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ABSTRACT

Materials for highly reflective surfaces for use in parabolic dish solar
concentrators are discussed in this report. Some important factors concerning
performance of the mirrors are summarized, and typical costs are treated
briefly. Although much of the data given are general and applicable to flat
or curved solar reflectors, capital investment cost/performance ratios for
various materials are computed specifically for the double curvature parabolic
L :,centrators using a mathematical model.

The results are given in terms of initial investment cost for reflective
surfaces per thermal kilowatt delivered to the receiver cavity for various
operating temperatures from 400 to 1400 0C, Although second-surface glass
mirrors are emphasized, first-surface, chemically brightened and anodized
aluminum surfaces as well as second-surface, metallized polymeric films are
treated. Conventional glass mirrors Have the lowest cost/performance ratios,
followed closely by aluminum reflectors. Also, ranges in the data due to
uncertainties in cost and mirror reflectance factors are given.
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GLOSSARY

DEFINITION OF TERMS

Absorber

	

	 Component of a solar collector (generally metallic)r
the function of which is to collect and retain as much
of the radiation from the sun as possible.

Air Mass The length of the path through the earth's atmosphere
transversed by the direct solar radiations expressed
as a multiple of the path length with the sun at the
zenith (overhead).

Aluminosilicate Glass

	

	 A pari:ir.;tlar I.ype of high-transmittance silicate glass
that contains Detween 17 and 25.3% of Al203

Blank	 See lite.

Borosilicate Glass	 Any silicate glass having at least 5% boron oxide
(8203).

Chemical Durability

	

	 The lasting quality (both physical and chemical) of a
glass surface. It is frequently evaluated, after
prolonged weathering or storing, in terms of chemical
and physical changes in the glass surface, or in terms
of changes in the contents of a vessel.

Collector	 A concentrator plus a receiver.

Collector Efficiency	 The ratio of the energy collected by the solar
collector to the radiant energy incident upon the
collector.

Collimated Light	 Parallel rays of light, the direct or beam component
of the solar radiation.

Concentrator	 Any device for gathering the sun's rays and directing
them in a useful way.

Cost	 The actual or estimated amount of money required to
produce an item. Frequently in this report, cost is
used interchangeably with price in that cost is
assumed to include manufacturer's profit.

Diffuse Radiation	 Scattered radiation from the sun that falls upon a
plane of stated orientation; in the case of an
inclined surface, ground reflected radiation is
included.

Dispersion

	

	 Variation of the refractive index with the wavelength
of light.
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Figure grror Variations of the mirror surface contour from its
expected position of low spatial frequency, i.e.,
>l cm.

Float Glass	 Sheet glass made ^,y floating the glass on a liquid
metal during cooling.

Forming	 The shaping of hot glass.

Glass	 A hard, brittle, noncrystalline, more or less trans-
parent substance produced by fusion, consistivie of
mutually dissolved silica and silicates that also
contain soda and lime.

Gore	 A section of a parabolic concentrator.

Heliostat	 A flat device (reflector) for directing the sun's
radiation toward a fixed receiver.

Lite	 A section of glass sold and/or 1:.4:mdled separately such
as a 0.61-mm x 0.61-mm (24-in. x 24-in.) section.
Also called "blank" or "light."

Mirror	 A. reflective surface, originally a polished metal but
now usually made of glass with a silvery, metallic or
amalgam backing. It may also consist of laminated
glass or polymer layers.

Near-UV	 The wavelengths in the solar spectrum from 200 to 400
nanometers in this report. See UV.

Parabolic	 The locus of a point moving in a plane so that its
distances from a fixed point (focus) and a straight
line (directrix) are equal; equation is y - r2/4f
where f is the focal length, r the radius, and y the
optic axis.

Plastic	 See polymer.

Polymer	 A large molecule made up of many small repeating units
or mers. Most plastic materials are polymers. The
germ plastic and polymer are used interchangeably in
this report.

Price	 The money needed to purchase an item. Price is equal
to the basic cost of production plus the
manufacturer's profit.

Reflectance	 The ratio of radiation reflected from a surface to,
that incident upon the surface.
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Reflectivity	 The property of reflecting radiation possessed by all
materials to varying extents,

Sagging Process of forming glasrs either with heat (hot saggiiig)
or without heat (cold sagging) until it conforms to the
shape of the mold or form upon which it rests.

SERI Solar Energy Research Institute, Golden, Colorado.

Slope Error The error in the angle or position from its expected
position, usually less than 1 cm period.

Spectral Reflectance Ratio of the energy reflected from a plane surface in a
given defined waveband to the energy incident in that
waveband.

Specular Reflection Mirror—like reflection in which the incident and
reflected angles of each ray are equal.

`tempered Glass Glass that has been rapidly cooled from near the
softening point, under rigorous control, in order to
increase its mechanical, and thermal, endurance (physical
tempering).	 It also may be tempered chemically.

Total Solar The calculated transmittance of solar energy using
Transmittance the solar data for a given air mass 1.5 or 2.0 and

incident upon a perpendicular surface.

Transmittance The ratio of radiant energy which passes through a
material to the radiant energy incident upon the surface
of the material.

Ultraviolet Radiation Radiation having wavelengths longer than those of X—rays
(UV)	 but predominantly shorter than visible wavelengths,

usually 100 to 4000 angstroms.
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ix



CONTENT.

