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16. Abstract

This paper is devoted to some results concerning non­
linear acoustics deduced from a comparison of nonlinear
processes between optics and acoustics. In the first part
an aspect of nonlinearity in acoustics connected with the
dimensionality of the medium of propagation is emphasized
and illustrated by the proof of static instability of an
ideal linear solid. In the second part a new phenomenon,
which can be called acoustical rectification by analogy
with nonlinear optics, is propounded to measure the third
order elastic constants and its experimental consequences
are predicted in a particular case.
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SOME ASPECTS OF THE COMPARISON BETWEEN
OPTICS AND NONLINEAR ACOUSTICS

B. Pertin
Department of Physical Research (L.A. No.71), Pierre and Marie Curie

University, 4 Place Jussieu, 75230 Paris Cedex 05

i. Introduction /C8-216"

The comparison of nonlinear processes between optics and acoustics

permits, on the one hand, broadening the analysis of the properties

which determine the essential make-up of nonlinear behavior in these

two domains, and on the other hand, exhaustively recording phenomena

capable of procuring the measurement of nonlinear characteristics of

the propagation medium.

In this paper, confined to a solid medium, there are several con-

sequences, concerning nonlinear acoustics, that can be deduced from

such a step:

- The identification of a nonlinear acoustic source connected

with the dimensionality of the medium of propagation.

- The proposition of utilizing a new phenomenon (which can be

called acoustical rectification, by analogy with nonlinear optics)
to measure third order elastic constants.

2. Sources of Nonlinearity

Concerning optics, nonlinearity is totally taken into account by

the relation which expresses the electric polarization of a dielectric

medium while functioning in the electromagnetic field which produces

it. The Maxwell equations are not intrinsically responsible for any

nonlinearity and without approximation lead to a linear propagation
of electromagnetic fields in a vacuum.

* Numbers in the margin indicate pagination in the foreign text.
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The situation is more complex concerning acoustics where the

linear description is still an approximation. Nonlinearity does not

result uniquely from the equation of state which permits the expression

of anharmonicity of interatomic potentials but also from the constit-

uent relations with acoustics which are intrinsically nonlinear. This

last source of nonlinearity is essentially related to the dimension-

ality of the medium of propagation; this is shown by the introduction
of various nonlinear terms:

- Thus, whereas for unidimensional media a satisfactory repre-

sentation of the state of deformation is realized by the gradient of

displacement uij, for higher media of dimensionality, one must use

the Lagrange deformations nij which are nonlinear expressions of
components u..:z]

:I( +uj . )nij _ uij i Uki Ukj (1)

_ui
(uij =- ; a. is a Lagrangian coordinate

_aj 3

- In the same way, various Jacobians introduced to take into /C8-217

consideration the volume mass, and the deformation of the system of

coordinates . are not simplified in non-unidimensional media.

This source of nonlinearity provokes the appearance, in the para-

meters which permit the description of nonlinear phenomena, of second

order elastic constants alongside those of the third order, which rep-

resent the anharmonicity of the interatomic potential. Even though

the third order constants may often be higher than those of the second

order in order of magnitude, the presence of second order constants,

and consequently the dimensionality, plays a major role in nonlinear

developments; this can be illustrated by studying an ideal linear

crystal for which the different nonlinearities would compensate each

other (various authors [i,2] have suggested such a definition).

We will show, in effect, that although in a unidimensional case

a perfectly linear (or harmonic)model can be conceived, the case is
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not the same for larger dimensionalities: i

i;
The equation of propagation in solids is written:

_2 ui @ [ _ _ 1P t2 Jik -- (2)
a @ @ aj _ njk ' I

P and _ are respectively the volume mass and deformation energy per ia
unit of volume of nondeformed crystal.

J: Jacobian Jik:Uik+ _ik (3)

B@ = Cjkmn qmn + _ Cjkmnrs nmn nrs + "'"
njk 2 (4)

Cjkmn and Cjkmnrs are, respectively, Brugger's second and third order
elastic constants.

If the ideal linear crystal is such that there is no interaction

nor distortion of the elastic waves in the course of propagation, the
following equation can be written

] _2 Uk

_ :
aik - I'ijkl (5)

_aj B njk _aj Ba]

From this, one deduces:

r_jk] = 1 (Cijk]+ Ci]kj)2 (6)

and

I

- _ (Cijklmn + Cilkjmn) : Cjlmn6ik + _ (CJnkl2 (71

+ Clnkj)6im + ! (Cijnl+ Cilnj)6km
2



By writing out the various symmetries which are verified by

third order constants,severe restrictions are obtained concerning

those of the second order. Thus, the symmetry by permutation of

indices m and n leadsto Table 1 of second order elastic constants

(one can show that other symmetries do not provide other relations).

Such a solid has an elastic hyperisotrope behavior concerning prop-

agation (i.e.: there is a triple degeneration of the modes), and

in addition presents a static instability since the module, whether

by compressibility or by shear is negative. This result also agrees

with that which one obtains on a microscopic level when one imagines

a perfectly harmonic crystal [3,4] (i,e.: a crystal for which the

development of the interatomic potential does not interfere with the

parameters of connection of an order two times higher).

3. Acoustical Rectification

Even though the analysis of the causes of nonlinearity may pro-

duce a greater complexity in acoustics than in optics, macroscopic

manifestations should be analogous to them. Effects of the second

order can be summed up for the most part as an interaction of two

fields of radiation of frequencies e I and _2' which creates a new

field of frequency _3" A first rule of selection dictates:

(_3= ml + (_2 (s)

It suffices to take several values for @i and _2 to obtain /C8-218
second order nonlinear phenomena (Table 2). Thus, for frequencies

e 1 and m2 equal, respectively, to_ and to -_, one obtains the
phenomenon called rectification.

Rectification is expressed in optics as the appearance of a

continuous polarization while passing an intense laser beam through

several crystals; this effect is sometimes called a dc effect.

In acoustics the tensor c of Cauchy stress (or stress deformed

surfaces) is written:
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u J t
J (9)det J @n

One can deduce from (1,4,9) a nonlinear relation between

_, . and u..:
z3 z3

+IA i
°iJ = Cijkl Ukl 2 jklmn Ukl Umn (lO)

Table I

SECOND ORDER ELASTIC CONSTANTS
OF AN "IDEAL LINEAR CRYSTAL"

CI | - CII - CI1 0 0 0

- Cl I Cll - CII 0 0 0

- CIl - Cll CII 0 0 0

0 0 0 CII 0 0

0 0 0 0 011 0

0 0 0 0 0 CII

Table 2

SOME NONLINEAR EFFECTS
OF THE SECOND ORDER

_i _2 e3

_ 2_ Generation of second harmonic

Influence of a static field on
0 _ the propagation o a radiation

field with freque

-_ 0 Rectification
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is a linear combination of second and third order elastic
Aijklmn
constants.

If a deformation field of fundamental frequency_ is propagated,

we may write (_ << i):

Uk]= ":_k](_)ei_t+_kl(-_)e'i_t+2 _k](0)

(ll)
+E2<k](2_)e2i_t+E2<k](-2_)e"2i_t.0 (2)

thus, a(o) being the static component of the spectrum of stresses:

°iJ(°) _2[ ]' : Cijkl_kl(°) + Aijklmn_kl (_)_mn ('_) . (12)

+ O(E2)

We call acoustical rectification the effect which associates

static stress [2 ' ]
Aijklmn<kl (_o) <mn ('m) '

with a deformation _(_).

Remarks

1. This effect is very close to the phenomenon of pressure of

acoustical radiation originally foreseen by Rayleigh [5]; its in-

terpretation was somewhat erroneous. It was not until around 1920

that Brillouin [6] clarified this phenomenon, in a remarkable way,

bythe following two aspects:

- the pressure of radiation has a tensorial nature.

- there are two distinct contributions to this effect:

on the one hand, distortion of the wave during propagation,

on the other hand, the flux of the quantity of movement across

the immobile surface upon which the observation is made.
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In addition, Brillouin is the only person, to our knowledge, to

have considered the case of solids.

2. The term acoustic rectification has already been used by /C8-219

Mathur and Sagoo [7] to describe a phenomenon which is very different

from the one which we present, and is more connected to that of_

autofocalization: they have foreseen and observed that an ultrasonic

beam whose profile is not initially uniform can, under certain con-

ditions, make itself uniform in the course of propagation. The term

rectification used in this case thus has a very different meaning

from the same term used in relation to optics or electronics.

Experimental consequences of acoustical rectification essentially

depend on the conditions of the ends of the solid. We will now con-

sider that static stresses are zero on the surfaces of a solid (or at

least remain unchanged by the application of an ultrasonic field),

Consequently, the relation (12) provides for the appearance of a

static deformation of the solid when an ultrasonic wave is passed

through it:

2_ij(o) 2• : - Kijkl Aklmnrs _mn _(_)_rs ('_)

(13)
+ 0 (2)

Kijkl represents the tensor of elastic compliances.

If it is possible to measure the deformation of the solid which

results from rectification, one can thus determine several combina-

tions of third order elastic constants [4].

Example

Cubic crystals of the highest symmetry possess six third order

elastic constants. If one considers the propagation of a longitudinal

wave A cos (t - _) following an axis of order 4, the relation (13)
vbecomes:
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J
/

- A2m2

3Cli (CII + C12) + 2CI_ + (Cll + C12) CIII'2C12CI12 (14)
(Cll - C12) (Cll + 2C12)

• €2_22 (0) = _2_33 (0)

_ A2 w2 -4 CII C12 + (CllCll 2 - C12CI11) (15)
4 V-_ (Cii - C12) (CII + 2C12)

_12(0)+_21(0) :_23(0)+_32(0 ) :_13(0)+_31(0 ) : 0 (16)

Detection of static deformations can be facilitated by using an

ultrasonic wave modulated in impulse A (t - _) cos (t - _). Thus:
V V

_2_11(0): _ [_2A2 (t-a)+ A'2(t-v)]v (17)

In general:

A,2 << 2 A2

p (18)

(this corresponds to a parametric approximation).

LongitudinaI a__cousticrectification will correspond to the prop-

agation of signal 1 (t)l(o2A2 (t- _) where 1 (t) is the length of

the impulse in the solid (Fig. i) v One can thus foresee that the

order of magnitude of the displacement due to rectification will be

comparable to that of the second harmonlc generated on a distance

equal to that of the impulse. Methods permitting the detection of

harmonics can thus be retained a priori to emphasize rectification.

Thus capacitive detectors such as those developed by Gauster and
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Breazeale [8] seem particularly

i :jt__/!_ I well-adapted: in effect, they

permlt measuring amplitude of

, ultrasonic displacement at onei

i I
. _ end of the solid. An analysis as
t

' ' to the frequency of recurrence of

the impulse must then pick up a

signal, corresponding to the

integration of the square of the

envelope (Fig. 2), from which a
Fig. I Acoustical rec-
tification due to the linear combination of the two

passing of an ultra- constants CII I and CII 2 can be
sonic impulse through
a solid, deduced.

Contingent upon whether one

^ (t) can experimentally reproduce

a conditions which are sufficiently

close to previously explicit
t

_ limits, acoustical rectifica- /C8-220

tion can become a new approach

-,T> to measuring third orderb
elastic constants.

eJ3 t

i, 4. Conclusion
V

The study of nonlinear

optical acoustics has permitted

Fig. 2 (a) Ultrasonic sig- us, on the one hand, to show an
nal at beginning of propa-
gation; (b) rectification essential aspect of acoustical
signal detected at end nonlinearity related to the dimen-
of the solid.

sionality of the propagation medium

(we have illustrated this fact by demonstrating the static instability

of an ideal linear crystal), and on the other hand, to outline a new

method of measuring third order elastic constants by using a

phenomenon which we propose to call acoustical rectification.
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