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ICAP: AN INTERACTIVF CLUSTER ANALYSIS PROCEDURES FOR ANALYZING
REMOTELY SENSED DATA

L. INTRODUCTION

The LANDSAT Multispectral Scanner measures the intensity of radiation reflected by the
carth's surface in four spectral bands at a ground vesolution of approximately 80 m. Ground ob-
jects retlect radiation in a characteristic pattern of intensities, according to the object’s physical
properties, This pattern may be defined in terms of radiance means and a covariance matrix (i.e.
training statistics) for a particular cover type. These statistics may then be used to train a classitier
which recognizes patterns in . now environment by classifying the radiance data for cach resolution
element (pinel) into one of the pattern classes (cover types) under consideration, A thematic map
can be produced to show the spatial distribution of the categories identified, Such maps can pro-

vide valuable information for use in mapping and monitoring natural resources,

Training statistics describing various land cover types can be developed using a supervised or
unsupervised approach, Supervised methods involve the derivation of signature statistics from the
analysis of picture clements within arcas of spectral uniformity, These “training™ arcas must be
located for cach Iand cover category of interest. [t may sometimes be difficult or impossible to
specify a full list of the categories to be identified or to define training arcas for all of the important
features in a scene, especially for small, irregular or sparsely distributed features, Unsupervised
methods such as cluster analysis can be used to estimate training statistics without the use of

training arcas and to map features in a scene without predetermining their identity,

The purpose of cluster analysis i+ to group data with a minimum of a priori knowledge. Since
it is probable that universal objective clustering criterion exists (Fukunaga and Koontz, 1970).
many different clustering approaches have been defined. Anderberg (1973) gives comprehensive
coverage of the theoretical background and methodologies of cluster anaiysis. Hartigan (1975)

presents program listings and describes various clustering and related algorithms, Dutbes and Jain



(19706) tested and compared eight representative clustering programs and listed guidelines for pro-

gram selection by potential users,

H, CLUSTERING METHODS USED iN REMOTE SENSING

Procedures used to cluster remotely sensed data can be divided into two groups based upon
the methods used to control the clustering process, Those used by Turner (1972), Su and Cum-
raings (1972), Kan et al, (1973), and the ISODATA algorithm as used by Zobrist (1976) require
that the user manually specify various parame.ers to control the clusiering process. These param-
eters are varied and the programs run in an iterative tashion until the output set of clusters meets

the analyst’s criteria,

Oiher procedures given by Leboucher and Lowitz (1976), Borriello and Capozza (1974), Eigen
et al, (1974), Fromm and Northouw: (1976), and Goldberg and Shlien (1978) require @ minimum
of user input or determine the control parameters automatically from the data itself. This auto-
matic group of procedures ore most effective in producing an initial scene classification since the
analyst is presumed to be untamiliar with the scene and cannot intellipently select control param-

cters.

Most cluster analysis procedures used to process remotely sensed data invoke an iterative two
step process, The first step deals with centroid location and cluster formation or growth. The
information relevant to this initial step is quantitative since all of the entities to be manipuliated
are expressed numerically, A set of numerical rules are defined to regulate the formation of new
centroids and to determine those data peints which will be assigned to a given centroid, For ex-
ample, the creation of new centroids can be controlled by detining a threshold distanee from all
existing centroids that a candidate point must exceed before becoming a new centroid, The mini-
mum cuclidian distance criterion can be used to determine the point membership of each centroid.
A data point is assigned to the cluster whose centroid is nearest to that point in P space, where P

is the dimensionality of the data set.
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The second logical step within an iteration is the evaluation of the vlusters produced by

the first step. Onee formed. clusters must be evaluated te determine it the present contiguration

is optimal or whether modifications are necessary. Most procedures define a fised set of critend
by which clusters are evaluated wsd subsequently maoditied. For example. the ISODATA algorithm
(Ball and Hatt, 1965 18 designed to split any cluster whose standurd deviation exceeds a spht
threshold, delete any cluster with fess than a speeilicd number of members, and lump together
cluster pairs whose centroids are less than a specified distance apart, The various thresholds are

determined by the analyst.