I. INTRODUCTION . . . . . . . . . 	 . . . . . .	 . . . . . . .	 t-1

	

II. PERFORMANCE OF REFLECTIVE SURFACES . . . . .	 . . . . . . . . . . 2-1

A. GENERAL. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

B. HEMISPHERICAL REFLECTANCE. . . . . . . . . . . . . . . . . . 2-1

C. SPECULAR REFLECTANCE . . . . . . . . . . . . . . . . . . v . 2-8

D. RESULTS OF RECENT MEASUREMENTS OF REFLECTANCE. . . . . . . . 2-8

E. REFLECTANCE DEGRADATION. . . . . . . . . .	 . . . .	 . . . 2-8

F. PERFORMANCE EVALUATION . . . . . . . . 	 . .	 .	 . . . . . 2-12

III.	 COSTS	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

A. GENERAL* . . . . . . . . . . . . . . . .	 . . . . . . . . 3-1

B. COST EQUATIONS . . . . . . . . . . . .	 . . . :	 _ _ _ . . 3-1

C. TYPICAL PRICES OF (COMMERCIAL REFLECTIVE SURFACES . . . . . . 3-3

1. Glass Mirrors . .	 . . .	 . . . . . . . . . . . . . . 3-3

2. Aluminum Reflectors.	 .	 . . . . . . . . . . . . 3-7

3. Metallized Polymeric Films . . . . . . . . . . . 	 . . 3-7

IV. COST/PERFORMANCE . . . . . . . . . . .	 . .	 . . . . . . . . . . 4-1

V.	 SUMMARY .	 . . . . . . . . . .	 . .	 . .	 . . . . . . . . . . . 5-1

REFERENCES	 . . . . . . .	 .	 . . . . . . . .	 . .	 . . . . 6-1

APPENDIX: ABSTRACT OF MIRROR GAUGING STUDY . . . . . . . . . 	 . . . . A-1

PRECEDING PAGE: BLANK NOT FILMED

xi



Figures

1-1 Two Test Bed Concentrators at JPL"s Parabolic Dish
Test S ite	 . . . . . . . . -	 . . . . . s . s . . . . . . . 1-2

1-2 Three Fabricated Borosilic4L4 Glass Mirrors on
Cellular Glass Subatrates	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 1•-3

1-3 Thickness Ranges for Various Components of an
Advanced Parabolic Dish Gore 	 .	 .	 . 'I-4

1-4 Segmented Flexible Mirrors of V%;rious Sizes 	 . 1-6

2-1 Reflection Characteristics of Second- and First-
Surface Mirrors	 .	 .	 .	 .	 .	 .	 N	 .	 •	 .	 .	 .	 !	 .	 .	 .	 .	 .	 .	 . .	 J	 2-2

2-2 Total Reflectance versus Glass Thickness for Various

Types	 of Mirrors	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 2-3

2-3 Normal Solar Hemispherical Reflectance for Theoretical
and Measured Silver and Aluminized Sufaces 	 .	 .	 .	 .	 .	 . .	 . 2-4

2-4 Specular Reflectance as a Function of Angular Aperture
for Several. Reflector Materials	 (Ref. 5)	 .	 .	 .	 .	 .	 .	 . .	 .	 2-9

2-5 Spectral leflectance versus wavelength for Borosilicate
.,__.and iuum^.nosi icate Glass Mirrors 2-11

	3-1	 Relative. Costs versus Initial Reflectance Performance
and Relative Durability . . . . . . . . . . . v . . o o . . 3-4

3-2 Typical Silvered Glass Mirror Prices versus Area Purchased . 3-5

3-3 Typical Estimated Total Prices of Large Quantity, High-
Transmittance, Silvered Mirrors versus Area Purchased . 	 . 3-8

3--4 Typical Prices of Surface Processed Bulk Aluminum
Reflectors . . . . s . . . . • . . . u . . . . . . .	 • o 3-9

4-1 Useful Energy Delivered to the Receiver versus
Receiver Temperature	 . . . . . .	 . . . . .	 .	 . 4-2

	

4-2	 Initial Capital Investment for Reflective Surfaces for
Nominal Operating Conditions	 . . . .	 . . 0 • . . . .	 4-4

4-3 Useful Energy Delivered to Receiver versus Operating
Temperature Showing Plus and Minus 10% Uncertainty
Bands . .	 . . . 0 . . . . . . . . . . . . . . . . . . • .	 4-5

4-4 Ranges of Initial Capital Investment for Glass Mirrors
versus Receiver Temperature .	 . . . . . . . . . . . . .	 4-6

4-5 Ranges of Initial Capital Investment for Aluminum Surfaces
and Metallized Polymeric Films	 . . . . . . . .	 . . . 4-7

iii

i

I



Tables

2-1 Summary of Reflective Surfaces for Solar Concentrators
(Refs. 5 1 11, and 12)	 . . . . . .	 . . . • . . . . . . . . 2-5

2-2 Total and Wide Angle Reflectances for Selected
Surfaces . . . . . . . . . . . . . . . . . . . . . . 	 . . . 2-10

	

2-3	 Summary of EMMAQUA Test Exposures (Ref. 16) . . . . .	 2-13

	

2-4	 Areas for Mirror Evaluation e . . . . . . s . . . . . .	 . 2-14

	

2-5	 Solar Thermal Dust Assumptions (Ref. 28) . . . . 0 6 .	 .	 2-15

3-1 Typical Prices for Single Strength and Double Strength
Soda-Lime Glass Mirrors in 1980 Dollars. . . a . . . . .	 . 3-6

3-2 Typical Prises of Aluminized Acrylic Film for Solar Mirrors. 3-10

4-1 Initial Capital Costs for Various Reflective Surfaces for
Parabolic Dish Concentrators . . . .	 . . . . . . . . . . . 4-3

Xiii



SECTION I

INTRODUCTION

The purpose of this report is to provide information on the selection
and evaluation of materials for mirror components of parabolic dish
concentrators. Cost/performance ratios for various operating conditions are
discussed in general. The data in this report are based primarily upon (a)
recent publications on solar reflective surfnces (Refs. 1 and 2), (b) previous
background reports (Refs. 3 through 11), and (c) recent JPL analysis,
evaluations and test reaults (Refs. 12 through 15).

