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ABSTRACT

An equation for acoestic ray paths in a spatial.ly  varying mean flow has

been examined to determine some of the characteristics of the flow gradient

effects on sound propagation. In a potential flow the acoustic rays are

de ' , cted in the direction of increasing mean flow, and the gradient of the

mean flow speed is the dominant factor causing the ray deflection. In

contrast, in a sheared mean flow, the vorticity is the dominant factor in

deflection of the acoustic rays.

SYMBOLS

b	 impact parameter, perpendicular distance between vortex center and

incident ray

b 
	 minimum impact parameter, smallest value of b for which ray pro-

pagates without hitting zylinder wall

c	 local sound speed

C.	 stagnation sound speed

k	 wave number, IN
k	 wave number vector

n	 unit vector normal to wave front

r	 radial distance

r 
	 smallest radial distance from center to ray path or particle

trajectory

r 
	 radius of circular cylinder

t	 time (variable)

u	 mean flow speed, lul

U	 mean t low ve loc i ty

umax	 greatest mean Clow speed on ray path

u 	 mean Clow speed at r = r 
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v	 ray group velocity

"x	 unit vector parallel to x-axis

s
X	 position vector

(x,y)	 Cartesian coordipates (Incident rays are all chosen to be parallel

to x-axis.)

y	 specific heat ratio (1.4 for air)

e	 polar angle or ray deflection angle

0 	 value of o at turning point of ray path or particle trajectory

e	 counterclockwise unit vector

o	 deflection cross section (Eq. (14))

W	 angular frequency of sound (constant)

W 
	 relative angular frequency (dependent on mean flow and wave number

vector)

INTRODUCTION

This paper presents an initial theoretical investigation involving the

refraction of sound within an inlet duct, such as in an aircraft jet engine

system. Such an inlet duct often involves nonuniform mean flow: The flow

into an inlet is nonuniform radially as well as axially; I flow in the

vicinity of the inlet lip can be crudely simulated as a free vortex at least

in static test conditions. One major effect of a flow gradient is the de-

flection of sound.	 In an effort to understand some of the characteristics

of such an effect, the present paper examines acoustic ray paths in a simple

potential flow - a free vortex with a hard-wall cylinder core. The analysis

uses a geometric theory based on the eikonal equation.2

Although it is a high-frequency approximation, the geometric theory

have some advantages: Since its formulation is similar to classical mech-

anics dealing with the motion of a particle, one can gain a direct physical
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insight into the problem. It is simple and well suited to numerical compu-

tation. Furthermore the geometric theory may be able to correctly determine

locations of the maximums of a duct-mode radiation pattern even for a

finite frequency. The theory may possibly be expanded for more detailed

radiation patterns by using a statistical interpretation of sound or

possibly by carrying out higher order calculations.4

Similar ray calculations were previously reported. Salant's calcula-

tion includes a free vortex. 5 He has implicitly neglected the mean flow

dependence of the sound speed by assuming that the index of refraction is

unity. The assumption is not consistent with the fact that in potential

flow the sound speed depends on the local mean flow speed. The present cal-

culation shows that the mean flow dependence of the sound speed exerts a

significant influence on acoustic ray deflection. Georges used a somewhat

different vortex model that includes shear. 6 The inclusion of shear re-

sults in a refraction pattern that differs considerably from the present

calculation.

ANALYSIS

An equation is derived herein that governs the acoustic ray paths in a

spatially varying mean flow. The mean flow is assumed to be isentropic.

The derivation can be considered as a review, and thus no justifications

will be detailed.	 Instead, refer to the following references: The funda-

mentals of the geometric theory of waves are given in books by Landa l, and

Lifshitz 2 and by Born and Wolf; 7 ray tracinq in a movinq medium is dis-

cussed in a book by Lighthill B and papers by Blokhintzev, 9 Brettherton

and Garret, 10
, Candel, ll and Hayes.12

Let us begin with the well-known dispersion relation of sound in flow13

w - ck*t - t	 ( 1 )
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where W is the angular frequency of the sound, c the local sound speed, i

the mean flow velocity, Z the wave number vector, and k . IN. In Ref. 3,

Wr, called the relative frequency therein, is used in place of ck.

