LIGHTSIDE ATMOSPHERIC REVITALIZATION SYSTEM

BY

ARTHUR K. COLLING, ROSS J. CUSHMAN, MARK M. HULTMAN, AND JOHN R. NASON

PREPARED UNDER CONTRACT NO. NAS 9-13624

BY

HAMILTON STANDARD
DIVISION OF UNITED TECHNOLOGIES CORPORATION
WINDSOR LOCKS, CONNECTICUT

FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

OCTOBER, 1980
STUDY REPORT
LIGHTSIDE ATMOSPHERIC REVITALIZATION SYSTEM

BY
ARTHUR K. COLLING, ROSS J. CUSHMAN,
MARK M. HULTMAN, AND JOHN R. NASON

PREPARED UNDER CONTRACT NO. NAS 9-13624

BY
HAMILTON STANDARD
DIVISION OF UNITED TECHNOLOGIES CORPORATION
WINDSOR LOCKS, CONNECTICUT

FOR
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

OCTOBER, 1980
ABSTRACT

A closed-loop atmosphere revitalization system was studied as a replacement to the present baseline LiOH system for extended duration shuttle missions. The system consists of three subsystems: a solid amine water desorbed regenerable carbon dioxide removal system, a water vapor electrolysis oxygen generating system, and a Sabatier reactor carbon dioxide reduction system. The system is called the Lightside Atmospheric Revitalization System (LARS), since it is designed for use on a solar powered shuttle vehicle. The majority of the system's power requirements are utilized on the sun side of each orbit, when solar power is available.
FOREWORD

This report has been prepared by Hamilton Standard, Division of United Technologies Corporation, for the National Aeronautics and Space Administration's Lyndon B. Johnson Space Center in accordance with Contract NAS 9-13624, "Breadboard and Flight Prototype CO₂ and Humidity Control Systems." The report covers work accomplished on the Lightside Atmospheric Revitalization System study phase of the program between April 1, 1980 and September 30, 1980.

Appreciation is expressed to the Technical Monitor, Mr. Frank Collier of the NASA, Johnson Space Center, for his guidance and advice.

This program was conducted under the direction of Mr. Harlan F. Brose, Program Manager, and Mr. Albert M. Boehm and Mr. Arthur K. Colling, Program Engineers, with the assistance of Messrs. Ross J. Cushman, Mark M. Hultman, and John R. Nason, Analysis and Messrs. David L. Faye and Philip F. Heimlich, Design.
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>17</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>18</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>20</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>21</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>22</td>
</tr>
<tr>
<td>Work Breakdown Structure</td>
<td>23</td>
</tr>
<tr>
<td>System Requirements</td>
<td>24</td>
</tr>
<tr>
<td>System Description</td>
<td>26</td>
</tr>
<tr>
<td>System Performance</td>
<td>29</td>
</tr>
<tr>
<td>Cabin Temperature and Humidity Control</td>
<td>29</td>
</tr>
<tr>
<td>Cabin Temperature and Humidity Computer Model</td>
<td>57</td>
</tr>
<tr>
<td>Cabin CO₂ Partial Pressure Profiles</td>
<td>58</td>
</tr>
<tr>
<td>Cabin Oxygen Partial Pressure Control</td>
<td>64</td>
</tr>
<tr>
<td>Comparison to Present Shuttle ECS</td>
<td>66</td>
</tr>
<tr>
<td>System Fixed Weight Summary</td>
<td>67</td>
</tr>
<tr>
<td>PEP Mission (57° Inclination Orbit) Trade Study</td>
<td>69</td>
</tr>
<tr>
<td>Power System Mission (No Additional Water Storage)</td>
<td>72</td>
</tr>
<tr>
<td>or Sun Synchronous PEP Mission Trade Studies</td>
<td></td>
</tr>
<tr>
<td>Power System Trade Study (All Fuel Cells At Cold Start)</td>
<td>78</td>
</tr>
<tr>
<td>System Effectiveness Studies</td>
<td>83</td>
</tr>
<tr>
<td>System Safety</td>
<td>83</td>
</tr>
<tr>
<td>System Maintainability</td>
<td>84</td>
</tr>
<tr>
<td>Subsystem Sizing and Operating Characteristics</td>
<td>85</td>
</tr>
<tr>
<td>SAWD Sizing</td>
<td>85</td>
</tr>
<tr>
<td>Parametric Sizing Characteristics</td>
<td>91</td>
</tr>
<tr>
<td>Solid Amine Moisture Control and Cyclic Moisture Equilibrium</td>
<td>91</td>
</tr>
<tr>
<td>Bed Steaming Requirements</td>
<td>100</td>
</tr>
<tr>
<td>SAWD System Operating Characteristics</td>
<td>105</td>
</tr>
<tr>
<td>Desorption Cycle Operating Characteristics</td>
<td>111</td>
</tr>
<tr>
<td>Selected Approach as Applied to Polar Orbit Mission</td>
<td>114</td>
</tr>
<tr>
<td>Conditioning of Solid Amine Prior to Launch and Upon Reentry</td>
<td>114</td>
</tr>
<tr>
<td>WVE Sizing</td>
<td>116</td>
</tr>
<tr>
<td>Sabatier Subsystem</td>
<td>121</td>
</tr>
<tr>
<td>System Integration Studies</td>
<td>126</td>
</tr>
<tr>
<td>Major Component Descriptions</td>
<td>126</td>
</tr>
<tr>
<td>LARS Instrumentation Requirements</td>
<td>136</td>
</tr>
<tr>
<td>Power Distribution to LARS</td>
<td>140</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Figure 1</td>
<td>LARS Schematic</td>
</tr>
<tr>
<td>Figure 2</td>
<td>CO₂ Partial Pressure Profile for Two-Bed LARS--6 Member Crew</td>
</tr>
<tr>
<td>Figure 3</td>
<td>WVE 15 Cell Performance</td>
</tr>
<tr>
<td>Figure 4</td>
<td>LARS Study 6 Member Crew 9 psia Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Cabin Air Flow Chart Nominal Heat Loads 6 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Sabatier Flow Chart 6 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 7</td>
<td>LARS Study Power Profile 6 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 8</td>
<td>SAWD Installation Drawing (Sheet 1)</td>
</tr>
<tr>
<td>Figure 9</td>
<td>SAWD Installation Drawing (Sheet 2)</td>
</tr>
<tr>
<td>Figure 10</td>
<td>SAWD Installation Drawing (Sheet 3)</td>
</tr>
<tr>
<td>Figure 11</td>
<td>LARS Installation Drawing (Sheet 1)</td>
</tr>
<tr>
<td>Figure 12</td>
<td>LARS Installation Drawing (Sheet 2)</td>
</tr>
<tr>
<td>Figure 13</td>
<td>LARS Installation Drawing (Sheet 3)</td>
</tr>
<tr>
<td>Figure 14</td>
<td>LARS Schematic</td>
</tr>
<tr>
<td>Figure 15</td>
<td>LARS Study 2 Member Crew 9 psia Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 16</td>
<td>LARS Study 4 Member Crew 9 psia Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 17</td>
<td>LARS Study 6 Member Crew 9 psia Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 18</td>
<td>LARS Study 2 Member Crew 14.7 psia Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 19</td>
<td>LARS Study 4 Member Crew 14.7 psia Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 20</td>
<td>LARS Study 6 Member Crew 14.7 psia Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 21</td>
<td>LARS Study 6 Member Crew 9 psia Maximum Heat Loads Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 22</td>
<td>LARS Study 6 Member Crew 14.7 psia Maximum Heat Loads Cabin Temperature and Dewpoint</td>
</tr>
<tr>
<td>Figure 23</td>
<td>CO₂ Transient Due to Skipping One Desorb--6 Men</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Cabin Air Flow Chart Nominal Heat Loads 4 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 25</td>
<td>Sabatier Flow Chart 4 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Cabin Air Flow Chart Nominal Heat Loads 6 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 27</td>
<td>Sabatier Flow Chart 6 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 28</td>
<td>Cabin Air Flow Chart Maximum Heat Loads 6 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 29</td>
<td>Cabin Air Flow Chart Nominal Heat Loads 4 Member Crew 14.7 psia</td>
</tr>
<tr>
<td>Figure 30</td>
<td>Sabatier Flow Chart 4 Member Crew 14.7 psia</td>
</tr>
<tr>
<td>Figure 31</td>
<td>Cabin Air Flow Chart Nominal Heat Loads 6 Member Crew 14.7 psia</td>
</tr>
<tr>
<td>Figure 32</td>
<td>Sabatier Flow Chart 6 Member Crew 14.7 psia</td>
</tr>
<tr>
<td>Figure 33</td>
<td>Cabin Air Flow Chart Maximum Heat Loads 6 Member Crew 14.7 psia</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Figure 34</td>
<td>LARS Study Power Profile 2 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 35</td>
<td>LARS Study Power Profile 4 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 36</td>
<td>LARS Study Power Profile 6 Member Crew 9 psia</td>
</tr>
<tr>
<td>Figure 37</td>
<td>LARS Study Power Profile 2 Member Crew 14.7 psia</td>
</tr>
<tr>
<td>Figure 38</td>
<td>LARS Study Power Profile 4 Member Crew 14.7 psia</td>
</tr>
<tr>
<td>Figure 39</td>
<td>LARS Study Power Profile 6 Member Crew 14.7 psia</td>
</tr>
<tr>
<td>Figure 40</td>
<td>Typical SAWD Test Breakthrough Curve</td>
</tr>
<tr>
<td>Figure 41</td>
<td>CO₂ Removal Efficiency vs. Time</td>
</tr>
<tr>
<td>Figure 42</td>
<td>CO₂ Partial Pressure Profile for Two-Bed LARS--2 Member Crew</td>
</tr>
<tr>
<td>Figure 43</td>
<td>CO₂ Partial Pressure Profile for Two-Bed LARS--4 Member Crew</td>
</tr>
<tr>
<td>Figure 44</td>
<td>CO₂ Partial Pressure Profile for Two-Bed LARS--6 Member Crew</td>
</tr>
<tr>
<td>Figure 45</td>
<td>LiOH vs. LARS, PEP Mission, Orbit 57° Inclination--Weight Comparison</td>
</tr>
<tr>
<td>Figure 46</td>
<td>LiOH vs. SAWD, PEP Mission, Orbit 57° Inclination--Weight Comparison</td>
</tr>
<tr>
<td>Figure 47</td>
<td>LiOH vs. LARS, PEP Mission--Volume Comparison</td>
</tr>
<tr>
<td>Figure 48</td>
<td>LiOH vs. LARS, PEP Mission, Sun Synchronous Orbit--Weight Comparison</td>
</tr>
<tr>
<td>Figure 49</td>
<td>LiOH vs. LARS, Power System Mission--Weight Comparison</td>
</tr>
<tr>
<td>Figure 50</td>
<td>LiOH vs. LARS, Power System Mission--Volume Comparison</td>
</tr>
<tr>
<td>Figure 51</td>
<td>LARS Schematic</td>
</tr>
<tr>
<td>Figure 52</td>
<td>Adsorb/Desorb Schedules for Single and Dual Bed SAWD Systems</td>
</tr>
<tr>
<td>Figure 53</td>
<td>Typical SAWD Test Breakthrough Curve</td>
</tr>
<tr>
<td>Figure 54</td>
<td>CO₂ Removal Efficiency vs. Time</td>
</tr>
<tr>
<td>Figure 55</td>
<td>Effect of Desorb Temperature on Adsorption Breakthrough</td>
</tr>
<tr>
<td>Figure 56</td>
<td>Solid Amine Bed Capacity as a Function of CO₂ Partial Pressure and Cycle Time</td>
</tr>
<tr>
<td>Figure 57</td>
<td>Moisture Equilibrium Loading for Solid Amine</td>
</tr>
<tr>
<td>Figure 58</td>
<td>Drying Rates With 50 Percent Relative Humidity</td>
</tr>
<tr>
<td>Figure 59</td>
<td>Equilibrium Moisture Content vs. Adsorption Time (Drying Phases I and II)</td>
</tr>
<tr>
<td>Figure 60</td>
<td>Equilibrium Moisture Content as a Function of Adsorption Time</td>
</tr>
<tr>
<td>Figure 61</td>
<td>LARS Predicted Moisture Content as a Function of Adsorption Time</td>
</tr>
<tr>
<td>Figure 62</td>
<td>Desorption Steam Requirements as a Function of Bed Moisture Level</td>
</tr>
<tr>
<td>Figure 63</td>
<td>Desorption Time as Dependent Upon Bed Water Loading</td>
</tr>
<tr>
<td>Figure 64</td>
<td>Percent Moisture vs. Desorption Time</td>
</tr>
<tr>
<td>Figure 65</td>
<td>Solid Amine Desorption Steaming Requirements as a Function of Desorption Temperature (24 Minute Desorption)</td>
</tr>
<tr>
<td>Figure 66</td>
<td>Solid Amine Desorption Steam Requirements for Baseline Case</td>
</tr>
<tr>
<td>Figure 67</td>
<td>Steam Generator Power Requirements for Baseline Case</td>
</tr>
</tbody>
</table>
List of Figures Continued

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 68</td>
<td>Solid Amine Bed Pressure Drop</td>
<td>109</td>
</tr>
<tr>
<td>Figure 69</td>
<td>IMU Fan Performance Curves</td>
<td>110</td>
</tr>
<tr>
<td>Figure 70</td>
<td>Contaminant Control Canister Inlet Temperature</td>
<td>112</td>
</tr>
<tr>
<td>Figure 71</td>
<td>Estimated CO₂ Flow Rate During Desorption</td>
<td>113</td>
</tr>
<tr>
<td>Figure 72</td>
<td>LARS Mass Balance for One Orbit</td>
<td>115</td>
</tr>
<tr>
<td>Figure 73</td>
<td>WVE 15 Cell Performance</td>
<td>118</td>
</tr>
<tr>
<td>Figure 74</td>
<td>WVE Cell Pair</td>
<td>120</td>
</tr>
<tr>
<td>Figure 75</td>
<td>SAWD Installation Drawing (Sheet 1)</td>
<td>127</td>
</tr>
<tr>
<td>Figure 76</td>
<td>SAWD Installation Drawing (Sheet 2)</td>
<td>128</td>
</tr>
<tr>
<td>Figure 77</td>
<td>SAWD Installation Drawing (Sheet 3)</td>
<td>129</td>
</tr>
<tr>
<td>Figure 78</td>
<td>LARS Installation Drawing (Sheet 1)</td>
<td>130</td>
</tr>
<tr>
<td>Figure 79</td>
<td>LARS Installation Drawing (Sheet 2)</td>
<td>131</td>
</tr>
<tr>
<td>Figure 80</td>
<td>LARS Installation Drawing (Sheet 3)</td>
<td>132</td>
</tr>
<tr>
<td>Figure 81</td>
<td>Preprototype SAWD Canister</td>
<td>134</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Trade Study Summary</td>
<td>9</td>
</tr>
<tr>
<td>Table 2</td>
<td>LARS Study Requirements/Assumptions</td>
<td>25</td>
</tr>
<tr>
<td>Table 3</td>
<td>LARS Performance Summary</td>
<td>39</td>
</tr>
<tr>
<td>Table 4</td>
<td>Power System Mission Water Balance (No Additional Water Storage)</td>
<td>75</td>
</tr>
<tr>
<td>Table 5</td>
<td>Power System Mission Water Balance (All Fuel Cells at Cold Start)</td>
<td>79</td>
</tr>
<tr>
<td>Table 6</td>
<td>SAWD Bed Loading</td>
<td>89</td>
</tr>
<tr>
<td>Table 7</td>
<td>SAWD Subsystem Sizing Summary</td>
<td>92</td>
</tr>
<tr>
<td>Table 8</td>
<td>Sabatier Subsystem Design Specification</td>
<td>123</td>
</tr>
<tr>
<td>Table 9</td>
<td>Preprototype Sabatier Subsystem Performance Conversion Efficiency During Steadystate Testing</td>
<td>124</td>
</tr>
<tr>
<td>Table 10</td>
<td>Preprototype Sabatier Subsystem Performance Average Conversion Efficiency During Cyclic Testing</td>
<td>125</td>
</tr>
<tr>
<td>Table 11</td>
<td>LARS Weight Summary</td>
<td>137-138</td>
</tr>
<tr>
<td>Table 12</td>
<td>LARS Instrumentation Requirements</td>
<td>139</td>
</tr>
<tr>
<td>Table 13</td>
<td>LARS Power Summary</td>
<td>141</td>
</tr>
</tbody>
</table>
The Lightside Atmospheric Revitalization System (LARS) is an attractive improvement to the Shuttle Orbiter ARS for extended duration missions.

The LARS study was divided into seven parts: system requirements, system description, system performance, comparison to present shuttle ECS, system effectiveness studies, subsystem sizing and operating characteristics, and system integration.

The primary requirement for the LARS is to maintain the atmosphere for a crew of six with either a 62.05 or 101.35 kPa (9 or 14.7 psia) cabin pressure. The nominal CO level is 5 mmHg, and oxygen partial pressure limits are 17.58 ± 1.03 kPa (2.55 ± 0.15 psia) for a 62.05 kPa (9 psia) cabin pressure and 22.06 ± 1.72 kPa (3.2 ± 0.25 psia) for a 101.35 kPa (14.7 psia) cabin pressure. Normal limits for cabin temperature and dewpoint are 18.33 to 26.67°C (65-80°F) and 3.89 to 16.11°C (39-61°F), respectively. The LARS must fit into the volume of the existing CO₂ control system and LiOH storage.

The LARS is shown schematically in Figure 1. It consists of three subsystems: a solid amine water desorbed (SAWD) regenerable CO₂ removal subsystem, a water vapor electrolysis (WVE) oxygen generation subsystem, and a Sabatier CO₂ reduction subsystem. The system schematic is similar to the initial concept, except the SAWD subsystem has two beds instead of one. The selection of two beds helps to level the cabin temperature and humidity peaks resulting after adsorption is started on a bed. Additionally, reliability is increased with two beds.

The entire LARS is designed for operation in a solar powered shuttle vehicle. Most of its power utilization is during the light side of each orbit. On fuel cell powered vehicles, the WVE and Sabatier subsystems would not generally be used. However, the SAWD subsystem would be used for CO₂ control. Since the three subsystems are designed for integration into the shuttle vehicle in phases as field installations, the SAWD subsystem should be installed for all missions and the WVE and Sabatier subsystems can be added later for longer missions that use solar power.

An analysis of the LARS was conducted with particular emphasis on the SAWD and WVE subsystems. The complete analysis, design, and testing of a preprototype Sabatier subsystem has recently been completed by Hamilton Standard under Contract NAS 9-15470. A typical profile of SAWD subsystem CO₂ performance for a six-man crew is shown in Figure 2. WVE cell performance was predicted, and oxygen production for various cell voltages and inlet dewpoints is shown in Figure 3. Cabin temperature and dewpoint were predicted for an orbiter with the LARS installed. The results for the design case of a six-man crew, nominal heat loads, and a 62.05 kPa (9 psia) cabin pressure are given in Figure 4. Additionally, cabin air flow charts and Sabatier flow charts were...
FIGURE 2

CO$_2$ PARTIAL PRESSURE PROFILE FOR TWO BED LARS SYSTEM
FIGURE 3

WVE 13 CELL PERFORMANCE
FIGURE 4

LARS SYSTEM STUDY
6 MEMBER CREW 9 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT
developed to show the temperatures, dewpoints, and heat loads at various points in the system at the time of the highest cabin dewpoint during an orbit. Sample charts for the six-man, 62.05 kPa (9.0 psia) cabin pressure, nominal heat load case are given in Figures 5 and 6. Performance curves and charts similar to these, but for various crew sizes and cabin conditions, are provided in the discussion section of this report.

A trade study was conducted to compare the LARS to the baseline LiOH system for PEP and power system missions. Since the LARS can be installed aboard the orbiter in increments of the SAWD subsystem only, the SAWD and WVE subsystems, or the entire LARS, each of these combinations was compared to the baseline LiOH system. For all missions considered the addition of a SAWD subsystem provided significant savings in weight and volume. The addition of the WVE and Sabatier subsystems does not affect weight or volume requirements significantly, but allows large increases in mission length for PEP missions using a sun synchronous orbit or for power system missions. A summary of the trade study results is given in Table 1.

All of the components of the LARS are designed as line replacement items. No in-flight maintenance is required, except the periodic replacement of the contaminant control canister (approximately every 10 days).

The subsystem sizing and operating characteristics portion of the study provided necessary data for the other sections of the study. The requirements for the SAWD subsystem were determined to be two canisters, each containing 5.90 kg (13 lbm) of dry solid amine material. Nominal flow for each canister is .340 m³/min (12 CFM), provided by one IMU fan. An analysis of solid amine drying characteristics has shown that for the various cabin temperature and relative humidity conditions experienced, the SAWD beds maintain moisture stability. Each bed operates on a 72 minute adsorption and 24 minute desorption cycle. The two beds' cycles are offset by approximately 24 minutes to limit peak power requirements by only desorbing one bed at a time.

Based on the WVE cell performance curves of Figure 3, the WVE subsystem was sized at 15 cells. This will supply the cabin leakage and metabolic oxygen for a six-man crew without exceeding 1.90 volts per cell.

Power requirement profiles for an orbit were generated from subsystem performance and operating characteristics. The profile for the six-man crew, 62.05 kPa (9.0 psia) cabin pressure case is shown in Figure 7.