Cost/performance data are extremely important for large solar
concentrator systems for utility use as well as other applications. An
example of a large system with an 11-meter diameter dish is shown in Figure
1-1. These test bed concentrators (TBCs) have been developed by JPL as part
of the M, Department ofEnergy funded Solar Thermal Power Systems Parabolic
Dish Project and are used to eva1^^.te and test various types of receivers and
engines. Their rugged construction allows the handling of relatively heavy
electrical and process heat conversion systems. Typical advanced solar
collector systems are considerably lighter and somewhat smaller than the TBCs,
which have been calibrated at 65 to 66 kilowatts of thermal power (normalized
to 800 watts/m2) with clean mirrors. The receiver used in initial testing
was a cold water cavity calorimeter, 53 cm (21 in.) in diameter.

Three typical mirror gores of the type used on solar concentrators are
shown in Figure 1-2. The straight lines of the building structure are
reflected in these experimental borosilicate glas^ mirrors. The waviness is
due to local slope errors in the glass as well as specularity effects.

The primary candidate reflective surface for the JPL advanced parabolic
dish concentrator is a silvered, second-surface glass mirror with a cellular
glass structural substrate. The functional elements (hermetic top seal
(glass), silver metallization with protective copper overcoat, edge sealant,
backing paint, bonding agent, and support substrate) and the thickness ranges
being evaluated are shown in Figure 1-3. Further detailed information on this
system is given in Reference 1.

While soda-litae-silicate glass is less expensive, aluminosilicate and
borosilicate glasses have been observed to be extremely resistant to corrosive
atmospheric components. Although other types of reflectors are treated in
this report, the glass mirrors are emphasized because of their use by hardware
developers, their availability, low dust accumulation characteristics, and
reports of favorable field experience to date.

1--1
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SECTION II

PERFORMANCE OF REFLECTIVE SURFACES

A. GENERAL

Identification and characterization of the type of reflective surfaces
to be used are necessary for the determination of the cost/performance ratios
of specific parabolic dish concentrators. Therefore, characterisation,
evaluation, and testing of available commercial solar reflectors must be
undertaken. Mirror type (i.e., first- or second-surface mirrors), ease of
bending into three-dimensional parabolic shape, and slope errors are among
those factors that should be addressed. Figure 2-1 illustrates the optical
characteristics of first- and second-surface reflectors. Reflectance
characteristics of flat mirrors have been obtained by R. E. Pettit of Sandia
National Laboratories using a bidirectional reflectometer for both types of
surfaces (Ref. 5). The reflected beam distribution for a second-surface glass
mirror (Figure 2-1a) can be described by a single distribution shown as a
single cone, while second-surface polymeric films and bulk aluminum surfaces
usually require a multiple beam profile (Figure 2-1b) for adequate description
(depending upon whether or not the surface is viewed in the across or with-
roll direction).

The use of reflecting materials to concentrate solar energy requires (1)
high solar reflectance and (2) good specular reflectance properties. For the
complete characterization of the performance of a specific system, beam
spreading due to the reflecting materials should be combined with other
sources of beam spreading such as size of the sun, mirror figure errors, or
tracking errors.

B. HEMISPHERICAL REFLECTANCE

Evaluation criteria for each of the functional elements making up the
solar mirror system have been described in detail by JPL (Refs. 1 through 4).
Of prime importance is the use of low-iron glass in order to obtain high
specular reflectance. Also, the thinner the glass, the higher the
transmittance of the light rays through the glass into the receiver. This
effect is illustrated in Figure 2-2.

The data for measured normal hemispherical solar reflectances for silver
and aluminum surfaces obtained from a number of sources are compared with
theoretical values in Figures 2-3a and 2-3b for air mass 2.0 conditions.
Mcasurements by Sandia Laboratories found second-surface, silvered glass
mirrors to have the highest specularity (Ref. 5).

Information on the reflectance and transmittance of various mirror
surfaces is summarized in Table 2-1. The measured reflectances from many
sources, including data from Sandia Laboratories (Refs. 5 through 8) and
McDonnell Douglas Astronautics (Refs. 10 and 11), as well as recently measured
values from JPL are tabul.ted. Because precise reflectance standards have not
yet been available, the data should be regarded as preliminary. Nonetheless,
trends in the data are evident. For further detailed information

2-1
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(a) SECOND-SURFACE MIRROR

INCIDENT
LIGHT RAY

METALLIC	 DIFFUSE
REFLECTOR	 RAYS

EXAMPLE;
GLASS OR
POLYMER

METAL PROTECTIVE
COATING (i.e., COPPER)

MIRROR PROTECTIVE
COATING (i.e., PAINT)

(6) FIRST-SURFACE MIRROR

INCIDENT
LIGHT RAY

PROTECTIVE
OVERCOAT
(OPTIONAL)