The time derivative of the two conjugate variables, k and the position

vector x, is obtained by means of the Hamilton-Jacobi equation as follows:

3W^	 - pW.	 (2a,b)

at

Here the dot over x and k stands for the total time derivative. In gen-

eral, the total time derivative of a function f (x, k, t) is obtained as

U—t (i - w + (
	 at)	

TU

It follows from Eqs. (1) and (2a) that

cn+	 (3)

where "n . k/k is the unit vector normal to the wave front. From Eqs. (1)

and ;2b)

--k^c	 x ^ x	 (4)

The local speed of sound in isentropic flow is given by13

c 2 =c 2 -	 1 u2
•	 Z	 +

where c. is the stagnation sound speed and y the specific heat ratio of

the fluid.

A numerical integration method can be immediately applied to Eqs. (3)

to (5) to determine acoustic ray paths for a given mean flow and initial

c^^nditions.	 Before going into details of the numerical cnlutinnc_ wo will

qualitatively discuss the kinematics of the acoustic ray. To this end, we

combine Eqs. (3) and (4).	 Taking the total time derivative of Eq. (3) yield,.

(5)
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t - an * cn + 1.	 (6)

Inserting Eqs. (3) to (5) into Eq. (6) gives

^	 1IU2-^ix^xt+ng,	 (7)

where g is a scalar function given by

g . (2t - ti) • ^c + n • (cn • VW.	 (8)

Ire deriving Eq. (7), we have also used

-	 pc,	 i/k,	 in . (i - "nk)/k.	 (g)

Equation (7) may be viewed as the equation of motion for a wave packet

iri a spatially varying mean flow. The acceleration v of the wave packet

has been separated into three terms on the right side of Eq. (7). The

acceleration represented by the first term is proportional to the gradient

or the square of the mean flow speed and is independent of the wave packet

motion. Note that this acceleration is in the direction of the maximum

increase of the square of the mean flow speed. The acceleration in the sec-

orid terns is caused by the vorticity end is perpendicular to the group veloc-

ity (or the wave packet motion). All the remaining contributions are put

together in the third term. This acceleration is normal to the wave front.

Consider the limiting case of u/c << 1, for which Eq. (7) can be

written, to the first-order approximation, as

c

Here the last term represents the acceleration parallel to the group veloc-

ity. Thus the ray deflection is, in this case, caused only by the vortic-
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ity.	 In other words an acoustic ray is hardly deflected in a potential Clow

of low Mach number.

for a potential flow of high Mach number, Eq. (7) is written as

The numerical solutions of this equation are discussed in the next section.

NUMERICAL RESULTS AND DISCUSSION

In this section, numerical solutions of Eq. (11) are presented for a

mean flow that is composed of a free vortex with a hard-wall circular cy-

linder core. The cylinder core is included here for two purposes: (1) to

Simulate a hard-wall boundary; and (2) to avoid the flow singularly at the

vortex center.

The mean flow is described as

u r
o o e
	 for r > ro t	 (12)

where r is the radial distance from the cylinder axis, r 
	 the radius of

the cylinder core, u 	 the mean flow speed at r - ro t and a the

counterclockwise unit vector.

For comparison, the discussion also includes trajectories of a classi-

cal particle of unit mass moving under the potential given in the form

-( Y + 1)u 2 14. The equation of the motion of the particle is then

t . Y	 ^u2.
	

(13)

The solution of this equation can be otained in a closed form for u given

in Eq. (12) 14 and is reviewed in the Appendix.

If the second term on the right side of Eq. (11) is smaller than the

first term, Eq. (13) will be an approximate equation for acoustic ray prop-
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ayation in a potential flow. It is not easy to determine whether the second

term is negligible. However, the numerical results presented herein show

that the particle trajectory is almost the same as the ray path of down-

stream propagation and that the upstream ray path, although differing from

the particle trajectory, is also characteristically similar to it.

in Fig. 1, the pattern of the acoustic ray propagation is portrayed for

the case of uo/c. - 0.5. All the rays are initially parallel to the

x-axis. A r,;y is specified in terms of the impact parameter b, which is

defined as the )erpendicular distance from the vortex center (r . 0) to the

initial group velocity of the ray. Given at the end of each ray is the

deflection angle e, which is defined as the angle difference between the

initial and the final group velocities of the ray. 	 The ray deflection is

small for large values of b. As the value of b decreases, the deflection

increases. There exists a minimum value of b for which the ray may prop-

agate through without hitting the cylinder wall. As is shown later, the

minimum value of b, denoted by bm , is always greater than r 	 and

depends on the mean flow u 0 /c . . it also depends on whether the ray is

initially above or below the x-axis. 	 In determining the ray path for

b < bm, we have used the usual rule nf the sound reflection from a hard

wall in addition to Eq. (11).