Since installation of the LARS into the shuttle will potentially be accomplished in phases, packaging drawings have been prepared for both an installation of the SAWD subsystem alone and for the installation of the entire LARS. The packaging drawings are shown in Figures 8 through 13. The goal of locating the system within the volume presently used for CO₂ control and LiOH storage was achieved in both cases.
FIGURE 5
CABIN AIR FLOW CHART NOMINAL HEAT LOADS
6 MEMBER CREW 9 PSIA (BASELINE)
Figure 6
SABATIER FLOW CHART

6 MEMBER CREW 9 PSIA

MOST HUMID CONDITIONS: 56 MIN INTO LIGHT SIDE

COOLING AIR

\[T = 56.6 \quad W_{\text{Air}} = 47.7 \]

\[W_{\text{CO}_2} = 0.9555 (0.2877) \]

FROM CO\(_2\) ACCUMULATOR

\[T = 1180.0 \quad W_{\text{Air}} = 3.67 \]

\[W_{H_2} = 0.1177 (0.7300) \]

REACTOR

\[Q = 990 \]

\[T = 70 \]

\[W_{\text{O}_2} = 0.9419 (0.3901) \]

WVE

\[W_{H_2O} = 1.060 (0.7800) \]

CONDENSER

\[Q_S = 60 \]

\[Q_L = 554 \]

\[T = 114.7 \quad W_{\text{Air}} = 44.03 \]

\[W_{\text{CO}_2} = 0.3131 (0.0943) \]

\[W_{H_2O} = 0.0274 (0.0202) \]

TO WATER ACCUMULATOR

\[W_{H_2O} = 0.4985 (0.3669) \]

OVERBOARD

\[W_{CH_4} = 0.2341 (0.1939) \]

LEGEND

\[T \sim \degree F \]

\[W \sim \text{LB/Hr (MOLES/DAY)} \]

\[Q \sim \text{BTU/Hr} \]
<table>
<thead>
<tr>
<th>Mission W/4 Cryo Kits</th>
<th>Baseline Mission Length Days</th>
<th>Advantages for Addition of Sawd Subsystem</th>
<th>Advantages for Addition of WVE & Sabatier Subsystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEP 57° Inclination Fuel Cell Power on Dark Side with Solar Cell Penalty</td>
<td>17</td>
<td>Savings</td>
<td>Weight = 102.95 kg (227 LBM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volume = 0.340 m³ (12.0 ft³)</td>
</tr>
<tr>
<td>PEP Sun Synchronous Fuel Cells 2 Cold, 1 Hot Start with Solar Cell Penalty</td>
<td>57</td>
<td>Savings</td>
<td>Weight = 699 kg (1541 LBM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volume = 1.78 m³ (63 ft³)</td>
</tr>
<tr>
<td>Power System</td>
<td>80</td>
<td>Savings</td>
<td>Weight = 1005 kg (2217 LBM)</td>
</tr>
<tr>
<td>Fuel Cells All Cold Start No Solar Cell Penalty Includes Supplementary Water Storage</td>
<td></td>
<td></td>
<td>Volume = 2.52 m³ (89 ft³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase Mission Length by 14 Days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase Mission Length by 47 Days</td>
</tr>
</tbody>
</table>
FIGURE 7
LARS SYSTEM STUDY
POWER PROFILE
6 MEMBER CREW 9 PSIA
FIGURE 9
SAWD INSTALLATION DRAWING (SHEET 2)

HAMILTON STANDARD

SYSTER 7224
FIGURE 13
LARS INSTALLATION DRAWING (SHEET 3)
INTRODUCTION

An improved atmospheric revitalization system was studied for use on the shuttle for extended duration orbiter missions. The system consists of three subsystems: a solid amine water desorbed (SAWD) CO₂ removal subsystem; a water vapor electrolysis (WVE) oxygen generating subsystem; and a Sabatier CO₂ reduction subsystem. The analysis and preliminary design assumed a six-man metabolic load controlled to a 5.0 mmHg partial pressure of CO₂. Baseline cabin pressure was assumed to be 62.05 kPa (9.0 psia). However, 101.35 kPa (14.7 psia) cabin pressure cases were also considered.

The system is called the Lightside Atmospheric Revitalization System (LARS). It is designed to utilize the volume on the shuttle vehicle presently used for CO₂ control and LiOH storage. Most of the power consumed by the LARS is used on the light side of each orbit, and it can be unregulated solar cell DC power.

The study included the development of computer models to predict the WVE system performance, the SAWD system CO₂ performance, and the cabin temperature and humidity with the LARS installed. The program listings are provided in Appendix A.

The system integration portion of the study resulted in package drawings showing the SAWD subsystem individually and the entire LARS installed in the shuttle orbiter.
OBJECTIVES

The primary objective of the LARS study was to define the integration of the LARS into the shuttle orbiter utilizing space now occupied by the shuttle ECS and the LiOH storage. The study defines the weight, power, volume, and interface impacts of installing the system and includes trade studies, performance predictions, and installation arrangements.

The study was divided into seven parts:

- System Requirements
- System Description
- System Performance
- Comparison to Present Shuttle ECS
- System Effectiveness Studies
- Subsystem Sizing and Operating Characteristics
- System Integration Studies

The objectives of each part are listed below:

System Requirements

- List the system requirements

System Description

- Describe the selected system
- Describe the modes of system operation including operation during launch and landing

System Performance

- Describe cabin temperature and humidity control as affected by LARS
- Discuss cabin carbon dioxide control
- Discuss cabin oxygen partial pressure control
- Summarize system power requirements and profiles

Comparison to Present Shuttle ECS

- Trade-off the LARS against the baseline shuttle LiOH ECS for various projected missions
 - PEP/spacelab mission
 - Power system mission

System Effectiveness Studies

- Evaluate system safety
- Discuss system maintainability
Subsystem Sizing and Operating Characteristics

- Discuss the SAWD subsystem sizing and operating characteristics
- Discuss the WV2 system sizing and operating characteristics
- Describe the Sabatier system and its operating characteristics

System Integration Studies

- Describe the installation of LARS into the shuttle vehicle
- Describe major subsystem components and give a weight summary
- Describe the power distribution to the LARS
- Discuss instrumentation requirements
CONCLUSIONS

1. A 15 cell water vapor electrolysis subsystem, weighing 47.20 kg (104 lbm) and installing within the present ECS volume, provides metabolic and cabin leakage oxygen requirements with a crew of six.

2. A two-bed solid amine subsystem was sized at 5.90 kg (13 lbm) of dry solid amine per bed. The entire SAWD subsystem weighs 59.8 kg (131.8 lbm) and installs within the present ECS volume.

3. With a LARS installed, shuttle cabin temperature and humidity are within specifications for all nominal heat load cases.

4. For the two-hour maximum heat load condition with a six-man crew and a 62.05 kPa (9 psia) cabin pressure, both LARS and baseline LiOH equipped shuttle vehicles exceed the maximum cabin temperature.

5. The solid amine subsystem maintains cabin CO₂ partial pressure below 5 mmHg for a six-man crew.

6. The solid amine subsystem can maintain spacioab CO₂ partial pressure less than 5.4 mmHg without using LiOH in the spacioab.

8. The LARS offers significant weight, volume and mission length advantages over the baseline LiOH system for extended shuttle missions. The SAWD subsystem or the complete LARS can be installed as field installations.

9. The LARS is designed for easy maintenance by use of line replacement components.

10. The LARS operating characteristics are compatible with projected shuttle mission scenarios.

11. The LARS can be installed within the envelope presently used for CO₂ control and LiOH storage.

12. Drawings have been developed showing the installations of the solid amine subsystem only and of the entire LARS.

13. The LARS power requirements can be supplied by the present shuttle vehicle electrical distribution system.
RECOMMENDATIONS

1. The testing under the LARS Program should be undertaken.

2. The shuttle ARS heat exchanger should be tested with a full sized solid amine subsystem to determine its compatibility under all cabin conditions.

3. The Sabatier subsystem should be tested with the other two subsystems.

4. The LARS can be installed aboard the orbiter in phases. The SAWD subsystem should be installed on all orbiters. However, its major benefits will be realized on extended mission duration orbiters. Addition of the WVE and Sabatier subsystems is beneficial for sun synchronous orbit PEP missions or for power system missions.
DISCUSSION

The Lightside Atmospheric Revitalization System study was divided into seven major topics. The detailed presentation in this section is divided into subsections corresponding to these topics.
<table>
<thead>
<tr>
<th>No.</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>System Requirements</td>
</tr>
<tr>
<td>II</td>
<td>System Description</td>
</tr>
<tr>
<td>III</td>
<td>System Performance</td>
</tr>
<tr>
<td>IV</td>
<td>Comparison to Present Shuttle ECS</td>
</tr>
<tr>
<td>V</td>
<td>System Effectiveness Studies</td>
</tr>
<tr>
<td>VI</td>
<td>Subsystem Sizing and Operating Characteristics</td>
</tr>
<tr>
<td>VII</td>
<td>System Integration Studies</td>
</tr>
</tbody>
</table>
TOPIC I
System Requirements

The Lightside Atmospheric Revitalization System study is based on the requirements and assumptions given in Table 2.
| Table 2 |
|------------------|------------------|
| **LARS STUDY REQUIREMENTS/ASSUMPTIONS** | |

1. Crew size
2. Metabolic O₂
3. O₂, Partial Pressure
4. Cabin pressure
5. Leakage O₂
6. Launch & reentry O₂
7. Reentry hold O₂
8. EVA O₂
9. Kit tank O₂
10. Fuel cell O₂ consumption
11. Launch & reentry H₂
12. Fuel Cell H₂ consumption
13. Kit tank H₂
14. Metabolic CO₂
15. CO₂ partial pressure average
16. LiOH per cartridge
17. LiOH cartridge weight
18. LiOH rack weight
19. LiOH rack volume
20. LiOH storage existing capability
21. LiOH change out - 4 Men
22. LiOH change out - 6 Men
23. LiOH H₂O production
24. Food + drink H₂O
25. Wash H₂O
26. EVA H₂O
27. Condensate H₂O (metabolic only, 70°F cabin)
28. Urine H₂O
29. Fuel cell H₂O/kW hr
30. Reentry & contingency H₂O
31. Water/waste tank capacity
32. Water/waste tank weight
33. Potable water tanks baseline
34. Wastewater tanks baseline
35. Reentry hold contingency
36. Fuel cell hot start idle
37. Fuel cell cold start idle
38. Cryo kit weight O₂, H₂
39. Charcoal requirement
40. Metabolic sensible heat load average
41. Metabolic Latent Load Average
42. Cabin electrical and wall load average
43. Avionics load average
44. Cooling water outlet temp. from interface HX
45. Cooling water flow
46. Cabin temperature range
47. Cabin temperature average
48. Cabin dewpoint range
49. Cabin dewpoint average
50. Power-minimum shuttle services
51. Flash evaporator topping duct power
52. Solar cell penalty
53. Cabin repressurization from 62.05 kPa/9.0 psia to 101.35 kPa (14.7 psia)
54. Air lock manned

Crew size 6 men

Metabolic O₂
- 0.798 kg/man day
- 17.58 ± 0.53 or 22.06 ± 1.72 kPa
- 62.05 ± 1.30 or 101.35 ± 1.30 kPa
- 0.871 kPa/day
- 38.10 kg
- 58.17 kg
- 0.590 kg
- 321.15 kg
- 0.367 kg/kW hr
- 4.56 kg
- 0.0454 kg/kW hr
- 37.42 kg
- 0.957 kg/man day

Cabin pressure
- 2.27 kg
- 0.907 kg
- 3.63 kg
- 0.0311 m²

Leakage
- 0.871 kg/day
- 12.07 kg/day

Launch try
- 0.22 kg
- 84 lbm (8 men, 5 hr)
- 130 lbm (6 men, 20 hr, 7.35 kw)
- 1.3 lbm (7 hrs)
- 708 lbm usable, (354.26 kg 781 lbm total)
- 1.1 lbm/kW hr
- 10.1 lbm (20 kW, 5 hr)
- 0.10 lbm/kW hr
- 82.5 lbm (usable)
- 2.11 lbm/man day
- 5 mmHg (7.6 mmHg max)
- 5.0 lbm, (0.113 kg .25 lbm charcoal)
- 2.0 lbm (less LiOH & charcoal)
- 8.0 lbm (3 cartridges)
- 1.1 ft² (3 cartridges)

Fuel cell
- 0.367 kg/kW hr
- 0.81 lbm/kW hr
- 0.413 kg
- 149.69 kg
- 74.84 kg
- 20.67 kg

LiOH
- 0.390 kg/man day
- 2.59 kg/man day
- 1.16 kg/man day
- 4.35 kg
- 1.50 kg/man day
- 1.50 kg/man day
- 0.413 kg
- 149.69 kg
- 74.84 kg
- 20.67 kg

Food and drink
- 2.59 kg/man day
- 1.16 kg/man day
- 4.35 kg
- 1.50 kg/man day
- 1.50 kg/man day
- 0.413 kg
- 149.69 kg
- 74.84 kg
- 20.67 kg

Waste water
- 2.59 kg/man day
- 1.16 kg/man day
- 4.35 kg
- 1.50 kg/man day
- 1.50 kg/man day
- 0.413 kg
- 149.69 kg
- 74.84 kg
- 20.67 kg

Fuel cell
- 0.367 kg/kW hr
- 0.81 lbm/kW hr
- 0.413 kg
- 149.69 kg
- 74.84 kg
- 20.67 kg

Cabin
- 0.367 kg/kW hr
- 0.81 lbm/kW hr
- 0.413 kg
- 149.69 kg
- 74.84 kg
- 20.67 kg

Power
- 0.125 lbm/man day
- 703 lb (no usable O₂ or H₂)
- 0.125 lbm/man day
- 703 lb (no usable O₂ or H₂)
- 0.125 lbm/man day
- 323 Btu/man hr (70°F cabin)
- 124 Btu/man hr (70°F cabin)
- 1871 Btu/hr
- 4353 Btu/hr
- 40.3°F
- 600 lbm/hr
- 65-80°F
- 70°F
- 39.6°F
- 50°F
- 14 kw
- 170 watts average
- 124 lbm/kW

Power-contingency
- 130 ft²

Sensible heat load
- 318.88 kg
- 3.468 X 10⁶ Joules/man hr
- 1.308 X 10⁶ Joules/man hr
- 1.974 X 10⁶ Joules/hr
- 4.593 X 10⁶ Joules/hr

Latent heat load
- 318.88 kg
- 3.468 X 10⁶ Joules/man hr
- 1.308 X 10⁶ Joules/man hr
- 1.974 X 10⁶ Joules/hr
- 4.593 X 10⁶ Joules/hr

Electrical and wall load
- 318.88 kg
- 3.468 X 10⁶ Joules/man hr
- 1.308 X 10⁶ Joules/man hr
- 1.974 X 10⁶ Joules/hr
- 4.593 X 10⁶ Joules/hr

Cooling water
- 318.88 kg
- 3.468 X 10⁶ Joules/man hr
- 1.308 X 10⁶ Joules/man hr
- 1.974 X 10⁶ Joules/hr
- 4.593 X 10⁶ Joules/hr

Cabin temperature
- 318.88 kg
- 3.468 X 10⁶ Joules/man hr
- 1.308 X 10⁶ Joules/man hr
- 1.974 X 10⁶ Joules/hr
- 4.593 X 10⁶ Joules/hr

Cabin dewpoint
- 318.88 kg
- 3.468 X 10⁶ Joules/man hr
- 1.308 X 10⁶ Joules/man hr
- 1.974 X 10⁶ Joules/hr
- 4.593 X 10⁶ Joules/hr

Power-minimum shuttle services
- 318.88 kg
- 3.468 X 10⁶ Joules/man hr
- 1.308 X 10⁶ Joules/man hr
- 1.974 X 10⁶ Joules/hr
- 4.593 X 10⁶ Joules/hr

Power-contingency
- 318.88 kg
- 3.468 X 10⁶ Joules/man hr
- 1.308 X 10⁶ Joules/man hr
- 1.974 X 10⁶ Joules/hr
- 4.593 X 10⁶ Joules/hr

Flash evaporator topping duct power
- 56.25 kg/kW

Solar cell penalty
- 56.25 kg/kW

Cabin repressurization
- 3.68 m³

Air lock manned
- 3.68 m³

Part of contingency
- 130 ft²
TOPIC II
System Description

The Lightside Atmospheric Revitalization System (LARS) is designed for extended duration orbiter missions, during which the fuel cells are idled and solar power is utilized. This system is well suited to these conditions, since with the fuel cells idled, water can become the limiting consumable. The LARS includes a regenerable subsystem for carbon dioxide control and an oxygen generating subsystem capable of supplying oxygen for metabolic usage and cabin leakage makeup. Additionally, hydrogen from the oxygen generating subsystem and carbon dioxide are processed in a Sabatier reactor to produce potable water for crew use and methane, which is vented overboard.

The LARS, as it would be integrated into the shuttle orbiter ECS, is shown schematically in Figure 14. The LARS consists of three subsystems; the SAWD, solid amine water desorbed CO₂ removal subsystem; the WVE, water vapor electrolysis subsystem; and the Sabatier CO₂ reduction subsystem. The system is designed to draw the majority of its electrical power requirement during the sun side of each orbit. During the CO₂ adsorption cycle, cabin air enters the amine canisters through one of two shuttle IMU fans and exits through an activated charcoal contaminant control cartridge into the main cabin return airstream. The combined main cabin air and SAWD discharge air flow through a shuttle cabin fan into the water vapor electrolysis cells and exit into the shuttle condensing heat exchanger or bypass line, depending on the cabin air temperature requirements. The water vapor electrolysis cells absorb water from the air stream and produce oxygen and hydrogen. The oxygen is discharged directly into the cabin air stream for metabolic use or to account for cabin leakage. The hydrogen is mixed with a regulated flow of carbon dioxide, and the gas mixture is fed into the Sabatier reactor, where water and methane are produced. The water is condensed and pumped to the shuttle water storage tanks. The methane gas and any excess carbon dioxide are vented overboard. The SAWD beds are steam desorbed one at a time, and the WVE system and Sabatier reactor are operated only on the sun side of an orbit. Fan flow is continued through the WVE, SAWD canisters, and contaminant control canister on the dark side of the orbit.

Carbon dioxide is desorbed from the solid amine by heating the bed with steam. Water drawn from the SAWD water accumulator is pumped over the carbon dioxide compressor, adsorbing the heat of compression, and into the steam generator for the bed to be desorbed. Water vapor from the steam generator enters the amine bed and heats the solid amine material. While the bed is being heated, residual air is driven out and returned to the cabin via a solenoid operated ullage valve. Once carbon dioxide starts
being driven from the bed, the ullage valve shuts and the carbon dioxide is directed to a compressor. The compressor sends the carbon dioxide to an accumulator for later reduction in the Sabatier reactor. Excess carbon dioxide can be dumped overboard either directly from the bed or through a relief valve from the accumulator. A detailed discussion of solid amine steam desorption is given in the Subsystem Sizing and Operating Characteristics section of this report.

The operation of the entire LARS, as described above, is applicable to a mission utilizing solar power. For a mission using fuel cell power, excess water is available, and the WVE and Sabatier subsystems would not be used. The operation of the SAWD subsystem for carbon dioxide removal would be similar to that described previously. However, the carbon dioxide would be dumped directly overboard during desorption. Also, the SAWD subsystem cycle timing would not be fixed by orbit considerations, allowing more flexibility in system operation. For example, allowing more time between the desorption of the two amine canisters would moderate the cabin humidity increase, when adsorption is started on a canister. Additionally, desorption time can be increased, reducing peak power requirements.

Since the WVE and Sabatier subsystems are designed for use with solar power, they are not used during launch or reentry. The SAWD subsystem is designed to be operated during launch and reentry, if necessary. However, if before launch the cabin air is initially free of CO₂, the combination of the cabin capacitance and the first 72 minute adsorption period for the amine canisters provides four hours before steam desorption is necessary. Therefore, the only power requirements of the SAWD subsystem during this time are one IMU fan and the controller. A LiOH cartridge can be installed in the contaminant control canister, if additional CO₂ control is required before the SAWD canisters are desorbed. If power is critical during reentry, SAWD steam desorption can be stopped, and LiOH can be used as necessary.
TOPIC III
System Performance

Cabin Temperature and Humidity Control

The effects of operating the LARS on cabin humidity and temperature during the various stages of an orbit have been studied for the following conditions:

1) 2,4,6* member crew, 62.05 kPa (9.0 psia) total pressure;
2) 2,4,6 member crew, 101.35 kPa (14.7 psia) total pressure.

As seen in Figures 15 through 20, the most humid condition occurs at approximately fifty-six minutes into light side operation. Here, the first SAWD bed to be desorbed has been returned to adsorption for twenty-six minutes, and the second bed has only been on adsorption for two minutes. The peak latent heat load of the moist air leaving the SAWD bed immediately after the start of adsorption cannot be removed completely by the main condenser, causing cabin temperature and dewpoint to rise. A smaller peak can be noted at approximately thirty-one minutes into the light side, when the only SAWD moisture contribution is from the first bed, which has just returned to adsorption. The second bed, at this time, has already begun its desorption, and is isolated from air flow.

The predicted cabin temperatures and dewpoints with the LARS installed are within the desired limits for all crew size and cabin pressure cases with nominal heat loads. The maximum heat load condition experienced during a post sleeping/eating period was also analyzed. Figures 21 and 22 show the temperatures and dewpoints for this condition with a crew of six and 62.05 kPa (9.0 psia) and 101.35 kPa (14.7 psia) cabin pressures, respectively. These predictions are based on main condenser performance which has been extrapolated from test data for the high latent heat loads seen for a short time after a SAWD bed desorption. A thorough test program is necessary to predict condenser performances under these short duration high latent heat load conditions. During this program any potential problems, such as flow passage plugging due to condensate build-up, can be identified and corrected. The same maximum heat load cases were analyzed for the baseline LiDH system, and the results are also shown on Figures 21 and 22. The temperature and dewpoint values are near or above the desired limits with either system. However, these are steady state analyses for both systems. Since the high heat load case is only a two hour condition, these steady state values of temperature and dewpoint may not be reached or may be reached only at the end of the period. A detailed transient analysis including cabin and ARS thermal masses is required to accurately predict the temperatures and dewpoints during this high heat load case.

* Baseline Case
FIGURE 15

LARS SYSTEM STUDY
2 MEMBER CREW 9 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT
FIGURE 16

LARS SYSTEM STUDY
4 MEMBER CREW 9 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT
FIGURE 17
LARS SYSTEM STUDY
6 MEMBER CREW 9 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT
FIGURE 18

LARS SYSTEM STUDY
2 MEMBER CREW 14.7 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT
FIGURE 19
LAP2 SYSTEM STUDY
4 MEMBER CREW 14.7 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT
FIGURE 20
LARS SYSTEM STUDY
6 MEMBER CREW 14.7 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT
FIGURE 21

LARS SYSTEM STUDY
6 MEMBER CREW 9 PSIA
MAX HEAT LOADS

CABIN TEMPERATURE AND DEWPOINT
FIGURE 22

LARS SYSTEM STUDY
6 MEMBER CREW 14.7 PSIA
MAX HEAT LOADS

CABIN TEMPERATURE AND DEWPOINT

- CABIN TEMPERATURE--DEG F
- CABIN DEWPOINT--DEG F

ORIGINAL PAGE IS OF POOR QUALITY
For the LARS, steps can be taken to reduce both temperature and dewpoint during this two-hour maximum heat load condition. The peak values can be reduced by gradually reintroducing flow to the SAWD canisters after steam desorption and by stopping all condenser bypass flow during the first few minutes of adsorption. This limits the rate of moisture entering the air stream, and allows the condensing heat exchanger to more effectively remove the moisture. Also, the SAWD canister steam desorption can be stopped for one cycle during the two-hour maximum heat load condition. Even the steady state analysis shows that this maintains cabin temperature and dewpoint within or near the specifications for the 62.05 kPa (9 psia), six-man case with maximum heat loads. The effect of skipping one desorption on SAWD subsystem CO₂ performance is shown in Figure 23. CO₂ partial pressure slightly exceeds 5 mmHg during the transient, but returns to normal within two cycles. Thus, even for the worst case conditions the LARS is equally or more compatible with the shuttle vehicle than the baseline LiOH system.