ANODIZED
LAYER

EXAMPLE:
ALUMINUM
SUBSTRATE

CONE OF
SPECULARLY
REFLECTED
RADIATION

l^

1 ^	 CONE 1 0
ANGLE,

BOUNDARIES OF
SPECULARLY REFLECTED
RADIATION IN PLANE
OF MIRROR ORIENTA-
TIONS	

HIGH
SPECULARITY

LOW
$A-SPECULARITY

CONE	 I
ANGLES, 7 0

DIFFUSE
RAYS

Figure, 2-1. Reflection Characteristics of Second- and Virst-Surface Mirrors
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ĥ

y
1°I ^'.F. ntNV rh

^
nv	 n^ wN nhC.ir

^~^
1	 11	 1. 11 I1 NN

1"1r
11 1! 11 11 t1 !1 d0

NOv
^t0	 dO
Nv	 Nv ^ Nv

iy

AI+ ti+
Y

r

0

M.{p^^
W W

N M N	 N NV
M ^1 Y 7 $ F

1'1 ^ 1"1 g 1"1 ^ g O u^' 0 0 o g	 o ^ : ^
q"

tl "
=

8
r qr
.•ri8

iw1 qy
+.

B
o p

p
u n̂

nay.
MN .ri

^

OW
y

o

pW
.o
Ôw

pop
OW ry

V
+

^
yq
» n r^

ygtl
~

8—

X 1
^^qjr

F
(̂ v

^... u w vw m u^

O
W M n

111yyy444111

I	 q 6 U 1p^+ +FpI N Np Y ^ M M	 C t(p^Ii.

•	 N W

4yy Np
i

O pY..pp̂i
III y!

W.

7

W
..P
..} i+

•-1
pMo
t)

p4o
U

po4

tJ
pY

V N

^

W

^!

<
OM

V
opM

i.i	 U
,.((
R 3 X

1
U

A0

7
N
N

1.1
r1

J
N

NN •ON nN O^ O•N ON NiV NN 1'1	 dN	 N NIY `01`I

A

O

M

Y

4J
y
ry

Y

O

v
U

O

N
Sd
r-I

O

O
4A

v

u^.t
w

4,1

tFW

W A

? N
•r1 1^
L.^

O1 F'.

4

r-1

4-4
O

tf1
T
H

1"I
IN

t-I

2-6



to

0
Q̂

q
^
0

/

^
/
0
u

^
m

0
@
p

/

$

/
§
«
m^

$/

//

/^
A®0
r

44

/
q

@

k^
e	 }

! ^_
^a &2

^} ]!
£| ^

2

}

all / ;

]! ^

-

_&! c ,
. . . ,]2 £

kk

\) _

k! ® , o § c

}/|
oo 00 ,o ,

)§ k. R ^ -

\\ \\ } \ )\ )\

u f4 / }

/\
\) ƒ ƒ /u

\ /

!}
7w

\j
^" 7

\/k

2-7



d

on total or specular reflectance, the reader is referred to the measurements
of Sandia Labs, particularly References 5 1 7, and 8.

C. SPECULAR REFLECTANCE

Specular effects are especially important for any high temperature
system, including heliostats and dish systems. Sandia has measured the
specular reflectance of various surfaces as a function of circular detector
aperture size (Figure 2-4). The superior performance of the second-surface,
silvered glass mirrors (Curve a) is apparent (Ref. 5).

As mentioned above, the energy distribution of the reflected beam
profile of second-surface mirrors may be described in terms of a single normal
distribution; however ) many front-surface mirrors require a convolution of two
normal distributions to adequately describe them. The reflectance
coefficients for the reflectance equation are tabulated in Table 2-1.

D. RESULTS OF RECENT MEASUREMENTS OF REFLECTANCE

Screening tests for a number of commercial mirrors have been performed
at JPL to determine (1) relative reflectance performance characteristics for
the mirrors, (2) are initial assessment of degradation effects, and (3) the
approximate slope or figure errors due to manufacturing differences.

The results of total and wide angle (-20 ) reflectance data for
silvered mirrors, aluminum, and stainless steel surfaces are shown in Table
2-2 as a function of incident wavelength. When the mirror glass is relatively
thick (i.e., 3 mm), there is an appreciable reduction in reflectance.

An example of recent measurements performed on a selected sample of a
high-transmittance glass mirror is shown in Figure 2-5. The particular sample
(Figure 2-5a) is Corning Code 7809 glass of 1.0-mm (0.040-in.) thickness
supplied by the Solar Energy Research Institute (SERI). high reflectance over
the entire spectrum is noted. The peak intensity in the neRAr-ultra iolet
region (300 to 400 nanometers) is possibly due to glass fluorescence.

E. REFLECTANCE DEGRADATION

Efforts to further define and understand the subtle mechanisms of mirror
degradation have been initiated by Battelle-PNL (Pacific Northwest
Laboratory), Sandia National Laboratories, and JPL. A number of research
directions are being pursued. Battelle is investigating mirror life
expectancy through the use of lanthanide doping in the silver deposition
process (Ref. 9) while Sandia is evaluating the role of water in silver
degradation processes (Ref. 6).
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Table 2-2. Total and Wide Angle Reflectances for
Selected Surfaces

Wide AngW` J Total

Type Thickness Reflectance 71 Reflectance, f
of MM Wavelength, nm, Wavelength, nm

