinely

incorporated in all subsequent low and high resolution studies.

5.4 High Resolution Experiments

5.4.1 Improved Estimates of Damping Ratio and Frequency

The addition of high resolution capability to the FFT analyzer

quickly led to damping ratio and resonant frequency estimates which

were reproducible and also independent of any further reduction of

the resolution bandwidth setting of the analyzer. With this capa-
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bility for precision it soon became apparent that the damping ratios

and resonant frequencies were affected by subtleties in the boundary

conditions of a particular test: for instance, whether or not the

shaker fixture was blocked, what type of excitation was used, and

whether or not the loudspeaker was in position over the plate. The

variation in frequency with changes in boundary condition were

typically less than 1%. Unfortunately, due to input loading effects,

such small variations in frequency are still significant as far as

structural response and input identification estimates were con-

cerned. Discussion of the effect of boundary conditions will be

postponed until after an examination of input loading models has

been made.

Representative results for high resolution frequency and

damping ratio are given in Table 5-4. The tabulated values are

based on the base input transfer function obtained by dividing the

plate response (at center node) by the base input (at plate fixture).

Theoretically (and experimentally) these results are the same as

for the boundary condition case in which the fixture motion is

blocked.

Mode
Number

Resonant
Frequency

Damping
Ratio Q

1 239.2 Hz .0046 109

2 575.5 Hz .0022 227

3 1050.3 Hz .0024 208

4 1260.5 Hz .0015 333

Table 5-4 High Resolution Mode Frequencies and Damping Ratios
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These damping ratios are significantly lower (and the corresponding

Q va1ues.higher) than values obtained previously by low resolution

FFT analysis or by the time domain transient decay technique.

Once more we emphasize that adequate frequency resolution is essen-

tial to the attainment of realistic damping estimates.

5.4.2 Input Loading Effects: Base Excitation

5.4.2.1 First ;lode Input and Response Characteristics

High resolution dynamic characteristics of the first mode

obtained from a random base excitation test are shown in Figure

5-9. Several features are of interest. First, the base input

(curve a) shows a sharp decrease and subsequent increase in level

as the plate response peak (curve b) is passed. The input minimum

is substantial enough to cause the coherence ratio (curve c) to

decrease, showing that the input minimum is contaminated by noise.

Curve d shows the phase characteristic of the transfer function

H(w): specifically, the phase of the plate response lags behind

the base input phase by 900 at a frequency of 238 Hz. Finally,

the magnitude of the transfer function (curve e) reaches a maximum

at the same frequency. Note that this frequency differs from the

frequency at which the plate response magnitude is a maximum.

This pattern, or a similar pattern, rather generally occurred at

each structural resonance under both base excitation or acoustic

excitation. The pattern consists of a decrease in the input level

attended by a decrease in the coherence ratio, also an increase in

the input level, and a response maximum which occurs at a frequency

which differs from the frequency of maximum transfer function

magnitude.
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Fig. 5-9 High Resolution Spectra: Plate Response
to Base Input ( First Mode)
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This input loading effect is not a new phenomenon. Much

attention was given to input loading in the early-days of vibration

testing by the designers of electrodynamic shaker systems 4 . In

fact, since the loading phenomenon was considered an undesirable

feature of vibration testing, electronic compensators called peak-

notch filters were developed to render the vibration input spec-

trum flat with frequency. More extensive need for input spectrum

adjustment led to the development of manual and finally automatic

compensation devices known as equalizers.

Our interest here in the input loading phenomenon stems from

the expectation that input loading should be a relatively common

occurrence in field studies of real structures. The value of ana-

lyzing the details of the input loading phenomenon in the rela-

tively simple laboratory set up of this study is the insight that

it provides for the more complicated field system.

5.4.2.2 Model Development for Input loading Analysis

As stated earlier, the input loading is caused by the fact

that the base and the acoustic inputs possess finite source impe-

dance. Consequently, the base input model must include a real

displacement source of finite impedance rather than an ideal dis-

placement source with infinite impedance. Similarly, the acoustic

input must be modelled as a real force source of finite impedance

rather than an ideal force source of zero impedance. A simple

model which adequately explains the input loading effects experi-

mentally observed at the first plate resonance is shown in Fig.

5-10. Parameters used in Fig. 5-10 are defined as follows:
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fa	magnetic force applied to speaker cone (zero
input impedance)

ma	mass of rigid speaker cone and exciter coil

ka ,ba	stiffness, damping coefficients for cone suspension

Za	impedance of acoustic trwrs^ission line

m 
	 plate mass associated with first plate mode

k ,b	 stiffness, damping coefficients .associated with
p p	 first plate mode

f 
	 magnetic force applied to shaker armature (zero

input impedance)

ms	 rigid body mass of shaker armature and plate
fixture

ks ,bs	stiffness, damping coefficients of shaker armature
suspension

The analysis of the input loading phenomenon is most easily

presented as two special cases: base excitation of the plate, ig-

noring the acoustic elements, and the acoustic excitation of the

plate with the shaker input set to zero (blocked). These cases are

considered below in sections 5.4.2.3 and 5.4.3.2.

5.4.2.3 Base Input Loading Analysis

An example of high resolution excitation and response spectra

for a base input run was given in Section 5.4.2.1, as well as a

broad description of the main features of the input loading effect.

We proceed now to study the base input case in more detail.

Consider the case of base input only. The acoustic elements

are assumed to be absent. The model of Fig. 5-10 simplifies to a

two degree of freedom representation of the plate and shaker system.

The plate system, by itself, has a natural frequency w  and damping
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ratio c p . The shaker system, by itself, has a natural frequency

WS and damping ratio c s . If the resonant frequencies of the

shaker anui of the plate are widely separated (w p»ws ), the fourth

degree characteristic function which determines the coupled

resonant frequencies of the combined system can be factored into

two quadratic terms as follows:

characteristic function = (-W2
+j2c1Wk

+W12)(
-W2+j2chwh+wh)2	 (5-6)

that is, the characteristic frequencies of the combined systems can

be described by a lower resonant frequency w t<ws , and a higher

resonant frequency wh>wp . The damping ratios of the separate	 f 
systems, the shaker damping ratio c s and the plate damping ratio cp,

are also affected when the shaker and plate are coupled. A first

approximation to the relation between the separate and the coupled

systems are:

wk 2 ^ ws
m

(1 	- m -
w

4cscp 
Ws ) (5-7)

S p

c R	 cs
W

1 - 
sW

2	 b

b
(5-8)

p s

wh2 ti wp (1	 + m - 4cs c p ws ) (5-9)
s p

2
c h	cp 1 -	

ws
(5-10)

p s

The transfer functions for the base input and plate response accele-

rations can then be written as:
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-w2 f
S/ms (-w 2 + j2{ w w + w 2)

ys -	 (5-11)

(-w +J 24 JNW
+wR )(-w +j2Shwh w+wh )

-w2 f /m ( j 2Z w w+w 2)y	 =	 s s	 (5-12)
P	 (-w +j2; RwR

w+Wk ) ( —w +j24hwhw+wh )

If now we evaluate these transfer functions near the plate resonant

frequency wp ;z: wh »wtl the following block diagram is obtained:

— w2 + j2^pw 4 , + wp2
	 yS

fs/ms

— w 2 + j24w hw + wh2

j2tpwpw + wp2 	 Vp

— w2 + j2^pwpw + wp2

Figure 5-11 Base Excitation Block Diagram

Several aspects of this diagram are of particular importance. First,

the transfer function on the left co+isists of a conjugate pair of

zeros and a conjugate pair of poles. On the complex plane, these

roots are very close to each other and also very close to the ima-

ginary axis, since w h and w  differ only by very small quantities

and the-damping ratios ^h and 
C  

are «l. The corresponding fre-

quency response function has precisely the same antiresonant and

resonant shape as base input curve (a) shown in Fig. 5-9. A second

important aspect of the diagram is that the right hand transfer

function precisely corresponds to the transfer function H(w) shown

as curves ( d) and ( e) on Fig. 5-9. The final and perhaps most

important aspect of the diagram is the fact that if these two
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transfer functions are cascaded to form a single transfer function

between the shaker input force and the plate response acceleration,

there will be a pole-Zero cancellation associated with the plate

frequency w  as shown in Fig. 5-12. This leads to the simple,

and perhaps surprising result: since w  st N, the transfer func-

tion shown in Fig. 5-12 is nearly that of a simple oscillator

excited by a constant input acceleration fs/ms.

j2^Pwpw + wp2

fs/ms --► 	 Y
—w2 +jnhwhw + wh2	

A

Figure 5-12 Shaker Force to Plate Acceleration Transfer Function

This particular input acceleration level is the value that would

occur if the plate were to cause no loading effect at all. In

essence, then, the net effect of the input loading effect on the

plate resonance is to shift it slightly upwards in frequency from

to %. The magnitude of the plate resonance is virtually un-

changed from the value it would have in response to an unloaded input

fs/ms which is constant with frequency. So the effect of the input

loading phenomenon on the plate response is rather minimal. How-

ever, the effect of the input loading phen omenon on the input to

the plate remains problematic. As we have seen, the input loading

effect suppresses the input sufficiently to allow the signal to be
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contaminated by noise. It also Complicates the problem of input

identification because it is necessary to accurately resolve all

the details of an input which varies very rapidly with frequency,

and to match the peak and notch frequencies of the input curve

very accurately with the plate response peak frequency.

5.4.2.4 Response and Input Aentification Estimates for
Base Excitation

The use of more accurate mode damping ratios and frequencies

led to modest improvements in response estimates and substantial

improvement in input identification estimates. The results of

plate response experiments with base excitation are shown in

Tables 5-5 and 5-6.

Table 5-5 High Resolution Base Input Test: Response PSD at Resonance

Mode
No.

es onse PSD
Experimental

at Resonance
ErrorProgram RAND

1 3.6	 g /Hz 5.13	 g /Hz +1.5 dB

2 9.18 7.14 -1.1

3 4.69 3.43 -1.4

4 4.19 3.02 -1.4

Table 5-6 High Resolution Base Input Test: Modal Response Power

Mode esponse Power
No. ErrorExperimental rogram RAND

1 21.1	 g 26.3	 g + .96 dB

2 46.9 38.7 -	 .83

3 39.9 29.1 -1.4

4 39.3 21.5 -2.6

Overall 155.4 127.9 -	 .85
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Table 5-5 shows the peak response PSO obtained by experiment and

by RAPID. These results represent an improv ,%nent over the results

attainable by low resolution experiments (low resolution, measure-

ments of the sharply peaked power response spectra were typically

in error by 12 to 16 dB). On the other hand, discrepancies between

the theoretical and experimental modal power estimates (Table 5-6)

are approximately the same as for the low resolution estimates

(Table 5-3). As mentioned before, this is because the FFT algo-

rithm computes the correct power of a signal independent of the

degree of frequency resolution.

Substantial improvement in input identification accuracy is

obtained by using high resolution FFT measurements. This improve-

ment in accuracy is particularly evident at the plate resonant

frequencies where large errors had previously existed due to

inadequate resolution of input loading effects. In Figure 5-13,

the RAPID estimation of the base input in the region near each of

the four plate resonances is compared with the measured input data.

The plot is semi logarithmic. By comparing both the measured and

identified base input power spectra to an arbitrary reference

value, the ordinate can be scaled in dB as shown. The difference

between the two curves can then be interpreted directly as an

error expressed in dB. The rather coarse sampling of these two

durves reflects the fact that the data link between the FFT analyzer

and Program RAPID was not automated and input/output data taking was

done by hand. The accuracy of the input identification procedure,

however, is satisfactory. An automated data link would improve the
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accuracy and resolution considerably. The measured overall power

for the frequency band 0<f<2000 Hz was .60 g 2 . The corresponding

input identified by Program RAND was .524 g 2 , which represents an

overall error of -.59 d8.

5.4.3 Input Loading Effects: Acoustic Excitation Experiments

5.4.3.1 First Mode Input and Response Characteristics

An example of low resolution excitation and response data for

an acoustic excitation test has already been given in Fig. 5-6.

Two examples of high resolution data which show the effect of acous-

tic input loading on the first plate resonance are given in Figures

5-14 and 5-15. Broadly speaking, the acoustic loading effect is

similar in pattern to the base input loading effect, although a

closer study will reveal differences in detail. The actual shape

of the loaded acoustic input, for instance, is different from the

shape of the loaded base input curve. This is because the dynamics

of the acoustic excitation differs from the base input dynamics.

Dynamic models for the acoustic excitation of the plate are dis-

cussed in the next section and in the Appendix. An interesting

contrast also exists between Figures 5-14 and 5-15. The first

figure, , which refers to the test condition of a blocked fixture

(refer to Figure 5-10; yb=0), exhibits a relatively mild acoustic

loading effpc +.. The second figure, which refers to the test con-

dition of an unblocked fixture, exhibits a relatively strong

acoustic loading effect. (The relative strength of the loading

effect is measured by the depth of the antiresonant region of the

pressure, curve and by the corresponding amount of input noise
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contamination, as evidenced by a decrease in coherence). The ex-

planation for this difference is that the method of fixture

restraint used in the blocked fixture test caused the damping

level to be larger than that for the unblocked fixture test.

This emphasizes the fact that the input loading phenomenon becomes

more evident as the structural damping level decreases.

5.4.3.2 Acoustic Input Loading Analysis

Although the basic physical explanation for the acoustic input

loading and the base input loading cases is similar, the acoustic

and mechanical models required for the acoustic loading analysis

is too complex to include in this section. These models are pre-

sented in some detail in Appendix A. Two acoustic excitation

cases are of interest: excitation from a distant sound source

which is not loaded by the plate generated sound waves, and exci-

tation from a nearby sound source which is affected by the presence

of the plate. The later case represents the experimental set up

used in this study.

The results of the distant sound source analysis are presented

in block diagram form, Fig. 5-16 (a). An incident pressure wive pi

emanates from the distant sound source. It is partially reflected

by the moving plate. The resulting total pressure at the plate

surface, po , is the sum of the incident and reflected wave pressures.
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Figure 5-16 Acoustic Input Loading: Distant Source

The transfer function on the left again consists of a conjugate

pole-zero pair. Although the undamped.resonant frequency of the

pole and the zero pairs are the same, the pole pair is more

heavily damped. Specifically, the pole damping ratio

- by + pcA

p 2 V kpmp

(5-13)

includes both the material damping coefficient b y of the plate and

the acoustic radiation damping effect pcA. The zero pair damping,

on the other hand, includes only the plate material damping coef-

ficient b p . The frequency response characteristic of the left

hand transfer function is a gain of 2 (perfect reflection) at all

frequencies except at resonance, when it drops sharply down to

t',a value 2bp/(b p+pcA). Thus an input loading effect exists
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even though the distant acoustic source is not affected by the

reflected wave from the plate. Such a frequency response charac-

teristic does not cause a shift in frequency of the plate accelera-

tion response peak. The transfer function on the right is again

simply the transfer , function for the plate under acoustic exci-

tation. When cascaded, as in Fig. 5-16 (b), the plate acceleration

response exhibits a single resonance, with the same amplitude it

would have if excited by the incident pressure p i without loading

effect.

Next we consider the case of'a nearby sound source (See

Appendix for details). In Fig. 5-17 (a), a magnetic force fa acts

upon the loudspeaker cone, causing a pressure po to act upon the

f	 —w2mP + ji.:b P + kP Po	 w2A	 Y 
a

A	 _ W 2M P + jwbP + k 

(a)

w2Afa	 y

	

.1	 P

M

Figure 5-17 Acoustic Input Loadinq: Near Source

plate. The characteristic function o of the left hand transfer

function is a complicated relation between the parameters which

characterize the loudspeaker, the plate, and the connecting

acoustic transmission line:
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a = [- G cAw) 2 + (-w2ma+jwba+ka )(-w2mp+jwbp+kp )] sin wL/c

(5-14)
+ pcAw 

1
-w2 (ma+mp )+jw(b a+bp)+(k 

a 
+kp	 cos wL/c

The resonant frequencies defined by the characteristic equation

have not been evaluated explicitly, since a detailed evaluation of

the many parameters would be required which is beyond the scope of

this study. Note, however, that again the left hand transfer

function which defines the pressure input to the plate consists of

a conjugate pole-zero pair, and that again a pole-zero cancellation

occurs when the two transfer functions are cascaded as shown in

Fig. 5-17 (b). Our conclusion is again the same: although there

is a complicated input loading interaction between the plate and

the acoustically coupled loudspeaker system, the plate response

is nearly the same as it would be if there were no input loading

effect at all. The actual resonant frequency of the acoustically

coupled plate differs slightly from the plate frequency which is

excited by a distant pressure source. And again, the estimation

of details of the acoustic input p  remain problematic for reasons

already stated above: the difficulties of estimating and measuring

of high resolution narrow band spectra which vary rapidly with

fregv. ncy.

5.4.3.3 Response Estimates for Acoustic Excitation

The acoustic input and the acceleration response of the plate

were measured and compared with the plate response predictions

of Program RAND. Table 5-7 shows the resonant peak PSD estimate

comparisons for the first four plate resonances. Table 5-8 shows
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Table 5-7 High Resolution Acoustic Input Test:

Response PSD at Resonance

Mode

No.

Response PSD at Resonance

ErrorExperimental Program RAND

1 .00748 g 2 /Hz .00616 g `/Hz -.081

2 .0283 .0156 -2.6

3 .0300 .0138 -3.4

4 .0240 .0432 +2.6

Table 5-8 High Resolution Acoustic Input Test:

Modal Response Power

Mode

No.

Response Power

ErrorExperimental Program RAND

1 .025 g 2 .024 g 2 -.18 dB

2 .084 .085 +.05

3 .234 .175 -1.26

4 .123 .503 +6.1
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the integrated power comparison of each of the four resonances.

These results are comparable to the plate response estimates ob-

tained from base excitation tests. In both the base input and

the acoustic input tests very close agreement between theory and

experiment is possible. Yet it is also possible for substantial

discrepancy to occur (up to 6 dB in one acoustic input case),

even in spite of the fact that measurements were made with a high

resolution analyzer. These large errors result mostly from imper-

fect characterizations of the sharply varying loaded inputs.

In an attempt to avoid the difficulties of measuring the

sharply varying acoustic input spectra, an alternative method of

characterizing the input was introduced: the taking of a simple

average of the input PSC over a frequency bandwidth centered at

the plate resonance. This approach requires less effort than the

point-by-point characterization of the input, since the average

is simply the ratio of the integrated power (obtained from the FFT

analyzer by either a high resolution or a low resolution measure-

ment) divided by the bandwidth. The approach also yields better

results, as shown in Tables 5-9 and 5-10. A theoretical basis

for the relative success of the bandwidth average approach has

already been developed in the input loading studies in Sections

5.4.2.3 and 5.4.3.2. In both these analyses it was found that

a sharply varying loaded input causes only a slight shift in the

plate response resonance and does not significantly affect the

response amplitude. It is reasonable that the loaded input can

just as well be replaced by an equivalent input which is constant
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Table 5-9 High Resolution Acoustic In Rut Test: Resonant Peak
PSD stimatior, Using Bandwidth AveraLed npu

Mode
No.

Response PSD at Resonance

ErrorExperimental Program RAND

1 .00748 g 2/Hz .00743 g 2/Hz -.03 dB

2 .0283 .0285 +.03

3 .0299 .0302 +.04

4 .0240 .0474 +2.95

Table 5-10 High Resolution Acoustic In ut Test: Modal Power
Estimation Using Bandwidth veraged Input

Mode
No.

Response Power

ErrorExperimental Program RAND

1 .025 92 .0257 g 2 +.12

2 .084 .113 +1.29

3 .234 .236 +.04

4 .123 .279 +3.5
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with frequency. The easiest equivalent is a simple bandwidth

averaged. input. Further discussion of this simplified approach

is presented below in Section 5.6.

5.5 Combined Base and Acoustic Excitation Experiments

The base excitation and the acoustic excitation were simul-

taneously applied to the plate at amplitudes which would each

separately cau rze comparable response levels. Low resolution

measurements were made of the pressure input PSD, the base accelera-

tion PSD, the coincident and quadratu:e ( gnponents of the cross

PSD for the pressure and base inputs, and the integrated response

power of the plate. These spectra are shown in Figures 5-18 through

5-20. No corresponding response estimates have been made using

Program P.M.

Two aspects of these spectra are of interest. First, each

of these inputs, applied separately, would cause comparable res-

ponses of the second, third and fourth modes. When these inputs

are combined, however, the plate response shows a relatively en-

hanced second mode and a relatively attenuated third mode. This

effect is caused by the phase relationship between the two inputs.

Analysis of the response of a simple harmonic oscillator to

statistically coupled inputs (Section 4.3.1) showed that the two

inputs can either work together or work against each other, de-

pending mostly on the sign and magnitude of the coincident com-

ponent of the input cross power spectral density. A large negative

coincident component will cause reinforcement of the inputs, whereas

a large positive coincident component will tend to cause input

cancellation. On this basis, the first mode should be suppressed,

the second mode enhanced, the third mode unaffected, and the

90



NT TNi

v

b
41
G

EO
U
i
OU
^o
s-y:.
U
cd
Lz

y^

.3

C1
U 4J

V1 LL

U ^-
:J b

(V 11

V r

U :`
LL L.L.!

t

L.!•f

N

(V

8
z

L

C"
•r

0
O

UJd 11ldNl :lJdU3 QSd indNI NOUV831300V 3SV8
N

C%
Qi

'^7
Y

i 91



7
d
C4
u
++N7
Ou

c
^o

du
i
O
LL-

N

1

lz
d

0U
i0
v-
^c
i

ua
n.
u^

V1
O
iU
01

u^

v,.r
La.

1
a

O	 O

4Sd SSObJ IN3QIONIOJ 	 asd SSOUD 3an1VUCVnO

N N
O

N

g ^,



O

H

cn

Y
UZ
r.
D
0
w

LL

Nw

Ae 'J Qsd 35NOdS3d 31VId

7
0.
C

V
•r

H

V
Q

C

4I
vi
ro

G1
C
.r.

E
0v
0
0

G.

v
N
d'

G1

ro

(D
>ti

I

LL^

N

N

93



fourth mode strongly enhanced, each relative to the superposition

of the response to the acoustic and base inputs applied separately.

Roughly speaking, these effects appear consistent with the experi-

mentally measured responses shown in Figure 5-20.

A second feature of the combined excitation spectra is the

t	 obvious presence of input loading effects at the resonant fre-

quencies of the plate. This is particularly noticeable on the

coincident and quadrature components of the input cross power

(Figure 5-19) even though the low resolution FFT analysis would

generally tend to obscure such effects.

It has already been established that it is difficult to

obtain good response estimates when they are based on measured

input spectra which experience input loading effects. The case

will be no different as.far as the input loaded cross power

spectra are concerned. Although a bandwidth averaging technique

offers some improvement for the case of individual input spectra,

it remains to be demonstrated whether or not a similar procedure

will be successful when cross input spectra are concerned.

5.6 Simplified Treatment of Input Loading Effects

We have already seen the effectiveness of using a simple

bandwidth averaging technique when dealing with input loaded

spectra. This technique simplifies the measurement procedure

ana leads to a better structural response estimate. Some ques-

tions remain, however. Analysis of the input loading phenomenon

r
suggests that a constant, equivalent input spectrum can replace

the sharply varying input loaded spectrum. The analysis does
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not suggest, however, that the bandwidth average is the correct

estimate . of the constant, equivalent input. As damping decreases,

for instance, the bandwidth average increases, whereas the theo-

retical value of the constant, equivalent input remains unchanged.

There is also the practical question of determining a suitable

bandwidth for the average. A larger bandwidth lessens whatever

error may apply because the technique itself is not theoretically

correct. On the other hand, a large bandwidth will tend to obscure

input spectrum variations which have nothing to do with the input

loading phenomenon. The answers to these questions will require

further study. In the mean time, the bandwidth averaging technique

offers a distinct improvement over precise point-by-point measure-

ment of the input loaded spectrum.

What procedure should be followed when input identification

estimates are to be made? Not only is such an identification of

an input loaded spectrum difficult, but it would seem that it is

also undesirable. It is of much more practical interest to iden-

tify the constant, equivalent input spectrum which will yield the

same measured resonant response. In this case a theoretical guide-

line is^available. For an isolated resonant mode excited by a

white noise the acceleration response power is given by

mode response power = n r 2	Go fn Q	 (5-15)
-7-

where r is the modal participation factor. In the input identifi-

cation situation, the white noise input Go , equivalent to the input

loaded spectrum near the resonant mode, is to be estimated.
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Rearrange eqn (5-15):

Mode response power
Go 2r2 

fnQ

........_

(5-16)

On the right hand side of eqn (5-16), the node response power is

measured, fn and Q are known, and r is computed by Program RAND.

So a theoretically correct constant equivalent input spectrum can

be identified in simple fashion near the resonant mode. At non-

resonant regions the problem of input loaded spectra does not

exist and input identification can proceed in standard fashion

using the input identification mode of Program RAND.

5.7 Conclusion to Part II

Implementation of the RAND procedure in an experimental

situation brings in a wnole new set of problems: measurement

accuracy, resolution, input loading effects, noise contamination

of signals, and statistical averaging. Data show that given

sufficient care and effort it is possible to obtain useful and

meaningful response and input identification estimates.

The phenomenon of input loading proved to be significant

experimentally and of definite interest theoretically. The

simple analytical treatment of this phenomenon reflects the

simple structures which comprised the laboratory set up. Work

remains to be done to study the extent to which the present input

loading models apply to complex field situations, for it is easy

to speculate that input loading can have considerable practical

t	 significance. Imagine that a structural component undergoes

i
	 vibration testing and then it is placed in a spacecraft for

developmental flight testing or undergoes further vibration

testing at a high structural integration level. In either case,
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instrumentation is provided to characterize the base input level

to the component. The results of this study have shown that a

sharp peak can occur in the input spectrum due to an input loading

effect, and that this peak, being slightly but critically detuned

to the measured resonant frequency of the component, will have

only a second order effect on the component resonant response.

Now consider that the sharp input peak is discovered by an envi-

ronmental specification writer, who routinely draws an envelope

over it. An erroneous coincidence between the input peak and the
component resonance is thereby guaranteed, and the resulting speci-

fication is substantially overestimated.

Finally, two considerations are added to give prospective to

the experimental study described in Part II. First, we note that

all of the experimental work was done without the benefit of a

modern modal analysis system and without automatic data acquisition

equipment. The former tool would have greatly improved the accuracy

of the dynamical modelling of the structure. The latter tool,

utilized to interface the FFT analyzer output directly to the

computer, would have greatly increased the speed and ease of I/O

operations with Program RAND, thereby making possible the use of

the full resolution capabilities of the FFT analyzer. The second

consideration is simply the recognition that it is important to

distinguish between experimental work done in the laboratory, and

experimental work done on much more complicated structures under

field conditions. Obviously success in the laboratory does not

guarantee success in the field.
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Hopefully the techniques developed and knowledge gained in

this study, coupled with improved hardware tools, will add to

the success with which structural response and input identifica-

tion estimates are made under real field conditions.
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6.0 Summary

This study has focused on the problem of the response and

input identification of a structure subjected to combined base

r

	 and acoustic excitation. The study has included both theoretical

f
	 and experimental approaches. Specific accomplishments are:

1. The development of a computer program RAND to make

response and input identification estimates for a

structure subjected to combined base and acoustic

excitations.

2. The development of parametric design guidelines

for plates subjected to random base or acoustic

excitation.

3. Through a combination of analysis and experimenta-

tion, the evaluation of the applicability of the

RAND procedure to a laboratory test situation,

and the identification of the crucial considerations

which affect the quality of structural input and

response estimates.
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Appendix A

A.l Acoustic Input Loading Analysis

A.1.1 Case 1: Distant Sound Source

Refer to Figure 5-10: Model for Input Loading Analysis. Remove

loudspeaker and acoustic transmission line, and set plate fixture

displacement y  = 0. The pressure p o (t) then acts on the effective

area A for the first mode of the plate. The equation of motion is

m  y  + by yp + k  yp = -p0A 	(A-l)

which leads to the transfer function

2

yp/Po = m	
W	

(A-2)

-W +j24pWpW+Wp

Next, relate pressure p  with the incident pressure p l emanating

from the distant sound source:

po = 2 pl + pcyp	(A-3)

that is, the total pressure p  equals the incident and reflected

wave pressures for the blocked plate plus the radiated pressure due

to the plate velocity yp . Combine eqns (A-2) and (A-3) to obtain

PO
 12 

pl = -W2+j2t w W+W 2	
(A-4)

-W +j2;pIWPW
+WP

where gy p ' = (bp + pcA)/mp

A.-1



A.1.2 Case 2: Near Sound Source

Refer again to Figure 5-10. The system consists of the loud-

speaker, acoustic transmission line, and plate. The plate fixture

displacement ys = 0. To facilitate the analysis we redraw the

system and introduce a displacement function &,t) for the acoustic

transmission line as shown in Figure A-1.

tlo,0	 Vx. 0	 AIL, 0r	 r	 r I/
f
s ^...^..	 U._;

I^

ms, bs, k s 	 P. A. c	 MP, bp, kp

Figure A-1 Plate Excited by Near Sound Source

Assume that the dynamics of the air column can be described by

the one dimensional wave equation

^ 2 E	 1	 a-2	 (A-5)
C2 at

subject to the boundary conditions

t(O+t) _ &l(t) _ -ya(t)

&(l,t) - t2(t) s -Yp(t)

	

mp
 42

 + by t2 + k  t2 + PC2A 3t 2 = 0	 (A-6)

ax

A-Z

8

s
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For a unit harmonic input the steady state response at x can be

written as

&(x,t) = Re [ H ( x,w)ejwt I 	(A-7)

The transfer function H(x,w) can be evaluated by substituting

eqn (A-7) into eqn (A-5) and then applying the boundary conditions

(A-5):

H(x,w) - cos wx/c + f(w) sin wx/c	 (A-8)

where f(w) = pAcwsinwL/c-(-w2 m +jwb +k )cos A/c

(-w mp+jwbp+kp )sin wL/c+oAcw cos wL/c

We are interested in the gage pressure

2 a	 (A-9)
P2 = -poc ax I x=L

which acts on the plate and the force f a which acts on the loudspeaker.

The loudspeaker force is obtained by requiring dynamic equilibrium

for the forces which act on the loudspeaker mass:

fa = ma Z1 + ba tl + ka t1 + pl A	 (A-10)

where pl = -rc2 A 1
x=0

For the case of harmonic motion

P2 = pcw ( -sin wL/c + f(w) cos wL/c)	 (A-11)

fa = ( -pcAw f(w) -w2 ma + jw b  + ka )	 (A-12)

A-3



The transfer function which relates the pressure which acts on the

plate to.the magnetic force which acts on the loudspeaker is then

obtained by dividing (A-11) by (A-12):

P2/fa
 = -pCW 

-sin A/c + f(w) cos wL/c	
(A-13)

  -pcwA f(w) - w 
z 

m, +Jwba+ka

Substitute the expression for f(w) and simplify:

pcw (-w2 mp+jwbp+kp )	 (A-14)

p2/fa 
s	

A

where

a = [- ( PcAw) 2 + (-w2ma+iwbaAa )(Jmp+iwbp+kp ) ] sin wL/c

+ PcAw [-w2(ma+mp)+jw(ba+bp)+(ka+kp)]cos wL/c

A-4
4
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