The six-man, 101.35 kPa (14.7 psia), nominal heat load case was re-analyzed assuming that full adsorption air flow was re-introduced to the SAWD beds gradually over a period of five minutes, rather than almost instantaneously. Results show that maximum cabin dewpoint is reduced from 15.39°C (59.7°F) to 14.61°C (58.3°F), and maximum cabin temperature is reduced from 22.5°C (72.5°F) to 21.5°C (70.7°F). The improvement is due to the reduction in the rate of latent heat load coming from the SAWD beds and the condenser's ability to handle this reduced rate.

Table 3 shows the maximum cabin temperature and humidity during an orbit as well as WVE voltage and WVE and SAWD system power requirements.

Figures 24 through 33 show the LARS transient responses for cases of varying crew size, cabin pressure, and heat loads. They contain system temperatures, dew points, and heat loads at the time of the most humid cabin conditions during an orbit.

Figures 34 through 39 show the power requirements for the LARS with 2, 4, and 6 crew members and 62.05 or 101.35 kPa (9 or 14.7 psia) cabin pressure, for a ninety-six minute orbit having thirty-eight minute dark side and fifty-eight minute light side operation. Included in WVE and SAWD power requirements is an additional 10% necessary for controller operations. Part of the power requirement for the CO₂ compressor appears as a net reduction in SAWD power requirements, since compressor waste heat is used to preheat the water entering the SAWD steam generator.
Table 3
LARS PERFORMANCE SUMMARY

<table>
<thead>
<tr>
<th>Case No.</th>
<th># of Crew</th>
<th>Cabin Pressure kPa (psia)</th>
<th>Max. Cabin Temp. °C (°F)</th>
<th>Max. Cabin Dew Point °C (°F)</th>
<th>Max. WVE Voltage (volts) (Total/Cell)</th>
<th>WVE Power* (kw/cycle)</th>
<th>Water From SAWD kg (lbm)</th>
<th>SAWD* Heater Power Required (kw/cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>62.05 (9.0)</td>
<td>21.89 (71.4)</td>
<td>12.44 (54.4)</td>
<td>24.81/1.654</td>
<td>.97</td>
<td>1.29 (2.84)</td>
<td>.96</td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>62.05 (9.0)</td>
<td>22.44 (72.4)</td>
<td>13.39 (56.1)</td>
<td>25.89/1.726</td>
<td>1.74</td>
<td>1.27 (2.91)</td>
<td>.95</td>
</tr>
<tr>
<td>III</td>
<td>6</td>
<td>62.05 (9.0)</td>
<td>23.22 (73.8)</td>
<td>14.22 (57.6)</td>
<td>26.88/1.792</td>
<td>2.56</td>
<td>1.27 (2.79)</td>
<td>.94</td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>101.35 (14.7)</td>
<td>22.06 (71.7)</td>
<td>13.78 (56.8)</td>
<td>24.72/1.648</td>
<td>1.02</td>
<td>1.43 (3.16)</td>
<td>1.08</td>
</tr>
<tr>
<td>V</td>
<td>4</td>
<td>101.35 (14.7)</td>
<td>22.28 (72.1)</td>
<td>14.56 (58.2)</td>
<td>25.71/1.714</td>
<td>1.78</td>
<td>1.42 (3.13)</td>
<td>1.07</td>
</tr>
<tr>
<td>VI</td>
<td>6</td>
<td>101.35 (14.7)</td>
<td>22.5 (72.5)</td>
<td>15.39 (59.7)</td>
<td>26.52/1.768</td>
<td>2.57</td>
<td>1.41 (3.11)</td>
<td>1.07</td>
</tr>
</tbody>
</table>

* Does not include controller power.
FIGURE 23

PCO_2 TRANSIENT DUE TO SKIPPING ONE DESORB - 6 MEN
CABIN AIR FLOW CHART NOMINAL HEAT LOADS

CABIN

- E_L = 1871
- M = 812
- I_T = 1300

AVIONICS & HEATING

- T_CAB = 72.4
- T_D = 56.1
- W = 741.6

WATER

- W = 7.7

CONDENSER

- Q_S = -9745
- Q_L = -5726

CONTAMINANT FANS

- W = 6.18

SAW

- T = 24.0
- Q_S = 5.1
- Q_L = 3.8

CHARCOAL

- W = 32.5

SARATIER

- Q = 154/FPM
- W = 135.5

FIGURE 24

CABIN AIR FLOW CHART NOMINAL HEAT LOADS

LEGEND

- T - °F
- T_D - DEM PT - °F
- W - LBM/HR
- CFM - FT³/MIN
- ΔP - IN H₂O
- Q - BTU/HR
- Q_S - SENSIBLE
- Q_L - LATENT
FIGURE 25
SABATIER FLOW CHART
4 MEMBER CREW 6 PSIA

MOST HUMID CONDITIONS 56 MIN INTO LIGHT SIDE
COOLING AIR

\[T = 56.1 \]
\[W_{\text{AIR}} = 47.7 \]

\[W_{\text{CO}_2} = 0.6370 (0.1918) \]
\[T = 70 \]
\[W_{\text{H}_2} = 0.0831 (0.5506) \]

\[W_{\text{O}_2} = 0.6649 (0.2753) \]

\[W_{\text{H}_2} = 0.7480 (0.5506) \]

\[T = 849.9 \]
\[W_{\text{AIR}} = 3.67 \]

\[Q = 699 \]

\[T = 220 \]

\[W_{\text{CH}_4} = 0.1653 (0.1369) \]
\[W_{\text{CO}_2} = 0.1834 (0.0552) \]
\[W_{\text{H}_2} = 0.0175 (0.0129) \]

\[W_{\text{H}_2O} = 0.3538 (0.2604) \]

\[T = 75 \]

OVERBOARD

CONDENSER
\[Q_s = 31 \]
\[Q_l = 393 \]

TO WATER ACCUMULATOR

LEGEND
\[T \sim \] °F
\[W \sim \text{Lb/HR (MOLS/DAY)} \]
\[Q \sim \text{BTU/HR} \]
FIGURE 26
CABIN AIR FLOW CHART NOMINAL HEAT LOADS
6 MEMBER CREW 9 PSIA (BASELINE)

LEGEND
T - °F
Tdp - DEW PT - °F
W - LB/HR
CFM - PT³/MI
Δp - IN H₂O
Q - BTU/HR
Qs - SENSIBLE
QL - LATENT

CABIN

\(Q_{HEAT} = 1871 \)
\(Q_{MET} = 1248 \)
\(Q_{HFT} = 1950 \)

MOST HUMID CONDITIONS: 56 MIN INTO LIGHT SILL

\(T = 66.6 \)
\(T_{DP} = 56.6 \)
\(W = 826.1 \)
\(\Delta p = 1.1 \)

DUCTING

WATER
\(T = 40.3 \)
\(W = 60.0 \)

WATER HEATER
\(T = 67.3 \)

WATER HEATER
\(W = 8.271 \)

FREEZE POINT

\(Q = 1660 \)
\(C_{DF} = 540 \)
\(\Delta p = 5.2 \)

AVIONICS & DUCTING

T = 98.0
W = 873.8

CABIN FAN

T = 96.5
W = 865.5

WATER HEATER
\(T = 67.3 \)
\(W = 8.271 \)

FREEZE POINT

\(Q_s = -9905 \)
\(Q_L = -6271 \)

SHRINKER
\(T = 40.3 \)
\(W = 60.0 \)

FREEZE POINT

\(Q = 154.0 \)
\(C_{DF} = 50.0 \)
\(\Delta p = 4.5 \)

FREEZE POINT

\(Q = 154.0 \)
\(C_{DF} = 50.0 \)
\(\Delta p = 4.5 \)

FREEZE POINT

\(Q = 154.0 \)
\(C_{DF} = 50.0 \)
\(\Delta p = 4.5 \)
FIGURE 29
CABIN AIR FLOW CHART NOMINAL HEAT LOADS

CABIN

\(Q_{\text{ELEC}} = 1871 \) + WALL
\(Q_{\text{HEAT}} = 812 \)
\(Q_{\text{MET_S}} = 1100 \)

MOST BURDEN CONDITIONS: 55 MIN INTO LIGHT SIDE

\(T = 66.2^\circ \) F
\(T_{\text{DP}} = 56.5 \)
\(W = 1408.9 \)
\(\Delta P = 1.1 \)

AVIONICS & DINTING
\(T = 85.9 \)
\(W = 2467.9 \)
\(Q = \) CFM \(\Delta P = \)

CABIN FAN
\(T = 90.5 \)
\(W = 1245.1 \)

WUE
\(Q_S = 1127 \)
\(Q_L = 0 \)
\(\Delta P = 1.0 \)
\(T = 93.7 \)
\(W = 218.8 \)

COMBUSTION
\(T = 40.3 \)
\(W = 800 \)
WATER
\(W = 376 \)

WATER
\(W = 249.1 \)
\(W = 5.856 \)
\(W = 6.232 \)

CHARCOAL
\(T = 70.4 \)
\(T_{\text{DP}} = 70.4 \)
\(Q_S = -50 \)
\(Q_L = +316 \)
\(W = 51.5 \)

SAND
\(W = 57.9 \)
\(W = 53.7 \)
\(\Delta m = 4.5 \)

LEGEND
- \(T = \) F
- \(T_{\text{DP}} = \) Btu/ft^2 F
- \(W = \) Btu/hr
- \(\Delta P = \) in H_2O
- \(Q = \) Btu/hr
- \(Q_S = \) SENSIBLE
- \(Q_L = \) LATENT

MEMBER CREW 14.7 PSIA

46
FIGURE 30
SABATIER FLOW CHART
4 MEMBER CREW 14.7 PSIA

MOSIUM CONDITIONS 56 MIN INTO LIGHT SIDE
COOLING AIR

\[T = 54.8 \]
\[W_{\text{AIR}} = 61 \]

\[W_{\text{CO}_2} = 0.6370 \quad (0.1918) \]
\[T = 695.8 \]
\[W_{\text{AIR}} = 4.7 \]
\[W_{\text{H}_2} = 0.086 \quad (0.5650) \]
\[W_{\text{O}_2} = 0.6823 \quad (0.2825) \]
\[W_{\text{H}_2\text{O}} = 0.7683 \quad (0.5650) \]

\[Q = 723 \]
\[T = 220 \]

\[Q_S = 31 \]
\[Q_L = 418 \]

\[T = 75 \]
\[W_{\text{CH}_4} = 0.1711 \quad (0.1413) \]
\[W_{\text{CO}_2} = 0.1676 \quad (0.0505) \]
\[W_{\text{H}_2\text{O}} = 0.0079 \quad (0.0058) \]

\[W_{\text{H}_2\text{O}} = 0.3763 \quad (0.2768) \]

TO WATER ACCUMULATOR

LEGEND
\[T \sim °F \]
\[W \sim \text{LB/HR (MOLS/DAY)} \]
\[Q \sim \text{BTU/HR} \]
FIGURE 33
CABIN AIR FLOW CHART
MAXIMUM HEAT LOADS

CABIN
Q_{ELEC} = 5800
+ WALL
Q_{MET,L} = 2598
Q_{MET,S} = 1302

AVIONICS & DUCTING
Q = 4353
\Delta P = 2.2

DUCTING
T = 84.2
T_{DP} = 64.8
W = 1273.1

WVE
Q_{S} = 1697
Q_{L} = 0
\Delta P = 1.0

SABATIER
Q = 1716

CONDENSER
Q_{S} = -12949
Q_{L} = -8733

WATER
W = 600

W = 8.733

CABIN FAN
T = 100.6
T_{DP} = 76.2

CHARCOAL
T = 78.1
T_{DP} = 78.1
Q_{S} = +106
Q_{L} = +266
W = 52.3

SAND
Q_{S} = +5076
Q_{L} = +549
W = 52.3

T = 129.4
T_{DP} = 129.4

W = 56.6

T = 111.1
T_{DP} = 75.0
W = 1323.0

W = 11.1

CONTAMINANT FANS
T_{CAB} = 83.4
T_{DP} = 70.5
Q = 154/FAN
W = 217.8

CFM = 50

\Delta P = 4.5

Legend:
- T °F
- T_{DP} DEW PT °F
- W L/DH/HR
- CFM FT^3/Min
- \Delta P IN H_2O
- Q BTU/HR
- Q_{S} SENSIBLE
- Q_{L} LATENT

MOST HUMID CONDITIONS: 56 MIN INTO LIGHT SIDE
FIGURE 34
LARS SYSTEM STUDY
POWER PROFILE
2 MEMBER CREW 9 PSIA
FIGURE 35
LARS SYSTEM STUDY
POWER PROFILE
4 MEMBER CREW 9 PSIA
FIGURE 36

LARS SYSTEM STUDY
POWER PROFILE
6 MEMBER CREW 9 PSIA
FIGURE 37

LARS SYSTEM STUDY
POWER PROFILE
2 MEMBER CREW 14.7 PSIA
FIGURE 38
LARS SYSTEM STUDY
POWER PROFILE
4 MEMBER CREW 14.7 PSIA
FIGURE 39
LARS SYSTEM STUDY
POWER PROFILE
6 MEMBER CREW 14.7 PSIA
For polar orbit operation, since SAWD bed desorption times can be doubled, SAWD peak power requirements would be reduced by 50%. WVE peak power requirements would be reduced by 47.5%, since operation would be continuous rather than fifty-three out of ninety-six minutes.

Cabin Temperature and Humidity Computer Model

The computer model used in the cabin temperature and humidity control study incorporates the functioning of the condenser, condenser bypass valve, water vapor electrolysis module and accounts for the temperature and humidity of the air leaving the solid amine water desorbed (SAWD) CO₂ removal subsystem. A listing of the computer program is given in Appendix A.

The program initializes at the beginning of the light side of the orbit. The condenser is removing heat and moisture transferred into the cabin from equipment (electrical, avionics, fans) as well as metabolic sensible and latent heat. Water is also being removed from the circulating air stream by absorption into the electrolysis cells. At five minutes into the transient, the WVE subsystem is started and one of the SAWD beds begins steam desorption. Complete desorption of the bed requires approximately twenty-four minutes. After desorption, full bed air flow is re-introduced, and the second SAWD bed begins its desorption cycle. At fifty-three minutes from the beginning of light side operation, the second bed is finished desorbing, and its air flow is restarted. After fifty-eight minutes of light side operation, the WVE is deactivated. It continues replenishing its stored water supply by taking moisture from the cabin air stream, which is receiving water vapor from the second SAWD bed, just returning to adsorption.

Most of the additional sensible and latent heat loads of the LARS system are removed by the main condenser. The condenser bypass control senses a temperature rise in the mixed condenser and bypass flow stream and begins closing the bypass valve. The rate of closing/opening is proportional to the deviation from the set point temperature, the maximum rate being .714% of full valve range per second for a deviation of ±2.5 degrees or more.

The following information is plotted and/or printed versus time into orbit:

1) Cabin Temperature (°F)
2) Cabin Dew Point (°F)
3) Cabin Fan Inlet Temperature (°F)
4) Cabin Fan Outlet Temperature (°F)
5) Condenser Air Inlet Temperature (°F)
6) Condenser Air Outlet Temperature (°F)
The amount of water entering the SAWD air flow stream has been determined by extensive testing and data analysis to be proportional to the difference between the vapor partial pressure in the incoming air stream and the partial pressure of the stream, assuming it is saturated at the SAWD bed temperature.

Cabin CO₂ Partial Pressure Profiles

SAWD testing was performed at an adsorption cycle time of 52 minutes and an average CO₂ partial pressure of 0.4% by volume or 3.0 mmHg. The baseline case for LARS is 0.67% by volume or 5.0 mmHg average, and therefore, extrapolation of the experimental data was required.

CO₂ performance was assumed to follow that of a typical SAWD test, which shows stable bed moisture conditions and CO₂ removal performance. The breakthrough curve for this run is shown in Figure 40, and the adsorption performance has been extended to an adsorption time of 72 minutes. The curve of removal efficiency versus adsorption time, shown in Figure 41, was also extended to 72 minutes.

The two bed SAWD subsystem has three phases of operation. The first phase begins with the steam desorption of one of the beds, while the other bed continues the final 24 minutes of its adsorption. After the 24 minute desorption of the first bed, it is returned to adsorption, and the second bed starts its steam desorption. The freshly desorbed bed is now adsorbing CO₂ at peak efficiency. When the second bed completes its 24 minute desorption, it is returned to adsorption, and both beds are adsorbing simultaneously for the next 48 minutes. With these three cycle phases, transient cabin carbon dioxide partial pressure profiles for crews of 2, 4, and 6 men are shown in Figures 42, 43, and 44.
FIGURE 40
TYPICAL SAWD TEST BREAKTHROUGH CURVE
FIGURE 41

CO_2 REMOVAL EFFICIENCY VS. TIME

CONDITIONS: BED WEIGHT - 9.53 KG (21 LBM)
AIR FLOW - 0.991 m3/MIN (35 CFM)
FIGURE 42

CO₂ PARTIAL PRESSURE PROFILE FOR TWO BED LARS SYSTEM

CONDITIONS: 13 LBS DRY AMINE PER BED
2000 FT³ CUBIC CABIN
12 CFM PER BED
2 MEN
72 ADSORB
24 DESORB

TIME INTO ADSORB-MIN

PARTIAL PRESSURE - MMHG

0.8 1.0 1.2 1.4 1.6 1.8
FIGURE 43

CO$_2$ PARTIAL PRESSURE PROFILE FOR TWO BED LARS S. STEM
FIGURE 44

CO₂ PARTIAL PRESSURE PROFILE FOR TWO BED LARS SYSTEM

CONDITIONS:
13 LBS DRY AMINE PER BED
2000 FT³ x 3 CABIN
12 CFM PER BED
6 MEN
72 ADSORB
24 DESORB
Examining Figure 42, there is a point in each cycle where the slope increases suddenly after reaching the minimum CO₂ partial pressure. This marks the beginning of the CO₂ performance model cycle. At this minimum point, one of the beds begins desorption. With the other bed nearing the end of its adsorption cycle, removal efficiency is low, and the crew CO₂ input rate is greater than the removal rate, resulting in the rapid rise of CO₂ partial pressure. After the 24 minute desorption, the second bed begins desorption, and the rapid rise in CO₂ partial pressure is stopped as the fresh bed returns to service. With completion of desorption of the second bed, both beds adsorb together for 48 minutes, resulting in a smooth decrease in cabin CO₂ partial pressure until the start of the next desorption phase.

The baseline case will maintain average cabin CO₂ partial pressure below 4.7 mmHg. The two man and four man cases maintain average CO₂ partial pressure below 1.6 mmHg and below 3.3 mmHg, respectively. During an emergency rescue situation, there may be a ten-man crew. Analysis indicates that the baseline system does not maintain acceptable CO₂ partial pressures for the ten-man case using the operating cycle described above. For the ten-man case CO₂ partial pressure rises until the bed capacity becomes high enough to accommodate the 10 man production rate. This happens, because solid amine loading is significantly increased for higher inlet CO₂ partial pressures. At the 10 man rate, the bed capacity must be 0.054 kg CO₂/kg (1bm CO₂/lbm) dry solid amine. Available data indicates that the required capacity is not realized until the cabin CO₂ partial pressure has exceeded 15 mmHg, and therefore LiOH is required to supplement the SAWD for the 10 man case. However, if flow is increased and cycle time is decreased, the SAWD system can maintain acceptable CO₂ levels for the 10 man case. These changes can be easily accommodated by the SAWD subsystem if power is available.

The effect of installing a SAWD subsystem in the orbiter on spacelab CO₂ control was investigated. With a crew of six, average CO₂ partial pressure in the orbiter is maintained below 4.7 mmHg. If three of the crew members are in the spacelab and there is a constant air exchange of 1.36 m³/min. (48 CFM) between the orbiter and spacelab, the CO₂ partial pressure in the spacelab does not exceed 5.4 mmHg. This analysis assumes no LiOH is used in the spacelab.

Cabin Oxygen Partial Pressure Control

The water vapor electrolysis system oxygen production is controlled by regulating the current flow through the cells. The WVE controller requires a cabin oxygen partial pressure measurement from the vehicle. At the beginning of light side operation this measurement is compared with a stored measurement taken at the beginning of the previous WVE operating cycle. The current is then lowered or raised by a predetermined percentage from the previous cycle, based on the difference in measurements, and oxygen partial pressure is maintained within the desired range.
The lower limit on the existing cabin pressure and atmosphere composition control is set at oxygen partial pressures of 22.06 ± 1.72 kPa (3.2 ± .25 psia) and 17.58 ± 1.03 kPa (2.55 ± .15 psia) for total pressures of 101.35 and 62.05 kPa (14.7 and 9.0 psia), respectively. With the addition of the WVE system, these limits for the existing oxygen partial pressure control would be lowered so that no cryogenic oxygen is introduced to the cabin during the normal cyclic changes in oxygen partial pressure. The existing oxygen control system serves as an emergency system to automatically ensure that an adequate level of cabin oxygen partial pressure is maintained, if the WVE system malfunctions.

During normal cyclic WVE operation, the maximum fluctuation in cabin oxygen partial pressure with a six member crew is .200 and .228 kPa (.029 and .033 psi) for total pressures of 101.35 and 62.05 kPa (14.7 and 9.0 psia), respectively. It is, therefore, not expected that cryogenic oxygen make-up would be required unless an upset condition existed. The existing cabin pressure control system would normally have to supply only nitrogen for the maintenance of cabin total pressure for two, four, or six member crews.

For missions during which the WVE would not be in operation (e.g. delivery missions or a rescue mission with a ten member crew) the existing oxygen partial pressure controller would be used to regulate oxygen supply and maintain cabin total pressure from cryogenic supplies.