Mirror (in.) 400	 500 600 800 400 500 600 800

1. Standard - -	 - - - 100 100 100 100
(MgCO3)

2. Source A 1.5 92	 95 95 100 97 98 9S wo
(Glass, (0.060)
CGW-0317)

3. Source B 3.0 91	 95 94 89 96 98 97 881(Glass) (0.118)

4. Source B 2 5.0 88	 93 91 78 91 93 89.5 74
(Glass) (0.197)

5.	 Source B,, 6.0 90	 92 89 75 90 90 86 69
(Class) (0.236)

6. Source C 2.13 76	 80 80 75 98 99 98 90
(Glass) (0.084)

7. Source C2 3.25 72	 78 77 66 92 95 93 80
(Glass) (0.128)

B. Source C 3 3.3 75	 79 77 66 94 96 94 80
(Glass) (0-130)

9.	 Source C4 3.3 88	 79 77 67 94 95 93.5 80
(Glass) (0.3,30)

10. Source D1 3.2 76	 79 77 66 96 97 94 80
(Glass) (0.125)

11. Source D2 3,2 72	 77 75 64 92 96 93 77
(Glass)(3) (0.125)

12. Source E 75	 71 72 63 99 95 92 86
(Aluminum)

13. Source F 32	 38 36 48 65 67 70 75
(Stainless
Steel)

MWith the exception of mirrors 1,	 12, and 13, all are second-surface.

(2) Two degree half angle with incident angle of 510.

(3) Second-surface aluminized glass.
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Since March 1984, JPL has been involved in limited outdoor tasting of
mirrors at Pasadena, California, and at the Goldstone Test Site, Barstow,
California. This testing is being performed in conjunction with the JPL Low-
Cost (Photovoltaic) Solar Array Project. The goal is to identi fy hensonal and
other effects of dust pileup and mirror corrosion.

In addition, a study of the composition and thickness of the
silver/copper metallization on second-surface mirrors has been undertaken by
Wittenberg College under JPL direction, The objective of this study is to
determine the feasibility of using X-ray fluorescence and neutron activation
to characterize the metallization and/or foreign corrosion agents. (See the
Appendix for a further statement of this effort.)

Preliminary data on degradation in harsh outdoor test conditions at ASET
laboratories, Inc,, Phoenix, Arizona, have been compiled by Rausch. (See
Table 2-3 1 Reference 16.) His results show that the uilvered glass mirrors
exhibited only 3% degradation when cleaned after 32 weeks exposure. These
data are indicative of the type of test results that can be obtained by
accelerated testing. (For further details, the reader is referred to
Reference 16.)

F.	 PERFORMANCE EVALUATION

Performance evaluation and testing have been extensively documented in
recent solar energy literature. (See References 17 through 26.)

In summary, the complete evaluation >f mirrors for solar thermal
applications involves several areas in addition to that of optical properties
('fable 2-4), including primarily mirror degradation mechanisms.

Performance of entire mirror sections during JPL ice ball impact tests
has been determined to be dependent upon (1) the type and thickness of the
bonding layer and (2) the elastic properties of the substrate (Refs, 27 and 28).

Atmospheric contamination (i,e., dust, dirt: and mud) can have an
important effect on solar concentrator design, deployment, and cleaning
operations. In a recent JPL study, differ p it types of concentrators were
evaluated using the latest (1979) dust degradation rates. The results are
summarized in `Fable 2-5. Three types of solar concentrators were compared to
the primary candidate: second-surface, silvered glass mirror concentrator, 11
meters in diameter.

Cleaning was assumed to take place once a month. More recent data
(Ref. 29) have indicated that for plastic film the 15% per month average
degradation rate due to dust accumulation may be pessimistic. It then follows
that for the same power output and receiver configuration, aluminum, plastic,
and Presnel lens systems have to be 21, 37, and 25% larger, respectively, tlinn
the 11-meter diameter dish. Although these results are preliminary, they
emphasize the effects of dust accumulation and beam spreading phenomena on the
size of parabolic dish reflective surfaces.
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Table 2-4. Areas for Mirror Evaluation

o	 Operating Life

o Temperature Stability

Maximum operating temperature
Gradient effects (shock)
Cycling (fatigue)

o Chemical Stability

o. Structural Stiffness with Respect to
Total Operating Load Spectrum

Body forces
Mechanical forces
Aerodynamic forces

o Fabrication

Bondability

o Repairability

o	 Degradation Mechanisms

o Effect of Adherent Dust on Reflective
Surfaces

o Impact and Abrasion Resistance (Hail
and Sand)

o Effects of UV Radiation on Mirror Components

2-14



i

Table 2-5. Solar Thermal Dust Assumptions (Ref. 28)

a Average
Reflectance Dish Effective Relative

Type of Degradation Radii Area Dish
Concentrator	 Reflectance Due to m m2 :Size

Surface	 X Soiling (ft) (ft2) Required*

1.	 Second-Surface	 94 3 5.5 100 1.0
Silvered (18) (1076)
Glass

2.	 First-Surface	 86	 3 6 121	 1.21
Anodized (19.7) (1308)
Aluminum

3.	 Second-Surface	 85	 15 6.4 137	 1.37
Metallized (21.0) (1472)
Plastic
Film

4.	 Fresnel	 83.5**	 6 6.3 125	 1.25
Lens (20.7) (1342,)

*Relative to second-surface silvered glass mirrors. Each reflective surface
was designed to produce the same average installed power capability. Monthly
cleaning was assumed. The larger sizes are required as a result of (1)
different reflective (transmittance) surface characteristics and (2)
different reflectance (transmittance) degradation due to soiling. Receiver
reradiation effects are not included.