One of the more important findings from Fig. 1 is that all the rays are

deflected toward the vortex center. This phenomenon is an acoustic ray char-

acteristic of the free vortex and can be accounted for principally by the

02
term vu	 in Eq. (11). For the free vortex this term constitutes the

centerward acceleration of the wave packet. The acceleration is inversely

proportional to the third power of the radis1 distance r from the vortex

center.	 The acoustic ray path fur b > b 	 is somewhat similar to the

I
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open trajectory of a particle moving under a similar attractive central

force field (see Appendix). Note that the second term on the right side of

Eq. (11) is smaller than the first, at least for b > b m, and is negligi-

ble in the vicinity of the 6 turning point (point of closest approach).

Also note that the deflection is greater for upstream rays than for

downstream rays. This result contrasts somewhat to the ray deflection in a

viscous vortex, which was considered in Ref. 6 (cf. Fig. 2 in the refer-

ence). In a viscous flow the wave packet acceleration due to vorticity is

likely to be a dominant factor for the ray deflection, as can be noted from

Eqs. (7) and (10). On the other hand, in the absence of vorticity, the

term 'vu 2 is the dominant factor. The group velocity is smaller for the

case of upstream propagation than for downstream propagation, while the

centerward acceleration represented by the first term in Eq. (11) is in-

dependent of the group velocity. Consequently, a wave packet experiences

longer centerward acceleration, and greater ray deflection results fnr up-

stream propagation than for downstream propagation.

Plotted in Fig. 2 is • he relation between the mean flow sped uo/cW

at r . 
r 
	 and the min i,,wm impact parameter bm/r o . As expected,

ti n is close to ro for low mean flow speeds ( u o /c ,. «1). As the

mean flow speed increases, b 	 increases slowly at first, and the relation

eventually becomes almost linear. Both bm and its slope are larger for

upstream propagation than for downstream propagation. Note that the bM

^s.	
u 
	 relation for particle motion, which is computed from Eq. (A9), is

,jlmost the same as that for downstream ray propagation. The results in this

figure can be used in ray theoretical studies of the sound radiation direc-

tivity from an inlet duct. 	 It is important in such studies to determine

%nether a ray may propagate through the inlet flow with or without being
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reflected near the inlet lip. According to the present result the probabil-

ity that a ray will hit the inlet lip is enhanced with the presence of a

free-vortex-like flow near the lip.

In Fig. 3 the ray deflection angle o is plotted as a function of the

mean flow speed uo/c. for three values of the impact parameter b/ro.

As mentioned earlier (in the paragraph following Eq. (10)), the deflection

is negligible near u o . 0. As the mean flow speed increases, the deflec-

t ion angle increases. The increase is faster for the smaller impact parame-

ter. The deflection is larger for upstream rays than for downstream rays.

The result for the particle motion is again almost the same as that for the

downstream ray propagation. For b/r o . 3 and 6 the results for particle

rtK)tion, which are not shown, are almost identical to those for downstream

propagation.

In Fig. 4 the deflection angle a is plotted as a function of the

impact parameter b/r o . Each curve begins with b . b m. The ray de-

flection is the greatest at b - b 	 and decreases rapidly in the begin-

ning with increasing impact parameter. The deflection eventually becomes

negligible for large values of b/r o . Again, the upstream rays experience

greater deflection than the downstream rays. The deflection of a downstream

ray is almost the same as that of a particle.

The slope of the curves in Fig. 4 can be used to determine the inten-

sity of the deflected ray. To this end, one may define the deflection cross

section o as follows: or  de is the total power of the rays deflected

into the anyle de at a for unit intensity of the incioent ray within

db at y - b. For a fixed value of uo /c. , a is a single-valued func-

tion of b, and vice versa. 	 Thus the cross section is obtained as

1	 d 
°	 r  de'

(14,
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where r 	 is used to nondimensionalize o. Note that c is the inverse

of the slope of the curves in Fig. 4 and is proportional to the intensity of

the deflected rays. One may refer to Section 3.7 in Ref. 14 for more

information on the cross section.

In Fig. 5 the deflection cross section o is plotted as a function of

the impact parameter b/ro, Each curve begirs with b . b m. The cross

section is almost zero at b • b 	 and increases with increasing impact

parameter. It increases also with decreasing mean flow speed uo /cm.

Note also that the cross section is greater for downstream rays than for

upstream rays. The result for the particle motion is again found to be

almost the same as that for downstream ray propagation unless the impact

parameter is too large.

If the intensity distribution of the incident rays is known as a func-

tion of b, the angle intensity distribution of the deflected rays can be

determined from curves such as those given in Figs. 4 and 5. It is some-

times convenient to express the cross section as a function of the deflec-

tion angle, as in Fig. b.	 In this figure, o/(u o /c.) is used in place of

o (cf. Eq. (A11)). Each curve, corresponding to upstream or downstream

rays, includes three mean flow speeds (i.e., u o/c. . 0.5. 1, 1.5).	 In

other words, when divided by the factor uo/c., the deflection angle de-

pendence of o is riot changed by the variation of the mean flow speed.

Note also that the results are almost the same for upstream rays, downstream

rays, and particle motion.

As may be noted from Figs. 3-5 as well, the cross section is greater

for smaller deflection angles. As an ex,.-me example, the cross section o

is infinite with no deflection (e • 0) as in the case of b - . or

u o . 0. As the deflection angle increases, the cross section decreases



very rapidly in the beginning. The decreasing rate gradually lessens. and

the cross section eventually becomes negligible for large deflection

angles. Accordingly the intensity will be greatly reduced for the rays that

suffer large deflection. -

Care must be taken in using Fig. F to determine the angle distribution

of the intensity of deflected rays. In practice, the incident rays are dis-

tributed in a finite spatial extent; and thus, the intensity of .deflected

rays will be nonzero within a finite angle. For an example, consider the

incident rays that -ire uniformly distributed within y . b, and b2

such that b l > b 2 > bm . Let the deflection angles be denoted by

e l and e2 . respectively, for the rays with b 	 and b 2 . Accord-

ing to Fig. 3, e2 > e l , and all the rays are deflected into the angles

between e l and e 2 . The intensity of the deflected rays is propor-

tional to u only within the angle lying between e l and e2 . The

intensity is zero outside these angles.

Plotted in Fig. 1 is the relation between the deflection angle a of

a ray and the largest mean flow speed umax/cm on the ray path. Many

values of b and u 	 were used in the calculations to produce these

curves. All the calculatiuns tail onto a single curve in each case of up-

stream propagation or downstream propagation. ihts feature can be recog-

nized from the closed-form solution of the particle trajectory (see Eq.

(Ad)). Although the l a rgest flow speed on a ray path is not known a priori .

t ► ,e almost perfect correlation will be useful for further studies of the

flow gradient effects on an acoustic ray. For instance, one may be able to

estimate the upper limit of the ray deflection for a given mean flow without

a detailed calculation.
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CONCLUDING REMARKS

As noted in previous studies such as that in Ref. 13 (see Eq. (1) on

p. 261 of ref. 13 or Eq. (10) in the present paper), the first order effect

of the mean flow does not change an acoustic ray path in the absence of

vorticity. The present investigation shows that, in a potential flow, de-

flection of an acoustic ray is a second-order effect of the mean flow and

that the ray deflects in the direction of increasing mean flow speed regard-

less of the direction of the initial ray relative to the mean flow velocity.

The ray paths are, in many respects, similar to the trajectories of

particles moving under the potential given ir; the form -( Y + 1)u 2 /4. The

various results for the particle motion are almost the same as those for the

downstream rays and are characteristically similar to those for the upstream

rays. Thus the closed form solution of the particle motion is very helpful

in studies of the ray propagation in potential flow.

It is also shown that ray deflection is greater for upstream propaga-

tion than for downstream propagation. Flow in an inlet duct can often be

assumed to be irrotational, and sound generated in the duct must propagate

again ,+ the mean flow to be radiated. Consequently an initial conclusion

might be reached that the directivity of sound radiation from such an inlet

duct can	 significantly affected by the mean flow gradients. However, it

was also found that rays that experience large deflection suffer large re-

ductions iii intensity. Thus, in many practical problems, the ray deflection

due to the potential flow gradients may not significantly alter the far-

field radiation pattern. 	 The consequences of this result will require

further study using realistic inlet flow and sound sources.

The results mentioned herein are characteristically different fron ray

deflections in a sheared mean flow.	 In such a flow the first-order effect

13
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involving vorticity is the dominant factor for deflection of acoustic rays.

If a ray has a downstream component, the ray deflects in the direction of

decreasing mean flow. An example is found in sound radiation from an ex—

li,iust flow duct. Such a duct involves a shear layer, in which the mean flow

radially decreases.
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APPENDIX

MOTION OF A CLASSICAL PARTICLE UNDER A CENTRAL FORLE FIELD

This Appendix deals with the motion of a classical particle of unit

'	 mass, which is governed by.Eq. (13) with u' given in E q . (12). Included

herein are the equations for the particle trajectories and the functional

•	 relations between the parameters that are used in the text for the discus-

sion of the numerical results.

With the substitution of Eq. (12), Eq. (13) is written as

22

'Y 	 1 r°u°(Al)
r

The solution to this equation is well known. 14 Let the initial particle

position be given by (x 	 ^., y . b) or by (r	 •, e	 and the initial

veiocity by v . zc.. The trajectory of the particle is then determined as

r(e) -	 b(1 - a) 
112	

(A2)

sin[(1 - a) 112 ()]'

where

 -2

+ 

1(uo)2
 b	

(A3)a s 
L Cm r° .

Here we have assumed that a is less than unity. For a > 1, the particlE

will be trapped into the center of the force. In other words the condition

for an open trajectory is a < 1, and one obtains, by using Eq. (A3),

b 112 1 1/2 uo

ro > (L4 1)	 cam .	(A4)

An acoustic ray we ld also be trapped into the vortex center if the

cylinder core were riot present and b were smaller than a certain value

(see Fig. 3 in Ref. 5).
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Eq. (A2) possesses an infinite number of poles. However, only two

poles are of physical significance. The pole at e	 * corresponds to the

initial position of the particle. Another pole corresponds to the final

position, and the final polar angle is given by

	

2	 _2 -112

u

e . * 1 - 1 -	 co	
b	

(A5)

	

•	 o

The final angle is negative because the initial value of y, b, is positive

and the force is attractive. The absolute value of the final angle is

equivalent to the deflection angle defined for acoustic rays.

At the turning point (r - r c , e • ec ), dr/de . 0. Thus

	

rc . b(1 - 0)
112^	 (A6)

e . . 1 -	 1	 (A7)

c	 2(1 - a) /

with a given in Eq. (A3).

	The deflection angle can be expressed in terms of r 	 as

2 1/2

I 
( u 

max
Ii--L C .. ) I

where umax - uoro/rc.

Similarly to the case of the acoustic rays, one may define the minimum

impact parameter b 	 in such a way that r  > r 	 for b > bm and

r  < r 	 for b < bm .	 One can obtain, by using Eq. (Ab),

/2

bm . 1 + ^ 1 Co)
2]1

(Ag)
p	 \ m

16



The deflection cross section, o - db/r o do, is obtained by differen-

tiating Eq. (A5) as

-1	 2	 /2

	

2 u o	 b	 + 1 ^o	
(A10)

° - * r +	
—C-
	 ro -	 ca

or

u`1/2	 /	 2	
-3/2

- * (L;-9 C' ( - w) - 1	
(All)

4 \

i ,

in
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FIGURE CAPTIONS

Figure 1. - Deflection pattern of acoustic rays in a free vortex with hard-

wall cylinder core. In the left side, values of impact parameter b are

given for incident rays that are all parallel to the x-axis. At the end
of each ray path, the deflection angle of the ray measured from the x-axis

is given. Mean flow speed, uo/c,, is O.S.

Figure 2. - Correlation between mean flow speed and minimum impact parameter.

Figure 3. - Ray deflection angle as a function of mean flow speed for impact

parameters b/ro of 1.5, 3, and 6.

Figure 4. - Ray deflection angle as a function of impact parameter for mean
flow speeds uo/c m of 0.5, 1, and 1.5.

Figure 5. - Deflection cross section as a function of impact parameter for
mean flow speeds uo/c m of 0.5, 1, and 1.5.

Figure 6. - Deflection cross section as a function of deflection angle.

Figure 7. - Ray deflection angle as a function of maximum flow speed on ray

path.

I
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