A disadvantage of these indirect evaluation methods Gindirecy in the seose that the analyst
manipulates parameters rather than the clusters) is that no one set of rules can be defined to cover

all of the possible analytical objectives of the data analysis, In addition, the analyst cannot efee-

tively extrapolate prior information about the category structure into the selection of control
parameters. Consider a situation in wi..oh the objective is to map different types of torested arei,
such as hardwood or conifers, within a scene. Jdeally. the analyst could encourage the develop-
ment of forest signatures by focusing attention on clusters whose centroids resemble typical forest
responses and suppress chasters which appear to belong to irrclevant categories. Such a selective
clustering process cannot be performed by existing procedures since the clusters ave collectively

evaluated according to fixed criteria,

HL The ICAP Algorithm

An Interactive Cluster Analysis Procedure (ICAP) was developed to avoid the inflexibility
imposed by fixed cluster evaluation criteria, via a direct evaluation process in which cach cluster
is appraised and modified independently of the other clusters. ICAP combines the rapid numerical
processing capacity of the computer with the human ability to integrate qualitative information to
form a supervised clustering procedure. Control of the clustering process alternates between ICAP

which examines data, locates new centroids and forms clusters; and the analyst who can request
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a chuster smmary table and determine and execute the madifications, if any, to e msie to the

viister contippiration,

Fhis shared control approach has two major advantages: FCAP does not have 1o optimize the
cluster configuration, thus simphity imge the program and raducing s exccution me: effecdve use
v made of subjective judgement sinee the analyst's judpement becomes an integeal part of the

clusterng piocess, thus quahitative mtormation can be used as a maturad part of the analysis,

Fhe wethodology tsed in FCAP combines the concept of a cluster aceeptanee region (Muaceair-
diand Gose, F97 20 wath clister manipulatson teehnigues adopted from tie ISODATA algorithm
Balt wnd Hall, 19605 and incorporates thenr into aninteractive scheme. TCAP can be ogically
divided into three stages:

oo Data Preprocessing  The dst are examined and the overall distance threshold (ODT)

iscomprited. The ODT i used to control the resolution (number amd relative sized of the

chosters 1o be produced m Supervised Clustermp (SCLES)Y. 1 initial centroids are not speci-
tied, the mean of the scanted dati is tsed as a starting centroid,

2 Supervised Clustering (SCLUS)  Controb of the clustering process alternates between

LCAP, which seans the dita, tocates new controids and forms clusters, and the analyst, who

can evaluate and elect to modify the easter structure, Thas, the analy st interacts with ICAP

andd controls the frequency of this inferaction vy specifying the maximum number of dita
points 1o be processed at once, The capability of moditying the cluster structure atter pro-
cessing arbitrarily sized sepments of the data enables the analyst to closely supervise the
clustering process. Clusters can be deleted, lumped together pairwise, or new centroids vin
be added. A summary of the cluster statistics can be requested to Tacilitate cluster manipu-
lation,

3. Data Classificarion (DCLASS)  The data are classitied using centroids which remain

fixed for a complete pass through the data. After cach pass, new centroids are computed



10 be the mean of iheir respective clusters. In addition to the modifications listed in SCLUS,

the analyst can elect to split clusters,

A data set need only be preprocessed once. Stages 2 and 3 can be used to iteratively per-
form a global-docal analysis s'milar to the approach proposed by Northouse et al. (1973). The

methouds of approach used in the three stages are described below.,

Data Preprocessing

This stage locates the initial data centroid(s) and computes an overall distance threshokd
(ODT). The data are scanned and the sumple mean, standard deviation, and maiximum and mini-
mum responses are computed tor each of the P dimeasions of the data, Upper and lower bounds
are located on each dimension of the data to include the main concentration of data and to ¢x-
clude outliers. These bounds are given by the dimension mean plus or minus 2.5 standard devi-
ations. This interval snould include approximately 99 percent of the data assuming they are nor-
mally distributed data. 1f cither computed bound exceeds the actual range of the data, the appro-
priate bound is reset to be the actual maximum or minimum response. The volume (V) of the

data is found by taking the product of the dimensional ranges.

ODT is a tunction of V. the approximate volume of the data space excluding outliers, and R,

the user defined resolution or desired number of clusters to be examined in SCLUS (equation 1),

tp
ODT =<—7‘(—) ()

where P ois the dimensionality of the data, Conceptually. ODT is the side length of o hyper-
cubical cell selected such that V can be partitioned into R such cells, ODT is also cqual to the
minimum distance between the centers of neighboring hypersheres inscribed within the hy percubes.
Itis used in SCLUS to define the radius of a hyperspherical acceptance region which is contered
about each centroid. All data points within an acceptinee region are joined to the appropriate

cluster. Data points outside all acceptance regions become the initial centroids for new clusters,
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For unitormly distributed data, this scheme should allow approximately R clusters to be geavrated
in SCLUS. 1t can be expeeted in practice, that more thun R clusters will be produced. sinee outlier
points would form additional clusters, and because the ODT s individually weighted Jor cach

cluster,

This procedure does not attemipt to optimize the compatation of the £4.7% beyorad identilying
reasonable ranges in cach dimension, nor does itattempt todetect clusters wpi, a vietade the assump-
tions made about the coll structure. The initial centroid(s) can be supplicd by the analyst or the
mean of he seanned points may be used. Figure 1 illustrates the above computations in o simpie

vwo dimensiond case,

Supervised Classification {SCLUS)

SCLUS requires an overall distance threshold (ODT) and a least one initia! controid, These
parameters can be supplicd by the analyst it known a priori or can be determined by preprocessing
the data. Hy perspherical aceeptance regions are centered about the cluster centronis with radii
equal to ODT timoes the local cluster density (deseribed below) tor cach cluster. Fach data point
within .u segientis examined in trn, 1 the poing talls within the acceptance region of i centroid.
it is grouped with that centroid, Otherwise, the point becomes i new centroid and immediaely
begins 1o accumubinte its own points, This method of controid determination tends to promote

a tarly unitorm distribution of centrords over the duta space,

Cluster proliferation is encouraged in arcas of relative low cluster density and inhibited in
areas of high cluster density by weighting the ODT by the local cluster density. This selectively
changes the aceeptance region siec, The local cluster depsity for the ith cluster is equal to the
average distance between the ith centroid and all other centroids, divided by the average distance
between abl centrond pairs. Fhis radio is greater than unity for regions with high cluster density and

leas than unity tor fow density regions,
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After each data segment is processed, a listing can be requested to sumimarize the current
cluster configuration. Ctatistics (see Table H) including the centroid locations, number of member
points, index of the nearest and farthest centroid, distance to the nearest centroid, and the average
distance to other centroids are given to help the analyst determine which modifications i any, are
necessary. Based upon this evaluation, the analyst can elect to lump clusters together by pairs,
delete clusters, add new centroids, or leave the configuration as is. Any modification of the cluster
structure within an iteration makes it impossible to compute the cluster standard deviation. Since
the standard deviation is used as a critcrion for cluster spliiting the option to split clusters is de-
ferred vo the DCLASS stage. The analyst may perform any combination of the above inoditications
s long as sufficient clusters remain to be manipulated. Additional summaries can be requested to
aid this procest. Upon completion of the modifications, control is returned to ICAP which then
continues to process additional segments and alternate control with the analyst until all of the

scene has been examined.

Data Clossification (DCLASS)

DCLASS requires an input sct of centroids and does not allow any change in the number of
position of the centroids during one complete pass through the data. Cluster memberships are
determined by the minimum euclidian distance rule. subject to the constraint that a point must
be no further than DNC from its nearest centroid to be joined to that centroid’s cluster. DNC
is the distance from the centroid under consideration to its nearest neighboring centroid. This
constraint prevents outlier data from being joined to inappropriate clusters. After cach pass new
centroids are computed to be the mean of their respective clusters. DCLASS can be run in an
itevative fashion until the process converges; that is until there is no significant point reallocation

among clusters between subsequent passes.

The standard deviation, ADG, and ADL are computed for each dimension of all clusters.
ADG is the distance from the centroid to the mean of all points in the cluster greater than the cen~

troid. ADL is the corresponding distance from all points iess than the centroid. A cluster summary



identical to thay describiad in SCLUS and the cluster standard deviations are listed. The analyst
can direct that certain clusters be split, based on the information provided. ICAP splits a cluster
by first defining two new centroids which are identical to the original except in the dimension
to be split. The values for this dimension are determined by adding the ADG and subiracting
the ADL from the original centroid! value. In addition to cluster splitting, the modifications de-

tailed for SCLUS can also be performed.

Selection of R and SCLUS Segment Sizes

A goal of the analysis is the recognition and location of natural groups within the data, De-
pending upon the resolution factor R used in ICAP, a given natural group may be represented by
several clusters, by one cluster, or it may share a clustey with other natural groups. In the second
case, no vorrective action is necessary. The error in the first case can be corrected by lumping

clusters together, and the error in the third case can be corrected by splitting clusters.

A logical method of lumping clusters would be te join the pair with nearest centroids as
determined from examination of the pairwise distances between all centroids, The number of
computations required for this correction is a function of the number of clusters. Candidates for
splits can be identified by reviewing the standard deviation for each dimension of all clusters.
The number of computations is a function of the number of data peints. Since the number of
clusters is usually much less than the number of dat» points, the splitting operation uses more
computer resources than the lumping operation. The need for splitting clusters can be largely
eliminated in SCLAS by slecting R to be somewhat larger than the expected aumber of clusters.
An R of 1.5 — 2.0 times the desired number of clusters was used in the ICAP tests reported in

this paper,

The analyst controls the frequency of interaction within SCLUS by specifying that the image
be processed by segments. The capability of examining and modifying the cluster structure at

varying intervals within one pass of the data allows tie analyst to moniter the formation of new



centroids and subscquent cluster grow:’i. The principsl sdvantage of this approach is that unwanted
clusters can be promptly climinated. This improves the efficiency of the clustering process since the

number of centroids 1o be examined iz reduced,

The maximum rate of centroid proliferution can be expected during the initial stuges of duta
processing. This rate should diminish as the nwnber of existine centroids increases. To prevent the
formation of two many centroids at once, the initial s:umenw skould be rciatively small compared
to the size of the daty set (ie. the smaller of 500 points, or § percent of the data set size). The scg-
ment size should then be gradually increased during the latter stages of processing. Although the
segment size selection is an arbitrary process, a rule of thumb can be given. Experience from
iesting ICAP has shown that 3 — 10 new centroids is a “comfortable’™ number to consider after
segment processing. Let LSEG be the number of points procese*d in the last scgment, and NCEN
be the number of new centroids ¢z wied, i NCEN is less than 3, the next segment size should M

twice LSEG. If NCEN is greater than 10, the next segment size should be half LSEG.

IV. IMPLEMENTATION AND TESTING OF ICAP

The ICAP algorithm is designed to function in an interactive mode in which the analyst di-
rectly interacts with the computer, supplying input at the request of the program and receiving out-
put as it is computed, The procedure is coded in APL (A Programming Language), which supports
this interaction. APL, originally developed by Iversonr (1962), is a concise and powerful langaage in
which operations on single items (scalars) extend naturally to matrices of any size and shape, A
large number of operators enable single APL instructions to perform operations requiring many
statements in other languages, Single instructions can be combined into expressions that can be
grouped into APL programs. This, lengthy procedures in other longuages can often be succinetly
expressed in APL with much fewer lines of code. The use of APL is deseribed by Gilman and Rose
(1976), ICAP was implemented on an iBM 370/3033 computer at the Pennsy bvania State Univers-

ity. University Park, Pa. Various programs from a software system developed by the Office for



for the Remote Sensing of Earth Resources (ORSER) at the Pennsylvania State University (Tumer

et al, 1978) were usod to cvaluate ICAP’s performance.

Two different Landsat scene. vere used to test ICAP's clustering abilities. The first, in which
the analyst was assumed to have po prior knowledge of the data, required n initial categorization
type of analysis ip which the clusters were formed more or less automatically with a minimum
of user in;;:n. The second, in which the analyst was assumed to have partial knowledge of the im-
portant groups in the data employed a selective clustering type of analysis. Using this approach,
the analyst focused attention and enhanced the development of clusters of interest and inhibited
the development of clusters of little interest, The testing o1 the selective clustering approach is

deseribed in detait since it better illustrates the interactive use of ICAP,

A. Selective Clustering

The data used in this test are from an unpublished study by Turner (1978} which described the
mapping of gypsy moth forest defoliation damage in central Pennsylvania using two merged scenes
of Landsat imagery. The July 19, 1976 Landsat scene (data dimensions 5 to 8) had no defoliation,
The June 19, 1977 ceene (data dimensions 1 to 4) showed defoliation. The two scenes wera geomet-
rically corrected and registered to one another using the VICAR image processing program package
at the NASA Goddard Space Flight Center, Greenbelt, Md. The test site included a mountain covered
by hardwood forest, surrounded by agricultural lands, Since the goal of this analysis was to map can-
opy defoliation, the non-forest arezs were not considered when developing training statistics or as-
sessing classification accuracy It was known beforehand that hardwood forest vegetation at the test
site had typical response of about 16, 14, 52, and 35 in Landsat bands, 4, 5, 6 and 7 respectively, on
both dates.

The reference signatures for the accuracy comparison were developed vsing a supervised
analysis. Training statistics were derived from training areas covering aealthy, moderately and
severely defoliated forest, These training arcas were located through the use of the ORSER Uni-

formity Mapping Program UMAP, (Turner, ¢t al. 1978) in conjunction with U-2 color acrial
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photography. Although no quantitative accuracy assessment was performed, the thematic map
produced by classifying the scene with the reference signatures using the ORSER minimum eucli-
dian distance classifier CLASS, (Tumer, et al, 1978) appeared to correspond to the U-2 photography.
A description of the analysis performed with the ICAP and CLUS programs is gives below,

ICAP Analysis

The data were first preprocessed to deterinine the overall distance threshold and te locate
an initial centroid (Table 1). 1t was believed that 4 to 6 categories were sufticient to map sup-
classes within the forest canopy category. A larger resolution factor of 10 was selected to reduce

the potential for cluster splitting,

The SCLUS stage was used to locate an initial data partition. A cluster summary was requested
after cach segment was processed to determine what moditications might be necessary, Eight
centroids were grown during the processing of the first segment which contained 590 points. The

cluster summary is listed in Table 11,

The forest clusters, recognized on the basis of a priori information, were always left unchanged.
At this point, the major task of the analyst was to limit the number of non-forest clusters. This
was done by lumping together similiar non-forest cluster pairs. For example, ciusters 6-9 in Table 1]
seemed to be forest clusters and were not altered. This similar non-forest clusters, pairs (1, ) and
(2, 3) were lumped together. Nine clusters remained after the last segment was processed. Seven
of these belonged to the forest category. The other two clusters appeared to typify the non-forest
categories response (believed to be agricultural lands) and were retained in the analysis, This
was done to limit the proliferation of spurious non-forest clusters since non-forest responses
would more likely be grouped with either or these two categories rather than cause new ¢entroids

to be created.

An additional pass through the data was made using DCLASS to refine the centroids produced

in SCLUS (Table I1I). Clusters 6-9 appearsd to be non-forest and the pairs (6, 8) and (7, 9) were
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lumped together. The three forest clusters, 1, 2, and 4, with the highest standard deviation were
split in dimensions 7, 3, and 7, respectively, to form additional forest clusters, Another pass using
DCLASS was made to refine the new centroids. The change in point allocation among clusters
was judged to be minor and the ICAP clustering was terminated. The ICAP analysis took about

40 minutes of user time to complete and used 103 seconds of CPU time.

CLUS Analysis

The scene was also clustered with the ORSER CLUS program, using the default parameters
described in the program documentation (Turner et al. 1978). It was necessary to run the prograr
three times, adjusting the control parameters according to suggested guidelines in the documen-
tation, until a satisfactory classification map was obtained. ‘The CLUS analysis took about 10

minutes of user time to complete and used 66 seconds of CPU time.

Comparison of Results

The ORSER program CLASS was used to produce character classification maps for the refer-
ence, ICAP, and CLUS signatures. The performance of ICAP and CLUS was assessed by noting the
number of pixels classified as being in agreement with the refererce map. The ORSER program
MAPCOMP (Turner, et al. 1978) was used to automate this comparison. The MAPCOMP program
compares two character maps element by element and produces a comparison map and accom-
panying summary tables. Any differences in the number of categories betv een the test and refer-
ence maps were resolved by adjusting the symbols used to indicate a particular category, The severe
and moderate defoliation categories were assigned unique mapping symbols, Other areas w..e

ignored and mapped as blanks.

The test results (Tables IV and V) indicated that ICAP more accurately duplicated the refer-
ence map in locating the defoliation categories (70.7 versus 57.2 percent agreement for CLUS).
Visual comparison of the test maps revealed that both ICAP and CLUS had difficulty in resolving

the boundary between the severely and moderately defoliated categories.
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B. Initial Categosization

A test procedure similar to the one described above wus used to analyse dat irom part of a
study by Merembeck (1978). He mapped forest cover and small openings in northwestern Pennsyi-
vania using four channel Landsat data, The reference signatures for the larger homogeneous cover
types were derived from training areas. Signatures for the smaller sparesely distributed cover types
had been derived from the application of the ORSER CLUS program to the portions of the scene
left unclassified by the supervised anuiysis. Mcrembeck devised a set of 34 signatures which he
grouped into 13 categories. No accuracy assessment was performed. The goal of the test was to
map as many of these categories as possible with ICAP and CLUS, and derive the best initial classifi-
cation of the scene. The results of the unsupervised classification using ICAP and CLUS were com-

pared to Merembeck’s results.

It was known from visual examination of the Landsat imagery that portions of the scene were
under considerable cloul cover. These areas were identified by their higher responses, typically
above 45, 45, 45, and 30 in Landsat bands 4, S, 6, and 7 respectively. Th se responses were con-
sidered to be noise and were ignored in the analysis. The test was made under the assumption
that nothing was known about the cover type categories, other than a general familiarity with

cover types in similiar regions of Pennsylvania.

It was believad that as many as 10 to 15 categories might be represented in the scene and a
resolution (R) of 20 was selected. Since no specific a priori knowledge was assumed, tiie modifi-
cations performed in SCLUS were limited in scope to the reduction of noise (cloud) clustuis.
After an additional pass of the data was made with DCLASS, the ICAP clustering was terminated.
The ICAP analysis took about 30 minutes of user time to complete, using 237 seconds of CPU

time, and produced 7 spectral classes.

The scene was also clustered using the ORSER CLUS program, using the default parameters.

An examination of the classification map revealed the the five clusters appeared to categorize the
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data into meaninglul patterns and no further processing was done. The CLUS analys:s took about

10 minutes of user time to complete and uses! 28 seconds of CPU time.

Comparison of Results

The ORSER program CLASS was again used to generate three classification maps for cach
set of signatures. The reference map was altered for comparison purposes by mapping similia
categories with the same mapping symbol. The ICAP and CLUS programs were compared (using
MAPCOMP) with versions of the reference map altered to a resolution of seven and five categories,

respectively.

The test resalts (Tables VI and VII) indicated that ICAP produced a higher r¢solution (seven
versus five categories) and matched the reference map maore accurately than CLUS (81.9 versus
70.7 percent agreement). Visual examination of the test comparison maps revealed that the major
difference was that ICAP more accurately located the category boundaries, particularly in the

Northwest Aspect Forest and Small Stream categories.

V. CONCLUSIONS

The general methodology used in cluster analysis and several of the techniques used in . emote
sensing applications have been reviewed, The existing algorithms for clustering remotely sensed
data were considered to have limited flexibility, and cannot perform selective clustering since the
clusters are evaluated collectively, thus preventing the analyst from ¢ffectively utilizing a priori
knowledge about the data, A new procedure called ICAP was developed which allows the user
to form clusters automatically or to interactively control the clustering process. Unlike existing
procedures, this control is implemented by direct manipulations of the clusters themselves. No
processing parameters are necessary, The flexibility of ICAP was evaluated using data from dif-
ferent Landsat scenes that represent two situations: one in which the user Las limited prior knowl-
edge about the category structure and wishes to have the clusters formed more or less auto-
matically, and the other in which the user has a fairtly complete knowledge about the existing
categories in the data and wishes to use that information to closely supervise the clustering process,

14
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For comparison, an existing clustering method CLUS by Turner (1972) was also applicd to the sume
duta sets, ICAP performed appreciably better than the CLUS program in matching the reference
classification maps for the two test areas, For theae scenes at least, the results indicate that ICAP is
at least as good or better than the CLUS nrocedure in terms of accuracy. The results support the
conclusion that the flexibility of ICAR can be effectively utilized to perform cluster analysis, regurd-

less of the amount of a priori knowledge available.

The ICAP program used more CPU and analyst time than did the CLUS program in processing
the test arcas. It is difficult and perhaps unwisc to draw general conclusions about the analyst
time and CPU time required for the ICAP and CLUS analyses. The amount of CPU time used is
dependent upon either the number of CLUS runs or the number of passes made through the data
in ICAP. Both of these may vary widely for any given data set since the determination of a satis-
factory result is largely subjective. However, it would uppear that ICAP offers a more productive
use of time since the user is always in direct contact with the clustering process. This supports a
continuous learning process, unlike other procedures which function in a batch mode, in which

the user must select control parameters and wait for results,
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Table 1. Statistics from preprocessing the data.

Dimensions
R 3 4 s 6 7 8
Mean 181 17.2_$33 280 178 152 589 329
Standard deviation 2.2 4.0 7.5 5.2 2.8 4.1 4.1 27
Minimum 14.0 120 35.0 16.0 15.0 11.0 35.0 14.0
Maximum 30 36.0 73.0 42.0 340 39.0 780 420
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Table IV. ICAP confusion table indicating percentage agreement and disagreement between

categories identifed by ICAP and similar cutegorics using the reference map signatures,

ICAP Categories
Reierence
Categories Moderate Severe Other Total
Moderate 30.0 4.0 16.§ 50.5
Severe 0. 40.7 84 49.6
Total 30.5 44.7 24.9

Total percentage agreement = 70,7

Table V. CLUS confusion table indicating percentage agreement and disugreement between

identified by CLUS and similar categories using the reference map signatures.

CLUS Categories
Reference
Categories Moderate Severe Other Total
Moderate 30.5 0.0 20.0 50.5
Severe 1.6 0.7 15.2 49.5§
Total 38.1 26.7 35.2

Total percentage agreement = 57.2
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Tuble VIL. CLUS confusion table indicating percentage agreement and disagreement between

categories identified by CLUS and similar categories using the reference map signatures,

CLUS Categories

?f:giﬁ':a"eﬁ NW SE Water Open Creek Gther “Total
NW 3.1 12,0 0.0 0.0 2.8 0.0 45.9
SE 0.0 8.8 0.0 0.0 0.0 1.7 10.5
Water 0.0 0.0 3.5 0.0 0.0 0.0 3.5
Open 0.6 11 0.0 0.6 0.7 4.0 7.0
Creek 0.1 0.0 0.0 33 17.0 0.0 20.4
Other .3 0.4 0.1 21 0.0 9.9 127
Totl 320 223 3.6 6.0 20.5 15.6

Total percentage agreement = 70.7
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