**Since the Fresnel lens was assumed to be clear acrylic plastis j this value
is for transmittance. Soiling is assumed to occur on both sides of the
plastic lens.
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Many areas still must be researched in order to adequately quantify
indoor mirror technology for outdoor solar applications. In addition to the
dust accumulation effects mentioned above, the nature and causes of various
types of infrequently observed silver corrosion need to be investigated.

Mirror performance, including degradation effects, greatly influences
cost, both maintenance costs and capital investment. The latter is treated
briefly in the following section.
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SECTION III

COSTS

A. GENERAL

The particular aspects of costs of reflective surfaces discussed in khis
Section reflect current purchase prices (August 1980, in dollars) for
commercial, reflective surfaces. These data, when used in conjunction with the
performance data in Section It provide the basis for computing the
cost/performance ration for solar parabolic dish concentrators in Section IV.
Prototype prices are largely omitted herein, and prices of concentrators in
the range of 100 to 100 , 000 units per year are emphasized where information is
available. Most data given are "price" data which were obtained from the
manufacturer. Class and mirror manufacturing sources are given in References
15 and 9 1 respectively, "Cost" data herein are assumptions, since cost data
are, in general, considered proprietary by the manufacturer. "Price" data
include basic costs plus the manufacturer ' s profit.

Production of a large number of concentrators implies that costs may be
reduced through production efficiencies, yet this is not necessarily the case,
especially for patented, proprietary reflectors. The reduction in price
achievable in very large quantity mirror procurements is omitted from this
report. All three commercial reflective surfaces treated herein are produced
by relatively mature technologies, and a quantum reduction in price is not
envisioned for the near future.

B. COST EQUATIONS

A simplified, general model of the basic cost equations for solar
concentrators is given below, The total cast is the sum of three cost
quantities, namely:

	

11	 1^	 lr

	

1	 j 1	 k=10

where

C t = Total Cost

Ci - Initial Production Costs

Cj - Maintenance Coats

Ck - Replacement Costs

3-1



where

Fabr1cation

C l - Cost of reflective surface application

C2 a Cost of basic mirror material

C3 = Cost of bending the reflective surface into parabolic shape

C4 - Cost of cutting mirror to shape

Cg = Cost of edge sealant for mirror

C6 = Cost of packaging and handling

C7 - Cost of shipping

Cg = Cost of substrate

C9 - Cost of mating mirror and substrate

C10 = Cost of bonding agent

C11 = Cost of bonding mirror to substrate (labor)

C12 = Cost of support structure, if any

C13 = Cost of assembly of concentrator mirror p1 ►is reflective
surface with support structure

Maintenance

C 14 = Cost of cleaning liquids (or dry air system)

C 15 = Cast of washing (labor)

Replacement

C16 = Cost of replacing reflective surfaces

C17 = Cost of replacement (labor)

Some terms, of course, will not be applicable to specific reflective
surfaces because the equations refer to glass mirrors. In those cases, other
equivalent terms may need to be substituted. Although all of the above cost
factors are not used explicitly in the analysis, they are nonetheless
important,

3-2
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Costs resulting from impro- rement of a specific type of reflective
surface". Y!1 . 11, 1,-o general, increase with improved requirements for reflectance
chara;;terivtie)3 and mirror durability. Examples are (1) increase of silver
and capper 411,.-"knesses for improved reflectance and (2) increase of thickness,
compo6itio j :Su choice of paints for metallization protection. This
relationship is illustrated in Figure 3-1.

In certain cases, transportation costs can become appreciable,
especially in the case of low-cost reflective surfaces and long transportation
distances. As an example, consider 1000 ft2 of mirror glass priced at 0.7
$/ft 2 with 2 ft x 5 ft dimensions. The material cost would be $700 per
unit, but the shipping cost would add an additional $250 or 35% to the cost at
a shipping distance of 2500 miles.

Detailed information on prices of commercial reflective surfaces is
given below.

C.	 TYPICAL PRICES OF COMMERCIAL REFLECTIVE SURFACES

1.	 Glass Mirrors

Commercial reflective surfaces are available from a large number
of manufacturers in both the United States and Europe. A few illustrative
examples are shown in this section. The general subject of glass prices has
been treated extensively in References 12 and 15. Prices vary widely and are
dependent upon the thickness; type, processed state, maximum len gth dimension,
and other complex factors.

Coast delivered mirrors is in
0.77 $/ft 2 ) for single
quantities. (See Figure 3-2 and
These data represent maximum
iy lower the cost per square

The basic price (1980 dollars) for West
the general range of 7.5 to 8.3 $/m 2 (0.70 rr;
strength 2.5-mm (0.125-in.) glass in moderate
Table 3-1 for two typical industry sources..)
prices. Very large quantities would preswiiab
meter.

Very thin-film glass mirrors, 0.?- ,= (0.028-in.) thick are reported to
cost less, e.g., 5.4 $/m 2 (0.50 $/ft 2). However, breakage during shipment
and handling may increase the real cost. Clearly, a trade-off is required
between initial inexpensive mirror costs versus expensive transportation costs
necessary to deliver a given number of mirrors to the fabrication site as well
as breakage costs during gore fabrication. Likewise, the extremely thin glass
may be unsatisfactory due to high replacement costs in certain environments
(i.e., hail or vandalism).