Power for the WVE controller is approximately 10% of that necessary to operate the WVE cell stack (approximately 260 watts), and is needed for fifty-three minutes during light side operation.
TOPIC IV
Comparison to Present Shuttle ECS

The objective of the trade study was to determine the weight and volume advantages of the LARS over the orbiter baseline LiOH system for both power extension package (PEP) and power system missions. The major variables considered were cryogenic O₂ and H₂ requirements, fuel cell usage, and water requirements. The LARS can be installed in the following three steps:

1. Replace LiOH with the SAWD subsystem only and vent carbon dioxide overboard.
2. Add the WVE subsystem to produce oxygen for metabolic consumption and cabin leakage, and vent hydrogen produced by the WVE cells overboard with the carbon dioxide.
3. Add the Sabatier subsystem to convert carbon dioxide and hydrogen to water and methane. The water is recovered for potable usage, and the methane is vented overboard.

The following mission scenarios were considered for the trade study:

- PEP (57° orbit inclination)
 Solar power is used on the light side, and orbiter fuel cells produce all power on the dark side. The fuel cells are throttled down to hot start mode on the light side. The following is a summary of fuel cell output:

 - Light side 58 minutes/orbit 3 kw
 - Dark side 38 minutes/orbit 14 kw

 The weight penalty for solar cells to power the SAWD and WVE subsystems must be included.

- PEP (sun synchronous orbit)
 Solar cells provide continuous power. Two fuel cells are throttled down to cold start (.33 kw/cell), and one is throttled down to hot start (1 kw minimum) or to an output that produces enough water to meet all needs. The weight penalty for solar cells to power the SAWD and WVE subsystems must be included.

- Power System (with no additional water storage)
 The power system provides power on the light and dark sides of each orbit. Two fuel cells are throttled down to cold start (.33 kw/cell), and one fuel cell is throttled down to hot start (1 kw minimum) or to an output that produces enough water to meet all needs. No penalty is included for solar cells, since they are not carried with the shuttle at launch.
Power System (all fuel cells at cold start level)
The power system provides power on the light and dark sides of each orbit. All three fuel cells are throttled down to cold start (.33 KW/cell). No weight penalty is included for solar cell power.

Since the LARS can be installed in three increments, each of these possible configurations must be compared with the baseline LiOH system. The fixed weights for the four systems for all missions are given below:

Baseline LiOH System

- Hardware includes the portion of the ARS CO₂ adsorber and temperature control assembly containing the LiOH cartridges. The temperature control valve and the controller, which form the remainder of the assembly, are common to all systems.

- Contingency LiOH cartridges and storage racks are included to provide CO₂ removal for six men during a 20 hour contingency period.

The fixed weight summary for the baseline LiOH system is given below:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight-kg (lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>10.43 (23)</td>
</tr>
<tr>
<td>Contingency LiOH cartridges (3)</td>
<td>9.52 (21)</td>
</tr>
<tr>
<td>Storage racks (1)</td>
<td>3.63 (8)</td>
</tr>
<tr>
<td>Total fixed weight</td>
<td>23.58 (52)</td>
</tr>
</tbody>
</table>

SAWD System

- Hardware includes the same fixed hardware as the baseline LiOH system, since the CO₂ adsorber assembly is not modified, and the hardware associated with the SAWD subsystem. SAWD hardware includes the SAWD canisters, isolation valves, fans, steam generation equipment, a controller, and structure.

- LiOH cartridges are included for launch and a 20 hour contingency period. One cartridge is provided for launch. If necessary, it provides approximately 8 hours of prelaunch and launch time before the SAWD cycle is synchronized with the orbital period. The SAWD subsystem can be operated during this time. However, the LiOH cartridge provides additional flexibility, if power is critical. Three LiOH cartridges are required for the 20 hour contingency period.
The fixed weight summary for the SAWD system is given below:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight-kg (lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>CO₂ adsorber assembly</td>
<td>10.43 (23)</td>
</tr>
<tr>
<td>SAWD subsystem</td>
<td>59.86 (132)</td>
</tr>
<tr>
<td>LiOH cartridges (4)</td>
<td>12.70 (28)</td>
</tr>
<tr>
<td>Storage racks (2)</td>
<td>7.26 (16)</td>
</tr>
<tr>
<td>Total fixed weight</td>
<td>90.25 (199)</td>
</tr>
</tbody>
</table>

SAWD and WVE System

- Hardware includes the SAWD subsystem as described above and the WVE subsystem. The WVE hardware replaces the LiOH canister portion of the CO₂ adsorber assembly.

- The LiOH cartridge requirement for launch and a 20 hour contingency is the same as that for the SAWD system.

The fixed weight summary for the SAWD and WVE system is given below:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight-kg (lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>SAWD subsystem</td>
<td>59.86 (132)</td>
</tr>
<tr>
<td>WVE subsystem</td>
<td>47.17 (104)</td>
</tr>
<tr>
<td>LiOH cartridges (4)</td>
<td>12.70 (28)</td>
</tr>
<tr>
<td>Storage racks (2)</td>
<td>7.26 (16)</td>
</tr>
<tr>
<td>Total fixed weight</td>
<td>126.99 (280)</td>
</tr>
</tbody>
</table>

LARS System (SAWD, WVE, and Sabatier)

- Hardware includes the SAWD and WVE subsystems as described above and the Sabatier subsystem, including CO₂ storage and CO₂ flow control equipment.

- The LiOH cartridge requirement for launch and contingency is the same as that for the SAWD system.

The fixed weight summary for the LARS is given below:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight-kg (lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>SAWD subsystem</td>
<td>59.86 (132)</td>
</tr>
<tr>
<td>WVE subsystem</td>
<td>47.17 (104)</td>
</tr>
<tr>
<td>Sabatier subsystem</td>
<td>45.35 (100)</td>
</tr>
<tr>
<td>LiOH cartridges (4)</td>
<td>12.70 (28)</td>
</tr>
<tr>
<td>Storage racks (2)</td>
<td>7.26 (16)</td>
</tr>
<tr>
<td>Total fixed weight</td>
<td>172.34 (380)</td>
</tr>
</tbody>
</table>
PEP Mission (57° inclination orbit) Trade Study

The expendables considered for the trade study are water, cryogenics, LiOH, and charcoal. The requirements for each of the systems are described below:

. Water requirements

The fuel cells operate at an average power output 7.35 kw. At this level more than enough water is generated to supply crew needs for all of the systems. Therefore, water storage does not enter into the trade study for this mission.

. Cryogenics usage

Cryogenics usage is high, due to the high average fuel cell power output. A summary of cryogenics usage for the systems is given below:

<table>
<thead>
<tr>
<th>Cryogenic Consumption</th>
<th>kg/day (lbm/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiOH or SAWD System</td>
<td>SAWD and WVE or LARS</td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td>4.79 (10.56)</td>
</tr>
<tr>
<td>Leakage</td>
<td>0.87 (1.92)</td>
</tr>
<tr>
<td>Fuel cell</td>
<td>64.82 (142.90)</td>
</tr>
<tr>
<td>EVA</td>
<td>0.29 (0.64)</td>
</tr>
<tr>
<td>Total</td>
<td>70.77 (156.02)</td>
</tr>
<tr>
<td>Hydrogen</td>
<td></td>
</tr>
<tr>
<td>Fuel cell</td>
<td>8.00 (17.64)</td>
</tr>
</tbody>
</table>

It is assumed that the baseline orbiter contains three cryogenics kits. Each kit contains 321.15 kg (708 lbm) of usable oxygen and 37.42 kg (82.5 lbm) of usable hydrogen. Part of the cryogenics contained in the three kits is required for launch and reentry and for the 20 hour contingency. This weight is common to all systems and was not included in the hardware fixed weight, but must be subtracted from the total usable quantity to determine the quantity of cryogenics available for the sortie part of the mission.
Usable Cryogenics for Sortie—kg (lbm)
All Systems

Oxygen
- Baseline 3 kits: 963.27 (2124)
- Less fixed wt.: -97.05 (-214)
- Net baseline: 866.22 (1910)
- Additional kit: 321.15 (708)

Hydrogen
- Baseline 3 kits: 112.47 (248)
- Less fixed wt.: -11.34 (-25)
- Net baseline: 101.13 (223)
- Additional kit: 37.65 (83)

The mission duration that can be achieved with the three baseline cryogenics kits for a LiOH or SAWD system equipped orbiter is 12.2 days. The limiting consumable is oxygen rather than hydrogen. With each additional cryogenics kit, the mission can be increased by 4.5 days. Again, oxygen is the limiting consumable.

With a SAWD and WVE system or LARS, the mission duration achievable with the three baseline cryogenics kits is 12.6 days, which is limited by hydrogen. Each additional kit allows a mission extension of 4.7 days. Again, hydrogen is the limiting factor.

- LiOH expendable weight is based on a cartridge life of 1.9 man-days. For a crew of six, including storage racks, the time dependent weight penalty for LiOH is 13.83 kg/day (30.5 lbm/day).

- Charcoal expendable weight for all systems except LiOH is based on a requirement for .227 kg (.50 lbm) of charcoal per day or one LiOH cartridge filled with charcoal for every ten days. The time dependent weight penalty including storage racks is .499 kg/day (1.10 lbm/day).

Figure 45 shows curves of total weight versus mission length for three cases. The solid line is for the baseline LiOH system. The small dashed line is for a LARS system without any penalty for the solar power required. The large dashed line includes the solar panel weight required to supply a LARS with approximately 4 kw of power during light side operations at a power penalty of 56.25 kg/kw (124 lbm/kw). Steps in the curves indicate when additional cryogenics kits must be added.
FIGURE 45

LIOH VS. LARS
PEP MISSION
ORBIT 57° INCLINATION

71
The LARS compares favorably for missions in excess of 7 days when the solar cell penalty is not considered and for missions in excess of 19 days when the penalty is included. At the end of the sixth cryogenics kit, the LARS results in an increased mission length of one day out of 25 and a weight savings of 39.46 kg (87 lbm).

If only the SAWD system is considered, the cryogenics requirements can be eliminated from the comparison, since they are the same for both the LiOH and SAWD systems. Figure 46 shows this comparison. The SAWD system compares favorably after only 5 days without considering the solar cell weight penalty and after 9 days when that penalty is included. The solar cell penalty is for the 1 kw steam generator required to desorb the SAWD beds. The weight savings at 17 days, which is about the time when the fourth cryogenics kit is expended, is 102.95 kg (227 lbm).

The volume penalty for the baseline LiOH system over any of the other systems is shown in Figure 47. Additional volume for LiOH storage is required after 7.6 days, when the 27 baseline cartridges, except those required for contingency, are used. After 17 days the additional volume required is 0.34 cubic meters (12.0 cubic feet). There is no volume penalty for the LARS system, since it is located in the space where the baseline LiOH cartridges are normally stored.

Power System Mission (no additional water storage) or Sun Synchronous PEP Mission Trade Studies

The consumable requirements for each of the systems are described below:

. Water requirements

A summary of water requirements for the four systems is given in Table 4. The fuel cells are run at a level that provides all of the water needs. Therefore, no additional water storage is required.

. Cryogenics usage

<table>
<thead>
<tr>
<th>Consumption--kg/day (lbm/day)</th>
<th>LiOH or SAWD</th>
<th>SAWD and LARS WVE System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td>4.79 (10.56)</td>
<td>---</td>
</tr>
<tr>
<td>Leakage</td>
<td>0.87 (1.92)</td>
<td>---</td>
</tr>
<tr>
<td>Fuel cells</td>
<td>14.72 (32.46)</td>
<td>18.34 (40.44)</td>
</tr>
<tr>
<td>EVA</td>
<td>0.29 (0.64)</td>
<td>0.29 (0.64)</td>
</tr>
<tr>
<td>Total</td>
<td>20.68 (45.58)</td>
<td>18.63 (41.08)</td>
</tr>
</tbody>
</table>

72
DOES NOT INCLUDE CRYOGENICS PENALTY WHICH IS THE SAME FOR BOTH SYSTEMS

INCLUDES SOLAR CELL PENALTY

SAWD SYSTEM (SAWD ONLY)
NO WVE OR SABATIER

FUEL CELL OPERATING MODES:
14 kW OUTPUT DARK SIDE
3 kW OUTPUT LIGHT SIDE

FIGURE 46
LiOH VS. SAWD
PEP MISSION
ORBIT 57° INCLINATION
FUEL CELL OPERATING MODES:
SUN SYNCHRONOUS ORBIT
1 HOT START OR POWERED UP TO PRODUCE ALL WATER REQUIREMENTS
2 COLD START
57° INCLINATION ORBIT
14 KW DARK SIDE
3 KW LIGHT SIDE
(ALL HOT START)

FIGURE 47
LiOH VS. LARS
PEP MISSION
Table 4

POWER SYSTEM MISSION (NO ADDITIONAL WATER STORAGE)
WATER BALANCE KG/DAY (LBM/DAY)

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>LiOH</th>
<th>SAWD</th>
<th>SAWD + WVE</th>
<th>LARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potable</td>
<td>15.51 (34.20)</td>
<td>15.51 (34.20)</td>
<td>15.51 (34.20)</td>
<td>15.51 (34.20)</td>
</tr>
<tr>
<td>Non-potable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash</td>
<td>6.94 (15.30)</td>
<td>6.94 (15.30)</td>
<td>6.94 (15.30)</td>
<td>6.94 (15.30)</td>
</tr>
<tr>
<td>EVA</td>
<td>1.24 (2.74)</td>
<td>1.24 (2.74)</td>
<td>1.24 (2.74)</td>
<td>1.24 (2.74)</td>
</tr>
<tr>
<td>WVE</td>
<td>---</td>
<td>---</td>
<td>6.37 (14.04)</td>
<td>6.37 (14.04)</td>
</tr>
<tr>
<td>Total</td>
<td>8.18 (18.04)</td>
<td>8.18 (18.04)</td>
<td>14.55 (32.08)</td>
<td>14.55 (32.08)</td>
</tr>
<tr>
<td>Water Produced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>16.54 (36.47)</td>
<td>16.54 (36.47)</td>
<td>20.57 (45.34)</td>
<td>17.54 (38.67)</td>
</tr>
<tr>
<td>(kw)*</td>
<td>(1.67)</td>
<td>(1.67)</td>
<td>(2.08)</td>
<td>(1.77)</td>
</tr>
<tr>
<td>Condensate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td>9.50 (20.94)</td>
<td>9.50 (20.94)</td>
<td>9.50 (20.94)</td>
<td>9.50 (20.94)</td>
</tr>
<tr>
<td>LiOH</td>
<td>2.34 (5.16)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sabatier</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>3.03 (16.67)</td>
</tr>
<tr>
<td>Total</td>
<td>11.84 (26.10)</td>
<td>9.50 (20.94)</td>
<td>9.50 (20.94)</td>
<td>12.52 (27.61)</td>
</tr>
</tbody>
</table>

* Two fuel cells are in cold start mode (0.333 kw each), and one is in hot start mode (1.0 kw) or at a power output sufficient to supply all water needs.
Hydrogen Fuel cells 1.82 (4.01) 2.26 (4.99) 1.93 (4.25)

The times for adding cryogenics kits, depending on the system installed, are given below:

<table>
<thead>
<tr>
<th></th>
<th>LiOH or SAWD System</th>
<th>SAWD and WVE System</th>
<th>LARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time for 3</td>
<td>41.9</td>
<td>44.6</td>
<td>52.4</td>
</tr>
<tr>
<td>baseline kits (O₂ or H₂ limited)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time for each additional kit (O₂ or H₂ limited)</td>
<td>15.5</td>
<td>16.5</td>
<td>19.4</td>
</tr>
<tr>
<td>Total time for 4 kits</td>
<td>57.4</td>
<td>61.1</td>
<td>71.8</td>
</tr>
</tbody>
</table>

Hardware

The fixed weights for hardware and cryogenics are the same as those for the previous PEP mission trade study.

LiOH and charcoal time dependent weights are the same as those for the previous PEP mission trade study.

Figure 48 shows a weight comparison between the four systems versus mission duration. A solar cell penalty was not included for power system missions, since the power system is not launched each time. For PEP missions a solar cell penalty of 57.61 kg (127 lbm) for the SAWD system and 226.8 kg (500 lbm) for the WVE systems must be added to the curves of Figure 48. The steps in the curves indicate when the fourth cryogenics kit is added for the power system mission. The curves show that all three increments of the LARS hardware addition compare favorably to the baseline LiOH system in less than eight days. Adding just the SAWD subsystem does not increase mission length, but results in a 699 kg (1541 lbm) weight savings at the end of the fourth cryogenics kit. The addition of the WVE and Sabatier subsystems does not significantly change the weight, but does increase the mission length. Addition of the WVE subsystem increases mission length by 3.7 days, and addition of the Sabatier subsystem increases the mission by another 10.7 days.

Figure 47 shows a volume penalty of 1.78 cubic meters (63 cubic feet) for the baseline LiOH system over any of the other three systems.
FUEL CELL OPERATING MODES:
1 HOT START OR POWER UP TO PRODUCE ALL WATER REQUIREMENTS
2 COLD START

LIOH SYSTEM (PRESENT ORBITER BASELINE)
SAWD SYSTEM
SAWD & WVE SYSTEM
LARS SYSTEM (SAWD & WVE & SABATIER)
FUEL & CRYO KIT PENDED

FIGURE 48
LIOH VS. LARS
SUN SYNCHRONOUS ORBIT
PEP MISSION
Power System Trade Study (all fuel cells at cold start)

The consumable requirements for each of the systems are described below:

. Water requirements

A summary of the water requirements for the four systems is given in Table 5. All fuel cells are run at a cold start level, and additional water storage must be included to supply water needs.

. Cryogenics usage

<table>
<thead>
<tr>
<th>Consumption--kg/day (lbm/day)</th>
<th>LiOH or SAWD</th>
<th>LARS or SAWD and WVE System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic</td>
<td>4.79 (10.56)</td>
<td>---</td>
</tr>
<tr>
<td>Leakage</td>
<td>0.87 (1.92)</td>
<td>---</td>
</tr>
<tr>
<td>Fuel cell</td>
<td>8.82 (19.44)</td>
<td>8.82 (19.44)</td>
</tr>
<tr>
<td>EVA</td>
<td>0.29 (0.64)</td>
<td>0.29 (0.64)</td>
</tr>
<tr>
<td>Total</td>
<td>14.77 (32.56)</td>
<td>9.11 (20.08)</td>
</tr>
</tbody>
</table>

| Hydrogen | | |
| Fuel cell | 1.09 (2.40) | 1.09 (2.40) |

The times for adding additional cryogenics kits are given below:

<table>
<thead>
<tr>
<th>Duration--days</th>
<th>LiOH or SAWD System</th>
<th>LARS or SAWD and WVE System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time for 3 baseline kits (O₂) (O₂ or H₂ limited)</td>
<td>58.7 (H₂)</td>
<td></td>
</tr>
<tr>
<td>Time for each additional kit (O₂) (O₂ or H₂ limited)</td>
<td>21.7 (H₂)</td>
<td></td>
</tr>
</tbody>
</table>

. Fixed weights for hardware and cryogenics are the same as those for the missions discussed previously.

. LiOH and charcoal time dependent weights are the same as those for the previous mission trade studies.
Table 5

POWER SYSTEM MISSION (ALL FUEL CELLS AT COLD START)
WATER BALANCE KG/DAY (LBM/DAY)

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>LiOH</th>
<th>SAWD</th>
<th>SAWD + WVE</th>
<th>LARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potable</td>
<td>15.51 (34.20)</td>
<td>15.51 (34.20)</td>
<td>15.51 (34.20)</td>
<td>15.51 (34.20)</td>
</tr>
<tr>
<td>Non-potable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash</td>
<td>6.94 (15.30)</td>
<td>6.94 (15.30)</td>
<td>6.94 (15.30)</td>
<td>6.94 (15.30)</td>
</tr>
<tr>
<td>EVA</td>
<td>1.24 (2.74)</td>
<td>1.24 (2.74)</td>
<td>1.24 (2.74)</td>
<td>1.24 (2.74)</td>
</tr>
<tr>
<td>WVE</td>
<td>---</td>
<td>---</td>
<td>6.37 (14.04)</td>
<td>6.37 (14.04)</td>
</tr>
<tr>
<td>Total</td>
<td>8.18 (18.04)</td>
<td>8.18 (18.04)</td>
<td>14.55 (32.08)</td>
<td>14.55 (32.08)</td>
</tr>
</tbody>
</table>

Water Produced					
Potable					
Fuel Cell	9.91 (21.84)	9.91 (21.84)	9.91 (21.84)	9.91 (21.84)	
Condensate					
Metabolic	9.50 (20.94)	9.50 (20.94)	9.50 (20.94)	9.50 (20.94)	
LiOH	2.34 (5.16)	---	---	---	
Sabatier	---	---	---	3.03 (6.67)	
Total	11.84 (26.10)	9.50 (20.94)	9.50 (20.94)	12.52 (27.61)	

| **Supplemental Water Storage Required** | | | | | |
| Make-up For Potable Only | 5.61 (12.36) | 5.61 (12.36) | 10.66 (23.50) | 7.63 (16.83) |
Figure 49 shows a weight comparison between the four systems versus mission duration. A solar cell penalty is not included for power system missions. The step in each curve indicates when the fourth cryogenics kit must be added. The curves show that all three increments of LARS hardware addition compare favorably to the baseline LiOH system in less than nine days. Adding only the SAWD subsystem does not increase the mission length, but does result in a 1005 kg (2217 lbm) weight savings at the end of the fourth cryogenics kit. The complete LARS installation also shows a weight advantage, and increases mission length by 47 days.

Figure 50 shows the volume penalty associated with the four systems. For all increments of the LARS system, the volume penalty is primarily for water storage. All LARS systems show a significant advantage over the baseline LiOH system.
FIGURE 49

LiOH VS. LARS
POWER SYSTEM MISSION
FIGURE 50

LiOH VS. LARS
POWER SYSTEM MISSION
TOPIC V
System Effectiveness Studies

System Safety

Nearly all of the components and materials associated with the Lightside Atmospheric Revitalization System are of a passive, non-hazardous nature. The two exceptions are the hydrogen product gas and sulfuric acid electrolyte of the water vapor electrolysis subsystem. The only two high temperature components are the Sabatier reactor and the SAWD subsystem water evaporator. Both of these items are designed to have contact temperatures of less than 45°C (113°F). There are no high pressure components in the system. The highest pressure at any point in the system is 455.05 kPa (66 psia) in the carbon dioxide accumulator for the 62.05 kPa (9.0 psia) cabin pressure case. For 101.35 kPa (14.7 psia) cabin pressure, the carbon dioxide accumulator pressure is 744.63 kPa (108 psia). All other system components operate at or near ambient cabin pressure. Since no part of the system operates at a vacuum, there is only a small interface with space vacuum at one point to dispose of methane produced in the Sabatier reactor and excess carbon dioxide.

The sulfuric acid electrolyte in the WVE cells is contained in the Tissuequartz cell matrix. During WVE testing electrolyte carry-over from the cells was never experienced under any test conditions. With proper reservoir sizing and the correct electrolyte charging procedure, the cells cannot be flooded. The cells are initially charged with excess electrolyte. Then, with no electrical power applied, they are subjected to moist air flow, such as 30.56°C (87°F) and 90% relative humidity. The electrolyte and water reach equilibrium in the cell matrix and reservoirs for this severe condition. Excess electrolyte is removed from the cells during this charging procedure. Now, the cells are compatible with any shuttle conditions including the severe 30.56°C (87°F) and 90% relative humidity, non-operating case.

The Hamilton Standard Space Systems Department Technical Standard SV-0264 sets specific guidelines for treatment of the hydrogen which is produced by the WVE and used in the Sabatier reactor. According to these guidelines, the following precautions must be implemented:

1) The volume of the hydrogen carrying lines is to be kept to a minimum. This would allow for a minimum of hydrogen concentration build-up in the event of a leak in a line which had been isolated and had emptied into its environment. The cabin volume being large compared to hydrogen line volumes helps minimize the potential for concentration build-up.
2) Combustible gas detectors must be used to give a shutdown signal at 0.5% hydrogen concentration. Shutdown of hydrogen containing subsystems must be completed including a nitrogen purge, before the detectable concentration reaches 2.0%.

3) All hydrogen containing lines and equipment must be at least 6.89 kPa (1.0 psi) above ambient at all times to maintain a preferred direction of leakage. This prevents the possibility of air leaking into a hydrogen rich area, causing a potentially highly combustible mixture.

The design of the LARS conforms with the above requirements to ensure that the hydrogen produced by the WVE is safely handled.

System Maintainability

The Lightside Atmospheric Revitalization System requires no in-flight maintenance other than periodic replacement of the activated charcoal canister (every 10 days), and is designed for minimum ground turn-around time. The primary components of the three subsystems are the SAWD canisters with integrated water evaporators, the water vapor electrolysis cell pair stack, and the Sabatier reactor. These components are supported by ancillary items, such as water pumps, fans, accumulators, valves, and controllers. All of the primary and ancillary components can be maintained using a modular replacement concept. For example, a failure of a WVE cell pair would be corrected by replacing the WVE cell pair stack with a refurbished and tested unit. The individual cell pair would then be replaced in the ground support facility, and the entire cell pair stack would be tested and prepared for installation in another vehicle.
TOPIC VI
Subsystem Sizing and Operating Characteristics

SAWD Sizing

For the solid amine water desorbed carbon dioxide removal system a two bed system is the selected approach. The system schematic of Figure 51, shows the integration of the SAWD subsystem with the other components of the ARS. The desorb/adsorb schedules for the selected approach and for the alternate one bed approach are shown in Figure 52.

The selected approach utilizes a 72 minute adsorption cycle for each of the two solid amine beds. Each bed is desorbed for 24 minutes once during each 96 minute orbit. During desorption, steam is injected into the bed, desorbing the CO₂, which is pumped to approximately 455.05 kPa (66 psia) and stored in the CO₂ accumulator for subsequent processing in the Sabatier reactor. The steam generators are built as integral parts of the canister inlet headers to prevent condensation on the canister by preheating the metal.

The two bed SAWD system consists of two 5.90 kg (13 pound) dry weight beds of solid amine adsorbent. Bed sizing is based on the cyclic SAWD testing in which solid amine was continuously cycled through 96 minute adsorb/desorb periods. Each test run began with steam desorption, followed by an approximately 52 minute adsorption to give a 96 minute cycle. During the adsorption period, air at .991 m³/min (35 CFM) was drawn through the 9.53 kg³ (21 lbm) dry weight solid amine bed exhausting to a 29.31 m³ (1035 ft³) sealed chamber. Carbon dioxide was continuously introduced to the chamber at a four man rate of 0.160 kg/hour (0.352 lbm/hour). The weight of the bed could be accurately measured at any time during a run. Instrumentation recorded air flow, bed pressure drop, bed inlet conditions of temperature and dewpoint, and several thermocouples measured the bed axial temperature profile.

As a basis for sizing calculations, a typical test cycle was chosen. Chamber inlet and outlet CO₂ partial pressures are shown in Figure 53 in the characteristic breakthrough curve. Absolute bed loadings are 0.259 kg (0.570 lbm) of CO₂ for a 52 minute cycle time and 0.279 kg (0.615 lbm) of CO₂ for a 72 minute cycle time. These loadings translate into loadings of 0.02714 kg CO₂/kg dry bed at the 52 minute cycle time, and 0.02929 kg CO₂/kg dry bed at the 72 minute cycle time.

Table 6 shows bed capacities at two cycle times, two total pressures, and two CO₂ partial pressures. Data from SAWD cyclic tests was extrapolated to 62.05 kPa (9 psi) and 5 mmHg pCO₂ through the use of Figures 53 and 54, which were also developed from SAWD test data.
FIGURE 52

ADSORB/DESORB SCHEDULES FOR SINGLE AND DUAL BED SAWD SYSTEMS
FIGURE 53

TYPICAL SAWD TEST BREAKTHROUGH CURVE
<table>
<thead>
<tr>
<th></th>
<th>52 MIN ADSORB</th>
<th>72 MIN ADSORB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62.05 kPa</td>
<td>101.35 kPa</td>
</tr>
<tr>
<td></td>
<td>(9 psia)</td>
<td>(14.7 psia)</td>
</tr>
<tr>
<td>lbm CO₂/lbm dry solid amine</td>
<td>3 mmHg</td>
<td>3 mmHg</td>
</tr>
<tr>
<td>kg CO₂/kg dry solid amine</td>
<td>5 mmHg</td>
<td>5 mmHg</td>
</tr>
</tbody>
</table>

	62.05 kPa	101.35 kPa
	(9 psia)	(14.7 psia)
	3 mmHg	3 mmHg
	5 mmHg	5 mmHg

	.02714	.02978
	.02929	.03213
	.02937	.03587
	.03169	.03870
FIGURE 54

CO₂ REMOVAL EFFICIENCY VS. TIME
Parametric Sizing Characteristics

The results of the SAWD testing were used to size a total of six solid amine systems. The results of this sizing effort are presented in Table 7. The table shows the similarity between a 6 man 5 mmHg CO₂ partial pressure (baseline) SAWD design, and a 4 man 3 mmHg CO₂ partial pressure system. While the 6 man system must adsorb 50% more carbon dioxide, bed weight is only 20% more than the 4 man system due to the increased bed capacity at 5 mmHg CO₂ partial pressure.

Operation at 62.05 kPa (9 psia) total system pressure causes a loss in bed capacity as shown in Figure 55. Lower temperature desorption with 62.05 kPa (9 psia) steam is not as effective in regenerating the solid amine bed material. Residual CO₂ on the bed at the 87.22°C (189°F) desorption temperature results in a 7.3% decrease in adsorption capacity.

Solid Amine Moisture Control And Cyclic Moisture Equilibrium

From the SAWD test program it was found that if the moisture content of the amine is maintained between 20% and 35% of dry bed weight, then CO₂ adsorption performance is only a function of bed inlet CO₂ partial pressure and cycle time as shown in Figure 56. Below and above the acceptable moisture range, performance degrades. To adsorb CO₂, the amine groups must be hydrated. Only hydrated amine groups undergo the reversible reaction with CO₂ to form bicarbonate ions, and with less than 20% water on the bed, performance degrades as non-hydrated amine groups lose their ability to adsorb CO₂. Above 35% moisture loading, there is an inhibiting layer of water on the amine beads, which reduces the ability of CO₂ to diffuse to the active amine sites.

With continuous air flow at a given relative humidity, solid amine attains an equilibrium moisture content. This is shown in Figure 57. It is apparent that at inlet relative humidities below 70%, equilibrium moisture loadings are below the 20% by weight required for adequate CO₂ removal performance. Fortunately, the cyclic nature of the SAWD system and the drying characteristics of the bed do not allow bed moisture levels to reach these low equilibrium levels.

The drying of a solid amine bed during adsorption occurs in three phases. Just after a bed is desorbed and returned to adsorption, the hot, wet bed dries rapidly with the outlet air nearly saturated with water vapor at the average bed temperature. Solid Amine has a heat transfer area of approximately 6890 m²/m³ (2100 ft²/ft³) of material, and it operates as a very effective heat exchanger during the initial phase of drying. Cooling is especially rapid in the front of the bed where CO₂ adsorption begins immediately. During this phase of drying, sensible heat for evaporation comes from the thermal mass of the solid bed material and supporting structure.
Table 7

SAWD Subsystem Sizing Summary

<table>
<thead>
<tr>
<th>Total Bed Weight kg (lbs) CO₂ Orbit</th>
<th>Total Bed Weight kg (lbs)</th>
<th>CO₂ ads. Rate kg/hr (lbm/hr)</th>
<th>Minimum Air Flow m³/min(CFM)</th>
<th>Required Air Flow m³/min(CFM)</th>
<th>CO₂ m³/min(CFM) Ib Bed</th>
<th>Specific Air Flow 3 m³/min kg bed</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.35 kPa (14.7 psia) kg (lbm)</td>
<td>62.05 kPa (9.0 psia) kg (lbm)</td>
<td>0.2126 (0.4688)</td>
<td>0.498 (17.6)</td>
<td>0.750 (26.5)</td>
<td>0.0787 (1.26)</td>
<td></td>
</tr>
<tr>
<td>4 Men (3 mmHg) 72 min ads. 0.2552 (0.5626) 8.85 (19.5) 9.53 (21.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Men (5 mmHg) 72 min ads. 0.3828 (0.8440) 10.89 (24.0) 11.75 (25.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Men (5 mmHg) 52 min ads. 0.3828 (0.8440) 13.11 (28.9) 14.15 (31.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressure Drop cm H₂O (inch H₂O)

<table>
<thead>
<tr>
<th>Pressure Drop cm H₂O (inch H₂O)</th>
<th>Plumbing* cm H₂O (inch H₂O)</th>
<th>Required Fan cm H₂O (inch H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.35 kPa (14.7 psia) 11.18 (4.4)</td>
<td>11.18 (4.4)</td>
<td>-2.54 (-1.0) 8.64 (3.4)</td>
</tr>
<tr>
<td>62.05 kPa (9.0 psia) 11.18 (4.4)</td>
<td>11.18 (4.4)</td>
<td>-2.54 (-1.0) 8.64 (3.4)</td>
</tr>
<tr>
<td>6 Men (3 mmHg) 72 min ads. 17.78 (7.0)</td>
<td>17.78 (7.0)</td>
<td>-2.54 (-1.0) 15.24 (6.0)</td>
</tr>
<tr>
<td>6 Men (5 mmHg) 52 min ads. 17.78 (7.0)</td>
<td>17.78 (7.0)</td>
<td>-2.54 (-1.0) 15.24 (6.0)</td>
</tr>
</tbody>
</table>

* Net gain from cabin fan
FIGURE 55
EFFECT OF DESORB TEMPERATURE ON ADSORPTION BREAKTHROUGH
FIGURE 56
SOLID AMINE BED CAPACITY AS A FUNCTION OF CO₂ PARTIAL PRESSURE AND CYCLE TIME
FIGURE 57
MOISTURE EQUILIBRIUM LOADING FOR SOLID AMINE
The second phase of drying is at a constant rate, which depends on inlet relative humidity and the rate of CO₂ adsorption. During this phase sensible heat transfer from the incoming air to the bed is balanced by latent heat transfer to the air stream. In the absence of CO₂ adsorption with its heat release, the bed attains the adiabatic saturation (wet bulb) temperature of the inlet air. Test data indicates that the effect of CO₂ adsorption is to elevate the average bed temperature above the wet bulb temperature.

The third phase of drying is the longest part of the drying cycle and is called the falling rate phase. In this phase of the drying process intraparticle diffusion of water becomes important, as the bed material approaches its equilibrium moisture loading for the prevailing relative humidity.

During a 96 minute orbit each bed is desorbed with steam and dried with process air flow. Bed drying rates are most dependent on relative humidity of the inlet air and the bed moisture content. Figure 58 shows bed drying rates with various percentages of initial bed moisture. This figure is a computer simulation of the first two stages of bed drying. The figure was prepared for a 5.90 kg (13 lbm) solid amine bed with .340 m³/min (12 CFM) of air flow.

Bed drying rates can be expressed in another manner as shown in Figure 59. At a given bed moisture content and process air relative humidity the minimum cycle time necessary to dry the bed to its initial moisture loading can be calculated. Such calculations were performed using the drying rate theories of phases I and II described earlier. These calculations resulted in Figure 59, which adequately defines equilibrium conditions at higher moisture levels. With higher moisture loadings, drying rates are entirely described by phase I and II conditions, and the bed does not approach the third phase or falling rate period. This method predicts that the bed approaches zero percent moisture loading, which is known to be incorrect. Figure 59, however, does reveal the vertical asymptotes at various relative humidities. The rates of evaporation decrease as bed moisture content approaches the equilibrium value at a given relative humidity. The phases of the curves in Figure 60, which include the effect of the falling rate period, depend on the rates of drying during the final phase of the process, and the shapes of the curves presented are consistent with the SAWD test data.
FIGURE 58
Drying Rates with 50% Relative Humidity
FIGURE 59

EQUILIBRIUM MOISTURE CONTENT VERSES
ADSORPTION TIME (DRYING PHASE I & II)
FIGURE 60

EQUILIBRIUM MOISTURE CONTENT
AS A FUNCTION OF ADSORPTION TIME
The performance map shown in Figure 60 was determined from the SAWD testing. During the testing an air flow of 0.106 m³/min/kg (1.7 CFM/lbm) of dry solid amine was used. The SAWD subsystem of LARS operates at about 0.0624 m³/min/kg (1.0 CFM/lbm) of solid amine due to the higher allowable CO₂ partial pressure of 5 mmHg. This lower air flow reduces drying potential by 33%, but sensible heat loss to the process air is also less. With more heat available for latent heat transfer, the result is a net 26% decrease in drying potential during a given cycle. This means that all curves in Figure 60 must be moved right such that a given point has a 26% longer cycle time than previously. Figure 61 shows the moisture performance map projected for the 72 minute adsorb/24 minute desorb cycle. However, the performance map presented in Figure 61 is extrapolated from the 52 minute adsorption SAWD testing, and testing of solid amine under the two bed operating conditions of 72 minute adsorption, 24 minute desorption is necessary to verify these predictions.

Cabin dewpoint predictions from the transient computer program indicate that cabin dewpoint will vary between 9.44°C (49°F), 21.11°C (70°F), 16.11°C (61°F), 26.67°C (80°F) dry bulb temperature. This represents a relative humidity swing in the cabin from 47 to 52%, and indicates that bed moisture content will remain above the minimum requirement of 20% under typical cabin operating conditions.

Bed Steaming Requirements

To desorb the weakly held CO₂, steam at 62.05 kPa (9 psia) and 87.22°C (189°F) is generated within the steam generator. The steam enters the cool solid amine beads and condenses, driving off the adsorbed CO₂. Since the steam progresses through the bed in a well defined wave, the CO₂ which is desorbed is readorsorbed in the cool portion of the bed. As steaming continues, and CO₂ is progressively concentrated, the CO₂ eventually is eluted from the solid amine bed. The detailed CO₂ desorption process is described more fully later in this section.

Steam requirements for desorption are largely a function of desorption time and bed moisture content. It is obvious from Figure 62 that the total water to desorb the 9.53 kg (21 lbm) SAWD test bed was a strong function of the initial water loading. This is not surprising due to the high heat capacity of liquid water and the low heat capacity of dry solid amine of 249.82 Joules/kg°C (0.29 BTU/lbm °F). With a constant steam generation rate, desorption time is quite predictable as shown in Figure 63. This may be extended to give a plot of bed moisture content as a function of desorption time as shown in Figure 64. This dependency is a valuable aid in determining bed moisture loading.
FIGURE 61

LARS PREDICTED MOISTURE CONTENT AS A FUNCTION OF ADSORPTION TIME
FIGURE 62

DESORPTION STEAM REQUIREMENTS AS A FUNCTION OF BED MOISTURE LEVEL
Figure 63

Desorption time as dependent upon bed water loading

Desorb time = 2.1207 \left[\text{LBS H}_2\text{O}\right]_{\text{ON BED}} + 29.71\

MIN

KG (LBM) of water on bed at start of adsorb

1.81 2.27 2.72 1.18 3.63 4.08

(4) (5) (6) (7) (8) (9)

\text{103}
FIGURE 64

PERCENT MOISTURE VERSUS DESORPTION TIME

TEST CONDITIONS: 9.53 KG (21 LB) DRY SOLID AMINE
2.04 KG/HR (4.5 PPH) STEAM RATE

TIME TO DESORB (MIN)
Considerably less steam is required to desorb the solid amine bed material at 62.05 kPa (9 psia) compared to 101.35 kPa (14.7 psia). This is illustrated in Figures 65 through 67. Note that even the increased bed weight requirement at 62.05 kPa (9.0 psia) does not result in a greater steam requirement.

SAWD System Operating Characteristics

Air flow enters the system through one of two redundant IMU fans with flow split between an orificing valve and the two parallel SAWD beds. The flow split is such that .680 m³/min (24 CFM) enters the SAWD beds and .510 m³/min (18 CFM) bypasses the beds through the orificing valve. Flow from the parallel beds mixes with the bypass flow and enters the contaminant control canister before mixing with the main cabin flow upstream of the cabin fans.

Total subsystem pressure drop is composed of bed pressure drop, ducting losses, and the contaminant canister/LiOH canister pressure drop. For the SAWD beds pressure drop is a weak function of bed moisture loading, as shown in Figure 68. After one bed is desorbed, for a short time it has approximately 10 percent more moisture than the other bed. However, as can be seen from Figure 68, a 10 percent swing in moisture content in a bed causes little change in bed pressure loss, since bed particles swell as moisture is adsorbed. The small increase in pressure drop in a regenerated bed reduces the cabin humidity/temperature spikes due to the slight reduction in flow during the first minute of an adsorption cycle.

Each IMU fan has the performance characteristics shown in Figure 69. The system resistance line also shown in Figure 69 passes through the vertical scale at -6.35 cm (-2.1 inches) of water, since it discharges upstream of the cabin fans leading to the WVE. Solid amine bed pressure drop for a 15.24 cm (6 inch) bed is 10.16 cm (4.0 inches) of H₂O and contaminant canister/duct losses are 3.81 cm (1.5 inches) of H₂O for a total of 13.97 cm (5.5 inches) of H₂O. The 5.33 cm (2.1 inch) credit results in an IMU fan net pressure rise requirement of 8.64 cm (3.4 inches) of H₂O. The radial flow contaminant control canister has a pressure drop which varies linearly with flow, and therefore, assuming a contaminant canister/duct work pressure drop of 3.81 cm (1.5 inch) of H₂O at .680 m³/min (24 CFM), and linear variation of this pressure drop with flow, the IMU fan operates at 1.19 m³/min (42 CFM) with a pressure rise of 11.43 cm (4.5 inches) of H₂O.
FIGURE 65

SOLID AMINE DESORPTION STEAMING REQUIREMENTS
AS A FUNCTION OF DESORPTION TEMPERATURE
(24 MIN DESORPTION)
FIGURE 66

SOLID AMINE DESORPTION STEAM REQUIREMENTS FOR BASELINE CASE
FIGURE 67

STEAM GENERATOR POWER REQUIREMENTS FOR BASELINE CASE
FIGURE 68
SOLID AMINE BED PRESSURE DROP
FIGURE 69
IMU FAN PERFORMANCE CURVES
When a canister is returned to adsorption after regeneration, flow enters the contaminant canister with a temperature versus time as shown in Figure 70. Moist flow from the desorbed bed is mixed with bypass air flow limiting maximum temperatures into the charcoal. Initially there was some concern that the hot moist air flow into the contaminant canister would desorb the contaminants. While it is true that elevated temperature, greater than 100°C (212°F), is capable of desorbing some contaminants from charcoal, the air temperature entering the contaminant canister just after returning a regenerated bed to service is elevated for only a short time. When one bed is being desorbed, the orifiving valve indexes to limit flow through the single adsorbing bed to .340 m³/min (12 CFM). Thus, the hot bed effluent flow is mixed with approximately .850 m³/min (30 CFM) of bypass flow to reduce contaminant canister inlet temperature to that shown in Figure 70. The temperature/humidity spike entering the contaminant canister is considered to be insufficient to desorb significant quantities of contaminants. Literature indicates that time periods on the order of hours at temperatures above 100°C (212°F) with hard vacuum are required to desorb an activated charcoal bed.

Desorption Cycle Operating Characteristics

When a bed is to be desorbed, the bed is first isolated by closing the inlet and outlet poppet valves. Simultaneously the variable bypass orifice is indexed to provide proper flow distribution while one of the beds is temporarily out of service. This valve does not index again until both beds have completed desorption. With the spent bed isolated, the outlet valve in the line to the CO₂ compressor and the ullage air valve are opened, and the water evaporator is started to begin steaming the bed. Initially ullage air is pushed from the bed, followed some time later by pure carbon dioxide. The ullage air line is equipped with a flow sensor downstream of the valve, which senses the sudden change in flow rate as CO₂ begins to be eluted from the bed. The flow sensor provides a signal to close the ullage valve and start the CO₂ compressor. A typical desorption profile predicted from data obtained during the SAWD test program is shown in Figure 71.

Steam for the 62.05 kPa (9 psia) desorption is generated in the steam generator, which is fed with water by a positive displacement pump. Approximately .544 kg (1.2 lbm) of water are required for the desorption of CO₂ from one of the 5.90 kg (13 lbm) dry weight SAWD beds at 87.22°C (189°F). Water is pumped from an accumulator to the evaporator through the water jacketed CO₂ compressor as shown in the LARS schematic, Figure 51. The Water
FIGURE 70
CONTAMINANT CONTROL CANISTER INLET TEMPERATURE
FIGURE 71
ESTIMATED CO₂ FLOW RATE DURING DESORPTION
The accumulator holds .862 kg (1.9 lbm) of water, which is more than adequate to provide capacitance for the SAWD system regeneration. The simplified schematic shown in Figure 72 depicts the system material balance for one complete orbital cycle. Approximately 2.89 kg (6.36 lbm) of water are available from the condensing heat exchanger output while only about 1.09 kg (2.4 lbm) of steam are required for desorption.

The CO₂ accumulator is sized to contain the desorbed CO₂ from one of the amine beds, 0.191 kg (0.42 lbm). The CO₂ compressor pumps the effluent CO₂ from the desorption pressure of 62.05 kPa (9 psia) to 455.05 kPa (66 psia) in the accumulator. The Sabatier reactor requires a feed pressure of 20.68 kPa gage (3 psig), and therefore, the operating pressures for the accumulator are 82.74 kPa (12 psia) to 455.05 kPa (66 psia). For the storage of 0.191 kg₃ (0.42 lbm) of CO₂, the accumulator size is .0283 m³ (1.0 ft³). The compressor, which consumes 250 watts while operating (duty cycle is 20 percent), is water jacketed to conserve steam generator power input. The feed water for the steam generator is preheated by passing it through the compressor jacket.

Selected Approach as Applied to Polar Orbit Mission

For a polar orbit mission where power availability is continuous, utilizing a two bed system with a 48 minute adsorption/48 minute desorption reduces system peak power requirements by 50%. For the baseline air flow and bed weight an increase in cabin CO₂ partial pressure occurs and the bed moisture equilibrium is affected. By closing the bypass valve, shown in the LARS schematic Figure 51, sufficient flow, 0.906 m³/min (32 CFM), is directed through the SAWD beds to compensate in drying potential for the decrease in adsorption time from 72 minutes to 48 minutes. This also maintains average cabin CO₂ partial pressure at or below the 5 mmHg design value with a 6 member crew.

Conditioning of Solid Amine Prior to Launch And Upon Reentry

The SAWD beds are pre-conditioned to provide an average bed moisture content of 25 percent at time of launch. This ensures adequate CO₂ adsorption performance upon start-up. With a cold bed at start-up, the low bed drying rates keep the bed above 20 percent moisture during the initial adsorption.

The SAWD subsystem can be operated during launch and reentry. However, cabin accumulation with 6 men in the shuttle vehicle provides CO₂ capacitance for 2.8 hours after launch, provided that the cabin air is initially free of CO₂. The SAWD system will provide at least 72 minutes of additional CO₂ capacitance without desorption for a total of 168 plus 72 or 240 minutes. This is approximately 2.5 orbits, and provides sufficient time needed prior to the SAWD subsystem start-up, LiOH is available.
FIGURE 72

LARS MASS BALANCE FOR ONE ORBIT
KG (LBM)
In preparation for reentry, upon shutdown of the SAWD, one of the four contingency LiOH cartridges can be installed in the contaminant control cartridge location. One LiOH canister provides CO$_2$ control for more than 7 hours with a six man crew.

WVE Sizing

The purpose of the water vapor electrolysis subsystem is to replace, by the dissociation of water, the oxygen required for metabolic consumption by crew members and that lost via all types of cabin leakage.

The electrolysis process is accomplished by imposing an electrical potential across two electrodes, between which is a matrix material impregnated with a strong electrolytic solution. Water from the acid solution is dissociated at the WVE anode to produce oxygen and hydrogen ions. The hydrogen ions migrate, by diffusion and migration in the electric field, to the cathode, where they receive their missing electrons and are combined to produce hydrogen gas.

Water necessary to maintain the reaction is replenished by absorption of water vapor from the air, as shown in the reaction sequence below:

\[
\begin{align*}
2 \text{H}_2\text{O} \text{air} & \rightarrow 2 \text{H}_2\text{O} \text{electrolyte} \\
2 \text{H}_2\text{O} \text{electrolyte} & \rightarrow \text{O}_2 + 4\text{H}^+ + 4\text{e} \\
4\text{H}^+ + 4\text{e} & \rightarrow 2\text{H}_2
\end{align*}
\]

The hydrogen produced by the WVE is fed into the inlet of the Sabatier reactor where it is mixed with a regulated flow of carbon dioxide to produce water and methane.

To eliminate the potential of a fire in the hydrogen line, the hydrogen system is maintained at least 6.39 kPa (1.0 psi) above ambient at all times. This overpressure ensures that any leakage is from the hydrogen rich stream into the larger cabin volume, thus diluting the hydrogen mixture, rather than air leakage into the hydrogen rich space.

Combustible gas detectors are used to detect leakage by indicating if hydrogen concentration reaches 0.5% in the vicinity of the WVE and Sabatier subsystems.
WVE Sizing Procedure

WVE sizing is based on performance data obtained during extensive cell pair testing performed by Hamilton Standard under Contract No. NAS 9-11830. All testing under this contract was done with the cells fitted with an external electrolyte reservoir composed of non-compressed layers of Tissuequartz. Subsequent testing, employing porous titanium reservoirs internal to the cell pair, showed that at 39 amps and a 5.83°C (42.5°F) dewpoint required cell voltage was reduced from 1.73 volts for the external reservoir cells to 1.70 volts for the internal reservoir design. At 1.70 volts and 5.83°C (42.5°F) dewpoint, for the external reservoir design, only 32 amps of current is produced. Hence the internal reservoir design, because it is more efficient in transporting electrolyte to the electrodes, shows a 21.9% (39 amps/32 amps) increase in performance.

All WVE test data was ratioed to reflect this increase in performance. The results, as used in the WVE portion of the integrated thermal model, are shown in Figure 73.

The WVE design point for a six-man system operating at 62.05 kPa (9 psia) has the following oxygen requirements:

\[
(6 \text{ men})(0.798 \text{ kg } O_2/\text{man day}) = 4.79 \text{ kg/day}
\]

Metabolic: \((6 \text{ men})(1.76 \text{ lbm } O_2/\text{man day}) = 10.56 \text{ lbm/day} \)

Leakage: Air leakage rate kg/day (lbm/day)

- Cabin: 1.666 (3.673)
- Air Lock: 0.278 (0.612)
- Tunnel Adapter: 0.278 (0.612)
- Waste Management: 0.680 (1.500)

\[
2.902 \times 0.3 = 0.871 \text{ kg/d (1.92 lbm/d)}
\]

Total = 5.66 kg \(O_2/\text{day (12.48 lbm } O_2/\text{day)} \)

Assuming an average WVE inlet dewpoint of 10°C (50°F), using 15 cells would necessitate an average cell voltage of between 1.85 and 1.875 volts per cell. Laboratory tests have shown that cell voltage should be kept below 1.90 volts for sustained operation, to avoid electrolyte degradation and the possibility of matrix dry-out, which could lead to gas cross-over. Examination of cell performance shows that, for a sustained WVE inlet dewpoint of less than 46°F, individual cell voltages must exceed 1.9 volts to produce sufficient oxygen for a six man crew plus leakage make-up with a cabin pressure of 62.05 kPa (9.0 psia). Analysis has shown that sufficient reservoir volume exists, so
FIGURE 73

WVE 15 CELL PERFORMANCE
that the WVE cell configuration is capable of enduring, without flooding, an emergency condition in which the inlet air stream is at 30.56°C (87°F) with a 90% relative humidity, while the cells are not in operation.

The WVE, in the Lightside Atmospheric Revitalization System, follows an operating schedule of 53 minutes on and 43 minutes off, during a 96 minute orbit. The WVE is operational during the light side of the orbit when solar cell power is available and off during the dark side of the orbit when solar power is unobtainable.

During the operational portion of the orbit, the WVE cells absorb water vapor from the incoming air stream at a rate proportional to the partial pressure in the stream minus the partial pressure of water in the cells. The rate of absorption is, however, not as great as the rate at which water is consumed in the electrolysis process. This results in a net drying of the cells and an increase in electrolyte concentration. Cell moisture is recovered during the off period by water vapor absorption from the circulating air stream. Release of moisture from the SAWD system into the cabin air circulation system enhances the ability of the WVE cells to absorb moisture and to maintain an acceptable concentration of electrolyte.

A Hamilton Standard water vapor cell pair, shown in Figure 74, consists of the following components:

- Titanium outer housings
- Titanium center housing
- Electrodes
- Matrix
- 65% Void volume titanium reservoirs

The cell pair peripheral housing configuration has been flight optimized for weight and volume, while providing sufficient reservoir volume for intrinsic reliability.

The electrodes are a teflon-bonded, catalyzed, tantalum screen type.

The WVE electrolyte, sulfuric acid, has an infinite theoretical relative humidity tolerance and negligible vapor pressure. Of the suitable acid electrolytes, it has the smallest electrical resistance and gives the least electrode polarization. These properties cause it to require the minimum over-voltage for oxygen production.
120 VOLUME RESERVOIRS

TITANIUM OUTER HOUSING

TITANIUM CENTER HOUSING

ELECTRODES

FIGURE 74

WVE CELL PAIR
The cell matrix consists of one layer of Tissuequartz.

The outer titanium housings are platinum plated to minimize electrical contact resistance. The center housings are gold plated for the same reason, and in addition, gold is used to preclude hydrogen diffusion into the titanium base metal, which could cause hydrogen embrittlement.

Sabatier Subsystem

The Sabatier carbon dioxide reduction subsystem receives the hydrogen from the WVE subsystem and the carbon dioxide from the SAWD subsystem, and converts them to water vapor and methane. The water vapor is condensed and stored for potable usage, and the methane and any excess reactant gases are vented overboard. A successful program to design, build, and test a preprototype Sabatier carbon dioxide reduction subsystem has recently been completed.

The Sabatier subsystem schematic is shown in Figure 51. The carbon dioxide and hydrogen mixture enters the subsystem through a charcoal filter, which protects the reactor from any trace contaminant carryover from the upstream carbon dioxide concentrator or the electrolysis subsystem. The mixture then passes to the reactor, where it is converted to water vapor and methane. The water vapor, methane, and excess CO$_2$ then flow to the air cooled condenser/separator, where the water vapor is condensed, separated from the gas stream and pumped out. The gases (methane, excess reactant, and uncondensed water vapor) are then vented overboard to space vacuum through a pressure regulator, which also serves to regulate CO$_2$ and H$_2$ supply pressure. A bypass function for CO$_2$ and H$_2$ is provided for emergency shutdown and to permit maintenance on the Sabatier subsystem without interruption of the CO$_2$ removal and O$_2$ generation processes. The water is pumped out of the water separator by the pressure differential between the reactant pressure and a spring loaded accumulator which maintains a constant pressure drop across the porous plate separator. A positive displacement pump empties the accumulator, when it is full. A fixed air cooling flow is supplied to the Sabatier reactor and the condenser/separator by a bleed flow from downstream of the condensing heat exchanger. A controller is provided to control system operation, to monitor system status, activate bypass operating modes in response to out of tolerance conditions, and provide warnings to the operator. For all operating conditions and modes other than failure modes, the controller is not required to drive any thermal controls, because the Sabatier reactor requires no cooling modulation or heater operation (except at start-up) to meet the full range of performance requirements. The subsystem functions, capabilities, interface definition, schematic and operation are consistent with the RLSE system requirements.
The design of the Sabatier carbon dioxide reduction system is based on an extensive background of both experimental and analytical data with the high activity catalyst, developed and fabricated by Hamilton Standard and designated as UASC-151G. This catalyst, ruthenium on a 14-18 mesh granular alumina substrate, permits a simple straight-through plug flow reactor design without complicated heat exchangers. More than one thousand hours of operating time have been accumulated on the catalyst.

The preprototype Sabatier subsystem is designed to meet the requirements of Table 8. The main features of the design are flexibility of operation and simplicity of control. The Hamilton Standard developed catalyst permits operation over a wide range of temperatures, molar ratios, and loads with no active control, while maintaining over 99% process efficiency. The Sabatier reaction is temperature selflimiting at about 593°C (1100°F). Therefore, there is no danger of overheating it under any load or molar ratio. Since the catalyst has a high reactivity, the reaction starts at under 177°C (350°F) and maintains itself at low loads without heaters. Cooling flow is set for the maximum load conditions and does not need to be changed for any lower load condition. Electric heaters are required for less than 5 minutes only for the initial startup after a shuttle launch. The compact size and insulating of the Sabatier reactor minimize heat loss, so startup during the light side of each orbit is accomplished without heaters. Two temperature measurements are sufficient to indicate reactor performance status and provide overtemperature protection. The only active controls in the Sabatier subsystem are the limits in the water accumulator to control its pump down.

Performance of the Sabatier subsystem was demonstrated by over seven hundred hours of testing on the preprototype system. Process efficiencies of over 99% were observed for a range of H₂/CO₂ molar ratios of 1.8 to 5.0 for a crew of one person with steady state operation to 3 persons under cyclical operation with a simulated 55 minute light side/39 minute dark side orbital cycle. Tables 9 and 10 show the performance data. An off design 10 person case at a molar ratio of 2.6 with the same cooling flow had a conversion efficiency of 97.1%. As can be noted in Table 10, testing after a catalyst treatment to remove additional residual chlorides resulted in improved performance.

The effects of varying the dewpoint of the reactant gases and of adding some air to the reactant gases were also tested. Variations in reactant gas dewpoint from dry conditions to 21.1°C (70°F) showed conversion efficiency variations of less than 0.1%. A test conducted with 5.1% air (1% oxygen) in the inlet reactants showed no catalyst damage as a result of oxygen exposure.
Table 8

DESIGN SPECIFICATION

<table>
<thead>
<tr>
<th>CO₂ FLOW RATE</th>
<th>3.0 kg/day (6.6 lb/day)</th>
<th>0.9 kg/day (2.0 lb/day)</th>
<th>3.6 kg/day (7.92 lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMINAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂/CO₂ MOLAR RATIO</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>REACTOR EFFICIENCY</td>
<td>99%</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>REACTANT SUPPLY PRESSURE</td>
<td>1.24 ATM (3.5 PSIG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REACTANT SUPPLY TEMPERATURE</td>
<td>18-24°C (65-75°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REACTANT DEW POINT</td>
<td>SATURATED</td>
<td>SATURATED</td>
<td></td>
</tr>
<tr>
<td>TOUCH TEMPERATURE MAXIMUM</td>
<td>45°C (113°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATER DELIVERY PRESSURE</td>
<td>2 ATM (30 PSIA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>START-UP TIME MAXIMUM</td>
<td>5 MIN</td>
<td>5 MIN</td>
<td></td>
</tr>
<tr>
<td>GRAVITY</td>
<td>0 TO ± 1G</td>
<td>0 TO ± 1G</td>
<td></td>
</tr>
<tr>
<td>SUBSYSTEM DUTY CYCLE</td>
<td>CONTINUOUS OR CYCLIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9
PREPROTOTYPE SABATIER SUBSYSTEM PERFORMANCE CONVERSION EFFICIENCY DURING STEADYSTATE TESTING

<table>
<thead>
<tr>
<th>CO₂ Flow</th>
<th>H₂/CO₂ Molar Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>1 Man Continuous</td>
<td>99.8</td>
</tr>
<tr>
<td>1 Man Cyclic</td>
<td>99.7</td>
</tr>
<tr>
<td>2 Man Cyclic</td>
<td>----</td>
</tr>
<tr>
<td>3 Man Continuous</td>
<td>99.3</td>
</tr>
<tr>
<td>3 Man Cyclic</td>
<td>99.4</td>
</tr>
<tr>
<td>10 Man Continuous (off design)</td>
<td>----</td>
</tr>
</tbody>
</table>
Table 10

PREPROTOTYPE SABATIER SUBSYSTEM PERFORMANCE
AVERAGE CONVERSION EFFICIENCY DURING CYCLIC TESTING
(55 MINUTES ON--39 MINUTES OFF)

<table>
<thead>
<tr>
<th>CO₂ Flow</th>
<th>H₂/CO₂ Molar Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>1 Man</td>
<td>99.6</td>
</tr>
<tr>
<td>2 Man</td>
<td>----</td>
</tr>
<tr>
<td>3 Man</td>
<td>99.6</td>
</tr>
</tbody>
</table>

() - Test results after completion of test program and catalyst treatment
TOPIC VII
System Integration Studies

The Lightside Atmospheric Revitalization System utilizes the existing ECLS shuttle orbiter volume now used for carbon dioxide control and LiOH storage. Since it may be desirable to install LARS aboard the shuttle in phases, two installation drawings have been prepared. Figures 75, 76, and 77 show the installation of only the SAWD regenerable CO₂ removal system. Figures 78, 79, and 80 show the installation of the entire LARS. The general packaging concept is to locate the WVE cell stack directly down stream of the shuttle cabin fans in place of the two LiOH canisters. The SAWD and Sabatier subsystems are located in the volume presently used for LiOH storage.

As can be seen in Figure 51, there are five mechanical interfaces between the present shuttle systems and LARS. None of these has a significant impact on the associated system. The line for carrying the methane and excess CO₂ to space vacuum can be joined with the present waste management and air lock vacuum line. Other required interfaces are: a nitrogen supply for purging the WVE cells and the Sabatier reactor and condenser; connections between the pure water storage tanks and the Sabatier and SAWD water accumulators; the WVE cell stack interfaces with the cabin fan discharge and the heat exchanger bypass valve; and the SAWD subsystem discharge connection into the cabin fan suction.

The WVE cell stack is oriented, so no change in flow direction is required as the air passes from the cabin fan through the WVE to the heat exchanger. Additionally, the orientation prevents the launch acceleration loads from acting along the longitudinal axis of the cells, limiting the possibility of electrolyte migration to one end of the cells. The SAWD canisters are arranged to prevent the launch and reentry acceleration loads from potentially causing channelling in the bed material. Therefore, although operation of the SAWD subsystem is not necessary during launch and reentry, its operation is not prohibited.

Major Component Descriptions

The three subsystems that comprise the LARS have, at minimum, been designed through the preprototype stage. In the case of Sabatier, a preprototype system has been successfully built and tested by Hamilton Standard under Contract NAS 9-15470. Prototype WVE cells were built and tested in the One Man ARS Program under Contract NAS 9-13679. This system was approximately one-quarter sized in relation to the LARS oxygen generation requirement. A
FIGURE 75
SAWD INSTALLATION DRAWING (SHEET 1)

- REMOVABLE CARTRIDGE STORAGE
 MODULE MOUNTS TO FLOOR STRUCTURE

CABIN FLOOR

WASTE WATER TANK

WASTE WATER TANK

POTABLE WATER TANK

ARS WATER SEPARATOR

TO CHILLER
FAN INLET

CON- TROLLER

CARTRIDGE STORAGE

A

A(5A)
FIGURE 77

SAWD INSTALLATION DRAWING (SHEET 3)
FIGURE 78
LARS INSTALLATION DRAWING (SHEET 1)
FIGURE 80

LARS INSTALLATION DRAWING (SHEET 3)
full scale SAWD subsystem has been built and tested in a bread-
board configuration. However, preprototype designs of the SAWD
canister and water evaporator are completed. The discussion
given below of the major LARS components describes the prepro-
type designs. However, the weights and volumes of the major
components accurately reflect those of flight hardware.

The major components of the SAWD subsystem are the IR-45 canis-
ters, the zero gravity steam generators, the CO₂ accumulator,
the steam generator water accumulator, the CO₂ compressor, the
steam generator water pumps, and the fans.

The SAWD subsystem has two canisters. The preprototype design
is shown schematically in Figure 81. Each contains 5.90 kg (13
lbm) of dry solid amine material. The canisters have double
walls of stainless steel with 2.54 cm (1.0 inch) of insulation
between the walls. The bed depth is 15.24 cm (6 inches), and
the bed material is retained on the inlet and outlet by layers
of stainless steel feltmetal and perforated plate. Threaded
rods hold the bed in place in the canister. The zero gravity
steam generator is attached to the inlet header to preheat it
during desorption and minimize condensation inside the canister.

The zero gravity steam generator consists of a stainless steel
tube with an electric tubular heating element inside. The
diametral clearance between the heater and tube is between .254
and .635 mm (.010 and .025 inch). Once the heater is inserted
into the tube, the assembly can be bent to any convenient shape.
In the case of the SAWD subsystem, a flat spiral is convenient
for attaching the steam generator to the canister inlet header.
Water is fed to the steam generator by a positive displacement
metering pump. The pump used in the breadboard system was a
variable stroke piston pump. A similar design is feasible for
the flight unit. Since the two steam generators operate at
different times, one water pump can service both. Two pumps are
provided for redundancy.

The water accumulator for the SAWD steam generators is the same
accumulator that has been developed for the shuttle water pump
package. It is a Metal Bellows Corporation accumulator with a
minimum fluid volume of 819.35 cubic centimeters (50 cubic
inches). The shell is aluminum alloy 6061. The bellows are
inconel alloy 718, and the headers are inconel alloy 625.

Two shuttle IMU fans were selected to provide the air flow for
the SAWD canisters. Since one fan supplies the required air
flow, one is an installed spare. The IMU fan is a centrifugal
type, driven by a 3 phase, 400 hertz, 115 volt induction motor.
It has a minimum design requirement of 65.32 kg/hr (144 lbm/hr)
flow at 1.12 kPa (4.5 inches of water) pressure rise with inlet
conditions of 101.35 kPa (14.7 psia) and 54.44°C (130°F).
FIGURE 81

PREPROTOTYPE SAWD CANISTER
Specific component selections have not been made for the carbon dioxide accumulator and compressor. However, the requirements for these components have been determined to provide the necessary information for the packaging study and system analysis. The CO₂ accumulator is a flask with a 0.028 m³ (1.0 ft³) volume and a maximum normal operating pressure of 744.63 kPa (108 psia). It has a common inlet and outlet connection to receive CO₂ from the compressor and supply CO₂ to the Sabatier subsystem. A relief valve is provided to discharge excess CO₂ overboard. The CO₂ compressor must have a capacity of 0.028 m³/min (1.0 CFM) at a suction pressure of 101.35 kPa (14.7 psia) and a discharge pressure of 744.63 kPa (108 psia).

The primary components of the Sabatier subsystem include the reactor, the water condenser/sePARATOR, the accumulator and the water pump. These items were developed for the preprototype system to the standards of space flight hardware, and will not require major modifications for flight use.

The Sabatier reactor has a catalyst bed weighing 460 gms (1.01 lbm), and is contained in a cylindrical tube, 34 cm (13.5 in) long and 3.6 cm (1.43 in) in diameter, separated into two zones: the high temperature primary reaction zone; and the cooling or secondary reaction zone. Two heaters for redundancy are used to initially heat the catalyst to start the reaction. The heaters are not required during normal cyclic operating modes, as there is sufficient thermal storage to restart the reaction. The first or primary reaction zone is insulated to prevent heat loss to the cabin and to retain the heat of reaction during the "down" cycle of operation, eliminating power and time requirements for reheating of the catalyst. Two cooling jackets with a fixed rate of cabin air flow surround the secondary zone. A platinum resistance temperature (PRT) sensor is located below the heater rod to indicate when the catalyst and reaction has reached a high or low temperature. Another PRT sensor, located on the outside of the reactor underneath the insulation, is used to monitor the temperature in the event that the bed temperature becomes too high due to failure to turn off the heaters.

The unit is of all stainless steel construction, welded and bolted together with an aluminum perforated sheet outside shell for handling and touch temperature protection. The catalyst bed is enclosed in a stainless steel tube with a welded cap on the inlet end with an opening for the reactant gas and the heater elements. The heater elements are enclosed in a close fitting sheath for good heat transfer into the primary zone of the catalyst bed. The heaters can be removed and/or replaced without disturbing the bed. The exit end is flanged and bolted with provision for preloading the catalyst bed. The primary zone is insulated with a High Temperature Min K (F 182) blanket. The cooling jacket consists of stainless steel serrated fins wrapped around the bed cylinder for good air flow and heat conduction, covered with a shell of stainless steel.
The condenser/separator is a stainless steel plate and fin heat exchanger. The unit comprises three adjacent layers. The first layer is a single pass 0.51 cm (0.200 in) high plate and fin construction with a header on one end for avionics or cabin air flow. The water collection pass is a pin-fin plate, that is the cold plate of the system, and is on one side of the cold air pass. The top layer or hot pass consists of a stainless steel porous plate, that is in contact on one side with the pin-fin plate on the other side with a 4 pass configuration of stainless steel serrated fins, separated with stainless steel pass separators. The top plate is a solid stainless steel plate, that is brazed to the top unit. The water accumulator is sized to hold 45 gms (0.1 lb). For 3-man operation at an H₂/CO₂ molar ratio of 2.6 it cycles approximately every 41 minutes during continuous operation and about every 24 minutes during the on phase of cyclic operation. The pump delivers water to the water management system at 2 atm (30 psia), which is the upper pressure limit defined by RLSE.

The only major components in the water vapor electrolysis subsystem are the WVE cell pairs. The internal details of the cells were described in the Subsystem Sizing and Operating Characteristics section of this report. The fifteen cells are arranged in a stack with a gasket seal between the cells to prevent bypass air flow. The cell stack is built into a section of ducting with inlet and outlet headers to mate with the present ARS.

A weight summary for the LARS is given in Table 11. The weights are listed to show the effect of adding the subsystems to the shuttle orbiter in phases. Therefore, as an example, the CO₂ compressor and accumulator are listed as weights in the Sabatier subsystem, since they are not necessary if only a SAWD subsystem is installed.

LARS Instrumentation Requirements

The instrumentation requirements for LARS are listed in Table 12. They are divided into lists for the three subsystems. The requirements include indications for both monitoring and control. Since it is feasible that the three subsystems would be installed in the shuttle vehicle in distinct phases, the instrumentation requirements are listed under the subsystem with which they would be included. For example, the CO₂ compressor and accumulator would be installed with the Sabatier subsystem. Therefore, a CO₂ compressor indicating light and a CO₂ accumulator pressure indication are necessary only when the Sabatier subsystem is installed.
Table 11

LARS WEIGHT SUMMARY

SAWD Subsystem

<table>
<thead>
<tr>
<th>Items</th>
<th>Weight kg.</th>
<th>(lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canister assemblies (2)</td>
<td>22.68</td>
<td>(50)</td>
</tr>
<tr>
<td>Fan assemblies (2)</td>
<td>8.16</td>
<td>(18)</td>
</tr>
<tr>
<td>Metering pumps (2)</td>
<td>4.54</td>
<td>(10)</td>
</tr>
<tr>
<td>Water accumulator</td>
<td>2.27</td>
<td>(5)</td>
</tr>
<tr>
<td>Controller</td>
<td>2.27</td>
<td>(5)</td>
</tr>
<tr>
<td>Regulating valve</td>
<td>2.27</td>
<td>(5)</td>
</tr>
<tr>
<td>Solenoid shutoff valves (8)</td>
<td>6.35</td>
<td>(14)</td>
</tr>
<tr>
<td>Support framing</td>
<td>9.07</td>
<td>(20)</td>
</tr>
<tr>
<td>Ducting</td>
<td>0.82</td>
<td>(1.8)</td>
</tr>
<tr>
<td>Tubing</td>
<td>1.36</td>
<td>(3)</td>
</tr>
<tr>
<td>Subsystem Total</td>
<td>59.80</td>
<td>(131.8)</td>
</tr>
</tbody>
</table>

WVE Subsystem

<table>
<thead>
<tr>
<th>Items</th>
<th>Weight kg.</th>
<th>(lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WVE cell assembly</td>
<td>36.29</td>
<td>(80)</td>
</tr>
<tr>
<td>Contaminant control canister</td>
<td>4.08</td>
<td>(9)</td>
</tr>
<tr>
<td>Controller</td>
<td>2.27</td>
<td>(5)</td>
</tr>
<tr>
<td>Regulating valve</td>
<td>2.27</td>
<td>(5)</td>
</tr>
<tr>
<td>Solenoid shutoff valves (2)</td>
<td>1.59</td>
<td>(3.5)</td>
</tr>
<tr>
<td>Tubing</td>
<td>0.68</td>
<td>(1.5)</td>
</tr>
<tr>
<td>Subsystem Total</td>
<td>47.20</td>
<td>(104)</td>
</tr>
</tbody>
</table>

137
Table 11
LARS WEIGHT SUMMARY (Continued)

<table>
<thead>
<tr>
<th>Items</th>
<th>Weight kg.</th>
<th>(lbm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabatier reactor</td>
<td>3.40</td>
<td>(7.5)</td>
</tr>
<tr>
<td>Sabatier condenser</td>
<td>1.32</td>
<td>(2.9)</td>
</tr>
<tr>
<td>Charcoal canister</td>
<td>0.64</td>
<td>(1.4)</td>
</tr>
<tr>
<td>Flow sensor</td>
<td>0.23</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Misc. sensors (H₂, temp., Pressure)</td>
<td>0.59</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Water pump</td>
<td>4.54</td>
<td>(10)</td>
</tr>
<tr>
<td>Water accumulator</td>
<td>1.13</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Controller</td>
<td>2.27</td>
<td>(5)</td>
</tr>
<tr>
<td>CO₂ compressor</td>
<td>4.54</td>
<td>(10)</td>
</tr>
<tr>
<td>CO₂ accumulator</td>
<td>7.71</td>
<td>(17)</td>
</tr>
<tr>
<td>Regulating valves (2)</td>
<td>4.54</td>
<td>(10)</td>
</tr>
<tr>
<td>Solenoid shutoff valves (6)</td>
<td>4.65</td>
<td>(10.25)</td>
</tr>
<tr>
<td>Relief valves</td>
<td>0.23</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Support framing</td>
<td>7.71</td>
<td>(17)</td>
</tr>
<tr>
<td>Tubing</td>
<td>2.04</td>
<td>(4.5)</td>
</tr>
<tr>
<td>Subsystem Total</td>
<td>45.50</td>
<td>(100.35)</td>
</tr>
<tr>
<td>LARS Total</td>
<td>152.50</td>
<td>(336.15)</td>
</tr>
</tbody>
</table>
Table 12

LARS INSTRUMENTATION REQUIREMENTS

<table>
<thead>
<tr>
<th>Indication</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAWD Subsystem</td>
<td></td>
</tr>
<tr>
<td>Canister isolate valve position</td>
<td>monitor</td>
</tr>
<tr>
<td>Fan energized</td>
<td>monitor</td>
</tr>
<tr>
<td>Solenoid valves energized</td>
<td>monitor</td>
</tr>
<tr>
<td>Steam generator energized</td>
<td>monitor</td>
</tr>
<tr>
<td>Water pump energized</td>
<td>monitor</td>
</tr>
<tr>
<td>Water accumulator level</td>
<td>monitorsteam generator control</td>
</tr>
<tr>
<td>Bed outlet temperature</td>
<td>steam generator control</td>
</tr>
<tr>
<td>Steam generator outlet temperature</td>
<td>steam generator control</td>
</tr>
<tr>
<td>CO$_2$ flow</td>
<td>ullage valve/CO$_2$ compressor control</td>
</tr>
<tr>
<td>WVE Subsystem</td>
<td></td>
</tr>
<tr>
<td>Cell and total voltage</td>
<td>monitor</td>
</tr>
<tr>
<td>Oxygen partial pressure</td>
<td>monitor/WVE voltage control</td>
</tr>
<tr>
<td>Hydrogen line pressure</td>
<td>monitor</td>
</tr>
<tr>
<td>Combustible gas detector</td>
<td>alarm/emergency shutdown and purge control</td>
</tr>
<tr>
<td>Solenoid valves energized</td>
<td>monitor</td>
</tr>
<tr>
<td>Sabatier Subsystem</td>
<td></td>
</tr>
<tr>
<td>Reactor temperature</td>
<td>monitor/overtemperature shutdown control</td>
</tr>
<tr>
<td>Hydrogen flow sensor</td>
<td>CO$_2$ flow control</td>
</tr>
<tr>
<td>Water pump energized</td>
<td>monitor</td>
</tr>
<tr>
<td>Water accumulator level</td>
<td>monitor</td>
</tr>
<tr>
<td>CO$_2$ accumulator pressure</td>
<td>monitor</td>
</tr>
<tr>
<td>Reactor heater energized</td>
<td>monitor</td>
</tr>
<tr>
<td>Solenoid valves energized</td>
<td>monitor</td>
</tr>
</tbody>
</table>
Power Distribution To LARS

A summary of the power requirements for the three LARS subsystems is given in Table 13. Peak values are given. For the SAWD and Sabatier subsystems the peak power requirements are independent of crew size. For the WVE subsystem the peak level given is for a crew of six.

The Sabatier and WVE subsystems would be operated only on missions using solar power. With the exception of control power, all of the power required by these subsystems is drawn during the light side of an orbit. The SAWD subsystem would be operated during either fuel cell or solar powered missions. During solar powered missions, only the fan and controller are operated during the dark side of an orbit. During fuel cell powered missions, since power availability is independent of phase in orbit, the peak power requirement can be significantly reduced by increasing desorption time.

The power requirements of the LARS can be supplied by the existing shuttle orbiter power distribution system. Therefore, no major modifications are required in the electrical system with the installation of the LARS.
Table 13
LARS POWER SUMMARY

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Component</th>
<th>Power (watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAWD Subsystem</td>
<td>Steam generator (including pump)</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>Fan</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Control power</td>
<td>130</td>
</tr>
<tr>
<td>WVE Subsystem</td>
<td>Electrolysis power</td>
<td>2570</td>
</tr>
<tr>
<td></td>
<td>Control power</td>
<td>250</td>
</tr>
<tr>
<td>Sabatier Subsystem</td>
<td>Heater (initial startup only)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>CO₂ compressor</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Controller</td>
<td>15</td>
</tr>
</tbody>
</table>
APPENDIX A

Lightside Atmospheric Revitalization System
Computer Program Listings
As part of the LARS study, computer programs were developed as analysis aids for the following areas:

- WVE system performance
- SAWD system CO₂ performance
- Cabin temperature and humidity with LARS installed

The SAWD system CO₂ performance program (PROF2) and the cabin temperature and humidity program (LARS-2) listings are included in this appendix. The WVE system performance program is included in the temperature and humidity program as a subroutine.
THIS PROGRAM CALCULATES IROG BED PARAMETERS

DOUBLE PRECISION CADC,PC02C,GENC,ETA,CO2R

TIME=0.

READ(5,*)PC02C,VCAB,TCAB,XM,TSTEP,CMF,LADS,LDSB,NC

CALL HEAD

DO 99 I=1,NC

GENC=XHM*.11/24./60.*TSTEP

J=LADS-LDSB

R=LADS-1

TTIM=J-1

DO 10 II=1,K

TTIM=TTIM+1.

CALL ADS1(TTIM,C02R1,PC02C,CMF,ETA1,TSTEP,TCAB,QC1,QC2,GENC)

CABC=PC02C*44.*VCAB/(TCAB+460.)*760./0.7302

CABC=CABC+GENC-CO2R1

PC02C=CABC*0.7302*760./44./VCAB*(TCAB+460.)

CALL OUTPUT(PC02C,TIME,QC1,QC2)

TIME=TIME+TSTEP

QC1=QC1+CO2R1

QC2=0.

QC2=QC2+CO2R2

10 CONTINUE

J=LADS+1

DO 20 II=1,J

TTIM=II-1

CALL ADS2(TTIM,C02R2,PC02C,CMF,ETA2,TSTEP,TCAB,QC1,QC2,GENC)

CABC=PC02C*44.*VCAB/(TCAB+460.)*760./0.7302

CABC=CABC+GENC-CO2R2

PC02C=CABC*0.7302*760./44./VCAB*(TCAB+460.)

CALL OUTPUT(PC02C,TIME,QC1,QC2)

TIME=TIME+TSTEP

QC1=0.

QC2=QC2+CO2R2

20 CONTINUE

XX1=0.

55=0.

55=LDSB+1.

KL=LADS-LDSB-1

DO 30 LL=1,KL

CALL ADS1(XX1,C02R1,PC02C,CMF,ETA1,TSTEP,TCAB,QC1,QC2,GENC)

CABC=PC02C*44.*VCAB/(TCAB+460.)*760./0.7302

CABC=CABC+GENC-C02R1

PC02C=CABC*0.7302*760./44./VCAB*(TCAB+460.)

TIME=TIME+TSTEP

XX1=XX1+TSTEP

XX2=XX2+TSTEP

QC1=QC1+CO2R1

QC2=QC2+CO2R2

CALL OUTPUT(PC02C,TIME,QC1,QC2)

30 CONTINUE

C

STOP

END

SUBROUTINE ADS1(X,C02R1,PC02C,CMF,ETA1,TSTEP,TCAB,1, QC1,QC2,GENC)
IF(X.EQ.0.)GO TO 22
ETA1=EXP(0.6557617*ALOG(X)-0.16287231*(ALOG(X))**2)
1 0.68969727,
22 IF(X.LE.5.)ETA1=1.0
CO2P=PC02C*CFM**44. *ETA1*TSTEP/760. /0.7302/(TCAB+460.)
RETURN
END
C

SREPGOINTE ADSQ2(Z,CO2R2,PC02C,CFM,ETA2,TSTEP,TCAB,
1 Q1,Q2,Q3,Q4)
IF(Z.EQ.0.)GO TO 23
ETA2=EXP(0.6557617*ALOG(Z)-0.16287231*(ALOG(Z))**2)
1 0.68969727,
23 IF(Z.LE.5.)ETA2=1.0
CO2R2=PC02C*CFM**44. *ETA2*TSTEP/760. /0.7302/(TCAB+460.)
RETURN
END
C

SREPGOINTE OUTPUT(PC02C,TIME,QC1,QC2)
WRITE(7,50)PC02C,TIME,QC1,QC2
50 FORMAT(1X,4(F10.3,1X))
RETURN
END
C

WRITE(7,51)
51 FORMAT(1X,4(F10.3,1X))
CALL VANK'P:PXI.DPMV.1)
0001120
DELTAT=DPMV/-4
0001130
IF(DELTAT.GT.0.0)GREGT=HA*.24*DELTAT
0001140
IF(DELTAT.LE.0.0)GREGT=0.0
0001150
HZGTXA=GXTA/1250.
0001160
WATER=WATER+HZGTXA
0001170
GL4=GL4+GXTA
0001180
GS=GS+GXTA
0001190
C GREGT=HEME ABSORBED WHEN SALT WATER PE-EVAPORATES
0001200
IF(DELTAT.LT.0.0) GREGT=DELTAT*HA*.24
0001210
IF(DELTAT.GE.0.0) GREGT=0.0
0001220
IF(DELTAT.LT.0.0) WATER=WATER+GREGT/1000.
0001230
IF(WATER.LE.0.0) WATER=0.0
0001240
IF(WATER.EQ.0.0) GREGT=0.0
0001250
IF(DELTAT.LT.0.0) GL4=GL4-GREGT
0001260
IF(DELTAT.LT.0.0) GS=GS-GREGT
0001270
121 CONTINUE
0001280
H=N=0
0001290
ARCAFO=ACAB
0001300
IF(TIME.GT.0.0) GO TO 90
0001310
C CABIN INLET TEMP
0001320
T7=T7-(GSL+GSL//HA*.24/1.1+AHXO)
0001330
C HX OUTLET TEMP-ZERO BYPASS
0001340
T5=T5-26*HA*.24/1.1+AHXO)
0001350
C IS HX OUTLET TEMP TOO LOW
0001360
IF((T5-TCI).GE.2.)GO TO 61
0001370
C HX TOO SMALL-RAISE CABIN TEMP
0001380
TIN=T1+TCI+2.-T5
0001390
C SET FLY THAT TCAB HAS BEEN RAISED
0001400
LL=2
0001410
GO TO 81
0001420
C FIND UAR FOR FULL FLOW CONDITION
0001430
C CONJUGATE INLET DEW POINT
0001440
61 F=I-FDP
0001450
CALL KAHDK(PSEO.T5,2)
0001460
AH=H-0.22+PS/0.0(PS-PSE0)
0001470
AH=AHXO+GTL/HA/1067.)
0001480
F=PC1.622*AHXI+1.1
0001490
CALL KAHDK(FXI,TDPI,1)
0001500
68 DT=(T4-TCO-T5+TCI)/ALG((T4-TCO)/(T5-TCI)
0001510
C UA
0001520
UAR=QT/DT
0001530
C IS HX UA IN TOLERANCE
0001540
IF(ABS(UAR/UA-1.1).LE.0.01) GO TO 75
0001550
C NOT CONVERGED-IS HX TOO SMALL
0001560
IF(UAR.LT.UAA) GO TO 70
0001570
C HX TOO SMALL-RAISE CABIN TEMP
0001580
LL=2
0001590
GO TO 81
0001600
C RAISE CABIN TEMP 1 DEG F
0001610
TIN=T1+1.
0001620
C NEW METABOLIC SPLIT
0001630
C CALL GRET(TIN-459.6,GS1,QL1)
0001640
C HX SENS LOAD
0001650
81 QTS=QTS+Q51
0001660
C HX LATENT LOAD
C SET UP FOR NEXT ITERATION -NEW OUTLET DEW PT
T5=T51+T52
CALL KANX(P5X0,TS,2)
AHYO=.622*PSX0/(FC-PSX0)
GO TO 100
C
70 IF (T1(T9,91),LL)
C HX HAS TOO LARGE-SHOULD AIR BE BYPASSED
GO TO 01
C LOWER CABIN TEMP
91 TIN=T1-,O30
GO TO 01
C END LOOP
100 T1=T14
C CAEIN TEMP LOOP NOT CONVERGED
WRITE(11,503) T1,WA,AHY0,UAR,TDPI,T5,T4,QT,GS1
WRITE(6,503) T1,WA,AHY0,UAR,TDPI,T5,T4,QT,GS1
WRITE(11,923)N
WRITE(6,923)N
234 FORMAT(NX,'NO. OF ITERATIONS =',I4, '<<<<<<<<<<<<')
TCI=TCI-549.6
TCO=TCO-549.6
C RETURN
GO TO 999
C BYPASS AX-CAN MEET TCAB -LOOP TO FIND BYPASS FLOW
90 DO 200 NC=1,120
C NEW GUESS OF AIR CUTLETL TEMP
IF (TIME.EQ.0.0) T5=TCI*(T5-TCI)*UAR/UAA
IF (NCCED.EQ.1.AND.TIME.EQ.TSTEP.AND.NC.EQ.1) T5=T4
IF (NCCED.EQ.2.AND.TIME.EQ.1740.0.AND.NC.EQ.1) T5=T4
000:C-0
IF (NCCED.EQ.2.AND.TIME.EQ.7500.0.AND.NC.EQ.1) T5=T4
IF (NCCED.EQ.2.AND.TIME.EQ.3180.0.AND.NC.EQ.1) T5=T4
IF (NCCED.EQ.2.AND.TIME.EQ.8940.0.AND.NC.EQ.1) T5=T4
IF (TIME.EQ.0.0) TSET=T7
IF (TIME.GT.0.0) GO TO 111
C IS OUTLET TEMP LESS THAN MIN
IF (T5-TCI).LT.2.) T5=TCI+2.
C HX FLOW RATE
WHX=QTS/(T4-T5)/.24/(1.+AHXI)
111 IF (TIME.EQ.0.0) GO TO 112
GO TO 893
399 IF(AFP=GT.-7) TSET
IF (ERROR.GT.2.5) ERROR=2.5
IF (ERROR.LT.-2.5) ERROR=-2.5
CALL BIGUADIV1,AL.,AES(=ERROR),0.,FLOW,K
IF (EPPOP.NE.0.0) WHX=AHX*(EPPOP/ABS(=ERROR))*FLOW*AUX+TSTEP
IF(WHX.GT.WHX=HA
GO TO 899
GO TO 012
GO TO 200
893 CONTINUE
C OUTLET DEM POINT
116 CALL KANX(P5X0,TS,2)
AHYO=.622*PSX0/(FC-PSX0)
C WVE INLET HUMIDITY
IF (TIME.EQ.0.0) AHX=AHX+QTL/AHX/(1067.)
C WVE INLET DEM POINT
PX1=FC/.622/AHX+1.0
CALL KANX(PX12,TS,2)
IF (PX1.GT.PX12) PX1=PX12
IF (TIME.EQ.0.0) GO TO 889
GO TO 063

0001720
0001730
0001740
0001750
0001760
0001770
0001780
0001790
0001800
0001810
0001820
0001830
0001840
0001850
0001860
0001870
0001880
0001890
0001900
0001910
0001920
0001930
0001940
0001950
0001960
0001970
0001980
0001990
0002000
0002010
0002020
0002030
0002040
0002050
0002060
0002070
0002080
0002090
0002100
0002110
0002120
0002130
0002140
0002150
0002160
0002170
0002180
0002190
0002200
0002210
0002220
0002230
0002240
0002250
0002260
0002270
0002280
0002290
0002300
0002310

SVHSER 72.24
CALL NEV(TSTEP,T4,PXI,PC,TDPI,T22,CFH3,Ev,TIME,POWER,DP,AVEX) 0002320
QLSVE=HI+HSADW)*(AHXI-AHVEX) 0002325
IF(TIME.NE.0.0) GO TO T2 0002330
888 CONTINUE 0002340
C INLET DEF POINT 0002350
WXYI=WXY*(1...AHXI) 0002360
QSENSI=WXY*.24*(T4-T5) 0002370
QLAT=(AHXI-AHXY)*(AHXY*1000. 0002380
C CALL CONDA(WXYI,QSENSI,QLAT,WC,UAA) 0002390
GCOD=QSENSI+QLAT 0002400
tco=GCOD/WC+TC1 0002410
C IF(TIME.GE.1680.AND.TIME.LT.6000.)WRITE(11,232)TCO,T5,AHXI,AHXO, 0002420
C 1T4,Q34 0002430
30 BT=(T4-TCO-T5+TCI)/ALOG((T4-TCO)/(T5-TCI)) 0002440
C UA 0002450
VAR=QT/DT 0002460
IF((TIME.GT.0.0).IN.P EQ=GCOD/DT,UA=TIME 0002470
724 FORMAT(2X,3F2X,F12.2) 0002473
IF((VAR/UAA-1.).GT.0.0.AND.TIME.GT.0.0)TS=T5+.125 0002480
IF((VAR/UAA-1.).LT.0.0.AND.TIME.GT.0.0)TS=T5-.125 0002490
c i s U A I N T O L E R A N C E 0002500
IFABS(UAR/UAA-1.)UE.0.0.AND.TIME.NE.0.0)GO TO 899 0002510
IF((AND.EQ.0.0.AND.TIME.NE.0.0)GO TO 899 0002520
IFABS(UAR/UAA-1.)UE.0.0.AND.TIME.EQ.0.0)GO TO 72 0002530
C YES INCREASE BYPASSFLOW -HAS THIN BEEN REACHED 0002540
IF((T5-TCI).LT.2.1.AND.TIME.EQ.0.0)GO TO 72 0002550
C NO 0002560
200 CONTINUE 0002570
232 FORMAT(2X,6D1X,F10.4)) 0002580
C LOOP NOT CONVERGED 0002590
C WRITE(11,504) WXY,T5,T4,UA 0002600
KWRITE(6,504) WXY,T5,T4,UA 0002610
75 IF(TIME.EQ.0.0)WXY=WXY 0002620
C LOOP CONVERGED -SET UP FOR PRINT OUT - CABIN DEW PT 0002630
72 EMCAD=CAVOL*MRH02 0002640
707 FORMAT(2X,5F2X,F9.3)) 0002650
C HBP=H=HSAWD-MIX 0002660
AHXM=(AH XI*MBYP+AHXO*MRP)*(MBYP+WXY) 0002670
PHXY=PC/1.622/AHMIX+1.1 0002680
CALL KANDK(FMI X,170P,1) 0002690
IF((TIME.ER-0.0)GO TO 13 0002700
T7/(AUXY+HBY)=T21/(WH+HASAW)+G6/WA/.24/(1+AHMIX) 0002710
touch=T7*(QX1+QX1)/(WH+HSAWD)/.24/(1+AHMIX) 0002720
EMCAD=CAVOL*PHQ2 0002730
DELTA=TSTEP/3600. 0002740
t1=(TOUCH+(H=HSAWD)+H)+T1*EMCAD)/(H+HSAWD)+DELT1+EMCAD) 0002750
C WRITE(11,626)T7,TOUCH,T1,HBP 0002760
626 FORMAT(2X,6F2X,F8.2)) 0002770
13 CONTINUE 0002780
ACR=(AHMIX (WH+HSAWD)+DELT1+EMCAD+AHCO) 0002790
1/(WH+HSAWD)+DELT1+EMCAD 0002800
IF((HASAW.NE.0.0)ASAW=64/0.106. 0002810
AHMIX=(AHCO*H+ASAW+AHCO+HASAW) 0002820
1/(WH+HSAWD) 0002830
AHXN=6.2+F2F22/F4-PX122 0002840
C IF(TIME.GE.5760.0.AND.TIME.LT.6000.)WRITE(11,464)AHXI,AHXI4,AHXY, 0002850
C 964 FORMAT(2X,3(IX,F7.4)) 0002860
SVIR5 7224
IF(AHXI.GT.AHXI4)AHXI=AHXI4
C
AHCO=AHXI-QL4/MA/1067.
C
AHCO=AHCAB
PDPC=FXI
FDPC=PC/(.622/AHCO+1.)
CALL KAHXK(PDPC,TDPC,1)
C
SET UP TEMPS FOR PRINTOUT
TA=TL-459.6
TB=TL-459.6
TC=TL-459.6
TD=TL-459.6
TE=TL-459.6
TF=TL-459.6
TG=TCI-459.6
TH=TCO-459.6
TI=TDPC-459.6
TJ=TDPI-459.6
HCOND=(AHXI-AHCO)*WIX
IF(HCOND.LT.0.0)HCOND=0.0
WCAB=WIX*(1.+AHCO)
WIXT=WIX*(1.+AHXI)
WSAMD=WSAMD*(1.+ASAMD)
WBY=HBY+WSAMD-WIX
C
IF(WIX.EQ.0)WBY=0.
WBYT=WBY*(1.+AHXI)
IF(WBYT.LT.0.0)WBYT=0.0
TIME=TIME/60.-96.
C
PRINT OUTPUT DATA
JCOUNT=JCOUNT
IF(AHCGLASS.EQ.5760.)ICYC=2
NTIME=TIME
I COUNT=NTIME/60
IF(TIME.GE.6700.) AND TIME.LE.6940.0 AND NOBED.EQ.1 I COUNT=NTIME/6
IF(NOBED.EQ.2 AND TIME.GE.7500.0 AND TIME.LE.7620.) I COUNT=NTIME/6
IF(NOBED.EQ.2 AND TIME.GE.8900.0 AND TIME.LE.9080.) I COUNT=NTIME/6
IF(AHCGLASS.EQ.5760.) AND ICYC.EQ.2 OR TIME.EQ.5760.)WRITE(11,513)
IWRITE(11,513)TIME
D 513 FORMAT(//5X,'TIME=',5X,F5.2,3X,'MINUTES INTO ORBIT')
101 IF(AHCGLASS.EQ.5760.) AND ICYC.EQ.2 OR TIME.EQ.5760.)WRITE(11,513)
1A,1B,TC,TD,TE,
2 TF,TJ,TI,TQ,TQS,TLI,HI,MIX,TD,TH,HCOND,WCAB,WBYT,K
IF(TIME.EQ.0)WRITE(6,989)
989 FORMAT(//1000001',/T TIME IN MINUTES',/CABIN TEMPERATURE--DEG F',/
D' FAN INLET TEMPERATURE--DEG F',/
E' FAN OUTLET TEMPERATURE--DEG F',/
F' CONDENSER AIR INLET TEMP--DEG F',/
G' CONDENSER OUTLET TEMP--DEG F',/
H' CABIN INLET TEMPERATURE--DEG F',/
I' CONDENSER INLET DEH POINT--DEG F',/
J' CABIN DEH POINT--DEG F',/
K' CONDENSER HEAT LOAD TOTAL--BTU/HR',/
L' CONDENSER HEAT LOAD SENSIBLE--BTU/HR',/
M' CONDENSER HEAT LOAD LATENT--BTU/HR',/
N' AIR FLOW RATE FAN--LBM/HR',/
O' AIR FLOW RATE CONDENSER--LBM/HR',/
P' CONDENSER COOLANT INLET TEMP--DEG F',/
Q' CONDENSER COOLANT OUTLET TEMP--DEG F',/
R' CONDENSER FLOW--LBM/HR',/CABIN AIR FLOW--LBM/HR',/
T' CONDENSER AIR HEAT FLOW--LBM/HR',/
U' COND BYPACS AIR HT FLOW--LEM/HR'/
V' WE REQUIRED CELL VOLTAGE--VOLTS'/", (4(1X,6(F10.3,1X)/))
00003470
IF(IPOINT.GT.JCCOUNT, AND, ICYC.EQ.2, OR, TIME.EQ.5760.)
00003480
WRITE(6,99)TIm,TA,TC,TU,
00003500
10,TE,TF,TJ,TT,GT,GTS,TL,H,
00003510
10,WHY,TH,WCOND,ACAB,WHXT,WBY, EV
00003520
979 FCFORMAT(4(1X,6(F10.3,1X)/))
00003530
IF(IPOINT.GT.JCCOUNT, AND, ICYC.EQ.2, OR, TIME.EQ.5760.)
00003540
WRITE(11,512,QUAD,QUAH,POHER
00003550
IF(IPOINT.EQ.2100 TO 777
00003560
IF(TIME.EQ.6640.0 OR, TIME.EQ.9120., WRITE(11,778)DP, T7DP, WCOND,
00003570
1QLAT,ACSEN5, T22, QLHVE
00003580
778 FORMAT(2X,T11X,F10.11)
00003580
777 IF(IPOINT.EQ.1) C3 TO 779
00003590
IF(TIME.EQ.7540.0 OR, TIME.EQ.9120., WRITE(11,778)DP, T7DP, WCOND,
00003600
1QLAT,ACSEN5, T22, QLHVE
00003610
779 CONTINUE
00003620
TIME=TIME+ TSTEP
00003630
IF(TIME.LE.TEND GO TO 1
00003640
999 RETURN
00003650
501 F O R M A T (1 H '************'
00003660
1 'FLOW RATE LOOP NOT CONVERGED *********** ITERATION 00003670
2 NO.' ,J2)
00003660
502 FORMAT(1H,F8.1,8H WA F8.1,8H NACLAL F8.1,8H TFANIN F8.4,9H PDP0003687
00003680
503 FORMAT(1H '************'
00003690
1 'CABIN TEMP LOOP NOT CONVERGED /F8.2,6H TCAB F8.1,6H"
00003690
2 "AIR F8.5,6H AHXO F8.1,6H UAR F8.2,6H T0PI F8.2,6H TAxO" 00003650
3 F8.2,6H TAxI /F8.1,6H QTOT F8.1,6H QSHET)
00003650
504 FORMAT(1H '************'
00003700
1 'FLOW SPLIT LOOP NOT CONVERGED)/F8.2,6H WHX F8.2,6H"
00003700
2 TAxI F8.2,6H TAxI F8.2,6H UAR '***********/
00003700
510 FORMAT(10H' CABIN AIR LOSS PERFORMANCE '/'
00003700
2 ' CABIN TEMP T1 'F8.2,'/ 00003710
3 ' FAN INLET TEMP T2 'F8.2,'/ 00003720
4 ' OUTLET TEMP T3 'F8.2,'/ 00003730
5 ' CONDENSER AIR INLET TEMP T4 'F8.2,'/ 00003740
6 ' OUTLET TEMP T5 'F8.2,'/ 00003750
7 ' CABIN INLET TEMP T7 'F8.2,'/ 00003760
8 ' CONDENSER INLET DEH POINT 'F8.2,'/ 00003770
9 ' CABIN DEH POINT 'F8.2,'/ 00003780
10 ' CONDENSER HEAT LOAD TOTAL 'F8.1,'/ 00003790
11 ' SENSIBLE 'F6.1,'/ 00003800
12 ' LATENT 'F9.1,'/ 00003810
13 ' AIR FLOW RATE LB/HR - FAN 'F8.1,'/ 00003820
14 ' CONDENSER 'F8.1,'/ 00003830
15 ' CONDENSER COOLANT INLET TEMP 'F8.2,'/ 00003840
16 ' OUTLET TEMP 'F8.2,'/ 00003850
17 ' CONDENSATE FLOW - LB/HR 'F8.3,'/ 00003860
18 ' CABIN AIR HEAT FLOW - LB/HP 'F8.1,'/ 00003870
19 ' CONDENSER AIR HEAT FLOW - LB/HP 'F8.1,'/ 00003880
20 ' CONDENSER BYPASS AIR FLOW - LB/HR 'F8.1,'/ 00003890
512 FORMAT(12H ' SENSIBLE METAEOLOC LOAD 'F8.1,'/ 00003900
3 ' LATENT METAEOLOC LOAD 'F8.1,'/ 00003910
4 ' CONDENSER VA - BTU/HR/DEG F 'F8.1,'/ 00003920
5 ' TOTAL WATER FROM BED LEH 'F8.3,'/ 00003930
6 ' KWE REQUIRED POWER-KW 'F8.3,'/ 00003940
END
SUE ROUTINE SAWD1(TCAB, TDP, GQS, GQL, TSTEP, PC, CFH, Q, RH02, AHCO, WSAWD, 00003970
1QUAH, TIME)
REAL KA,MHA,MHA,KA
KOUNT=0
K=1.0
TINC=TIME/60.
R=10.729
MHA=28.97
CPA=.24
MCPS=31.2
IF(TINC.LT.69.)ACONST=0.0
IF(TINC.GE.69.)ACONST=1.0
IF(TINC.GE.101.0.AND.TINC.LT.145.)ACONST=0.0
IF(TINC.GE.145.)ACONST=1.0
WA=CFM*RHOZ**60.
TINLET=TCAB+Q/MA./24/(1.+AHCO)
 IF(KOUNT.EQ.0)CALL KANDK(PC,TD)
 IF(KOUNT.EQ.0)PSAT2=PC
 KOUNT=KOUNT+1
 IF(TIME.NE.870.)GO TO 10
 KA=0
 10 CONTINUE
 IF(TIME.GE.870.)KA=KA+1.0*STEP/60./5.
 IF(KA.GT.0.1)KA=2.0
 CALL KANDK(PSAT1,TOPC,2)
 C WATER FROM BED (LB/HR)
 IF(PC-PSAT2.LT.6.0)PSAT2=PC-6.0
 MHA=ACONST*CFM+PC*MHA/R/(TINLET)
 DELH=ACONST*MHA*.622*(PSAT2/(PC-PSAT2)-PSAT1/(PC-PSAT1))
 1*STEP=0.45
 C IF(TIME.GE.8634.0.AND.TIME.LT.870.0.)WRITE(11,1)MHA,PSAT2,DELH,TIME00040250
 1 FORMAT(2X,412X,F10.21)
 00043900
 C LATENT HEAT FROM BED (BTU/HR)
 QL4=1000.*DELH/3600./STEP
 C SENSIBLE HEAT (BTU/HR)
 QS=MHA*PC/STEP
 WHAT=WHAT-DELH
 WCP=WCP+WHAT
 TBED=TBED+(QL4+QS1)*WCP/3600.
 C IF(TIME.GE.1600.0.)WRITE(11,222)TBED,QL4,QS4,TIME
 222 FORMAT(2X,411X,F10.11)
 00043930
 CALL KANDK(PSAT2,TBED,2)
 QUAN=QUAN+DELH
 IF(TIME.LT.5760.)QUAN=0.0
 WS=0.0
 IF(HSAMD.EQ.0.0)OUT=TCAB+Q/(CFM*RHOZ**60.)24/(1.+AHCO)
 IF(HSAMD.EQ.0.0)WS=CFM*PC+R/QTOUT**60.
 IF(TIME.EQ.8660.0.)WRITE(11,2)QL4,TBED,RS4,HSAWD
 2 FORMAT(2X,412X,F10.31)
 00044540
 RETURN
 END
 SUBROUTINE CONDA(WA,QS,QL,WC,UA)
 DIMENSION HXUA(47)
 DATA HXUA /1.6,40,...
 A 250,500,750,1000,1250,1500,1750,2000,...
 B 475,600,950,1250,...
 C 210,240,270,290,...
 D 360,390,420,440,...
 E 500,530,560,590,...
 F 600,640,700,730,...
 00046000
G 720, 770, 830, 870.
H 620, 670, 960, 1010.
I 850, 950, 1030, 1100.
J 870, 990, 1070, 1130.
C
WE=HA*(GS+QL)/QS
CALL BICQUAD(HXUA,1,HE,HG,UA,K)
RETURN
END
SQUAREUP SAMO2(TCAP,TPDC,QS4,QL4,TSTEP,PC,CFH,Q,RH2,AHCO,TIME,
1KSAMQ,QUAN)
REAL K,HA,HDA,HDB,KB
KOUNT=0
IF(KCOUNT.EQ.0)KA=0.0
IF(KCOUNT.EQ.0)KB=0.0
K=1.0
TINC=TIME/60.
R=10.729
HWA=28.97
C
ACONST OR BCONST = 1 MEANS AIR IS FLOWING THRU BED A OR B
IF(TINC.LT.29.)ACONST=0.0
CPA=.24
WCPS=12.95
IF(TINC.GE.29.)ACONST=1.0
IF(TINC.GE.29.0.AND.TINC.LT.125.)KA=KA+1.0*TSTEP/60./5.
IF(TINC.GE.53.)ACONST=0.0
IF(TINC.EQ.101.)ACONST=0.0
IF(TINC.GE.101.0.AND.TINC.LT.149.)KB=KB+1.0*TSTEP/60./5.
IF(TINC.GE.125.)ACONST=1.0
IF(TINC.GE.125.0.AND.TINC.LE.149.)ACONST=0.0
IF(TINC.GE.149.)ACONST=1.0
IF(TINC.LE.149.)ACONST=0.0
IF(TINC.LE.149.0.AND.TINC.GE.149.)ACONST=0.0
CFHA=ACONST*CFH
CFMB=ACONST*CFM
AHA=(43.)*RHO*60.
BHA=(43.)*RHO*60.
AHA=ACONST*AHA.
BHA=ACONST*BHA.
TINA=TCAB+G/AHA/.24/(1.+ACO)
TINB=TCAB+G/BHA/.24/(1.+ACO)
IF(KCOUNT.EQ.0)CALL KANDK(PC,TCEDA,1)
IF(KCOUNT.EQ.0)CALL KANDK(PC,TCEDB,1)
IF(KCOUNT.EQ.0)CALL KANDK(PC,TCEDA,1)
IF(KCOUNT.EQ.1)CALL KANDK(PC,TCEDB,1)
IF(TINC.LE.7500.)GO TO 11
CALL KANDK(PC,TCEDA,1)
K=0.0
PA=PC
11 IF(TINC.LE.0.940.)GO TO 10
CALL KANDK(PC,TCEDB,1)
K=0.0
PA=PC
FA=PC
CONTINUE
10 CONTINUE
C
SAMO VALVE OPENS IN 2 MINUTES---SLOW MODULATION
IF(TINC.GE.7500.)KA=KA+1.0*TSTEP/60./5.
IF(TINC.GE.8940.)KB=KB+1.0*TSTEP/60./5.
IF(KA.GT.1.0)KA=1.0
IF(KB.GT.1.0)KB=1.0
CALL KANDK(PC,TPAT1,TPDC,2)
IF(PC-PA.LT.5.0)PA=PC-5.0
IF(PC-PB.LT.5.0)PB=PC-5.0
HDA=CFHA=PC+HDA/P/TINA
HDB=CFMB=PC+HDB/R/TINA
C WATER FROM BEDS (LEN/TIME-STEP)
00055170
DELNA=ACONST*MDAA+.22*(PA/(PC-PA)-PSAT1/(PC-PSAT1))*TSTEP/60.*K
00055180
C IF TIME.GT.1680.&WRITE(11,242)MDAA,PA,PC,DELWA,TIME
00055190
242 FORMAT(X,5(X,F11.2),2X,F12.4)
00055200
DELNA=ACONST*MDAA+.22*(PB/(PC-PB)-PSAT1/(PC-PSAT1))*TSTEP/60.*K
00055210
IF(DELWA.LT.0.0)DELWA=0.0
00055220
IF(DELWD.LT.0.0)DELWD=0.0
00055230
C LATENT HEAT FROM EEDS (BTU/HR)
00055240
QL4A=1000.*DELWA+350./TSTEP
00055250
QL4B=1000.*DELWD+350./TSTEP
00055260
C SENSIBLE HEATS (BTU/HR)
00055270
QS4A=ACONST*MDAA*CPC*(TBEDA-TINA)*60.
00055280
QS4B=ACONST*MDAA*CPC*(TBEDD-TINA)*60.
00055290
WHAT=WHAT-DELWA
00055300
WHAT=WHAT-DELDB
00055310
KCPC=KCPS*WHAT
00055320
WCPC=WCPS*KCPC
00055330
TBEDA=TBEDA-(QL4A+QS4A)/WCPC*TSTEP/3600.
00055340
C IF TIME.GE.1680.&WRITE(11,242)TBEDA,TBDBD,QL4A,QS4A,PA
00055350
TBEDD=TBEDD-(QL4B+QS4B)/WCPC*TSTEP/3600.
00055360
QL4=QL4A+QL4B
00055370
QS4=QS4A+QS4B
00055380
CALL KANDK(PA,TBEDA,2)
00055390
CALL KANDK(PB,TBEDD,2)
00055400
WSA=R*(MDAA+MDAB)*60.-(ACONST+BCONST)*PC*MW/R/TCAB*60.
00055410
DELW=DELWA+MDAB
00055420
QUA=QUAD*DELW
00055430
IF(TIME.LT.5670.)QUAD=0.0
00055440
IF(TIME.EQ.7400.0)CR.TIME.EQ.9210.)WRITE(11,2)QL4A,QL4B,TBEDA,
00055450
TBEDD,GS4A,G5B,MDAA,MDAB
00055460
C FORMAT(2X,4(2X,F10.3),/2X,4(2X,F10.3))
00055466
RETURN
00055470
END
00055480
SUBROUTINE QNET(TCAB,GSM,GLM)
00055490
COMMON /YY/ XIX500),G1,G1
00055500
COMMON /SK/SKCAR(20,400),SKDATA(8000),ICARD(12,400),LSM,MSK
00055510
EQUIVALENCE (X110,G1MCH),X(111,G1MCH),X(43),X(40),X(40)
00055520
2 (X(44),XXNAX)
00055530
C NOMINAL LATENT/MAN
00055540
QLNH=QNCH-450.+10.*QKIH/1000.0.*(TCAB-60.)
00055550
IF(QLNH.GT.GMHUM)QMNUN=GMHUM
00055560
QLMIN=-2*QKIMH+2.*(TCAB-60.)
00055570
IF(QLMIN.GT.GLMHM)QLMAX=QLMIN
00055580
C MAXIMUM LATENT/MAN
00055590
QLMAX=QNCH-450.+10.*QKIMAX/1000.0.*(TCAB-60.)
00055600
IF(QLMAX.GT.GMHMAX)QLMAX=GMHMAX
00055610
QLMIN=-2*QKMAX+2.*(TCAB-60.)
00055620
IF(QLMIN.GT.GLMHX)QLMAX=QLMIN
00055630
C TOTAL LATENT LOAD
00055640
QLH=IFX(QLH+.5)
00055650
C TOTAL METABOLIC LOAD
00055660
QTH=KTHM+QTNCH*XMAX+QTMAX
00055670
C TOTAL SENSIBLE LOAD
00055680
QSH=QTH-QLM
00055690
RETURN
00055700
END
00055710
SUBROUTINE WVETimestep,P,S,P,DP,DPV,TV,TV,TIME,POWER,DP,
00055720
1AHVEW)
00055730
C WATER VAPOR ELECTROLYSIS FOR LARS
00055740