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FOREWORD

This is the final report on work performed under NASA Grant
Wo. NSG 1295. The grant is entitled "Dynamic Response and Input
Identification". The work was performed at the University of
Lowell, Loweil, Massachusetts. Research investigators were Dr.
John A. McElman, Dr. John C. O'Callahan and Dr. G. Dud]ey.Shepard.
Graduate research assistants assigned to this grant were Chris-
topher Gianaeopoulos, John K. Crischow and Chaur-Ming Chow.
Dr. Robert W. Fralich was the grant monitor assigned by the NASA
during the first phase of this study. This work is described
under Part I of this report. Dr. Michael Card was the grant
monitor assigned by the NASA during the second phase of this

study. This work is described under Part II of this report.
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1.0 Preface

The research supported by NASA Grant NSG1295 had at the outset
three major goals:

1. To develop a general method for determining the response
of a structure to combined base and acoustic random
excitation.

2. To develop parametric reliationships to aid in the design
of plates which are subjected to random force or random
base excitation.

3. To develop a method to identify the individual acoustic
and base inputs to a structure with only a limited number
of measurement channels, when both types of excitation
act simultaneously.

A discrete method of analysis was chosen early in this study
because it provided the flexibility necessary to analyze any type
of structure that might be encountered. Study of both the response
and the input identification problems led to the development of a
computer program which requires as input only the modal parameters
of the structure (natural frequencies, mode shapes, and dam2ing
ratios) and appropriate excitation or response spectra. This
approach is ideally suited to be coupled with a finite element
program.

This study included both analytical and experimental work,
and it is useful to emphasize the inherent contrast between these
two approaches. In the theory-based analytical phase of this

study, questions were first posed and then answered by the analyst,




whereas in the experimental phase, the questions were posed by tﬁe
experimental data itself. The experimenter was then challenged to
find answers to questions which were often unanticipated. The re-
porting of this study has fallen naturally into *wo parts, one

which describes the theory based approach and the other which des-

cribes the experimental reality.




2.0 Symbol List

English Greek
a Fourier transformed input B8 frequency ratio wﬁ»n; also

acceleration vector

A cross section area of Y
acoustic transnission line r

c speed of sound in 3ir
C damping matrix

9
Cfa coincident component of force
and base acceleration cross
power spectrum v
D spatial distribution matrix
£ elastic modulus 0
f force vector ¥
g acceleration of gravity w
G power spectral density (PSD) w,
H transfer function matrix
I identity matrix
L length of acoustic trans- a
mission line f
m mass; also modal degree of "
freedom index p
M mass matrix ,
physical degree of freedom s
index
N{w) Fourier spectrum of noise Y
source
p pressure; also transfer
function pole *

P(s) characteristic function for
transfer function poles )

q modal displacement vector

Q generalized force; also
quality factor of resonance

quadrature component of force
and base acceleration cross

power spectrum
S Laplace transform variable

time; also plate thickness

plate aspect ratio

« coherence ratio

modal participation factor

a(s) characteristic function

damping ratio
material damping loss factor
Poisson's ratio

g(x,t)displacement function

mass density

cross spectrum phase angle
frequency, radians/sec.
natural frequency

Subscripts

base acceleration input process
force input process

material

plate

response variable

specific; also shaker

plate deflection response process

Superscripts

complex conjugate
time differentiation

(overbar) implies a modal vector
or matrix
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English (continued)

u
W(w)

X(w)

2(s)

modal transformation matrix

Fourier spectrum of output
signal

axial coordinate for acoustic
transmission line

Fourier spectrum of input
signai

plate deflection response
veccor

Fourier spectrum of response
signal

transfer function zero

characteristic function for
transfer function zeros
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4.0 Part I: Theory-Based Models for Structural Response

and Input ldentification

4.1 Introduction to Part I

The estimation of the vibration response of a continuous
structure to a spatially distributed wide-band random excitation
combines essentially two problems: the identification of the
dynamic properties of the structure and the handling of the sta-
tistics of the multiple excitation and response variables. The
inherent computatioral complexity of dealing with many variables
which are both dynamically and statistically coupled often means
that for real engineering structures the level of detail is
limited by cost.

At present solutions to the response problem use either the
classic transfer function approach or the non-classical method
of statistical energy analysis (SEA).] Broadly speaking, classi-
cal methods which use continuous system models2 offer excellent
spatial and frequency resolution but are limited to highly idealized
structures with simplified boundary conditions. Classical methods
based on finite system models can handle more realistic engineering
structures but the cost limit on the number of degrees of freedom
in turn limits spatial resolution and frequency bandwidth.
Finally, the SEA method offers wide-band frequency estimates at
the expense of reduced spatial detail caused by the crude averaging
of the spatial modes of response.

This study uses the classical approach on a finite system
model. It is assumed wnat the system is known in terms of its

natural modes cnd frequencies from either existing analytical solutions or




irom a finite element program. Dampiug ra*tio assumptions are
made scrarately based on exnerimentai data, An efficient compu-
tational strateay called Program RAND is then developed to
perform both dynamic response and input identitication calcula-
tions for a nulti-degreec-of-freedct. (MDOF) stiruccure subjected
to statistically coupled pressure and base excitation.

4.2 Development of Program RAND

4.2.1 Analysis

The analysis proceeds in two steps. First, it is necessary
to perform a signal analvsis, i.e., to trace the effoct of the
input vector through the structure to the resuliting output res-
poense vector. MNext, a stauistical analysis is made to determine
the snace and time correlations between the input and vutput
vectors.

Consider first the case of a continuous structure excited
by a force process which is randomiy distributed in space and
Lime.  The structure is divided into n discrete clements. Ar
n-dimensional force vectur f(t) causes a displacement response

\

described by an n-dimensional displacement vector y(t). In tne
usUal fashion the modal transformation
yo= Ug | (4-1)
1s used to transfore the oricingl acovernine matrix difterential
vquation into tne decoupled inodai ecuation
My o+ Cy ¢ Ky s 0 (4-7)
where U is the undamped modal vatrix, M, €, W ere gisaona! mudal

. . . i .
sroperty metirces, and the teddd torge vector © = Yt Such a

transformation existls whenever € s proporticnal to o oor M) tic
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transformation is approximately valid for non-proporticnal damping
vhenever- the damping is light,

For reasons of economy of computation it is desirable to deal
with a reduced number of modal equations and modal coordinates
equal to m, where m < n. Such a reduction is warranted, for ins-
tance, whenever a mode does not significantly contribute energy
to the ove .. response. So the matrices M, C, and K are of order
(m x m), and U is of order (n x m).

Since each mode is governed by a scalar equivalent to the
matrix equation (4-2), a modal transfer function can be obtained by
Fourier transformation for each modal coordinate. For instance,

h

for the pt mode

4y = Gt (o) | (4-3)

where Qs,p = Qp/Mp is the specific modal force. When all the mode
response amplitudes are known the modal response vector q must be
transformed back to the physical space vector y by the transforma-
tion (4-1).

A1l of the preceding signal operations that are required to
relate the vectors f and y can be summarized in the signal vector

block diagram shown in Figure 4-1.

>t uin vl B>

Fig. 4-1  Force Input Transfer Matrix
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This diagram uses the convention that the output vector is obtained
by premultiplying the input vector by the transfer matrix. The
matrix H(w) is a diagonal modal transfer function matrix consisting
of the individual transfer functions Hp(w). The physical-space
transfer matrix Hf is seen to be related to the modal-space transfer
matrix by the equation |
He = U PR (4-4)
Next the statistical relations which correspond to the signal
vector block diagram can be determined by Fourier transforming
related time domain correlation matrices. For instance, to the

real coordinate transformation y = Uq there corresponds the fre-

quency domain power spectrum relation
T
= UG U 4-5
Gy(m) q(w) (4-5)
and where the elements of G refer to the one-sided spectra cus-
tomarily used in engineering calculations, and the single subscripts
y and q.refer to the y and q vector processes, respectively. This
sinple notation has been used rather than the more customary
double subscript notation in order te avoid confusion later when
more than one input vector process contribute to the overall res-
ponse. For the complex transformation q = H(w) QS the statistical
relation is
G (0) = 1 (W) G () H (w) (¢-6)
qle w GQS W w !
where the (*) denotes the complex conjugate. All the other trans-
formations implied by the matrix products in equation (4-4) are

real, and they will each have a power spectrum relation similar

to equation(4-5). The overall power spectrum velation between the

1

t
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input vector process f and the output process vector v is then
6, = U W T T oHyT (4-7)

where the indication of the dependence on the frequency whas been
dropped and the substitutions M'T = M'] and HT = 4 nave been
made. From an operational point of view the response spectrum
matrix in equation (4-7) is obtained in the same manner as in equa-
tion (4-6): that is, by premultiplying the input spectrum matrix
by the conjugate transfer matrixrﬁ:and post-multiplying by the
transposed transfer matrix Hl.

The above procedure of first developing the vector signal
block diagram and then drawing out the corresponding power rela-
tions provides a powerful and convenient operational tool for
more complicated processes. As a second example, consider the
response of a continuous structure to a base input which is uniform
spatially but random in time. The vector signal relation between
a, the Fourier transform of the base input acceleration vector
x{t), and the Fourier transformed absolute displacement response
vector y has the block diagram representation shown in Figure 4-2.

Taken as a whole, the transformations in Figure 4-2 constitute

1 - -
> -U(H+ —5 WM "Tm K>

W

Fig. 4-2  Base Input Transfer Matrix

12
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the physical-space transfer matrix

TR
Ho= Ui+ 5 DN UM (4-8)

w
To draw out the power relations for this process the same opera-

tional approach used in the previous example is followed:

1 y
6, - o+ L m o' G MUR (e s’ (a-9)

W (]

where again matrix transposition has been omitted for the symmetric

matrices M, M, H.

As a third example, the previous two examples are combined
hy assuming that the force excitation and base excitation processes
act simultaneously on the structure, and further, that they are
statistically coupled. The vector signal block diagram for this

case is shown in Figure 4-5.

'O H'

Fig. 4-3 Combined Input Vector Processes

To draw cut the power relations for the process shown in

Figqure 4-3 the same operational approach i< tollowed as with the
previous examples. There 1s, however, a new block diagram opera-
tion of summing statistically coupled vectors hick yroquires a
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corresponding new power relation. This relation can be written in

the following partitioned matrix form:

Gaf ' Ya -Hy
[}

! T
'G H
, t --f--lh-f‘-‘- - (4-10)
where Gfa is the cross power spectral density matrix which des-
cribes the statistical coupling between the f and a input pro-
cesses. The compact relation of equation (4-10) is more easily

interpreted in the expanded form:

T e w e e nT+n e vt (4-1)

*
6y = HeGeHe = Be Gea My = Wy Gy

\/
The first term on the right-hand side of equation (4-11) is given by
eauation (4-7); the last term is given by equation (4-9). Each of the
middle two terms, because they represent cross power terms between
two separate vector processes, are non-symmet:ic matrices. They
are, however, conjugate transposcs ot each other, so that their
sum yields a matrix with the Hermitian symmetry required for Gy.

As a final example, consider the input identification problem
associated with the system shown in Figure 4-3. It is assumed that
the output process and only one of the two statistically coupled
input processes are known. For example, imagine that the signal
vectors y(t) and f(t) are known and are available for statistical
processing but that the spectral matrices Ga and Gfa associated

with the base input process are not known. If the cross process

14

.
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matrix Gfa were known, it would in principle be possible to rearrange
equation'(4-ll) and to reconstruct the unknown matrix G, As an alter-
native, since y(t) and f(t) are available, it is possible to compute
another cross power matrix ny. The additional information provided

by ny makes possible the deduction of both Ga and Gfa‘ We consider
here only the reconstruction of Ga‘ The strategy for this approach

is based on the following partitioned cross power relation for the

system shown in Figure 4-3:

' T
G 6. ! G H :
Y (R DUIRISLY (4-12)
G 6.6 JJHT

]

1

The upper matrix equation of equation (4-12) is

= 6. H -6

.
Gy = CpHp - Gpa Ky (4-13)

Premultiply equation (4-13) by H; and substitute into equation (4-11)

to obtain

* T
Ho G M

i |
a a £ (4-14)

=G +H G HT *6

y *He G He - (Hy G

yr

fy *
This equation can be used to determine Ga in terms of spectrum
matrices derivable from the input processes f(t) and the output
process ¥(t).
*
In a similar fashion an equation for Hf Sf HfT can be

obtained:

* T
He' Ge He

T

I
a )

*
+(H G _+G _H

*
N Gy tHy Gy H a Jay  ya'a

(4-15)

This equation can be used to determine Gf in terms of spectrum

matrices derivable from the input process x and the output process y.

15
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Response estimation by the use of equation (4-11) and input
identification by the use of equations (4-14) and (4-15) appears
deceptively simple. In fact, the amount of computation and
measurement effort implied by these equations can be quite large.
The questions of computational strategy and efficiency are taken
up in the next section.

4.2.2 Computational Strategies and Efficiency:

Program RAND is designed to efficiently compute power
spectral density (PSD) and intearated power spectral density
(IPSD) for two modes of operation: a forward (i.e., response)
analysis and a backward (i.e., input identification) analysis.

A basic program strategy is that the major portion of the compu-
tations are performed in a reduced qua] space. The modal space
is determined by examining the modal power participation
matrices (described below) and selecting only those modes which
actively generate significant response power. In general, the
number of active modes m is less than the number of original
physical degrees of freedom n, and the original system equations
are reduced to a smaller and simpler uncoupled set.

Further program efficiency is obtained by segregating the
real and imaginary parts of complex matrices in such a way that
complex matrix multiplication is replaced by a real dyadic
oneration called an overlay multiplication. Another program
effi~iency is provided which allows the user to spatially window
a specific node in the system and to determine the power spectrum
or integrated power spectrum for that node alone in all forward
or backward modes of operation, thereby reducing computation as

well as printout.
16




4.2.3 Method of Response Computation:

Equation (4-11) can be recast into a cormpact notation as

Gy = Gr/f * Gr/a - Gr/fa (4-16)

where the “r" subscript implies the response variable which can
be displacement (y), velocity (y), and acceleration (;). The "/
symbol denotes "the response with respect to"; f implies force
input, a the acceleration input, and fa, the cross power between
the force and base inputs. Therefore, Gr/f is the partial res-
ponse PSD due to a force input only; Gr/a is the partial response
PSD for base acceleration only, and Gr/fa is the partial response
due to the cross PSD between the two random input processes. Gr

is the total response power and could be written as

G (4-17)

r:=Gﬂf,a,fa

As indicated earlier, the majority of the operations are performed
in modal space. The transformation from modal space to the physical

domain is performed by the operation

T
G. = UGrU (4-18)

where the bar over the response PSD denotes a modal quantity.
Thereiore, equation (4-16) can be reformed into a riodal expression

as

G. = G'r/f ¥ G.r/a - G;/fa (4-19)

The input power spectra are assumed to be separable in time and

space; therefore, the partial power spectra becowme

G = Glw) D (4-20)
17




where D 1s a matrix which describes the spatial correlation between
the response degrees of freedom or the two random input processes.

The moda! partial PSD in equation (4-19) can be written as

= * T
T,/¢ = Gelw) B D, (4-21)
. T*s gt
Gn/a = G,(w) H "D H, (4-22)
Gy/fa = (Cralo) + 30p,(0)) ('(D,, + OL) W) (4-23)

where Cfa and Qfa are the coincident and quadrature components of
the cross PSD of the force and base inputs, ﬁ} = H is the modal
transfer function relating modal force to displacement, and
Hy=H+ (]/mz) I is the base acceleration modal transfer function.
The D matrices are modal power participation matrices which
are usud in the response analysis to identify modes which actively
generate significant power. The modal distribution matrices can
be expressed as

T 1

ﬁf =M D¢ U 1] (4-24)
D = f-{-] Vo Mu H.] (4-25)
a a

-1 -1
ﬁfa =0 De, MU N (4-26)

where the unbarrved D's represent the spatial distribution matrices
in the physical domain. Note that the modal power participation

matrices necd only be computed once and that they remain constant
throughout the problem solution. Also, the complex operations in

the above equations are performed using the special overlay

nultiplications.




The compiete output information for every degree of freedom
is not always needed. In that case the response matrix can be
spatially windowed at a selected node i. This process will produce
only the real co-power term since the Guad-power term for a main
diagonal element is always zero. A row matrix can be formed by

th

partitioning the i~ row from the modal matrix and designating

it as p§. The scalar power at node i then becomes

Gl

= ol -
e T Py G Py (4-27)

where the superscript 1 indicates that a windowing process has
been imposed on the physical PSD matrix.

The integrated PSD is obtained by an Euler integration pro-
cess applied to matrices in modal space. This scheme was selected
since it only requires the PSD matrices at step Wy s thereby avoiding
the difficulties of saving previously evaluated matrices for inte-
gration. Therefore, the integrated PSD is

. G(wk)

G(mk) = G(mk_]) + —5 [Awk + Awk_‘] (4-28)
where (°) symbol denotes a modal integrated PSD and where
dwp ®wp oy - wy is the new step, and dwy g T oy - w _y 1S the
old step.

The rate at which the program steps through frequency solu-
tion is determined automatically by the program which uses

the half power width of the nearest mode as its basic step in
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frequency. In order to ensure convergence or to improve accuracy,
the program allows for subdividing steps and/or concentrating
computations at selected modes of importance.

4.2.4 Hethod of Input Identification Computations:

The general problem of identifying a spatially non-uniform
input precess is very complex both computationally and experi-
mentally. A reasonable level of complexity can be obtained by
assuming both force and base acceleration input distributions
are spatially uniform, Therefore, Df and Da are set to a one
matrix and the input identification process is performed at a
single nodal point on the structure which would correspond to
an experimental accelerometer output.

To estimate the base acceleration input PSD, equation (4-14)

can be written as

+ G (4-29)

Gyra = Se/f,a,6a T O/t~ Geryt,a,fa

where Gr/a is the partial power response due to the input base
acceleration, to be identified,

Gr/ﬁ a.fa is the total response of the system due to
S99 317 effects,

1s the partial response due to the uniform force

input P50,

Gr/f

is the cross power between the input force
PSD and the response of the system due all
ettects.

Gfr/f,a,fa

As discussed previously, it is not reasonable to require an ex-

periment to produce all the data required to specify equation (4-29)
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completely, Therefore, the windowing process must be applied to

reduce equation (4-29) to

i, o 1
Gr/u Gr * Gr/f - Gfr

(4-30)
Note that the subscripts to the first and third terms have been
dropped since they are the responses due to all effects. Equation

(4-30) implies the following:

6! is the accelerometer response at noudal position i

G;/f is the input force PSD at nodal position i which
by assumption is the same at any node

6]  is the cross PSD information between the input

fr force PSD and the output accelerometer at node i.
This PSD contains a coincident and quadrature component.

To determine an estimate of the input base acceleration PSD,
the proqram applies a white noise PSD to the base in order to
characterize the system power response, denoted as Gr/a' . Then

the base input to node i can be written as

i i
Gp/q = G, () G/ (4-31)

where G;(w) is> the identified base input acceleration PSD obtained
from infornaticn at node i. Solving for G; using equations (4-30)
and (4-31) produces

. 1 . .
s i LN
(ld(w} - Ei [G'. + Gl‘/f Gf!'] (4'32)
r/a’
In a similar fashion, eguaticn (4-15) can be windowed at node
ias '

A i i i
o= G+ , o+ 1.
Lr,’f Lr Gr/a Gar \4-43)
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where G:r is the cross PSD between the base acceleration and

accelerometer output as node i. As in the previous case, a white
noise force PSD is applied to obtain the force power response
Gr/f" Then the identified force input PSD obtained from infor-
mation at node 1 is

{ 1 i i i !
Gelw) S (G + Grya * Gyp] (4-34) |

r/f!
4,3 Results of RAND Computations

4.3.1 Combined Base and Acoustic Excitation of
a Simple Oscillator:

The combined base and acoustic excitation of a simple oscil-
lator has been studied both analytically and by using Program
RAND. Originally the exact analytical solution for this case was
developed to rigorously check the program loaic of RAND. However,
since the simple oscillator is a nrototyne for each of
the modes of a MDOF system, the analytical solution gives valuable
insight into the convergence and resolution properties of the
discrete frequency operations of RAND,

For example, consider the acceleration response of a one DOF
system of mass m, natural f-equency W e ard damping ratio ;. For
the combined force and base excitations characterized by the

spectra Gf(w), GJ(ﬂ). and Cfa{m) + ija(w) the response is

1

O, (4-35)

+ (1 + 4;2u2) Ga(“)

[
{
22 :
1




where 8 = u/un. The term which contains cfa' the coincident compo-
nent of the cross power, appears with a ncgative sign., This reflects
the fact that the separate responses to the force and to the base
inputs are in opposition to each other. In contrast, the term

which contains Qfa' tne quadrature component of the cross power,
appears with a positive sign and has a smaller magnitude than the

cfa term, at least for 2¢8 < 1. For the case where the input spectra
are constant with frequency the integrated mean squared acceleration
response is

G 2\ 2C,.w
2 n #(1 - 4c¢°) fa’n =
Yy = lim {‘T Ez + - T

B m 4C m ¢

2cQc 0 2
20 in(1-2(1-22)p46%) 1 + T2

2
n(1+44:°)
* Gyop 3 } (4-36)

The terms involving » represent the overall output power contributed
by the resonant portion of the transfer functions. Additional terms
involving & are non-resonant contributions to the output which con-
tinue to grow with frequency. Since the resonant contributions
occur just in the narrow band of frequency at W a good estimate
of the integrated response over a finite bandwidth which includes
the resonance can be obtained by dropping the limiting operation
g+« in equation (4-36;.

An idea of the extreme range of the input coupling effect can
be obtained by examining the special case where Qfa = 0 and
G, * Gf/m2 = Cpp/m = Go. This corresponds to the case where the

force and base inputs are fully coherent and the resonant contri-

23
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butions of the two input spectra are nearly equal. Substitution into

equation (4-36) yields, for the finite upper frequency ratio 8,
Y2 ® G 8 (4-37)
0'n

Thus the resonant contributions cancel each other and only the
‘non-resonant response remains. By changing the phase of the co-

power term, Cfa/m = —GO, the overall reSponse becomes
uz T . .
<Y = Ggup (8 +7) (4-38)

where the power contribution due to resonance is four times that

caused by Gf or Ga alone. Figure 4-4 shows the results of a RAND
computation for a related extreme case where Qfa # 0. The phase

between the base and force input is described by the phase angle

b= tan! (Qp/Ce,)

In summary, the resonant power response ranges from near zero
(coherent signals cancel), up through a factor of two (simple sum
of uncorrelated powers) to a maximum of four (coherent signals add
for a signal factor of two, a power factor of four). Note that
this range will be reduced whenever the inputs are not equal or
are not fully coherent. It is clear that the effect of coherence
and phase of the cross power can be very significant. Similar
effects are apparent in MDOF system responses, to be discussed later.

4,3.2 Acoustic Excitation of a Beam

A simple ten degree-of-freedom beam was chosen to investigate
the effects 6f the spatial correlation of the acoustic input and
the effects of the beam boundary conditions. Figure 4-5 shows the

center node acceleration response PSD when the beam is clamped

24
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at each end and is subjected to a base input as well as either a
spatially correlated pressure input (solid 1ine), or a spatially
uncorrelated pressure input (dashed 1ine). A1l 1inputs are cons-
tant with frequency (white noise) and no correlation exists
between the base or acoustic inputs. It is evident that the
asymetric modes (every other mbde) do not participate in the
response when the pressure is spatially corr2lated. Participa-
tion is strong for these modes, however, when the pressure is
spatially uncorrelated. The area under the uncorrelated curve
is, therefore, larger than that under the uncorrelated curve,
resulting in a higher integrated response for the uncorrelated
case.

Figure 4-6 shows the effect of boundary conditions on the inte-
grated acceleration power response. The solid line represents
simple supports while the dashed line represents clamped supports.
The discrete jumps in the curves occur every time that a partici-
pating mode is passed. Since the simply supported beam has the
lowest natural frequency, its response starts to build first.

The two curves then alternate in height for a time until the
clamped, curve finally begins to maintain a higher integrated
value than the simply supported curve. These results indicate
that stiffer boundary conditions will give a somewhat higher
integrated response, but it is felt that this will not be a major
variable in response or input prediction.

Figure 4-7 shows a family of backbone curves for integrated

response of the beam center node versus phase angle y = tan"(Co/Qd)

- of the cross power between the base and spatially uniform acoustic
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inputs, for two support conditions. Omitted is the cosine-1ike
variatiop with respect to each straight backbone 1ine. (Each of
actual curves in the family would have shapes similar to the
curve shown in Figure 4-4.,) Figure 4-7 demonstrates the substantial
effect that statistical coupling between base and acoustic inputs
can have on the random response of structures. Similar effects
will be demonstrated for a plate (Section 4.3.4).

4,3.3 Single Point Force Excitation of a Plate

During the development of RAND a nuinber of solutions were
run and comparisons made with existing analytical solutions in
order to verify Program RAND. For example, RAND results were
compared with an analytical solution by Nittig(3) for the mean
square velocity of a rectanaular, simply supported plate subjected
to a random point force having a white noise input spectrum. The
results of this comparison are shown in Figure 4-8. The RAND
solution utilizes only sixteen degrees of freedom and therefore
accounts for a very small portion of the modes included in the
analytical solution. Still, however, convergence is rapid and
the two solutions are in good agreement. The questioﬁ of conver-
gence is discussed further in the next section.

4,3.4 Combined Base and Acoustic Excitation of a Plate

Next we consider in more detail a plate response problem
where the excitation is more realistic than in the previous
example. For this example an aluminum plate is chosen which measures
4 ft. by 3 ft., with a thickness of 0.2 in. This thickness is
chosen to insure a fundamental frequency low enough to be affected
by the low end of the input spectra. 7he plate is assumed to be

simply supported on all four edges. triodal damping is assigned a
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value of ¢ = .05 for the first mode and assumed to decrease for !
higher modgs so that the product ' remains constant. - Such |
a plate has sixty-four natural frequencies below 1000 Hz. Only
eighteen of these modes participate when excited by either a

uniform pressure or a base input. The input spectra ranges in

frequency from 30 to 1000 Hz as shown in Figure 4-9, . :
At first the base and pressure inputs are assumed to be |

statistically independent. The integraicd displacement responsés

for these independent inputs, computed separately by RAND, are

shown in Figure 4-10. Evident from this figure is the fact that

the displacement response converges rapidly for both inputs, and

is almost entirely determined by the first few participating

modes. One can conclude from this that any instrumentation (such

as a strain gage) that relies solely on displacement response for

input identification would be completely ineffective at mid and -

high frequencies. Because both inputs are spatially uniform,

the response is symmetric and the largest response occurs at

the center of the plate. The magnitude of the integrated RMS

response due to both inputs 1s 0.115 in., or approximately one-

half of the plate thickness.
The integrated acceleration responses for independent pressure

and base inputs are shown in Figure 4-11. They exhibit an entirely

different character than the displacement responses in that con-

vergence 1s not evident. The integrated response increases a

1ittle as each participating mode is encountered. Acceleration

response data is clearly preferable to displacement response data
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for the identification of inputs over a wide frequency range. Thé
spatial distribution of acceleration over the plate (not shown
here) is again symmetric, and indicates that the center of the
plate has a higher responsé by a factor of almost two over any
other plate location. This suggests that the center of the plate
acts as a collector of energy and is, therefore, the best site for
the location of an accelerometer.

The effect of statistical coupling between the base and
pressure inputs can be investigated using the same plate model
described above. The base and pressure PSD characteristics
are chosen to be white noise, their respective power amplitudes
sized to cause a roughly comparable response of the plate {f
applied separately. Fig. 4-12 shows the integrated acceleration
response at the center node of the plate for several variations
in cross power phase angle y ané for two values of the coherence
ratio (all assumed constant with frequercy). Note that the inte-
grated response can range from a low value of 4 g's RMS to a high
of 30 g's RMS depending on the phase between the base and acoustic
inputs, a result consistent with the simple oscillator study
discussed earlier in Section 4.3.1 For 2 phase angle of 90° the
response is equal to 22 g's RMS. This value is nearly equal to
the response that would occur if the two inputs were uncorrelated.
This large range of possible responses is directly attributable to
the statistical coupling between the base and pressure irputs,
since these inputs have remained unchanged in this plate response
example. This emphasizes the need to assess the magnitude and
phase characteristics of any statistical coupling between inputs.
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4.4 Parametric Design Guidelines for Plates Subjected f
~to Random Excitation g
Parametric relationships for plates subjected to random exci- i
tation are developed separately for a pressure input and for a
base input. Consider first the forced response of a damped single
degree of freedom system of mass M, resonance quality factor Q
and natural frequency Wy Proportionality relations for the mean
square responses for displacement and acceleration are:
, 6,0 -
mean square displacement ~ »—, (4-39) .
Mo : h
n ;
mean square acceleration ~ GeQup (4-40) .
M g
5
where Gf is the input force power spectral density taken to be a i@
constant near wg* The response of the single degree of freedom ﬁ
system can serve as a model for the resonant modes of a plate with i
the exception that the effect of a modal participation factor must 'Q
g
be included for each mode. Consider next that the effect of i
!
damping and modal participation factor are held constant, and only Q
the plate mass and its natural mode frequencies are varied. The f%
i
plate mass mis simply 3
m = pabt (4-41) A
1
i

where p = mass density

a,b = plate length and width
t = plate thickness
The fundamental frequency of the plate is
2
2.0 [my2, (32
i Y 6a) * (b)] (4-42)
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3
where D = plate bending stiffness = T§%T:bz).

As the mass and fundamental frequency of the plate is varied
so will the mass and the frequency of each higner mode be varied
accordingly. The total response to all the modes will then be a
sutmation of modal responses, each similar to eqn (4-39) for dis-
placement, or eqn (4-40) for acceleration. Parametrié relations
for the RMS response of the plate are obtained by substituting
eqns (4-41) and (4-42) into eqns (4-39) and (4-40), and then taking
the square root of the resulting expression. These relations are
shown in Table 4-1. The parameters can be divided into three
groups representing the effects of plate geometry, plate material,
and plate thickness. (n refers to the material loss factor).

These groups are represented by the symbols D and A for the displace-
ment and acceleration response respectively, and with the subscripts

G, M, and t to denote geometry, material and thickness. Figures

4-13 through 4-17 present plots of the effects of geometry, material

and thickness on plate response.

Figures 4-13 and 4-14 show the dependence of the geometric para-
meters AG and DG on the aspect ratio 8 of the plate for several
values bf the plate width b. Displacement parameter DG decreases
monotonically with increasing 8. In contrast, acceleration para-
meter AG reaches a maximum at g8 = 1.33 and then slowly decays.

The effect of material selection on displacement and acceleration
response is shown in Figure 4-15. The displacement and acceleration
parameters Dy, and Ay each shows a dependence on modulus E and
density p which differs greatly from the modulus-to-density ratio
commonly used in the design of precision aerospace instruments.

As a result such inexpensive metals as steel and brass
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| compare favorably with the expensive metal beryllium as far as

. random response is concerned.

é Figures 4-16 and 4-17 show the effect of thickness on response.
| The effect of thickness on displacement response is very pro-

' ' nounced. In contrast, the effect of thickness on the accelera-

tion response is relatively mild.

A1l of the parameter effects described above have been veri-
fied by RAND. Typically the response of a particular plate can
‘be determined for a given input. The geometry, thickness and ma-
erial properties can then be changed arbitrarily and the new
response predicted to within a few percent by using the parametric
relationships.

The development of corresponding parametric relationships
for base excitation follow the same approach as for the pressure
case. In this development there is one major difference: it
becomes evident that one can address either the relative or the
absolute plate response. RAND studies show that the majority of
the response of a plate to a base input is produced by motion of
the plate relative to its supports. Using D'Alembert's Principle,
the forcing function for this relative response is proportional
to the mass per unit area pt. This suggests that the parameters
for base response can be obtained from the pressure response
| parameters simply by multiplication of the latter by the factor
pt, as shown in the bottom half of Table 4-1. Note that only
the geometry parémeter is unchanged. Changes in the material and

thickness parameters will yield response predictions for the base
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input case which differ from the corresponding prediction for
pressure_input. As before, the accuracy of these base response
parameters have been verified by Program RAND.

The purpose of this parametric study was to develop the
ability to predict changes in response due to changes in struc-
tural configuration and as a result to be able to predict the
response of a newly designed plate by comparing its physicél
characteristics to a plate with a known response. The above
parametric relationships accomplish this goal.

4.5 Conclusion to Part I

Program RAND is a practical and useful tool for making res-
ponse and input identification estimates for any multi-degree-
of-freedom structure subjected to boti base and acoustic inputs.
Displacement response computations, suitable for stress and sway
space estimates, converge quickly and require only a low frequency
representation of the structure. On the other hand, accelera-
tion response computations, suitable for the estimation of g loads
and for designing subassembly tests, do not converge quickly.

In the latter case, the structural model must have good fidelity
over a bandwidth which includes all frequencies of significant
excitation. In the case of an acoustic input this bandwidth may
extent to 10 KHz.

Practical Timitations to the RAND estimation procedure do
not relate to the program itself, but rather to the program inputs.
The limited fidelity of the finite element model used to charac-
terize the structure has already been mentioned. A second input

limitation, looking ahead to Part Il of this study, results from
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the difficulty of accurately measuring the random base or acoustic
excitations. As far as model fidelity is concerned, perhaps a
reasonable approach is to use Program RAND for low frequency dis-
placement studies, and for acceleration studies up to mid frequency
range. Truly high frequency problems will probably best be studied
using the technique of Statistical Energy Analysis. Input accuracy

limitations are discussed in part II.
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5.0 Part Il: Experiment-Based Models for Structural Response
andenput‘THéﬁfiTicat1on

5.1 Introduction to Part Il

In describing the experimental portion of this study a distinc-
tion has been .iade between low resolution and high resolution ex-
periments, This distinction reflects the historical fact that
originally only a low resolution Fast Fourier Transform (FFT) ana-
lyzer was available for use in this study. Subsequently a high
resolution capability was added to the analyzer. Although the low
resolution results are in some recspects inferior in quality to the
high resolution results, there are advantages and disadvantages
associated with both types of measurements. Consequently there
is much to be learned by contrasting the low and high resolution
measurements, and they have been given equal emphasis in this
report.

5.2 Laboratory Test Description

A simple schematic of the test set up for combined base and
acoustic inputs is shown in Figure 5-1. The corresponding instru-
mentation layout is shown in a more detailed fashion in Figure
5-2. MWith this equipment it was possible to excite the plate
by a base input, by an acoustic input, or by combined base and
acoustic inputs. Note that in the combined input case both the
base and acoustic excitation are caused by the same source,
namely the MBT495 Random Noise Generator. This means, of course,
that thz base and acoustic inputs are fully correlated statis-
tically, and the nature of the cross power spectral density between
these excitations is wholly determined by the frequency transfer
characteristics of the base and acoustic channels which exist
between the noise source and the aluminum plate.
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Fig. 5-1 Test Set Up: Combined Base and Acoustic Input
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In the experiments the procedure was to measure input and res-
ponse spectra under various conditions of excitation and then to
compare these spectra with those predicted by Program RAND. In
order for RAND to be executed it is necessary to specify the dynamic
modal parameters of the plate. The required parameters are the
modal damping ratio vector z, the modal frequency vector f .and the
mode shape matrix U. Modal damping ratios can only be determined by
experiment, and much effort was expended in this study attempting
to obtain reliable damping estimates. On the other hand, frequency
and mode shape estimates can either be made experimentally or by
the use of a computer-aided finite element analysis. Probably the
preferred approach is to determine these parameters wholly by
experiment, since no idealized assumptions are required as with
the finite element modelling process. And with the availability
of computer-based modal analysis systems the experimental approach
may also be easier. Unfortunately in this study no such modal
analysis system was available. Mode shape estimates were therefore
based on a finite element analysis using Program SAP IV. Damping
and frequency data was obtained experimentally.

The question of boundary conditions requires special attention.
The analytical approach embodied in Program RAND utilizes the prin-
ciple of linear superposition, and the ideal assumption is made that
a base input, of infinite source impedance, acts independently of
the acoustic input, which has zero source impedance. The experi-
mental reality is rather more complex. As will be detailed below

in the treatment of input loading effects, both the shaker and the
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loudspeaker possess a finite source impedance. Further, these
inputs are dynamically coupled: for instance, the base input level,
as measured by the plate fixture accelerometer will be caused to
change merely by turning on the acoustic input. The RAND assumptions
are still valid and the RAN) predictive procedure is still appli-
cable to real structures; it is just that particular care must be
taken concerning boundary conditions in a test situation. Consider
for example that we want to compare RAND predictions with experiment
~ for the case of acoustic input only. Since the analytical approach
assumes infinite source impedance for the base input and, in this
case, the base input amplitude is assumed to be zero, the proper
experimental procedure is clearly to mechanically block the shaker
input. Alternatively, a pure base input test, withdut any acoustic
interaction, would require removing the loudspeaker, or, better yet,
to remove any acoustic effects by operating in a vacuum. The diffi-
culty with boundary conditions occurs only when it is desired to
test one input at a time. Practically speaking, there will always
be combined inputs in a field situation, and the RAND procedure

will rigorously apply.

Finally, we consider the question of data averaging. Whereas
the analytically derived spectra produced by the RAND predictive
procedure have in effect already been averaged mathematically, the
experimental data produced by the base input and plate response
accelerometers and by the microphone vary randomly, and must be
sufficiently averaged to reduce the amount of statistical variation

to acceptably small levels. A figure of merit for the adequacy of
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this averaging is the confidence level as measured by the equivalent
-degrees of freedom of the chi-square distribution model of the
sampling process. Although the question of confidence level was
addressed in these experiments it was not systematically monitored
and is not reported on here. A second figure of merit which indi-
cates the quality of data estimates is the coherence ratio. This
parameter is related to the signal-to-noise ratio of the data, and
is conveniently available on the FFT Analyzer. [t was consistently
monitored during all tests. A brief review of the coherence ratio ;
follows.

A common situation which arises in structural vibration measure-

ment, which we shall refer to as output noise contamination, is

shown in Figure 5-3.

N{w)

X{w) {w)
=1 H{w) | " Y(w)

Figure 5-3 Output Noise Contamination

In the Fourier domain, a linear dynamical structure, charac-
terized by its transfer function H{w), receives an excitation X{w)
and responds at a level W(w). An independent noise source of strength

N(w) is present at the output. Define the coherence ratio 72 as

P B (5-1)
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where sij(ug refers to the usual cne sided power spectral density.
Eqn (5-1) can be rewritten as:
]
V) = 5 (5-2)
nn
with 0</’<1 as w6, /G >0,
Similarly, noise contamination is possible at the input as

shown in Figure 5-4,

N{w)

X(w) Y Wiw)
H{w) = Y{w)

Figure 5-4 Input Noise Contamination

Under the same assumptions, the coherence ratio is
vo(o) = 7T (5-3)
nn’ “xx

with 0<y%<1 as w6 /6 >0.
Both input and output noise contamination occurred during the experi-
ments and will be discussed further below.

5.3 Low Resolution Experiments

5.3.1 Modal Damping Ratio Estimates

Early damping measurements were made in the frequency domain
using an FFT analyzer which possessed only a base band capability.
Base band refers to the bandwidth of a snectrum which extends from

zero frequency to a selectable upper frequency. The nominal

frequency resolution of the analyzer is then the base bandwidth
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divided by the number of spectral lines provided by the particular

analyzer.configuration. Nominal resolution fbr the 400 spectral

line analyzer (in base band operation) is given in Table 5-1 as

a function of base bandwidth setting.

Base Bandwidth Nominal

Setting Frequency ;‘
: Resolution .
0 -500 Hz 1.25 Hz
0 - 1000 H2 2.5 Hz
0 - 2000 Hz 5  Hz| ]

Table 5-1 Frequency Resolution for Baseband Operation

As an example, low resolution estimates of the quality factor Q]
of the first plate mode (f1=240 Hz) varied from 25<Q, <100 depending
on base band setting. The actual Q of the first mode; determined
later by using an analyzer with a gigital frequency expansion (Zoom)
capability, was about 109. The actual half power bandwidth of the
first mode is therefore about %gg = 2.2 Hz. Clearly none of the
above base bandwidth settings (Table 5-1) can adequately resolve
the sharp resonance peak of the first plate mode.

Time domain estimates of damping ratio were also attempted.
The log decrement of the transient decay envelop of the plate were
measured after passing the plate response signal through a band
pass filter centered at the particular mode frequency of interest.
Damping estimates were improved by this technique. For example,

the first mode quality factor ranged from 76<Q<89. The method

proved, however, to be tedious and inconvenient. It was also suspect
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from a theoretical point of view: the plate dynamic characteristics
were being windowed by the electronic filter which posse;sed its
own dynamic characteristics.

The proper estimation of damping is crucial to the success of
any scheme of structural response or input identification estima-
tion. And proper estimation of damping requires the use of instru-
mentation which has adequate resolution. It will be shown below
in this report that there are certain advantages to making low
resolution measurements of the input and output spectra in structural
dynamic studies. The requirement of high resolution measurements
for damping, however, remains unchanged. |

5.3.2 Excitation and Response Spectra

Typical examples of low resolution excitation and response
spectra for the plate are shown in Figure 5-5, for the case of
base input, and in Figure 5-6, for the case of acoustic input.

In both cases a broad band input excitation extends from nearly
zero to 2000 Hertz. The five major peaks in the plate response
spectra correspond to five participating normal modes predicted

by a combined SAP IV and RAND analysis, as shown in Table 5-2,

SAP SAP Experimental
Mode Resonant RAND Resonant
Number Frequency Participation Frequency
1 252.2 Hz X 250 Hz

2 391.1

3 622.8

4 626.7 X 605
5 755.5

6 954.6

7 931.2

8 1192 X 1105
9 1300

10 1324
N 1373 X 1310
12 1545 X 1445

Table 5-2 Comparison of Finite Element (SAP)
and Experimental Mode Frequencies
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The SAP IV finite element model has yielded frequency estimates
which are acceptably close to the experimental values, although
the question of accuracy of the finite element model is not an
important issue, since we have already pointed out that the modal
parameters (frequencies, damping ratios, and mode shapes) are

best obtained experimentally using modal analysis equipment. Note

that a spurious small response peak occurs at approximately 1200

Hz. This was not predicted by the combined SAP/RAND analysis and | :

was not included as a transfer characteristic of the plate in any
subsequent RAND response predictions or input identifications.
Again, were modal analysis equipment available, this response
detail would be routinely incorporated in the plate model repre-
sentation of Program RAND.

We turn now to the question of the quality of these spectra
estimates. As stated above, the spectra have been sufficiently
averaged timewise to the point of negligible statistical variation.
However, a plot of the coherence ratio, shown in Figure 5-7, indi-
cates that the signal-to-noise ratio is sharply reduced at a number
of critical frequencies. In this Figure the base excited plate
response is presented as a semi log plot to allow study of regions
of very large resonant response as well as regions of very low
artiresonant response. Resonant and antiresonant responses are
most easily described analytically in terms of the poles and zeros
of the transfer function, which can in general be written in the
form

k(s-2))(s-25)-=- g .
Hs) = e tsmp, - = s (5-4)
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where the transfer function zeros Zy, Z,--- are roots of the equation
I(s) = 0, and the transfer function poles Pys Pp=-- are roots of the
characteristic equation P(s) = 0. For very lightly damped structures
these poles and zeros occur in conjugate complex pairs which are
located very near to the imaginary axis. The plate response spec-
trum PSD Gp(w) is related to the base input spectrum Gb(“) by the

equation
Gol) = Gy(w) [HE)[® (5-5)

where H(juw) is the frequency response function obtained from the
transfer function H(s) simply by setting s=ju. A resonance occurs
when IH(jw)l2 is maximum. This in turn occurs when the value s=jw
is very close to (effectively is equal to the imaginary part of) a
transfer function pole Pys Pp==- etc. Similarly an antiresonance
occurs when IH(jw)l2 is a minimum. This in turn occurs when the
value S=jw passes very close to (again, effectively equals the
imaginary part of) a transfer function zero 2y, 2,-=- etc, A
resonance is a global characteristic of the structure and exists
independently of the spacewise nature of the input. An antiresonance,
on the other hand, is a local characteristic of the structure; that
is, it applies to a particular location only. Further, the location
of the antiresonance, both spatially and in frequency, depends on
the spatial distribution of the input excitation.

Consider now the two antiresonant responses which occur approx-
imately at 825 Hz and at 1350 Hz as shown in Figure 5-7. Since
the damping of the structure is very small, the antiresonant res-

ponse is also very small (zero damping would result in truly a zero
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response). Clearly such a small signal will be corrupted by ever
present backgrc.nd nofse. Hence a sharply reduced value of the
coherence ratio. Since this noise contamination occurs at the
output (response) of the transfer function H(w) we have an example
of output noise contamination as shown in Figure 5-3.

Significant reduction in the coherence ratio also occurs at
the resonant frequencies. However, the mechanism for this - an
input noise contamination caused by input loading effects - is
obscured in this data because of inadequate resolution of the FFT.
The details of the input loading phenomenon will be taken up later
during the discussion of the high resolution experiments.

5.3.3 Response Prediction Using Program RAND

At this point an attempt was made to compare the plute response
level obtained experimentally with the same response level predicted
by Program RAND. The RAND model of the plate used damping ratios
determined by free vibration decay measurements, natural frequencies
obtained by FFT measurement, and mode shapes obtained by finite
element analysis. Four separate experiments were conducted using
base input excitation only. The base input and plate response
spectra were measured using the low resolution FFT analyzer. Be-
cause the FFT aralyzer could not resolve the sharp response peaks
adequately, there was 1ittle hope that experimentally measured
response spectra would agree with the corresponding spectra pre-
dicted by RAND. However, FFT measurements of the rather slowly

varying broad band input spectra could be expected to be fairly

good. And the integrated area of the response peaks, that is, the
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overall power of each resonance, would also be fairly accurate
because the FFT algorithm accurately computes the correct power 6f
the time windowed signal, independent of resolution adequacy. The
results of these four runs are given in Table 5-3. The agreement
between experiment and Program RAND is rather satisfactory, parti-
cularly when it is remembered that the excitation data input to
RAND suffered from nofse contamination and tte input spectrum was
poorly resolved. Reasons for the relative success of the predic-
tion procedure in the presence of these error nroducing effects
will be discussed later after the high resolution results have

veen presented.

Run Total Overall Response
No. Experimenta) ~Program RAND Erron
1 40.4 ¢° a4.8 g +.45 dB
2 4.1 35.2 -.67

3 54.3 40.9 -1.2

4 48.1 37.3 -1

Yable 5.3 Plate Response Estimates: Base Input, Low Resolution Spectra

5.3.4 Input ldentification Using Program RAND

The input identification mode of Program RAND takes as i{nput
data the response spectrum of a structure, accounts for the transfer
characteristics of the structure, and then computes the spectrum
of the excitation applied to the structure. The use of a8 low
resolution FFT analyzer for input identification mode measurements
will not be satisfactory since the analyzer must resolve th: details

of a response spectrum which consists of many sharp resonant peaks.
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Nevertheless, it is instructive to look at an early example of an
input spectrum identification provided by the RAND procedure using
data obtained by the low resolution FFT analyzer, shown in Figure
5-8. A comparison viith the actual input spectrum (not shown)

shows that the input spectrum estimate is of poor quality as
anticipated, particularly near the resonant frequencies at 250 Hz,
605 Hz, 1105 Hz, 1310 Kz and 1445 Hz. But the most important aspect
of this spectrum estimate is that it is dominated by three peaks
which are very obviously in error, since the actual spectrum was
relatively flat with frequency. The presence of these peaks has
nothing to do with the low resolution of the FFT analyzer. The
first two peaks, at 825 Hz and at 1350 Hz, are czused by the poor
sigral-to-noise ratio at the two antiresonances described above

in Section 5.3.2. At an antiresonant frequency the transfer
characteristic of the structure decreases nearly to zero. The
structural response, as measured by an accelerometer and estimated
by an FFT analyzer, does not decrcase nearly to zero ( as it should
theoretically, and as Program RAND expects) because of the presence
of noise. The only explanation for this non-vanishing response,

as far as Program RAND-is concerned, is that the input must have

a very sharp peak. Thus erroneous peaks will always appear in

the input identification estimate at each artiresonant frequency

of the structure. From a practical point of view the antiresonance-
induced error can be avoided Ly simply instructing Program RAND to
set the input icentification estimate to zero for a small band of

frequency about each antiresonance, a process called blanking.
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The implication of this phenomenon is that the transfer charac-
teristic.of the structure which is stored in RAMND must explicitly
include antiresonant frequencies as well as resonant frequencies,
It is also clear that the input identification procedure will
break down in the region of an antiresonance, and that a portion

| of the input spectra will be lost because of an inadequate signal-
to-noise ratio.

The third large source of error in Figure 5-8 extends over a
band of frequency 1800<f<2000 Hz. This is caused by the fact that
the transfer characteristic stored in Program RAND includes only
five modes and is therefore only representative of the structure
out to a frequency of, say, 1600 Hz. The error can be removed by
simply including an additional (sixth) mode, thereby extending
the fidelity of the transfer characteristic to 2000 Hz.

The problems described in this section were discovered during
early low vesolution input identification runs, and they called
attention to the importance of assuring adequate bandwidth for
the structural transfer characteristic and to the value of anti-
resonant frequency blanking. These refinements were routinely
incorporated in all subsequent low and high resolution studies.

5.4 High Resolution Experiments

5.4.1 Improved Estimates of Damping Ratio and Frequency

The addition of high resolution capability to the FFT analyzer
quickly led to damping ratio and resonant frequency estimates which
were reproducible and also independent of any further reduction of

¢ the resolution bandwidth setting of the analyzer. With this capa-
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bility for precision it soon became apparent that the damping ratios
and resonant frequencies were affected by subtlieties in the boundary
conditions of a particular test: for instance, whether or not the
shaker fixture was blocked, what type of excitation was used, and

, whether or not the loudspeaker was in position over the plate. The
variation in frequency with changes in boundary condition were
typically less than 1%. Unfortunately, due to input loading effects,
such small variations in frequency are still significant as far as
structural response and input identification estimates were con-
cerned. Discussion of the effect of boundary conditions will be
postponed until after an examination of input loading models has
been made.

Representative results for high resolution frequency and

damping ratio are given in Table 5-4. The tabulated values are
based on the base input transfer function obtained by dividing the
plate response (at center node) by the base input (at plate fixture).
Theoretically (and experimentally) these results are the same as

for the boundary condition case in which the fixture motion is

blocked.
Mode ~ Resonant Damping
Number Frequency Ratio Q
1 239.2 Hz .0046 109
2 575.5 Hz .0022 227
3 1050.3 Hz .0024 208
4 1260.5 Hz .0015 333

Table 5-4 High Resolution Mode Frequencies and Damping Ratios
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These damping ratios are significantly lower (and the corresponding
Q values. higher) than values obtained previously by low resolution
FFT analysis or by the time domain transient decay technique.
Once more we.emphasize that adequate frequency resolution is essen-
tial to the attainment of realistic damping gstimates.

5.4.2 Input Loading Effects: Base Excitation

5.4.2,1 First ilode Input and Response Charactaristics

High resolution dynamic characteristics of the first mode '
obtained from a random base excitation test are shown in Figure
5-9. Several features are of interest. First, the base input
(curve a) shows a sharp decrease and subsequent increase in level
as the plate response peak (curve b) is passed. The input minimum
is substantial enough to cause the coherence ratio (curve c) to
decrease, showing that the input minimum is contaminated by noise.
Curve d shows the phase characteristic of the transfer function
H(w): specifically, the phase of the plate response lags behind
the base input phase by 90° at a frequency of 238 Hz. Finally,
the magnitude of the transfer function (curve e) reaches a maximum
at the same frequency. HNote that this frequency differs from the
frequency at which the plate response magnitude is a maximum.
This pattern, or a similar pattern, rather generally occurred at
each structural resonance under both base excitation or acoustic
excitation. The pattern consists of a decrease in the input level
attended by a decrease in the coherence ratio, also an increase in
the input level, and a response maximum which occurs at a frequency
which differs from the frequency of maximum transfer function

magnitude.
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Fig. 5-9 High Resolution Spectra: Plate Response
to Base Input (First Mode)
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This input loading effect is not a new phenomenon. Much
attention was given to input 1nading in the early days of vibration
testing by the designers of electrodynamic shaker systems4. In
fact, since the loading phenomenon was considered an undesirable
feature of vibration testing, electronic compensators called peak-
notch filters were developed to render the vibration input spec-
trum flat with frequency. More extensive need for input spectrum
adjustment led to the development of manual and finally automatic
compensation devices known as equalizers.

OQur interest here in the input loading phenomenon stems from |
the expectation that input loading should be a relatively common
occurrence in field studies of real structures. The value of ana-
lyzing the details of the input loading phenomenon in the rela-
tively simple laboratory set up of this study is the insight that

it provides for the more complicated field system.

5.4.2.2 Model Development for Input Loading Analysis 1

As stated earlier, the input loading is caused by the fact
that the base and the acoustic inputs possess finite source impe-
dance. Consequently, the base input model must include a real
displacement source of finite impedance rather than an ideal dis-

placement source with infinite impedance. Similarly, the acoustic

input must be modelled as a real force source of finite impedance
rather than an ideal force source of zero impedance. A simple
model which adequately explains the input loading effects experi-
mentally observed at the first plate resonance is shown in Fig.

5-10. Parameters used in Fig. 5-10 are defined as follows:

n
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Fig. 5-10 Model for Input Loading Analysis
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fa magnetic force applied to speaker cone (zero
input impedance)

my mass of rigid speaker cone and exciter coil

ka’ba stiffness, damping coefficients for cone suspension

Za impedance of acoustic transmission linc

mp plate mass associated with first plate mode

k.,b stiffness, damping coefficients .associated with

PP first plate mode

fs magnetic force applied to shaker armature (zero
input impedance)

mg rigid body mass of shaker armature and plate
fixture

k.,b stiffness, damping coefficients of shaker armature

suspension

The analysis of the input loading phenomenon is most easily
presented as two special cases: base excitation of the plate, ig-
noring the acoustic elements, and the acoustic excitation of the
plate with the shaker input set to zero (blocked). These cases are
considered below in sections 5.4.2.3 and 5.4.3.2.

5.4.2.3 Base Input Loading Analysis

An example of high resolution excitation and response spectra
for a base input run was given in Section 5.4.2.1, as well as a
broad description of the main features of the input loading effect.
We proceed now to study the base input case in more detail.

Consider the case of base input only. The acoustic elements
are assumed to be absent. The model of Fig. 5-10 simplifies to a
two degree of freedom representation of the plate and shaker system.

The plate system, by itself, has a natural frequency wp and damping
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ratio ‘p' The shaker system, by itself, has a natural frequency
Wg and damping ratio §e If the resonant frequencies of the
shaker anu of the plate are widely separated (wp>>ws), the fourth
degree characteristic function which determines the coupled
resonant frequencies of the combined system can be factored into

two quadratic terms as follows:
as . 2.. 2 2 2
characteristic function = (- +j2r 0 e, Y(~w +j2;hmh+wh) (5-6)

that is, the characteristic frequencies of the combined systems can
be described by a lower resonant frequency Wy <Wgs and a higher |
resonant frequency wh>wp. The damping ratios of the separate
systems, the shaker damping ratio [ and the plate damping ratio Cp’
are also affected when the shaker and plate are coupled. A first
approximation to the relation between the separate and the coupled

systems are:

ol m ol (1 2152 - e -2::) (5-7)
L, = &g ]‘(rT: 2 ;5 (5-8)
. whzz mg (1 + ;5 - 4;s;p-:—:- (5-9)
AN 2.22;5 (5-10)

The transfer functions for the base input and plate response accele-

rations can then be written as:
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2 2 2
-w fs/ms (~w® + j2cpwpm + wy )

(5-11)
( 'w2+j 2z v zw‘i‘w kz) (‘wz'fj Zchmh u+wh2)

<t
»
"

2 . 2
- +
V- w 2f"s/ms (chpwpm v ) (5-12)
P (=w +j2c£wzw+w£2)(-m2+32§hwhw+¢nh2)

If now we evaluate these transfer functions near the plate resonant

frequency wp & Wy > s the following block diagram is obtained:

t/ R R L2 2 pwpw + @ Yp
g/ My it =~ —
2 2

- w2 + ixh“’h“’ + “"h2 —-W

+ izfpwpw + wp

Figure 5-11 Base Excitation Block Diagram

Several aspects of this diagram are of particular importance. First,
the transfer function on the left consists of a conjugate pair of
zeros and a conjugate pair of poles. On the complex plane, these
roots are very close to each other and also very close to the ima-
ginary axis, since wp, and wy differ only by very small quantities
and the damping ratios & and ‘p are <<1, The corresponding fre-
quency response function has precisely the same antiresonant and
resonant shape as base input curve (a) shown in Fig. 5-9. A second
important aspect of the diagram is that the right hand transfer
function precisely corresponds to the transfer function H(w) shown
as curves (d) and (e) on Fig. 5-9. The final and perhaps most

important aspect of the ciagram is the fact that if these two
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transfer functions are cascaded to form a single transfer function
between the shaker input force and the plate response acceleration,
there will be a pole-zero cancellation associated with the plate
frequency wp as shown in Fig. 5-12. This.leads to the simple,

and perhaps surprising result: since “b = Uy the transfer func-
tion shown in Fig. 5-12 is nearly that of a simple oscillator

excited by a constant input acceleration fs/ms.

; 2
|2§pwpw +w,

fy/mg —m —y

—w2 +j2{'huhw + uhz

Figure 5-12 Shaker Force to Plate Acceleration Transfer Function

This particular input acceleration level is the value that would
occur if the plate were to cause no loading effect at all. In
essence, then, the net effect of the input loading effect on the
plate resonance is to shift it slightly upwards in frequency from

(% to Y, The magnitude of the plate resonance is virtually un-

changed from the value it would have in response to an unloaded input

fs/mS which is constant with frequency. So the effect of the input
loading phenomenon on the plate response is rather minimal. How-
ever, the effect of the input loading pher~menon on the input to
the plate remains problematic. As we have seen, the input loading

effect suppresses the input sufficiently to allow the signal to be
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contaminated by noise. It also complicates the problem of input
identification because it is necessary to accurately resolve all
the details of an input which varies very rapidly with frequency,
and to match the peak and notch frequencies of the input curve
very accurately with the plate response peak frequency.

5.4.2.4 Response and Input ,/dentification Estimates for
Base Excitation

The use of more accurate mode damping ratios and frequencies
led to modest improvements in response estimates and substantial
improvement in input identification estimates. The results of
plate response experiments with base excitation are shown in
Tables 5-5 and 5-6.

Table 5-5 High Resolution Base Input Test: Response PSD at Resonance

yde Response PSD at Resonance
No. Experimental ] Program RAND Error
1 3.6 g°/Hz| 5.13 g°/Hz | +1.5dB
2 9.18 7.14 “1.1

3 4.69 3.43 -1.4

4 4.19 3.02 -1.4

Table 5-6 High Resolution Base Input Test: Modal Response Power

ode Response Power

No. Experimental Program RAND Error

1 211 ¢ 26.3 g + .96 dB

2 46.9 38.7 - .83

3 39.9 29.1 -1.4

4 39.3 21.5 -2.6
Overall 155.4 127.9 - .85

17




Table 5-5 shows the peak response PSD obtained by experiment and | -
by RAND. These results represent an improvement over the results

attainable by low resolution experiments (low resolutior measure-

ments of the sharply peaked power response spectra were typically

in error by 12 to 16 dB). On the other hand, discrepancies between

the theoretical and experimental modal power estimates (Table 5-6)

are approximately the same as for the low resolution estimates

(Table 5-3). As mentioned before, this is becuuse the FFT algo-

rithm computes the correct power of a signal independent of the

degree of frequency resclution.

Substantial improvement in input identification accuracy is
obtained by using high resolution FFT measurements. This improve-
ment in accuracy is particularly evident at the plate resonant
frequencies where large errors had previously existed due to
inadequate resolution of input loading effects. In Figure 5-13,
the RAND estimation of the base input in the region near each of
the four plate resonances is compared with the measured input data.
The plot is semi logarithmic. By comparing both the measured and
identified base input power spectra to an arbitrary reference
value, the ordinate can be scaled in dB as shown. The difference
between the two curves can then be interpreted directly as an
error expressed in dB. The rather coarse sampling of these two
durves reflects the fact that the data link between the FFT analyzer
and Program RAND was not automated and input/output data taking was
done by hand. The accuracy of the input identification procedure,

however, is satisfactory. An automated data link would improve the
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accuracy and resolution considerably. The measured overall power
for the frequency band 0<f<2000 Hz was .60 gz. The corresponding

input identified by Program RAND was .524 g2

, which represents an
overall error of -.59 dB.

5.4.3 Input Loading Effects: Acoustic Excitation Experiments

5.4.3.1 First Mcde Input and Response Characteristics

An example of low resolution excitation and response data for
an acoustic excitation test has already been given in Fig. 5-6.
Two exampies of high resolution data which show the effect of acous-
tic input loading on the first plate resonance are given in Figures
5-14 and 5-15. Broadly speaking, the acoustic loading effect is
similar in pattern to the base input loading effgct, although a
closer study will reveal differences in detail. The actual shape
of the loaded acoustic input, for instance, is different from the
shape of the loaded base input curve. This is because the dynamics
of the acoustic excitation differs from the base input dynamics.
Dynamic models for the acoustic excitation of the plate are dis-
cussed in the next section and in the Appendix. An interesting
contrast also exists between Figures 5-14 and 5-15. The first
figure, which refers to the test condition of a blocked fixture
(refer to Figure 5-10; yb=0), exhibits a relatively mild acoustic
loading effect. The second figure, which refers to the test con-
dition of an unblocked fixture, exhibits a relatively strong
accustic loading effect. (The relative strength of the loading
effect is measured by the depth of the antiresonant region of the

pressurc curve and by the corresponding amount of input noise
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contamination, as evidenced by a decrease in coherence). The ex- ;
planation for this difference is that the method of fixture !
restraint used in the blocked fixture test caused the damping !
level to be larger than that for the unblocked fixture test. i
This emphasizes the fact that the input loading phenomenon becomes
more evident as the structural damping level decreases.

5.4.3.2 Acoustic Input Loading Analysis

Although the basic physical explanation for the acoustic irput

loading and the base input loading cases is similar, the acoustic

and mechanical models required for the acoustic loading analysis
is too complex to include in this section. These models are pre-
sented in some detail in Appendix A. Two acoustic excitation
cases are of interest: excitation from a distant sound source
which is not loaded by the plate generated sound waves, and exci-
tation from a nearby sound source vihich is affected by the presence
of the plate. The later case represents the excerimental set up
used in this study.

The results of the distant sound source analysis are presented
in block diagram form, Fig. 5-16 (a). An incident pressure wave Ps

emanates from the distant sound source. It is partially reflected

by the moving plate. The resulting total pressure at the plate

surface, Po? is the sum of the incident and reflected wave pressures.
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Figure 5-16 Acoustic Input Loading: Distant Source

The transfer function on the left again consists of a conjugate
pole-zero pair. Although the undamped. resonant frequency of the
pole and the zero pairs are the same, the pole pair is more
heavily damped. Specifically, the pole damping ratio

b_+ pcA
gl o= N (5-]3)

P 2V k.m
PP
includes both the material damping coefficient bp of the nlate and
the acoustic radiation damping effect pcA. The zero nair damping,
on the other hand, includes only the plate material damping coef-
ficient bp. The frecuency response characteristic of the left
hand transfer function is a gain of 2 (perfect reflection) at all

frequencies except at resonance, when it drops sharply down to

t'.e value pr/(bp+pcA). Thus an input loading effect exists
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even though the distant acoustic source is not affected by the
reflected wave from the plate. Such a frequency response charac-
teristic does not cause a shift in frequency of the plate accelera-
tion response peak. The transfer function on the right is again
simply the transfer function for the plate under acoustic exci-
tation. When cascaded, as in Fig. 5-16 (b), the plate acceleration
response exhibits a single resonance, with the same amplitude it
would have if excited by the incident pressure Pj without loading
effect.

Next we consider the case of ‘a nearby sound source (See
Appendix for details). In Fig. 5-i7 (a), a magnetic force f, acts

upon the loudspeaker cone, causing a pressure Po to act upon the

— 2 Y po 2 'y-p
fa wmp4|wbp+kp - WA —
- 42 :
A { w mp+]wbp+kp
(a)
‘ w2 .
Pt | —_t Vp
A
{b)

Figure 5-17 Acoustic Input Loading: Mear Source

plate. The characteristic function & of the left hand transfer
function is a complicated relation between the parameters which

characterize the loudspeaker, the plate, and the connecting

acoustic transmission line:
85

R RS S Y S SRS TR
e




A = [-(pcAw)2 + (-wzma+jwba+ka)(-wzmp+jwbp+kp)] sin wl/c
- 2 _ (5-14)
+ pchuw [-w (ma+mp)+Jw(ba+bp)+(ka+kpi] cos wl/c

The resonant frequencies defined by the characteristic equation
have not been evaluated explicitly, since a detailed evaluation of
the many parameters would be required which is beyond the scope of
this study. Note, however, that again the left hand transfer
function which defines the pressure input to the plate consists of
a conjugate pole-zero pair, and that again a pole-zero cancellation
occurs when the two transfer functions are cascaded as shown in
Fig. 5-17 (b). Our conclusion is again the same: although there
is a complicated input loading interaction between the plate and
the acoustically coupled loudspeaker system, the plate response
is nearly the same as it would be if there were no input loading
effect at all. The actual resonant frequency of the acoustically
coupled plate differs slightly from the plate frequency which fs
excited by a distant pressure source. And again, the estimation
of details of the acoustic input Po remain problematic for reasons
already stated above: the difficulties of estimating and measuring
of high resolution narrow band spectra which vary rapidly with
frequ ncy.

5.4.3.3 Response Estimates for Acoustic Excitation

The acoustic input and the acceleration response of the plate
vere measured and compared with the plate response predictions
of Program RAND. Table 5-7 shows the resonant peak PSD estimate

comparisons for the first four plate resonances. Table 5-8 shows
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Table 5-7 High Resolution Acoustic Input Test:
Response PSD at Resonance
Hode Response PSD at Resonance
No. Experimental Program RAND Error
2l
1 .00748 g%/Hz .00616 g°/Hz | -.087
2 .0283 .0156 -2.6
3 .0300 .0138 -3.4
4 .0240 .0432 +2.6

Table 5-8 High Resolution Acoustic Input Test:

Modal Response Power

Response Power

Mode

No. Experimental Program RAND Error
! .025 g° 026 ¢ |-.18 dB
2 .084 .085 +.05
3 .234 175 -1.26
4 .123 .503 +6.1
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the integrated power comparison of each of the four resonances.
These results are comparable to the plate response estimates ob-
tained from base excitation tests. In both the base input and
the acoustic input tests very close agreement between theory and
experiment is possible. Yet it is also possible for substantial
discrepancy to occur (up to 6 dB in one acoustic input case),
even in spite of the fact that measurements were made with a high
resolution analyzer. These large errors result mostly from imper-
fect characterizations of the sharply varying loaded inputs.

In an attempt to avoid the difficulties of measuring the
sharply varying acoustic input spectra, an alternative method of
characterizing the input was introduced: the taking of a simple
average of the input PSD over a frequency bandwidth centered at
the plate resonance. This approach requires less effort than the
point-by-point characterization of the input, since the average
is simply the ratio of the integrated power (obtained from the FFT
analyzer by either a high resolution or a low resolution measure-
ment) divided by the bandwidth. The approach also yields better
results, as shown in Tables 5-9 and 5-10. A theoretical basis
for the relative success of the bandwidth average approach has
already been developed in the input loading studies in Sections
5.4.2.3 and 5.4.3.2. In both these analyses it was found that
& sharnly varying loaded input causes only a slight shift in the
plate response resonance and does not significantly affect the
response amplitude. It is reasonable that the loaded input can

just as well be replaced by an equivalent input which is constant

38




DR s S

T T e e e T e ey

T

Table 5-9 High Resolution Acoustic Input Test: Resonant Peak
PSD Estimation Using Bandwidth Averaged Input

Mode ( Response PSD at Resonance
No. Experimental Program RAND Error
! .00748 g%/Hz .00743 g%/Hz -.03 dB
2 .0283 .0285 +.03

3 .0299 .0302 +.04

4 .0240 .0474 +2.95

Table 5-10 High Resolution Acoustic Input Test: Modal Power
Estimation Using Bandwidth Averaged Input

Mode ~Response Power
No. Experimental Program RAND Error
| .025 ¢° 0257 g2 +.12
2 .084 113 +1,29
3 234 .236 +.04
4 .123 .279 +3.5
89




with frequency. The easiest equivalent is a simple bandwidth
averaged. input. Further discussion of this simplified approach
is presented below in Section 5.6.

5.5 Combined Base and Acoustic Excitation Experiments

The base excitation and the acoustic excitation were simul-
taneously applied to the plate at amplitudes which would each
separately cause comparable response levels. Low resolution
measurements were made of the pressure input PSD, the base accelera-
tion PSD, the coincident and quadratu: < components of the cross
PSD for the pressure and base inputs, and the integrated response
power of the plate. These spectra are shown in Figures 5-18 through
5-20. No corresponding response estimates have been made using
Program RAND.

Two aspects of these spectra are of interest. First, each
of these inputs, applied separately, would cause comparable res-
ponses of the second, third and fourth modes. Vhen these inputs
are combined, however, the plate response shows a relatively en-
hanced second mode and a relatively attenuated third mode. This
effect is caused by the phase relationship between the two inputs,
Analysis of the response of a simple harmonic oscillator to
statistically coupled inputs (Section 4.3.1) showed that the two
inputs can either work together or work against each other, de-
pending mostly on the sign and magnitude of the coincident com-
ponent of the input cross power spectral density. A large negative
coincident component will cause reinforcement of the inputs, whereas
a large positive coincident component will tend to cause input
cancellation. On this basis, the first mode should be suppressed,

the second mode enhanced, the third mode unaffected, and the
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fourth mode strongly enhanced, each relative to the superposition
of the response to the acoustic and base inputs applied separately.

Roughly speaking, these effects appear consisteht with the experi-

- mentally measured responses shown in Figure 5-20.

A second feature of the combined excitation spectra is the
obvious presence of input loading effects at the resonant fre-
quencies of the plate. This is particularly noticeable on the
coincident and quadrature components of the input cross power
(Figure 5-19) even though the low resolution FFT analysis would
generally tend to obscure such effects.

It has already been established that it is difficult to
obtain good response estimates when they are based on measured
input spectra which experience input loading effects. The case
will be no different as far as the input loaded cross power
spectra are concerned. Although a bandwidth averaging technique
offers some improvement for the case of individual input spectra,
it remains to be demonstrated whether or not a similar procedure
will be successful when cross input spectra are concerned.

5.6 Simplified Treatment of Input Loading Effects

We have already seen the effectiveness of using a simple
bandwidth averaging technique when dealing with input loaded
spectra. This technique simplifies the measurement procedure
and leads to a better structural response estimate. Some ques-
tions remain, however. Analysis of the input loading phenomenon
suggests that a constant, equivalent input spectrum can replace

the sharply varying input loaded spectrum. The analysis does

924 )
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not suggest, however, that the bandwidth average is the correct

estimate. of the constant, equivalent input. As damping decreases,
for instance, the bandwidth average increases, whercas the theo-
retical value of the constant, equivalent input remains unchanged.
There is also the practical question of determining a suitable
bandwidth for the average. A larger bandwidth lessens whatever
'error may apply because the technique itself is not theoretically
correct. On the other hand, a large bandwidth will tend to obscure
input spectrum variations which have nothing to do with the input
loading phenomenon. The answers to these questions will require
further study. In the mean time, the bandwidth averaging technique
offers a distinct improvement over precise point-by-point measure-
ment of the input loaded spectrum.

What procedure should be followed when input identification
estimates are to be made? Not only is such an identification of
an input loaded spectrum difficult, but it would seem that it is
also undesirable. It is of much more practical interest to iden-.
tify the constant, equivalent input spectrum which will yield the
same measured resonant response., In this case a theoretical guide-
line is available. For an isolated resonant mode excited by a

white noise the acceleration response power is given by

mode response power = I rl G0 fn Q (5-15)

where .I' is the modal participation factor. In the input identifi-
cation situation, the white noise input Go, equivalent to the input

loaded spectrum near the resonant mode, is to be estimated.
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Rearrange eqn (5-15):

Mode response power
é 6 T T2 (5-16)
I f,Q

On the right hand side of eqn (5-16), the rode response power is
measured, fn and Q are known, and I is computed by Program RAND.
So a theoretically correct constant equivalent input spectrum can
be identified in simple fashion near the resonant mode. At non-
resonant regions the problem of input loaded spectra does not
exist and input identification can proceed in standard fashion
using the input identification mode of Program RAND.

5.7 Conclusion to Part II

Implementation of the RAND procedure in an experimental
situation brings in a wnole new set of problems: measurement
accuracy, resolution, input loading effects, noise contaminatioﬁ
of signals, and statistical averaging. Data show that given
sufficient care and effort it is possible to obtain useful and
meaningful response and input identification estimates.

The phenomenon of input loading proved to be significant
experimentally and of definite interest theoretically. The
simple analytical treatment of this phenomenon reflects the
simple structures which comprised the laboratory set up. Work
remains to be done to study the extent to which the present input
loading models apply to complex field situations, for it is easy
to speculate that input loading can have considerable practical
significance. Imagine that a structural component undergoes
vibration testing and then it is placed in a spacecraft for
developmental flight testing or undergoes further vibration

testing at a high structural integration level. In either case,
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instrumentation is provided to characterize the base input level g
to the component. The results of this study have shown that a | %
sharp peak can occur in the input spectrum due to an input loading |
effect, and that this peak, being slightly but critically detuned

to the measured resonant frequency of the component, will have ;
only a second order effect on the component resonant response. ?
Now consider that the sharp input peak is discovered by an envi- |
ronniental specification writer, who routinely draws an envelope ﬁ
over it. An erroneous coincidence between the input peak and the 1
component resonance is thereby guaranteed, and the resulting speci-
fication is substantially overestimated.

Finally, two considerations are added to give prospective to '
the experimental study described in Part II. First, we note that
all of the experimental work was done without the benefit of a
modern modal analysis system and without automatic data acquisition
equipment. The former tool would have greatly improved the accuracy
of the dynamical modelling of the structure. The latter tool,
utilized to interface the FFT analyzer output directiy to the
computer, would have greatly increased the speed and ease of 1/0
operations with Program RAND, thereby making possible the use of
the full resolution capabilities of the FFT analyzer. The second
consideration is simply the recognition that it is important to
distinguish between experimental work done in the laboratory, and
experimental work done on much more complicated structures under

field conditions. Obviously success in the laboratory does not

guarantee success in the field.
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Hopefully the techniques developed and knowledge gained in
this study, coupled with improved hardware tools, will add to
the success with which structural response and input identifica-

tion estimates are made under real field conditions.
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6.0 Summary
This study has focused on the problem of the response and

input identification of a structure subjected to combined base

and acoustic excitation. The study has included both theoretical

b, and experimental approaches, Specific accomplishments are:

i 1.

The development of a computer program RAND to make
response and input identification estimates for a
structure subjected to combined base and acoustic
excitations.

The development of parametric design guidelines
for plates subjected to random base or acoustic
excitation.

Through a combination of analysis and experimenta~
tion, the evaluation of the applicability of the
RAND procedure to a laboratory test situation,

and the identification of the crucial considerations
which affect the quality of structural input and

response estimates.
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Appendix A

A.1 Acoustic Input Loading Analysis

A.1.1 Case 1: Distant Sound Source

Refer to Figure 5-10: Model for Input Loading Analysis.

Remove

loudspeuker and acoustic transmission 1ine, and set plate fixture

displacement yb

= 0. The pressure po(t) then acts on the effective

area A for the first mode of the plate. The equation of motion is

m ¥

+ vy + = -
p Yp * Bp Yp * Ky ¥p = -PA

P p7p

which leads to the transfer function

2

W

2 3 2
—St
w JZ;pwpw+mp

. A
yp/p0 = o

(A-1)

(A-2)

Next, relate pressure Pq with the incident pressure P emanating

from the distant sound source:

Py =2 Py *ocyy

(A-3)

that is, the total pressure p_ equals the incident and reflected
0

wave pressures for the blocked plate plus the radiated pressure due

to the plate velocity y . Combine egns (A-2) and (A-3) to obtain

P

2, 2
-+
p,/2 By = 0 %ty
~w+j +
w JZCp.wpw wp

[] = +
where cp (bp pcA)/mp

A-1

(A-4)

R 3
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A.1.2 Case 2: Near Sound Source

Refer again to Figure 5-10., The system consists of the loud-
speaker, acoustic transmission line, and plate. The plate fixture
displacement Yg = 0. To facilitate the analysis we redraw the
system and introduce a displacement functiong(x,t) for the acoustic

transmission 1ine as shown in Figure A-1.

—» {01 [+EMJ) —~> (L 1)
R
m,b_, Kk
s s b, Ac mp, bp, kp

Figure A-1 Plate Excited by Near Sound Source

Assume that the dynamics of the air column can be described by

the one dimensional wave equation

2 2
L S (A-5)
p il R

subject to the boundary conditions

£(0,t) = g (t) = -y,(t)

glLat) = gy(t) = -y (t)

2 3% =9 (A-6)

. - .
mp 52 + bp £o kp 52 pC =




T

— -

> ~7
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?
For a unit harmonic input the steady state response at x can be
written as
= Jut
g(x,t) = R, [H(x,u)e’™] {A-7)
The transfer function H(x,w) can be evaluated by substituting
eqn (A-7) into eqn (A-5) and then applying the boundary conditions ,
(A-6): ,
H(x,w) = cos wx/c + f(w) sin wx/c (A-8)
2 |
where  f(u) = pAcusinul/c-(-w mp+Jubp+kp)cos wl/c :
(-wzmp+jwbp+kp)sin wb/ctoAcw cos wl/C
We are interested in the gage pressure )
- 2 3¢ (A-9)
Py = =p.C l
2 0" 3x T o

which acts on the plate and the force fa which acts on the loudspeaker.
The loudspeaker force is obtained by requiring dynamic equilibrium

for the forces which act on the loudspeaker mass:

fa =mogy ba & + ka gt Py A (A-10)

' 2
where p; = -pC 3§.|x=0

For the case of harmonic motion

Py = pCw (-sin wl/c + f(w) cos wl/c) (A-11)
F, = (=pcho f(w) ~u’m + Ju b, + k) (A-12)
A-3




The transfer function which relates the pressure which acts on the
plate to. the magnetic force which acts on the loudspeaker is then
obtained by dividing (A-11) by (A-12):

pZ/fa = -pcw (-sin wl/c + f{w) cos wl/c ) (A-13)

-pCwA f(w) - wz tnai';jmba"'ka

Substitute the expression for f(w) and simplify:

ocw (-ul mo*Jub+k) (A-14)

P

pz/fa = 2

where
b= [~(ocAw)? + (~uZm +jub_+k_)(~w’m +iub +k )}sin wl/c
at a a PP P

+ pcAuw [-mz(ma+mp)+ju(ba+bp)+(ka+kp)]cos wl/c

T

el g
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