Commercial mirrors requiring special, processing, such as "flexible"
mirrors (Figure 1-4), are presently more expensive than the basic mirror price
range shown above. Flexible mirrors in 2.54-cm (1.0-in.) squares, for
example, retail in the 43-86 $/m 2 (4-8 $/ft2) range. Of course, cutting,
bonding, and plastic backing protection are included in these numbers. With
larger squares designed specifically for larger power systems, the cutting
costs may be appreciably reduced through automated techniques.
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Table 3-2. Typical Prices of Aluminized Acrylic
Film for Solar Mirrors	 1

	Area Purchased	 Price (1980$) per Unit Area

	

m2	fc2	 $Im2	 $/ft2

	

0.93	 10	 18	 1.67	 i

	

9.3	 102	 18	 1.67

`	 93	 103	 15	 1.39

	

930	 104	 13.23	 1.23
t

	

9,300	 105	 13.23	 1.23

I	 939000	 106	 13.23	 1.23
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SECTION IV

COST/ PERFORMANCE

Evaluation of the type of reflective surface to be used involves a
coat/performance ratio, which is the ratio of dollars expended to the amount of
energy delivered to the receiver system.

Extensive analyses have been performed at JPL on solar parabolic dash
concentrators. (See References 1 through 4.) Concentrator cost goals of 40 to
100 $/m2 (3.7 to 9.3 $/ft 2) have been proposed. In this investigation, it
has been shown that reflective surfaces in large volumes may be priced initially
between 7.5 and 23 $/m2 (0.70 and 2,15 $/ft2 ), With the exception of bent
glass technology, the reflective surface contributes a small fraction of total
concentrator cost. Substrate costs are yet tobe determined and are the subject
of a concurrent JPL report (Ref. 2)• Although costs for cutting large mirrors
have been found to be small and, hence, negligible, bonding and sealing costs
during fabrication may be significant. These factors will be addressed in future
studies of complete gore fabrication.

Nevertheless, the range of usefulness of the three different reflector
ystems (silvered glass, aluminum, and plastic film) can be determined using
recent JPL analysis techniques (Figure 4-1). These analyses result in estimates
of thu useful power delivered to the receiver (Table 4-1) along with capital
costs. Figure 4-2 shows the initial costs of the reflective surface per kilowatt
of thermal energy delivered to the receiver as a function of receiver operating
temperature.

For purchases of large mirrors, i.e., greater than 930 m2 (10,000 ft2),
total concentrator prices of 100, 60, and 40 $/m 2 are assumed for
second-surface silvered glass, anodized aluminum, and metallized plastic film,
respectively.

This investigation shows that commercial glass mirrors are the single most
economical system, from an initial capital investment standpoint, Across the
temperature range of 400 to 14000C. Likewise, this investigation shows that
from a capital investment standpoint, aluminized metallic film is the second most
cost effective below a receiver temperature of 600 0C, while Aluminum mirror is
the second most cost effective from 600 to 1400 00 (the highest temperature
studied). (See Figure 4-2.)

The borosilicate glass mirrors are found to be lower priced than metallized
polymeric film, and the hot-formed, high-transmittance glass reflector the most
expensive of the systems studied.

The preceding two figures have been recalculated assuming (1) an
uncertainty band of +10% o: ► 'the power delivered to the receiver due to various
effects (Figure 4-3) and (2) price ranges of reflective surfaces from available
commercial price lists. The results are shown in Figures 4-4 and 4-5 for glass
and non-glass mirrors, respectively. The ranges of overlap are apparent, and
conventional glass mirrors exhibit the narrowest uncertainty band.
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Table 4-1. Initial Cost for Various
Reflective Surfaces for Paralbolia

Dish Concentrators

Mirror Receiver Operating Temperature, °C
Construe-R

tion* 400 600 800 1000 1200 1400

Agh 0.76 0.752 0.735 0.715 0.69 0.64

Energy Aga 0.76 0.752 0.735 0.715 0.69 ').64
Delivered

Age 0.76 0.752 0.735 0.715 0.69 0.64
kWZh

AR 0.6 0.592 0.575 0.552 0.525 0.5
m

Af 0.58 0.51 0.435 0.355 0.28 0.19

Price Agh 48.42 48.42 48.42 48.42 48.42 48.42

Aga 23.13 23.13 23.13 23.13 23.13 23.13

$01980)
Age 7.53 7.53 7.53 7.53 7.53 7.53

M
At 15.49 15.49 15.49 15.49 15.49 15.49

Af 13.23 13.23 13.23 13.23 13.23 13.23

Ratio Agh 63.71 64.39 65.88 67.72 70.17 75.66

Aga 30.43 30.76 31.47 32.35 33.52 36.14

k($1980)
Agc 9.91 10.01 10.24 10.53 10.91 11.77

th
At 25.82 26.17 26.9 28.06 29.5 30.98

Af 22.81 25.94 30.41 37.26 47.25 69.63

Legend: Agh - second- surface glass, hot-formed
Aga - second-surface glassy high-transmittance, sagged
Age - second-surface glass, conventional
At	 - first--surface aluminum
Af	 - second-surface alur;,nized polymeric film

*Insolation = 850 W/m2

L	
4-3



400	 600	 800	 1000	 1200	 1400

i^ - A." :..^:A 	 __:....._	 -, ".__ ... - -..

70

60

W
V

:E

Gt^z
wa
0 40

OZ
wo^u
W

w
30

-o

^d
O.?
u:2
J0z

20

z

10

0

RECEIVER TEMPERATURE, °C

Figure 4-2. Initial Capital Investment for Reflective
Surfaces for Nominal Operating Conditions

4-4



SYSTEMS 1-3
(GLASS)

I

0

0.

n
f
^f

d

0.

ZW
U
z
0
U

~f 0.4
n

GW
W
2J

l7

0.4

W
J
r

SYSTEM 4
(ALUMINUM)

0.3	 SYSTEM 5

(POLYMERIC FILM)

ADAPTED FROM
REF, Z

0.2

400	 600	 B00	 1000	 1200	 1400

RECEIVER TEMPERATURE °C

Figure 4-3. Useful Energy Delivered to Receiver versus Operatinp
Temperature Showing Plus and Minus 10% Uncertainty Banns

4-5



GLASS UNCERTAINTY
RANGES

100

90 1

80

v

70

^ f
W
Z^
W
Z &I

W O

O°
U. Z
^O

W v 50

G^mi
>
Z—d
a O 40
^ J
^ QZ

JO
Q Z

30
Z

MIRROR 1
(GLASS: HOT-FORMED,
HIGH-TRANSMITTANCE)

-- MIRROR S	 y

1

20

10

400	 600	 800	 1000	 1200	 1400

RECEIVER TEMPERATURE, °C

Figure 4-4. Ranges of Initial Capital Investment for
Glass Mirrors versus Receiver Temperature

4-6



W
U
Q
W
Q

v	 50
WJ NW z
nr p
K ^
025
LL
P.- z

W UU e0
1 2
G
W

QH
Q

z dW
O

0
30

Q
U?

Q

t z
z

2C

10

0 1

0	 61

	 1	 i	 I	 i

4000	 800	 1000	 1200	 1400

TEMPERATURE, 0C

Figure 4-5. Ranges of Initial Capital Investment for
Aluminum Surfaces and Metallized Polymeric Films

4-7



SECTION V

SUMMARY

This report is a summary of the cost, performance, and cost/performance
ratios for reflective surfaces for solar parabolic dish concentrators. The
performance data have been obtained primarily from the work of Sandia National
Laboratories supplemented by limited reflectance data performed by JPL and
industry. The cost information for both limited and mass-production
quantities has been obtained for various glass and mirror manufacturers in the
United States and Europe.

The lack of an organized database for use in cost/performance analyses of
parabolic solar collectors formed the impetus for this report. It is an
introduction which highlights the major considerations and trade-off/sensi-
tivity analysis necessary to develop a complete cost/performance character-
ization.

Capital investment costs are treated in this initial study. Develop-
ment of life-cycle costs reflecting longevity of the various construction
materials is the next step. As techniques for cleaning the various types of
mirrors become available, their costs should be included. In addition, the
inclusion of recent soiling models, mirror degradation models, and models of
better specular performance of alternative (non-glass) mirror technology could
significantly improve the usefulness of the results.

The conclusions of this report concerning performance, costs, and
cost/performance ratios are summarized as follows:

(1) In general, the reflective properties of parabolic solar commercial
mirrors can be divided into three general types: second-surface
silvered (or aluminized) glass, anodized aluminum, and aluminized
polymeric film. All three types of mirrors remain potential can-
didates for use as reflective surfaces for parabolic dish concen-
trators. The ultimate selection depends upon the system require-
ments and further developments in the respective mirror technologies.

(2) The cost of hot forming glass into parabolic shapes is appreciably
higher than cold forming. A major contributing factor is the lack
of industrial sources for production of large thin glass sheets
required for solar applications.

(3) For nominal receiver cavity operating temperatures of 400 to
14000C, cold-sagged, commercial second-surface metallized glass
mirrors require the lowest initial capital investment per thermal
kilowatt delivered to the receiver.

(4) With the exception of conventional glass mirrors, the model shows
that aluminum reflector surfaces have the second lowest cost for
receiver cavity temperatures above 6000C. However, cold-sagged
borosilicate glass reflectors are only 20% higher.
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(5) For receiver cavity temperatures below 6000C, the energy
delivered by an aluminized polymeric film reflective surface
appears lower in cost then either aluminum or borosilicate glass
reflectors.

(6) There are relatively large uncertainty bands about the cost
performance values due mainly to a lack of definitive cost
information.

The data presented herein are the results of a ,relatively limited cost/
performance analysis based upon a simple concentrator mathematical model and
available data. This preliminary assessment should be expanded to include
other glasses, metals, and films available for reflective surfaces including
advanced surfaces such as those produced by ion implantation.

Only partial costs are given, namely for the reflective surface of the
solar collector. As information on substrate costs becomes available,
generation of similar curves for reflective surface/substrate combinations is
planned. Life-cycle costs including the effects of maintenance and inflation
factors are needed. In the meantime, these curves should be useful for
indicating general trends.
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APPENDIX

ABSTRACT OF MIRROR GAUGING STUDY

A contract has been let by JPL to the Board of Directors of Wittenberg
College, Springfield, Ohio, to study the thickness and composition of metallic
films on second-surface glass mirrors. The approach is to use X-ray
fluorescence and neutron activation techniques to perform characterization of
the metallization, i.e., especially silver and copper. The goal is to
determine the feasibility and limitations of non-destructive techniques for
evaluation of the thickness, uniformity and composition of various types of
reflective surfaces. Samples with and without corrosion are being studied.
The contract is scheduled for completion by December 30, 1980.

A-1


	1981012018.pdf
	0001A02.jpg
	0001A02.tif
	0001A03.jpg
	0001A03.tif
	0001A04.jpg
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.jpg
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.jpg
	0001D01.jpg
	0001D02.jpg
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif




