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(The natural) laws are not forces external to things,

but represent. the harmony of movement immanent in them.

~from the I Ching.

[
e




Abstract

Although vortex rings have been studied mathematically and
experimentally for over a century, the transition in characteristics
from viscous to turbulent vortex rings, and the effects of boundaries
on their evolution is not well understood. In this study kinematic
theory and flow visualization experiments are combined to examine the
dynamic processes which control the evolution of vortex rings from
very low to very high Reynolds numbers, and to assess the effects of

the wall as a vortex ring travels up a tube.

THEORY. We model the vortex ring as a circular vortex filament
axisymmetrically placed in an infinitely long tube. Using the
Biot-Savart law, a kinematic expression which linearly relates a given
distribution of vorticity to its velocity field, the closed form
solutions to the non-steady potential and streamline fields are
obtained. Transferring to a frame moving with the ring, the outermost
closed streamline outlines the spheroidal volume of fluid carried
along with the vortex core. We find that the effect of the tube on
the vortex ring is to increase its volume and decrease its speed as
compared with an 1dentical ring in an unbounded flow. By
superposition of vortex filaments, we conclude that the size and shape
of typical vortex rings are accurately predicted by concentrating

their strength along a circle, and by neglecting vorticity in a wake.

EXPERIMENT. Vortex rings are produced by ejecting a single
pulse of water through orifices mounted in a plexiglass tube of
diameter 11.88 cem. Seven orifices with orifice-to-tube diameters
between 0.10 and 0.64 are used. The piston speed is adjusted so as to
produce tube Reynolds numbers of roughly 5000, 4000, and 3000,
resulting in the production of vortex rings with Reynolds numbers

between 690 and 50700. To visualize the flow, dye and hydrogen
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bubbles are used, high speed 16mm movies recording all combinations of

tube Reynolds number and orifice size. From the movies detailed

measurements are made of the distance, size, and shape as a function
of time for 26 rings at different Reynolds numbers. A careful
examination of the data reveals:

1. The time dependent form of the ring velocity can be identified
withain regimes for all vortex rings, two regimes being separated
by a rapid change in velocity.

2. From the form of time dependence in velocity, three classes of
vortex rings can be identified and grouped by Reynolds number.
Qualitative observations are combined with the measurements to study
the character of vortex rings in each of these three groups and the

periods of rapid change between regimes.

COMBINATION OF THEORY WITH EXPERIMENT. The kinematic
relationships among the size, shape, speed, and strength of vortex
rings i1n a tube are computed from the theory. Previous methods for
computation of the total circulation required a measurement of the
velocity field within the vortex ring. Together with these kinematic
relationships, however, relatively simple flow visualization
measurements can be used to calculate the total circulation of a
vortex ring at a given time. Using this method we have computed and
plotted the strength as a function of time for our experimentally
produced vortex rings. Reynolds number relationships are established
and quantitative differences among the three Reynolds number groups
are discussed. The accuracy of the method, assessed by comparing with

the measurements of Sullivan et al., 1s felt to be excellent.
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Introduction

Aftern noticang Helmholtz's admirable discovery of the
Law of vortex moteon wn a perfect Liquid--that 44, 4n a
§Luid penfectly destitute of vascosaty (on flucd frection)--
o o o this discovery anevitably suggests the wdea that
Helmhottz's nings are the only thue atoms.

-Lond Kelvan, "On Vontex Atoms"

1-1 HISTORICAL OUTLINE

Vortex rings have fascinated people for over a century. After
Helmholtz published his celebrated paper in 1867 describing the basic
laws of the flow of frictionless, incompressible fluids, a great deal
of excitement and actaivity developed around the observation that a
thin core vortex ring in such a fluid would never change in character.
The permanence of the "Helmholtz ring" led Kelvin [64, article 1] to
propose the vortex ring as a model for the atom. Differences among
elements would be accounted for by different degrees of "knottedness"
of the vortex core, and the radiation of heat and light by core
vibrations. Extensive mathematical analyses of "classical" vortex
rings continued through the turn of the century [10, 21-24, 62-64].

Serious experimental study of vortex rings in a real fluid began
with the impressive flow visualization work of Krutzsch in 1939.
Further studies of vortex rings were precluded by the onset of World
War II, until G.I. Taylor rekindled interest with a letter to the
editor of the Journal of Applied Physies in 1953. Soon thereafter
J.S. Turner published his excellent paper on buoyant vortex rings with
the suggestion that such rings might prove useful in seeding clouds to
induce the production of rain. Several other papers appeared in the

fifties and sixties concerning buoyant vortex raings ['3, 41, 69, 701,
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along with the suggestion that even 1f vortex rings would not prove
useful 1n seeding clouds, perhaps they could be used to transport
industrial wastes high into the atmosphere. Fortunately for all of us
this scheme never bore fruit.

Interest in vortex rings exploded in the seventies. What was
before a trickle of papers soon became a steady stream and 1s now
showing signs of becoming a flood. Detailed experimental studies of
neutrally buoyant vortex rings resumed once again with publications by
Maxworthy in the West, and Oshima 1in the East. Mathematicians such as
Norbury, Fraenkel, and Saffman extended the theory of vortex rings to
include larger cores and viscous effects. Extensive mathematical
trecatments of vortex ring stability have come from Widnall and her
group at M.I.T.

The rapid increase 1in 1nterest in vortex rings is perhaps a
result of their increasing application to a wide range of physical
problems. Vortices are commonly found in nature at all scales, from
the flowfield produced by insects, to large atmospheric low pressure
systems covering thousands of square kilometers. Vortex rings provide
an 1deal experimental and mathematical model for studying general
aspects of vortex evolution. The rollup of shear layers into
vortices, the diffusion of vorticity from regions where vorticity is
concentrated, the convection of vorticity and vortex filaments, the
instability and breakdown of vortices and vortex lines, the
development of turbulence from such breakdowns, vortex stretching, ...
all of these topics relate to the study of vortex rings.

Vortex rings themselves have more direct applications to many
problems of practical and academic interest. Current studies of the
larger scale structures in turbulent flows have led to interest in
the vortex ring as a possible model for the large eddies observed
especially 1in turbulent shear flows [9, 53]. In the development of

turbulent jets, for example, vortex rings can be observed to form at
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the lip of the jet and to go through complicated pairing processes to
form larger, less coherent rings farther downstream.* These vortex
rings are found to play an important role as well in the structure of
the sound field around turbulent jets [39]. Atmospheric thermals can
be visualized as large, buoyant vortex rings [41, 59]. Birds such as
hawks and eagles soar around the center of these large vortices,
using the vertical winds and upward movement of the buoyant air to
gain altitude with little expenditure of their own energy [8].
Propulsive flight of insects and birds also involves the production of
vortex rings. In two recent articles [52], Rayner has modeled the
wake of birds and 1insects as chains of vortex rings which carry away
the reaction momentum to the 1lift and thrust produced by the motion of
the wings. Plasma physicists have been interested in the evolution of
vortex rings as they travel through fluids such as as liquid helium II
[11, 12, 18, T2, 73], principally to study the quantized nature of the
total circulation. Vortex rings were even used by by Bjerknes in 1926
to model the occurance of sunspots!

Initially, our interest in vortex rings developed from the study
of the transient flowfield behind arterial stenoses, or blockages in
the human arterial system, caused by the buildup of cholesterol on the
arterial wall or from diseased heart valves which will not open
completely. The pulsatile nature of the blood as it 1s ejected
through these constrictions results in the production of rather
incoherent, turbulent vortex rings which travel up the artery and
eventually collide with the arterial wall. This has led, therefore,
to our interest 1in the effect of boundaries such as a tube on vortex

ring evolution.

*E. Bouchard and W.C. Reynolds in the Department of Mechanical
Engineering here at Stanford have produced beautiful movies of
this process.
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1-2 OBJECTIVES AND ORGANIZATION

In the past, experimental studies have concentrated on vortex
rings in unbounded flows, and over a limited range of Reynolds

numbers. Our emphasis 1in this study is two-fold:

We would like to examine the dynamic processes and differences
1in characteristics from very low Reynolds number viscous vortex rings
to very high Reynolds number turbulent vortex rings, and we would like

to assess the effects of the wall as vortex rings travel up a tube.

The dynamic processes in which we are i1nterested involve the
loss of vorticity from vortex rings as they propagate. We would like
to predict the change in strength, or total circulation as a function
of time for vortex rings at different Reynolds numbers. To accomplish
this dynamic calculation we develop a method based on a purely
kinematic theory which allows us to relate the strength of a vortex
ring to quantities which can be measured from flow visualization
experiments.

In the next chapter the background to this work is established,
and in Section 2-5 the concepts behind our method for calculating the
strength of a vortex ring 1is discussed. In order to better understand
the theoretical and experimental analyses which follow in succeeding
chapters, 1t 1is suggested that Section 2-5 not be skipped.

In Chapter 3 we develop the kinematic theory for a vortex ring
in a tube. We find the potential and streamline fields for vortex
rings of different size, and learn what the effect of the tube 1s on
the shape and speed of a vortex ring as compared with the same ring in
an unbounded flow.

Flow visualization experiments in which vortex rings were
produced and observed as they travel up a tube are discussed 1in
Chapter 4. Qualitative observations and quantitative measurements of

vortex ring velocity, size, and shape are combined to study
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differences in vortex rings as they relate to Reynolds number.

In Chapter 5 the flow visualization measurements are combined
with the kinematic theory to calculate the total circulation as a
function of time for our experimentally produced vortex rings.
Relationships with Reynolds number are established, and quantitative
differences discussed, again with emphasis on changes relating

primarily to the Reynolds number of the vortex ring.
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Th elsirnem!
week’::zel,w /tlm;ma/t the tede the pent-up waterns BQCkgrOund

between the «slands of Ferros and Loffoden
nush weth wuvesastable veolence, formeng a
wharnlpeol from whech no vessel ever escapes ...
1t was descrabang a spural, the curcumference
of wheeh was Lessonang by degrecs, and the
boat...uwas carvried along weth geddy speed ...
we heand a crashung noase, the bofts gave way,
and the boat, torn from +ts ghoove, was

hurted Like a stone from a Afing antu the
medst of the wholpool . .

-Jules Verne, 20,000 Leagues Under the Sea

2-1 KINEMATICS OF VORTICITY

Vorticity 1s a measure of the angular velocity, or spin of fluid
particles. In a fluid of constant density, as we consider here, spin
is imparteq by frictional forces in the fluid, for example along a
boundary or surface within the flow. Although vorticity is a dynamic
quantity a great deal can be learned by considering the kinematic
relationships between the vorticity field and the velocity field, that
is, by considering only the conservation of mass and the definition

for vorticity.

BIOT-SAVART LAW. Consider an incompressible and, for the
moment, an unbounded flow at rest at infinity. At the time t the

-5
velocity at the point X 1s given by K(X) and the vorticity at the

> > >
point by w(Z). Thus we have
>
Conservation of Mass: divu=0 (2-1)
->
Definition of Vorticity: curl U = W (2-2)

> >

We can satisfy Eq. (2-1) identically by letting U = curl B. B is
chosen such that div E = 0, so that application of Eq. (2-2) results

in the Poisson equation:

V28 = -u
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with the solution:

1S, 6@)
>, 3
B(X) = LT {O./;f T dg (2_3)
> -> > >
As shown in Fig. 2-1, r = x~-C and r = |r| . Taking the curl of Eq.

(2-3) results in the well known law of Biot and Savart:

1 7 2x @

> >

w(x) = - o St agd (2-4)
>

At any time t the velocity at the point x is given by an integral of

the vorticity field over the whole flowfield. Two important features

of Eq. (2-4) should be given special note:

1. This 1s a kinematic expression; only conservation of mass has been
used 1n its derivation. Thus, even for a time-dependent flow,
laminar or turbulent, where vorticity is diffused and convected,
if at any time the vorticity field is known or can be well
approximated, the velocity field can in principle be computed from
Eq. (2-4).

2. The velocity field 1s related linearly to the vorticity field.
The vorticity field can therefore be divided into elements, the
velocity field found for each element separately, and summed to

find the total velocity at any point in space and time.

BOUNDARIES. Although Eq. (2-4) was derived for an unbounded

flow, 1t can be extended to a flow with boundaries by adding a
> >

potential velocity (i.e., irrotational and divergenceless) ul(x) to

Eq. (2-4), chosen to satisfy the boundary conditions.

VORTEX FILAMENTS. 1In vortical flows it 1s common to find
vorticity concentrated along curved lines, so that 1t 1s natural to
1dealize the concentrated region of vortical flow as a vortex tube, or

in the 1limit of zero tube radius, a vortex filament. The vorticity
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Rotational

Fluid

FIGURE 2-1

Definitions for a vortical flowfield

FIGURE 2-2

Definitions for a vortex tube or filament
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content of a vortex tube (or a fluid element) is characterized by the

ecirculation, or strength I' where

T'=g¢gd+dl =73 - da (2-5)
c A

C is a closed material curve around the vortex tube (or fluid element)
and A 1s the c¢cross-sectional area, as shown 1in Fig. 2-2.
Mathematically a vortex tube 13 often idealized as a filament, or line
where the strength i1s given in the limit A > 0. The accuracy of such
an idealization depends on the degree to which vorticity 1is
concentrated, and the region of the flow in which we are interested.
It 1s often the case that "far" from the region of concentrated
vorticity the velocity field 1s accurately described by vortex
filaments, whereas the flow "near" the vortical region must take into
account the details of the vorticity distribution.

Using the divergence theorem and the divergenceless nature of 3
1t 1s easy to show that the circulation I' must be constant along a
vortex tube. This kinematic result has the consequence that a vortex
tube cannot end in the fluid. The filaments must either form loops
(e.g., vortex rings) or extend to the boundary (e.g., the horseshoe
vortex observed in turbulent boundary layers).

For a vortex filament of strength T the Biot-Savart Law, Eq.

(2-4), reduces to the more familiar form:

>, > T
u(x)-— —ET- g
filament

- -
wherelzc 1s along the filament in the direction of w.

IMPULSE. One additional kinematic expression of interest 1is
that for the fluid 1impulse, the total impulsive force which would be
required to set the vortical flowfield into motion. The total impulse
B, derived by Batchelor [2, p. 5181 and Lamb [29, p. 214] has the
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units of momentum and is given by:

ek oo IS T x w(2)dz? (2-7)

where pm 1s the mass density of the fluaid.

2-2 DYNAMICS OF VORTICITY

Like momentum, vorticity can diffuse down a gradient slope
through the action of viscosity, or in the case of turbulent flows,
through the action of small scale turbulent motions. The dynamics of
viscous diffusion in an incompressible fluid 1s described by the
vorticity equation:

>
R A IR A L (2-8)
The left hand side is, of course, the total derivative accounting for
vorticity changes i1n fluid elements as they are convected with the
flow. The term involving Vv, the kinematie viscosity, describes
viscous diffusion of vorticity, and g-VG gives the change 1in 3 due to
vortex stretching. If a flow 1s of sufficiently high Reynolds number
to disregard viscous diffusion over the time period of interest, yet
low enough to disregard turbulent diffusion, the vortical content of a
fluid element convected with the flow would only change via vortex

stretching.

KELVIN/HELMHOLTZ THEOREM. Applying the total derivative to the
definition of T ain Eq. (2-5) and inserting the incompressible
momentum equation for %%' one arrives at the following expression for
the circulation of a fluid element as it is convected with the flow:

bT | -v § curl © . Q= v IS V2 + dk (2-9)
Dt C A
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where C and A are defined as in Eq. (2-5). The circulation can change
only by the diffusion of vorticity from the element. If we again have
a flow i1n which we can neglect the effects of friction we arrive at
the Kelvin/Helmholtz theorem:

DT

Dt " 0 (inviscid) (2-10)

which states that the circulation of every fluid element remains
constant in time. This has the important consequences that vortex
tubes are convected with flow at the local fluid velocity, and that a
vortex tube is always composed of the same fluid particles. The
previous considerations of the vorticity equation show that as a
vortex tube is stretched by the local velocity field the magnitude of
the vorticity within the tube 1increases. Since T must remain
constant, the area of the tube must therefore decrease.

In such flows where diffusion of vorticity can be neglected, the
Biot-Savart law can be used to describe both the dynamic as well as
the kinematic behavior of the flow. The velocity field is "induced"
by the vorticity field. Since each vortex element moves with the
local fluid velocity, the self-induced velocity field found from Eq.
(2-6) can be in integrated in time to find the subsequent location of
the vortex elements. Again using Eq. (2-6) the velocity field at that
later time can then be calculated and the process repeated.

In general, of course, diffusion of vorticity due to viscosity
or turbulent motions is always present, but in many flows containing
concentrated regions of vorticity, the rate of diffusion i1s slow as
compared with the convection of vorticity, and important features of
the flow can be understood from the inviscid considerations above. An
example is the instability and rollup of a shear layer leading to the

formation of linear vortices, which then proceed to pair [78].

INVARIANCE OF IMPULSE. Applying the total derivative to Eq.

(2-7) and using the vorticity equation, one can eventually arrive at
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an expression for the variance in the total fluid impulse 1n a bounded
flow. If the vorticity and its normal derivative are zero along the

boundary the result is:

-

->

_(dl_i - 1/2 pm # u2 ds (2"113)
S

where S is the boundary surface. For an unbounded flow (S = ®) at
rest at infinity we see that

>
dP

Friie 0 (unbounded) (2-11b)

Thus the total fluid impulse of an unbounded fluid is invariant for

both viscous and inviscid flows.

2-3 VORTEX RINGS IN AN IDEAL FLUID

2-3.1 The Classical Vortex Ring

A vortex ring can be defined as a vortical region of fluid where
the mean vorticity field has an azimuthal sense and is concentrated
(peaks) along a circle.* It 1s natural, therefore, to model the
vortex ring as a circular vortex tube, where vorticity is confined to
a torus of small cross-section. Helmholtz [20] proposed such a model
for a vortex ring in an ideal (incompressible, inviscid), unbounded
fluid about 100 years ago, and its properties were extensively studied
around the turn of the century [10, 21-23, 62-64].

NON-STEADY COORDINATE SYSTEM. Consider an axisymmetric flow
without swirl. We define a cylindrical coordinate system (p, 6, z)

*We are concerned here with circular vortex rings, although more
general shapes such as elliptical vortex rings can be found in nature
and have been studied as well (1, 14, 26).
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fixed in space¥* such that at the time t a torus of vorticity of radius
R is located in the z = 0 plane axisymmetrically placed about the
z-axis (see Fig. 2-3). The torus, called the vortex core, has a
circular cross section with radius a and a total circulation, or
strength T. Outside the core the flow 1s taken to be irrotational.
Due to its self-induced velocity field the vortex ring i1s moving with
speed U in the +z direction, so we are depicting the vortex ring in a

non-steady frame of reference.

CIRCULAR VORTEX FILAMENTS. The classical vortex ring is a thin
torus of vorticity embedded i1n a potential flow, as shown in Fig. 2-3.
By "thin" we mean 1n the limit a/R > 0. 1In this limit the flowfield
outside of the core is that for a circular vortex filament of strength
I' (the flowfield within the core, of course, depends on the
distribution of vortiecity). In this region the flow is irrotational,

so we can define a velocity potential, &:

3=Vvo (2-12)

Applying Stokes Theorem to the Biot-Savart law, Eq. (2-6), one can
obtain the following representaion for the potential field due to a

closed vortex filament:

T

o) = JI -3% G Aad (2-13)
A

As indicated 1in Fig. 2-4, A 1s the surface bounded by the vortex
filament-loop, 2-15 a position vector to a point on that surface, n 1s
the outward normal to the surface (defined by the direction of T'), and

- - >
r = x -%. Eq. (2-13) shows that mathematically a vortex

*By '"fixed in space" we mean fixed with respect to the stagnant flow
at infinity or, in the case of the vortex ring in a tube, fixed with
respect to the boundaries.
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FIGURE 2-3

The cylindrical coordinate system

filament

->
X

FIGURE 2-4

A vortex filament-loop
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filament-loop of strength I'can be replaced by a uniform distribution
of dipoles of strength T over the surface bounded by the loop. This
result applies to any arbitrarily shaped vortex filament-loop. In
particular, a circular vortex filament can be replaced by a disk of
dipoles of uniform strength; the potential at any point 1s Jjust the
integral of these dipoles over the disk. This suggests, as we show
explicitly in Section 3-1.1, that a vortex ring in the non-steady
frame of reference produces an outer flowfield with a basically dipole
character. From Eq. (2-7) the fluid impulse for a circular vortex

filament of strength T and radius R is found to be
P = mp I'R? (2-14)
m
gl A
where P = Pz.

VELOCITY. As discussed in the previous section, in an ideal
fluid a circular vortex tube will move due to 1ts self-induced
velocity field. Kelvan [64] and Lamb [29], using the Biot-Savart law,
found the velocity of the classical vortex ring with a constant
vorticity distribution in the core (i.e., the core rotates as a solad
body) to be:

S S8R _ 2. -
U= [en — -kt O(R)] (2-15)

This formula has been extended by Saffman [54], Fraenkel ['5], and

Widnall [74] to an arbitrary distribution of vorticity in the core:

T

U= 4TR

[zn-BZR- 5+A] +0GF D) (2-16)

where A is a constant which depends on the vorticity distribution.

Saffman presents A in the following form:

2 om S ds
A= J G S s'w (sN)ds')®
o (o]

S 1s a radial coordinate from the core's center and wy(s) is the first
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order vorticity distribution. For a uniform distribution A 1s /4.
For the continuous distribution w,(s) = (s?-a?)? which has been used
by Widnall in her studies of the stability of vortex rings, and 1is
more realistic with respect to real vortex rings [36], A = 5/6 so
that:

T 8R 1
U = 7= (-3 ) (2-17)

Note the presence of a logarithmic singularity as a/R - 0. A result
of locally induced velocities which in the limit of a vortex filament
become infinite, a logarithmic singularity in velocity 1s a general
feature of a curved vortex filament.

In an ideal fluid T is constant, and since vorticity cannot
diffuse from the core, a cannot change. For an unbounded flow the
impulse 1s invariant as well, so from Eq. (2-74) the radius of the
vortex ring must remain constant. Thus, a thin core vortex ring in an
unbounded, incompressible, completely frictionless flow would travel

to infinity with all properties invariant.

MOVING FRAME OF REFERENCE. 1In a coordinate system fixed in
space, the instantaneous streamline field resembles that of a point
dipole. If we allow the coordinate system as defined in Fig. 2-3 to
move with the vortex ring,* however, three regions are defined:

1. The toroidal core region in which the rotational fluid is
confined.

2. A spheroidal region surrounding the core defined by an outermost
closed streamline with a front and rear stagnation point.

3. The outermost region with streamlines which extend to infinity.

A classical vortex ring in steady and non-steady coordinates is

*#Such a frame of reference need not in general be steady (i.e., moving
with constant speed), but for a vortex ring in an ideal fluid it is.
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moving with the vortex fixed in space
ring (steady) (non-steady)
FIGURE 2-5

The classical vortex ring in steady and
non-steady coordinates.
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compared ain Fig. 2-5. The fluid within the spheroidal region 1s
confined to this region and 1s transported along with the core. When
using the term, "vortex ring," we refer to the whole spheroidal region
of fluid, including the region 1in which the vorticity is

concentrated-~ the vortex core.

2-3.2 Thick Core Vortex Rings

The classical vortex ring is a torus of vorticity in the limit
of vanishing core thickness. We consider now vortex rings with thick
cores. For such rings the cross-sectional area of the core is not
circular and the distribution of vorticity within the core must be
considered.

For an ideal fluid the vorticity equation, Eq. (2-8), can be
written for axisymmetric flow without swirl as

2 L = -18
Dt(p) 0 (2-18)

o)

>
where w =w 6 . That is, for a flow where viscous diffusion can be

neglected ,%- must be constant along a fluid streamline. Thus

= £(¥) (2-19)

oIlE

where VY 1s the stream function in cylindraical coordinates:

1 oY 1Y (2-20)
u = —_ - u = - — =
p p 9z z P 9p

The stream function 1s defined so as to satisfy continuity; applying
the definition for vorticity, then, results in a kinematic equation
which can be solved for a given vorticity distribution to find VY.
When combined with the dynamical result in (2-19) the stream function

for a thick core vortex ring must satisfy:

o2¢ 1 3Y 3% _ . p£(¥) in the core  (2-21)
3p? p 3p 322

0 elsewhere
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Several mathematicians have sought solutions to (2-21) for the
case where f(¥) is a constant. At the extreme of thick core vortex
rings 1s the solution found by Hill [24] for a spherical vortex in
which vorticity occupies a sphere such that f(¥) = C, or equivalently,
w=C p. An exact solution to Eq. (2-21) can be found for this case.

The stream function and velocity for Hill's spherical vortex are given

by:

. 3 T _ ¢ ¥_ 2 _
v o= 2 57R’ [1 (R') 1 (2-22)
= F =Tr 13
U 2————51TR, T 3 R C

where R' 1s the sphere radius and x2 = p2+ z2. We note that even 1in

the extreme case of a spherical vortex the same basic relations among
the velocity, strength, and radius persist. That is, for both thin
and thick core vortex rings the ring speed 1s directly proportional to
the total circulation and inversely proportional to the radius.
Norbury [42] has numerically computed solutions to Eq. (2-21) for f£(¥)
constant, and has shown that the classical vortex ring and Hill's
spherical vortex are two extremes of a family of vortex rings based on
the single parameter(1=aeff/R where aer 1S the radius of the core as
1f 1t were circular with the same area. o = V2 represents Hill's
spherical vortex and g - 0 1s the classical vortex raing of Kelvin and
Lamb. The computed solutions indicate that for o £ 0.2 the

streamlines within the core and the core cross-section are very nearly

circular.

2-4 VORTEX RINGS IN A REAL FLUID

2-4.1 Vortex Ring Formation

Vortex rings are typically formed by ejecting a fluid through an

orifice or from a tube. As the fluid is ejected, a cylindrical sheet



Section 2-4.1 Background 20

of vorticity emerges, and due to 1ts self-induced velocity field
(Section 2-2) begins to spiral, concentrating vorticity in a toroidal
region.® As the rollup of the cylindrical vortex sheet continues, the
vorticity in this region increases, until the vortex ring breaks from
the orifice and begins moving into the ambient fluid with impulse and
strength determined by the magnitude and amount of vorticity
entrained.

When the ejected fluid 1s dyed the process of formation and the
extent of the vortex ring can be visualized. A well-formed vortex
ring 1s generally observed to consist of a darkly dyed torus
surrounded by a more lightly dyed spheroid of fluid. The more darkly
dyed region marks the core of the vortex ring. Measurements by
Sullivan et al, [60] and Maxworthy [36] show that even for relatively
"thick" vortex rings the vorticity distribution 1s highly peaked in
the core with smaller amounts of vorticity residing in the outer
region. In Fig. 2-6 are sketched the velocity and vorticity
distraibutions measured by Sullivan et al. for a "thin" core and
"thick" core vortex ring (a/R = 0.075 and 0.27 respectively). The
core diameter, 2a, 1s defined as the distance between the maximum and

minimum 1in velocity.

2-4.2 Vortex Ring Evolution

The characteristics of vortex rings as they evolve are dependent
to some extent on the 1nitial state of the vortex ring, which depends
on the conditions at formation. The ring strength, for example,
initially depends on the magnitude and amount of vorticity ejected,
which 1n turn 1s related to the velocity at ejection and volume of

ejected fluid which forms the vortex ring (see Section 5-2.2). The

*For beautiful pictures of vortex ring formation see Batchelor
(2, plate 20) and Magarvey, MacLatchy (32).
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(a) (b)
a _ = a_ =
R - 0.075, ReR- 18710 R 0.27, ReR 3040
sketched U
streamlines Y
computed
streamlines

e o ——— —— e T —— - f— — —— ———— —— — — —- G——g— —

vorticity distribution

FIGURE 2-6
The velocity and vorticity distributions in a real vortex ring.

From Sullivan, Widnall, and Ezekiel (1973).
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si1ze of the vortex ring 1s expected to be related in some way to the
diameter of the orifice through which the fluid 1s ejected [28], and
the development of turbulence to the roughness and irregularities in
the orifice geometry.

In general, as the vortex ring propagates through the ambient
flowfield, vorticity diffuses from the core region and small amounts
of ambient fluid are entrained into the rear of the vortex ring,
mixing with the fluid exterior to the core [32]. Vorticity is
subsequently convected i1nto a wake region along with some dye,
resulting in a more lightly colored outer region in comparison with
the core. The loss of vorticity from the vortex ring results in a
decrease in ring strength and impulse®* and, since U and T are directly

related, a decrease in velocity.

RING REYNOLDS NUMBER. The relative importance of 1nertial to
viscous forces in the evolution of the vortex ring is characterized by
the Reynolds number. Two common definitions for the ring Reynolds
number are based on the ring radius and velocity (ReR) and on the

total circulation (Rer):

(2-23)

e
l
<

Since T ~ RU, ReR and ReI1 are expected to be closely related (see
Section 5-3).

VISCOUS VORTEX RINGS. At low Reynolds numbers (ReR < 600-1000)
vortex ring evolution is governed by viscous diffusion of vorticity
from the core and 1its subsequent convection into a laminar wake. As
1llustrated in Fig. 2-Ta streamline surfaces of viscous rings remain

smooth and the core tends to be thick and visually not well defined.

*The impulse of the ring plus wake is conserved by Eq. (2-11b).
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viscous
wake (a) Viscous
Vortex Ring
turbulent
mixing
entrainment
turbulent
Gggg%) b\Q -— wake
(b) Turbulent (78(}\.9
Vortex Ring C’ég\\“)\!a
) Js \A&(’%
FIGURE 2-7

Laminar and turbulent vortex rings.
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Tung and Ting [66] and Saffman [54] have derived an expression
for the velocity of a thin core of viscous, rotational fluid embedded

in a potential flow:

T

8R —
— 22 - 0.558 + 0 (/VE fn vt ) ] (2-24)

[ 2n
4Vt R2 R?

U =

Apparently, for thin core rings (i.e., in the limit a/R - 0) the core
radius grows due to viscous diffusion like /vt and the velocity
decreases as -1n(vt). Accompanying the growth of the core there 1is an
exponentially slow decrease in ring strength [54], and since the
impulse must remain constant, from Eq. (2-14) there 1s a slight
increase in R.

For asymptotically large times, when tV R (1.e., a/Rn 1), one

finds a much more rapid decrease in U and increase in R [25, 52]:

U~ (ut) 372 T ) /2 R T (2-25)

Viscous vortex rings in a real fluid generally have thick cores,
and measurements show a rate of decrease in velocity and increase in
radius somewhere between that predicted by the extreme thin and thick
core models Just mentioned (see Section 4-U4), although measurements
made for large times [27] do suggest that the velocity approaches the
asymptotic limit given in (2-25).

INSTABILITIES. Many researchers [28, 30, 34, 48, 73] have found
that as the Reynolds number increases, although the flow is still
laminar, azimuthal waves begin to appear along the core of the vortex
ring. Five waves are typically observed to develop at ring Reynolds
numbers on the order of 600 to 1000; as the Reynolds number increases
the number of waves increases. At the lower Reynolds numbers unstable
waves are observed to grow until the vortex ring collapses, but for
higher Reynolds numbers the growth of unstable waves leads to a
"breaking" process and the emergence of what is generally described as

a more stable vortex ring.
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The instability of vortex rings has been studied mathematically
by Widnall et al., [74-77, 66] and Saffman [56]. Perturbations are
found to become unstable when the locally induced rotation of waves
around a circular vortex filament 1s forced to zero by the velocity

field induced by the rest of the vortex ring.

TURBULENT VORTEX RINGS. As the Reynolds number increases
further, the wave number of the unstable waves increases and small
scale turbulence begins to develop. The Reynolds number at which
turbulent motions begin to dominate the dynamics depends to a large
extent on irregularities and roughness in the orifice geometry, the
method of ejection [57], the state of the ambient fluid, etc., but
transitional Reynolds numbers on the order of 20000 to 30000 are
typical for carefully produced vortex rings. Because of turbulent
mixing, the outer region of dyed fluid becomes lighter in color,
revealing a fairly well-defined core. The core to ring radius of
vortex rings tends to decrease as the Reynolds number increases [60,
57, 361, and the small scale motions i1n the turbulent core are
relatively impervious to the larger scale motions in the outer mixing
region [35, 68]. As indicated by Fig. 2-7b, turbulent diffusion and
convection of vorticity into a turbulent wake results in a rapid

decrease in ring strength and velocaity.

2-5 PRELIMINARY CONCEPTS BEHIND THE PRESENT STUDY

Fig. 2-8 outlines the range of ring Reynolds numbers which have
been covered in experimental studies of vortex rings, including the
present study. In general, researchers have concentrated on a limited
range of Reynolds numbers. The transition in characteristics from low
Reynolds number, viscous vortex rings to high Reynolds number,
turbulent vortex rings has not been adequately studied. This is an

important aspect of the present work:
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To study the changes in the structure of vortex rings and the dynamic
processes which control their evolution, from very low Reynolds
numbers where viscosity dominates, to very high Reynolds numbers where

turbulent diffusion dominates.

The dynamic processes in which we are interested involve the
loss of strength and impulse from vortex rings as they evolve,
processes which relate to the diffusion and convection of vorticity
out of the vortex ring into a wake. A measurement of the strength (or
total circulation) of a vortex ring at even one point 1n space,
however, 1s difficult to obtain. In the past researchers have used
laser doppler velocimeters [50, 36] and hot wire anemometers [57] to
measure the velocity around the core of a vortex ring in order to
compute the total circulation. Such measurements rely on a repeatable
production of the vortex rings, and the use of hot wires raises
questions as to interference with the inner flowfield. Furthermore,
time constraints have allowed only a very limited number of such

measurements.

BASIC APPROACH. We propose as part of the present study a
method for computing the total circulation of a vortex ring from
relatively simple flow visualization measurements of the size, shape,

and velocity of the vortex ring. The basic 1dea is as follows:

Using the Biot-Savart law we find the stream function in
non-steady coordinates for a vortex ring of strength I' and radius R
axisymmetrically placed in tube of radius p, (results for an unbounded
ring are obtained in the limit R/pg = 0). Transferring to a
coordinate system movang with the vortex ring at the speed U, the
outermost closed streamline outlines the volume of the vortex ring.
Defining the thickness, T, and outer radius, R' of the vortex ring
(see Fig. 2-5), we compute the kinematic relationships among the
parameters R/Po , T, U, and T/R'. A measurement of any three of

these quantities will therefore yield the fourth. In particular, from
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flow visualization measurements of R/pg , U, and T/R' at the time, t,
we can compute I'(t), the total circulation of the vortex ring at that

time.
Let us consider this approach in more detail.

KINEMATICS. Consider again the kinematic nature of the
Biot-Savart law, Eq. (2-4). As discussed in Section 2-1, at any given
time, whether the flow is laminar, turbulent, viscous, or inviscid, if
we know the vorticity field we can in principle compute the velocity
field from Eq. (2-4). 1In general we do not know the vorticity field
exactly, or the integration of Eq. (2-4) 1s exceedingly difficult.
However, in many cases the flowfield can be well approximated and the
integration simplified by dividng it into vortex elements and modeling
each element as a filament. 1In this way the simpler integration of
Eq. (2-6) can be used. Because the Biot-Savart law is linear in
vorticity, the individual flowfields of the vortex elements can then
be summed to find the total flowfield. This 1s the case with vortex
rings. We divide the vorticity field into two parts: the vortex ring

itself, and the wake.

APPROXIMATIONS. Furthermore, we make the following

approximations:

1. Since vorticity is highly concentrated in the core (see Fig. 2-6)
we anticipate an inner and outer region to the flowfield.* The
inner region (in and "near" the core) will depend on the
distribution and extent of vorticity withain the core. The
flowfield in the outer region ("far" from the core), however,

should depend only on the total circulation of the vortex ring,

#Such observations have led to the use of Matched Inner and Outer
Expansions by Tung and Ting (67) to study a thin core viscous
vortex ring.
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and not the details of the distribution of that vorticity. The
extent of the inner and outer regions will, of course, depend on
the degree to which vorticity 1is concentrated in the core, however
we assume that for typical vortex rings the vorticity is
sufficiently concentrated that the shape of the vortex ring can be
accurately predicted by concentrating the total circulation of the

vortex ring along a clrcular vortex filament.

2. The amount of circulation lost to the wake 1is expected to be small
in comparison with the total circulation of a vortex ring. We
assume, therefore, that the circulation per unit length behind
typical vortex rings 1s such a small fraction of the total
circulation within the ring that the vorticity in the wake can be

neglected in computations of the shape of the vortex ring.

MODEL. The accuracy of these two approximations will, of
course, have to be tested (see Sections 3-3.2 and 5-2.1), but for the
purposes of relating the total circulation to the ring size, shape,
and velocity, we can now model the vortex ring as a circular vortex
filament axisymmetrically placed in an infinitely long tube. Using
the known solution for the potential function of a circular vortex
filament in an unbounded flow, we derive the induced potential which
must be added to Eq. (2-13) to account for the tube walls. From this
solution the stream function is deduced and the streamlines in
non-steady coordinates calculated. Transferring to a coordinate
system moving with the vortex ring, we assess the effect of the tube
on the size, shape and velocity of the vortex ring, and compute the

relationships among the non-dimensional parameters

T U

R, DPo, and  ToR (2-26a)
and among

R' R U

R, po, P T/am (2-26b)
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Because the details of the core are often washed out, flow
visualization measurements of R' are generally more accurate than of
R. By combining the computed relationships among the parameters in
(2-26a) and (2-26b) we find that either R or R' can be used to compute
the ring strength. Thus, from flow visualization measurements of
R'(t), T(t) and U(t) we can compute both I' and R as a function of
time.

It should be pointed out that the approximation of concentrating
the strength of the vortex ring along a circular vortex filament in
order to compute T and R' is not the same as that made by Kelvin and
Lamb to compute the velocity of a thin core vortex ring, Eqs. (2-15)
and (2-16). In calculating the velocity, dynamics enters through the
use of the Kelvin/Helmholtz theorem for an inviscid fluid, Eq. (2-10).
Under this approximation the vortex core moves with the local fluid
velocity, which i1n the limit a/R > 0 becomes infinite. The
approximation used in our calculations assumes that the shape of the
vortex ring 1s not much affected by the finite size of the core, so
that for such a calculation the strength of the vortex ring can be
concentrated along a circle. The calculation is totally kinematic,
and singularities do not appear. Furthermore, kinematic relationships
are very general 1n that they apply at any instant in time where the
model 1s sufficiently accurate, and for both laminar and turbulent
flows. Of course, dynamics must be included in some way to predict
any one of these quantities; however, by combining the kinematic
theory with relatively simple experiments, important dynamic
information can be deduced.

In the next chapter we develop the theory and calculate the
relationships among the parameters in (2-26). From the theory we
assess the effect of the tube on the size, shape, and velocity of the
vortex ring. In Chapter U4 flow visualization experiments are
described, and measurements for vortex rings propagating up a tube are
discussed. Finally, in Chapter 5 the flow visualization measurements

are combined with theory to compute the total circulation as a
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function of time for 17 vortex raings with initial Reynolds numbers

ranging from 690 to 50100.



Theory

This puimany matten, forced into a certain quaniity
of motion devinely bestowed, falls into a series of
whirkpools on vontices, an which the visible bodces
such as planets and tewestrnial objects are cavied
around on impefled toward certawn central poants by
the Laws of vortical motion.

-E.A. Butt on Descartes

3-1 INTEGRAL SOLUTION FOR A CIRCULAR VORTEX FILAMENT IN A TUBE

3-1.1 Harmonic Expansion for the Unbounded Ring

Consider the problem 1llustrated in Fig. 3-'. We seek the
solution for a circular vortex filament with strength [ and radius R
axisymmetrically placed in an infinite, rigid tube of radius pPo. The
flow 1s incompressible, but not necessarily inviscid. Because the
flow 1s axisymmetric (and without swirl), we introduce the cylindrical
coordinate system (p, 6, z) fixed with respect to the tube such that
at the time t the vortex filament 1s located in the z = 0 plane. The
vortex ring 1s moving 1in the +z direction with the speed, U; we seek
the solution for the flowfield at an instant in time in a non-steady

frame of reference.

Outside of the vortex filament the flow is irrotational, so we

define the velocity potential:
u(x) = ve(x) (3-1)

where x is a position vector to the point (p, z). ¢ is further

divided into two parts:

(b = q)o + q)l (3_2)
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FIGURF 3-1

Definitions for a circular vortex filament axisymmetrically
placed in a tube.

= ot - _ I
=0 ¢= -3
R -0,p>R P
T
R
o = % z=0
FIGURE 3-2

Representing a circular vortex filament as a disk of dipoles
of uniform strength.
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-—)
®9(x) 1s the potential for a circular vortex filament in an unbounded
-
flow and <I>i(x) represents the potential field induced by the presence
of the tube. <I>i must satisfy Laplace's equation and, together with

99, the boundary condition of no flow through the tube wall:

v2¢i =0 (3-3a)

0 -
a—p-(fbo + q)i) at p = Py (3-3b)

d, is given by Eq. (2-13) as:

3G = If = ) ) (3-4a)
A

where A 1s the area of the disk bounded by the filament, Z is a
position vector to a point on the disk and ; = ;—g (see Fig. 2-4).
This expression shows that the circular vortex filament can be
represented mathematically as a disk of dipoles with uniform strength
r. At the disk surface there is a discontinuity in potential of
magnitude I' as 1llustrated in Fig. 3-2. Lamb [29, p. 239] presents
the potential for such a disk of dipoles in terms of Bessel functions
of the first kind:

o o]

% (p, 2) = - £ s

0

e %% 5. (ko) Jy(kR) dk (3-4b)

Eqs. (3-4a) and (3-4b) are equivalent expressions for the non-steady
potential field due to a c¢ircular vortex filament in an unbounded
flow.

In order to obtain the solution of the potential <I>i which must
be added to Eq. (3-4) to satisfy the boundary condition at pPo, we
expand into an harmonic series valid in the region P> R and find the

induced potential for each term separately. Consider the outer
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variables defined as

5=P y=2 =2 (3-5a)
= = = X
P Po z Po Po
and the inner variables:
- _ P s = Z == 3-5b
p=x z =g x =3 ( )

where x = Yp*+z”°. Rewriting (3-4b) 1in outer variables we obtain

~

K2 g kp) Iy (ke) dk (3-6)

P [e0]
~ o~ €

oy (P, 2) =—'2—.£ e
where € = R/pp < 7. The inner variable, = 'E/e indicates that to

obtain an expansion valid in the far field we should expand in the

limit € — 0. Therefore we expand J, (K€):

J1(ke) = (kg) - 51:%234_ §1§€2§6 - . (3-7)
Substituting Eq. (3-7) into (3-6) and noting that
322 e-kz _ (_k)n e—kz (3-8)
results in
00 (B,2) = %i(%%; - 52% %3;3+ 7§f—42.6 %—; - ...) ? e K23, (k) dkc
(3-9)

The i1ntegral 1s the Laplace transform of Jy and has the value 1/x.
Thus 1n the region p > R we have reduced the integral in Eq. (3-6) to
a series of harmonic poles at the origin:

e? 3% 1 > 3°

725, 35° % T 22476 93° %

*

ot

- ...) (3-10)

3 1
z X

[
o
~
he)
-

N
~

i}
™)
N

The first harmonic, which is dominant in the far field, represents a
dipole field, showing that at infinity a vortex ring looks like a

point dipole. The higher order poles account for the variation from
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that of a purely dipolar field due to the finite size of the vortex
ring.

We note that the expansion given in Eq. (3-9) could have been
obtained as well from the representation for % given by Eq. (3-4a)
by expanding 1/r in a Taylor series about 1/x and carrying out the

integrations term by term.

3-1.2 Monopole Solution: The Green Function

Consider an expansion 1in a form similar to Eq. (3-10) for the

total potential, ® =& + 2

Y~ P e? 3? €5 3%
= ——l— - v ~ = e e 3—11

20,2) = TG oz by~ a3 e T T g 070 )  G-1D

Examination of Eqs. (3-3) and (3-10) shows that zbm is the potential

function for a monopole at the origin in a tube. That 1is, ¢m 18 the

Green function to Laplace's equation with the Neumann boundary

condition and must satisfy:

Vo = - 478 (%) (3~12a)
i 3-12b)
—a—p— = 0 at p =1 (3-

In a form which satisfies Eq. (3-72a) we write ¢  as:

[o0]

+.g f(k)Io(kp) cos(kz)dk (3-13)

X

Cbm(pyz) =

where f(k) 1s chosen to satisfy (3-72b). 1/x has the integral
representation [6]:

[oo]

{ Kg (kp) cos(kz)dk

BRI
ENEN

I and K are modified Bessel functions of the first and second kind
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respectively. So Egq. (3-13) can be written:

bp = 1 [ 2Ro(kp) + £0) To(kp)] cos(ka)dk

Applying the boundary condition, (3-12b) requires that

_ 2K k)
£ = 71w

Inserting this expression into (3-13), the Green function becomes:

f°° I(1 (k)
0

I,(k)

Io(kp) cos(kz)dk (3-14)

ﬂIN

6 (0,2) = =+

3-1.3 The Potential and Stream Functions in Non-Steady

Coordinates

Substituting Eq. (3-14) 1into (3-11) for ¢m(3, z), and
subtracting @0 as given by Eq. (3-1'0) results in the following

representation for the induced potential:
I I'e e 9 53 53 oM 3% °Ky (k)
= (T e cos T (k kz)dk
@i(p,z) = (2 AT T 52.4 853 T ot 3 )fI ) 0 (kp) cos (kz)
Performing the differentations results in

0,(,5) = T8y [ Sy )

G RN 2] B By sin(k3)dk

2 2%+4 2944746 I, (k)

The series in the brackets is recognized as that for I;(egk). Thus the
potential field induced by the presence of the tube on a vortex ring

is given 1in outer variables by

8,(,%) = - 1% [ S 11 (el 1o (kB) sin(E)dk (3-15a)
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and in regular variables by

TR 7 Ky (pok)

T 1 Tty (KR Lo(kp) sin(kz)dk | (3-15b)

(I)i(p’z) ==

The total potential for a circular vortex filament in a tube is, of
course, given by % = ¥ .+ §1 where 2 ,1s given by Eqs. (3-4b) and
(3-6). The solution i1s valid at an instant in time in a frame fixed

with respect to the tube.

STREAM FUNCTION. We define a stream function Y as in Eq.
(2-20). Again we write the stream function as the sum of that for a
circular vortex filament in an unbounded flow, plus the stream

function induced by the presence of the tube:

Y = Yo +Y1 (3_16)
from the relations
oV
I S U Wt A
p oz ap p 3ap oz

and Eq. (3-15b) one can deduce the induced stream function:

_ IR ° Ky(koo) _
¥ (pz2) = =0 {ﬁ'(kp_f,’) I;(kR)I,; (kp) cos(kz)dk (3-17)

In a similar manner the stream function for an unbounded vortex ring
can be deduced from Eq. (3-U4b):

TR

¥o(py2z) = -1R p s o KZ

e ° Jy(kp) J;(kR)dk (3-18)

()
o 8
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3-2 THE POTENTIAL AND STREAMLINE FIELDS IN THE FIXED FRAME

3-2.1 Inner and Outer Expansions for the Unbounded Ring

In order to compute the constant potential lines and streamlines
for the bounded vortex ring we expand & ((p, z) and Y,( p, z) into
two series, one valid in the inner region p < R, and one in the outer
region p > R. We will likewise expand the integral representations
for and & 1( p, z) 1nto series, however only one series 1s required

since there are no discontinuities 1in éi in the region p < py

NON-DIMENSIONALIZATION. Computations are carried out in outer
variables for the region B < 1 and z < '. Consider the following
non-dimensional forms for the potential and stream function,

designated with a hat:

0G0 = 4 86,0 = [5:6,D + 9,69 ] (3-192)
Y(3,2) = %—%— ¥(p,5) = %IT% [ ¥o(3,2) + @i(ﬁsg) ] (3-19b)

OUTER EXPANSIONS. We are interested in expansions with which to
compute éoand q'o in the r'egion~p > e . Such an expansion is given
for & ,by Eq. (3-10), resulting in the following expression for 50 :

Outer (T) >e ):

S s 213 y 1 33 6 1 3° 1
o (p,2) = 2T (e 2 3% £ m—a—ga + € 22’42‘6 32—5 ces) T
~n ~2 ~2 ~ (3_20)
where x° = p“+ z°. Note that as z— 0, 8- 0. To derive the outer

expansion for Yo (p’, Z) we write Eq. (3-17) in outer variables and
expand J1(k€) for small €. Again using the relation given by Eq.
(3-8) we end up with an expression similar to (3-9), except that the

Laplace transform 1s of J1(k5) rather than Jo(kp). The resulting outer
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Y

expansion for Yo is:
Quter (P>€ ):

d s 1 9% s 1 95 )

A 1
Wo(p,z) = =27 (€§~§; - € 29.4 5;3 + € 3772273'525 - (3-21)

EHISK

INNER EXPANSIONS. To derive an expansion for % ovalid in the
region p< € we expand Jp (kp) in Eq. (3-6) in the limitp = O.

Again making use of Eq. (3-8) results in:
80 (B,%) = - = e(1-p? 1 o TS A ) ofoe'kEJ (ke)dk
0LF» 2 22 3z°2 2767 3z 1 % !

(3-22)
The integral can be found in tables for Laplace transforms resulting
in the inner expansion

Inner (0 <g):

1 z

32 ~y
2 352 * 0 372 o ----)‘/E—z_'_—er (3-23)

l
@0(0 z) = =21 + 27w(l - 2 33

~ 4 r
Note that in the inner region as z - O+, 8y -2m and - - 3 as
1llustrated in Fig. 3-2. The inner expansion for Y¥; is derived from

Eq. (3-18) in a saimilar manner, first converting to outer variables,

then expanding J1(kAE>) for small SJ The resulting series is:
Inner (p <€):
NI S NSRS S LY W LA
0(B,2) = (-B% 3 gz + 0" 3w TP 2TaTe 9T Tt Sewe?
(3-24)

3-2.2 Expansions for the Induced Field

The wall-induced fields can be thought of as resulting from an
"image" vorticity distribution outside the tube. The flow within the
tube is therefore potentialand expansions of Yi and @1 are

uniformly valid throughout.
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Consider the integral solution for Yl written in inner

variables. From Eq. (3-17):

9,5, = 2e [ ?12&; T1(ke) I, (kep) cos(kez)dk (3-25)

We expand 1,(ke), I, (kep' and cos kez in the limit of small €. The

result 1s a series i1n € which we write in the form:

¥.(0,2) =¥ (0,2) e + ¥ (B,2) ® + . . . (3-262)
where .
Y3(p,2z) = baY2
5 = = 1
¥s(p,2) = (by + ETZ'bz) Y, (3-26b)
$,(5,2) = (bs + =i bu + mo7r b2) ¥
74P,2) = 68 T g 0% T %6 02T
etc.

The coefficients, bn and Yn are given by:

=2 =y ==2 =6 =y —2-Yy
- (P - p pz _ p _ P Pz
by = () by = Gz - gugy)s e = Grmg < gmreyy Yoy oo
0 (3-26c)
y =2 5B n g
n o I1(k) (3-264d)
The same procedure 1i1is following in expanding 31(5,2) . We

write Eq. (3-15) in inner variables and expand the integrand for small

€,resulting in the following series:

5,55 = 0, € + 855D S 4 B BD €T (3-272)
where
&3 = Cay2
85 = (Cy + o7 C2) Yu (3-27b)
2+4
5, = Lo+ —L— C)
d7 = (Cs + 5.5 O T 5070 C2) Ve etc.
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and
=2z >3 el e =2_3 =5
- Z Z Z Z Z
=z, G=-fEedr, Com-Gla iy cSr e

The integrals Yn defined in (3-26d) must be evaluated numerically.

Because Yn gets large as n increases we compute instead

n-1
dk = Y (3-28)

n o
M = _2__{)' Kl(k)

1 (k)

=

n n!

Mn remains bounded, and has the following asymptotic form for large n
[18]:

(1,31 9 1 )
My = 70 +30*+T6 a1 ¥ ° © -

Values of Mn forn=2, 4, 6, . . ., 00 were numerically evaluated at
the National Center for Atmospheric Research on their CDC-7600
computer and are given in Table 3-1.

We might note at this point that before the closed form solution
for the potential function was found, we derived its expansion using
the method of matched asymptotic expansions with € as the small
parameter. The inner expansion is that for the unbounded vortex ring.
The boundary condition 1s satisfied in the outer expansion which in
the limit ¢ = 0 represents a point dipole at the origin. Matching the
two expansions at their appropriate limits produces the series given
by Eq. (3-27).

3-2.3 The Potential and Streamline Fields

The streamline and potential fields were computed and plotted in
the fixed frame. All computations were done using a PDP-11/45%

*The PDP-11/45 was actually emulating a Danish computer called the
RC-4000. I was very kindly given free use of the computer by Dr. John
Wilcox and his Solar Physics group in the Institute for Plasma
Research, here at Stanford University.
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M

n n

2 5.0065950
4 2.5142592
6 2.0827486
8 1.9192741
10 1.8358962
12 1.7855132
14 1.7516317
16 1.7271765
18 1.7086378
20 1.6940734
22 1.6823163
24 1.6726200
26 1.6644831
28 1.6575556
30 1.6515855
32 1.6463865
34 1.6418178
36 1.6377712
38 1.6341616
40 1.6309220
42 1.6279980
44 1.6253456
46 1.6229285
48 1.6207169
50 1.6186854

TABLE 3-1

M
n n
52 1.6168130
54 1.6150816
56 1.6134759
58 1.6119827
60 1.6105904
62 1.6092893
64 1.6080706
66 1.6069268
68 1.6058511
70 1.6048377
72 1.6038812
74 1.6029771
76 1.6021210
78 1.6013094
80 1.6005387
82 1.5998061
84 1.5991086
86 1.5984440
88 1.5978098
90 1.5972041
92 1.5966250
94 1.5960707
96 1.5955397
98 1.5950306
100 1.5945420

Numerically computed values for Mn.

Theory 43
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computer and an HP-7221A plotter. Developing algol procedures to
calculate the cylindrical harmonics, Eqs. (3-20) and (3-21) were used
to compute the potential and streamlines in the outer region (7) >e ),
and Eqs. (3-23) and (3-24) in the inner region (P>€ ) of the
unbounded circular vortex filament. .

To compute the induced field, the expanded forms of Qi and éi
as given by Eqs. (3-26) and (3-27) were used along with the
numerically calculated values for Mn given in Table 3-=1. The total
potential and streamline fields are the sums of the unbounded and
induced fields which were calculated separately. All computations
were performed in outer variables over a 51x51 point grid in the
region 0 S (’5&;) S 1, and extended to the region -1<Z<0 by symmetry.
Plots were made in the region 0<P<1, -1 <Z<1; half of the tube is
shown in the figures.

The streamlines for an unbounded vortex ring in non-steady
coordinates were previously sketched in Fig. 2-5. For comparison with
figures to follow we show in Fig. 3-3 the streamlines (solid lines)
and constant potential lines (dashed) for an unbounded vortex ring of
si1ze € = R/pg= 0.4. As demonstrated by Eq. (3-10), i1n a fixed frame
of reference the non-steady outer field is dipolar in character with
higher order harmonics becoming less and less important as p > o
(i.e., as € »0).

Compare this with the potential and streamline fields for the
same size vortex ring, but now bounded by the tube walls as shown in
Fig. 3-U4. Although the flowfield still has a dipole character, the
flow 18 forced to turn parallel to the tube wall. The effect is a
generally more axial flow. As the core is approached the streamlines
approach those of the unbounded ring shown in Fig. 3-3. The constant
potential lines must be perpendicular to both the boundary and the z
axis for a bounded ring, resulting in two streamlines which extend to
infinity in opposite directions.

The induced fields, the solid lines representing constant ‘li\’l

and the dashed lines constant &;i’ are shown in Fig. 3-5, again for
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FIGURE 3-3

The streamlines and constant potential lines in the fixed frame

for an unbounded vortex ring with € = 0.40.
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FIGURE 3-4

The streamlines and constant potential lines in the fixed frame
for a bounded vortex ring with £ = 0.40.
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FIGURE 3-5

The wall-induced streamline and constant potential lines in the
fixed frame for a bounded vortex ring with € = 0.40,
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€=0.40. This field added to the unbounded field of Fig. 3-3 produces
the pattern which was given in Fig. 3-4. Note that the induced
velocity field acts in the opposite direction to the direction in
which the vortex ring moves. Thus the tube acts to slow the vortex

ring as compared with the same ring in an unbounded flow.

3-3 THE VELOCITY OF THE VORTEX RING IN A TUBE

As shown by the induced streamlines in Fig. 3-5 the velocity of
a vortex ring in a tube is that which it would have were it in an

unbounded flow, less the velocity induced by the presence of the tube:

U=U,- Ui (3-29)
where Uy is the velocity of the unbounded vortex ring and Ui the
wall-induced velocity given by:

i~ R 3z z=0,p=1

Applying the derivative to Eq. (3-27) and using the numerically
calculated values for Mn results in the following power series in g2

y 3

U, =77® (5.006595 ¢ 2

7

+ 2.828542 ¢ + 2440721’ + . . . ) (3-30)

Note that Ui depends only on I' and not on the details of the
vorticity distribution in the core. This is because the induced
velocity is 1n the far field of the 1mage vortex system residing
outside of the tube. We non-dimensionalize the velocity as follows:

- T /\-—I:_A _n -
Us ;= 0= g Uo - U)) (3-31)

and write 61 in the form:
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6 = ﬁ 33 + U

17 U3 5 7 9 - (3-32)

1
The calculated values for the coefficients up to 0(810 ) are given in
Table 3-2.

RADIUS OF CONVERGENCE. Consider the power series P = Ean el
By the d'Alembert ratio test the radius of convergence €, 1s given by
1lim

€g = n > o |

an-l |
a
n

(3-33)

Examining the coefficients in Table 3-2 for large n suggests a radius
of convergence of 1. We show this graphically with a Domb-Sykes plot
[71]. Assuming that near a singularity the power series can be

represented as
P = Za e v (g0 -8)" (3-34)

we expand using the binomial theorem in powers of 1/n to produce:

a
[ 2*1 | = %o [1- %1 +0 (;11—2)] (3-35)
n

As n gets large this ratio approaches /¢, linearly with 1/n. At 1/n
approaching zero, therefore, the intercept yields the radius of
convergence, while the slope indicates the type of singularity.

The Domb-Sykes plot for Ui is given in Fig. 3-6. There is
little doubt that the resulting curve approaches the ordinate at
an+1/an = 1 with a slope of 1. We conclude, therefore, that the power
series for Ui converges for values of € up to 1 (i.e., for any size
vortex ring), with a simple pole at ¢ = 1.

The decrease in ring speed due to the presence of the tube is of
order g3 . Small vortex rings would not be much affected while
larger rings might be substantially affected by the boundaries. 1In
Fig. 3-7 Ui/Uo is plotted as a function of € for different values of

ﬁo. We express ﬁo in terms of a/R as defined by the Kelvin/Lamb
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n n n n

3 5.006595 53 2.038892
5 2.828542 55 2.037434
7 2.440721 57 2.036082
9 2.296007 59 2.034824
11 2.223716 61 2.033650
13 2.180712 63 2.032554
15 2.152066 65 2.031526
17 2.131493 67 2.030562
19 2.115936 69 2.029655
21 2.103728 71 2.028800
23 2.093875 73 2.027993
25 2.085750 75 2.027230
27 2.078929 77 2,026508
29 2.073121 79 2.025823
31 2.068113 81 2,025172
33 2.063750 83 2.024554
35 2.059915 85 2.023965
37 2.056517 87 2.023404
39 2.053484 89 2.022869
41 2.050762 91 2.022357
43 2.048303 93 2.021868
45 2.046073 95 2.021400
47 2.044039 97 2.020951
49 2.042178 99 2.020521
51 2.040469 101 2.020108

TABLE 3-2

Coefficients for the wall-induced velocity

of a vortex ring in a tube.

Theory 50
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FIGURE 3-6

The Domb-Sykes plot for ﬁi'
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FIGURE 3-7
The wall-induced velocity of a vortex ring in a tube.

Up is given by the Kelvin/Lamb formula.
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FIGURE 3-8
The analog of a vortex pair in a channel.

i) only the first images are shown.

ii) the upper arrows indicate the induced velocity
from the opposite vortex, while the lower
arrow is that for the image vortex.

iii) the large arrows indicate the direction of
motion of the vortex pair.
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formula for the velocity of a thin core vortex ring with constant

vorticity in the core [see Section 2-3.1, Eq. (2-15)]:

B8R 1
(fn = -3

r
U . = _-_
0 4mR

Note from Fig. 3-7 that for a given U, (or a/R), as the vortex ring
increases in size, the wall induced velocity increases until it
reaches a value equal to U,. At this point the vortex ring does not
move relative to the tube, and larger rings actually move backwards!
This can be understood by considering the two-dimensional analog to
the vortex ring in a tube: a vortex pair in a channel. As shown in
Fig. 3-8 as the distance between the vortex pair increases (i.e., as
¢ 1increases) the image vortices move closer to the wall, until a
point is reached at which the velocity induced on one line vortex by
its image is the same as that induced by the other line vortex. As €
increases further the image system induces an even greater velocity on
the vortex pair causing it to move backwards. We note also from Fig.
3-7 that in comparing two vortex rings of the same size the faster
moving, and therefore more energetic vortex ring is affected less by

the presence of the tube.

3-4 THE POTENTIAL AND STREAMLINE FIELDS IN THE MOVING FRAME

3-4.1 The Kinematic Relationships Among Vortex Ring Parameters

Consider for a moment the dipole representation for a sphere in
a uniform flow. It i1s well known that a point dipole of strength T
embedded in a uniform flow with velocity U has a streamline pattern
which represents an inviscid, potential flow around a sphere which is
moving with constant velocity through a stagnant fluid. The size of
the sphere can be adjusted by varying the dipole strength I' or the

free stream velocity U. For a given U the sphere radius R' increases
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as T increases, however for a given dipole strength, the sphere size
decreases as U increases. In other words, there is a kinematic
relationship among R', T, and U.

Analagous to, but more complicated than the dipole in a uniform
flow 1s the flowfield produced by a vortex ring. In a frame fixed 1n
space the flow has a basically dipole character, with higher order
poles accounting for the finite size of the vortex ring. However,
when one takes into account the vortex ring velocity by transferring
to a coordinate system moving with the raing, a spheroidal volume of
fluid accompanying the vortex core i1s identified. Just as with the
moving point dipole, the extent of this spheroidal volume is related
kinematically to the strength I' and speed U of the vortex ring, and
as with the dipole, an increase in T or a decrease in U results in an
increase in the volume of fluid within the spheroid. Unlike the point
dipole, however, the vortex ring has a finite radius R, resulting in a
spheroidal rather than a spherical region of fluid within the vortex
ring.* We might also expect that the finite extent of the core, and
the vorticity distraibution within the core would have an effect on the
volume of the vortex ring. However, as shown in the next section,
this effect 13 very slight.

For a vortex ring in a tube a purely kinematic relationship also
exists among the vortex ring parameters, but with additional effects
due to the boundaries. In the last section we analysed the effect of
the tube on the velocity of the vortex ring. We will assess here
changes in vortex ring size and shape resulting from the presence of
the boundary. In addition, we compute and plot the kinematic
relationship among non-dimensional parameters describing the vortex
ring strength, velocity, size, and shape so that flow visualization

measurements can be used to compute the total circulation of typical

*We refer to the whole spheroidal volume as the "vortex ring" and the
toroidal region in which vorticity is concentrated as the vortex core.
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vortex rings in a tube or in an unbounded flow, as a function of

time.¥

Let ¢ and ¥ be the potential and stream functions in a frame
fixed to the tube. These functions can be further divided into
unbounded and induced fields as given by Egqs. (3-2) and (3-16), and
non-dimensionalized as in Eq. (3-19). The potential and stream
functions in a frame moving with the vortex ring we give the subscript
s, and can likewise be divided into the unbounded and induced fields.
They are given by:

® - Uz (3-36a)

©
1]

¥ = Y+LUp? (3-36b)

In non-dimensionalized form they become:

A~

= $-éu 5 (3-37a)

A _ A —1 A~2 _
Ws = Y + 7e2 Up (3-37b)

where U is the non-dimensionalized ring velocity as given by Eq.
(3-31).

CHARACTERIZATION OF RING VELOCITY. Ultimately the velocity of
the vortex ring must be specified either by a calculation which takes
the dynamics of the flow (including the vorticity distribution) into
consideration or, as we propose to do here, by an experimental
measurement. For the purposes of determining its relationships with

other parameters, however, we must vary U in a convenient way. We

*For a discussion of the motivation and concepts behind this
calculation please read Section 2-5.
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begin by dividing it into an unbounded and induced velocity as given

by Eq. (3-31):

i) 61 is determined from Eq. (3-32) and depends only on the size of
the vortex ring relative to the tube.

11) ﬁo 1s expressed more conveniently using the core parameter a/R as
defined by the Kelvain/Lamb formula extended to a continuous

vorticity distribution [see Section 2-3.1 and Eq. (2-17)]:

a

1
= -38
3 (3-38)

With this expression we use a/R to specify Ug.

We should be careful to note that for the purposes of
determining the kinematic relationships in which we are interested,
Eq. (3-38) 1s only a convenient definition, and a/R 1s used only as a
parameter to characterize 60. Of course, to the extent that the
Kelvin/Lamb formula is accurate (see Section 5-2.2) a/R does have
physical significance as a measure of an effective core radius to the
radius of the vortex ring, but its use here should not necessarily
imply its acceptance as an accurate representation of the velocity of

a real vortex ring.

POTENTIAL AND STREAMLINES. 1In Figs. 3-3 and 3-4 we compared the
non-steady streamlines for an unbounded and bounded vortex ring with
€ = 0.40. Streamlines and constant potential lines in a frame of
reference attached to the vortex ring are shown in Fig. 3-9 for a
vortex ring with € = 0.40 and a/R = 0.20 (60 = 3.356). Fig. 3-9a
depicts the vortex ring in an unbounded flow, and 3-9b the same ring#

in a tube. Streamlines are shown as solid lines and constant

*By the "same ring" we mean a vortex ring with the same radius
(i.e., € or R), the same strength, I', and moving with the same
unbounded velocity, Up (i.e., having the same value of a/R).
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The streamlines and constant potential lines in the moving frame for
a bounded and unbounded vortex ring with £ = 0.40.

(a) unbounded vortex ring a/R = 0.20
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The streamlines and constant potential lines in the moving frame for
a bounded and unbounded vortex ring with € = 0.40.

(b) bounded vortex ring a/R = 0.20
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potential lines are shown dashed. For reference to the Kelvin/Lamb

formula, the streamline correspondng to the designated value of a/R is

darkened.

We note first the three regions commonly observed when a vortex
ring is visualized with dye.

1. The core region, which in these calculations is concentrated along
a circle. If you use the Kelvin/Lamb formula as an indication of
core size the core would be roughly within the darker streamline
corresponding to a/R = 0.20.

2. The spheroidal volume of fluid which accompanies the core. The
extent of this region 1s delineated by the outermost closed
streamline.

3. The outer ambient fluid through which the vortex ring propagates.
The streamlines in this region extend to infinity.

Second we note that the streamlines for the bounded vortex ring become

parallel and the constant potential lines perpendicular to the tube

wall as 0 =+1, whereas this is not the case for the unbounded vortex
ring. As to the size and shape of the vortex ring, the bounded vortex
ring is slightly thicker than the unbounded ring, giving it a slaghtly
greater volume, although for a vortex ring of this size the difference

18 not great.

In order to see more dramatically the effect of the tube on the
size and shape of the vortex ring consider the extreme case of a very
large vortex ring. In Figs. 3-10 are shown the streamlines for
bounded and unbounded vortex rings with e = 0.70 and a/R = 0.25. Due
to viscous effects at the tube wall, such a large vortex ring
(relative to the tube) is not physically realistic, but it shows
dramatically the change in size resulting from the presence of
boundaries. The thickness of the vortex ring is increased, resulting
in a larger volume of fluid carried along with the vortex core;
however, this volume of fluid moves at a slower speed. The outer
radius R' of this extremely large vortex ring is slightly less as a

result of the tube.



Section 3-4.1 Theory 61

—_— :\
=N
=

/ \\ v
f .

-
e
=
=
-
-
]
T
-l
i
4

\
B

7 =\
277 PR
2N N\
le /'f > '\‘\‘\'\\

\ [, //','l l"p f
&)
NN
=

T T T I AT

IRESNSENSESUERRARERRRN]

FIGURE 3-10

The streamlines and constant potential lines in the moving frame for
a bounded and unbounded vortex ring with € = 0.70.

(a) unbounded vortex ring
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The streamlines and constant potential lines in the moving frame for
a bounded and unbounded vortex ring with € = 0.70.

(b) bounded vortex ring
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THE KINEMATIC RELATIONSHIPS. A more detailed description of the
effects of the tube on the shape of the vortex ring will result from
calculations of the kinematic relationships among the parameters which
characterize the size, shape, strength and velocity of the vortex

ring. These parameters, in non-dimensional form are:

/\— U —A_I\ ~ =A ~ =/\
i) U = T74mR = Up Ui where Ui Ui(s) and Uy = Ug(a/R)
ii) € = R/p, iii) T/R iv) R'/R

Again we point out that a/R 1s used here only as a parameter to
characterize 60, so that an unbounded vortex ring wh}ch is
subsequently placed in a tube will have the same value of U;, and
therefore the same value of a/R.

For a vortex ring with given ﬁo and € (and therefore Qi), we
have calculated the stream function V¥ s and potential function @S fﬁ?m
Egqs. (3-37a and b). The thlckgfss T/R was then determined frmn@s
evaluated at p=0, and R'/R from ¥, evaluated at zZ=0%,

In Fig. 3-11 is shown the variation of T/R with U, (or a/R) for

€ =0, 0.1, 0.2, . . ., 0.7. Note that U, decreases with increasing
a/R. The solad curve corresponds to € = 0, the unbounded vortex ring,
and the dashed curves to i1ncreasing values of £ . We observe an
upward trend in T/R as a/R increases, that 1s as 60 decreases.
Analagous to the dipole in a uniform flow (as discussed at the
beginning of this section), this shows that for a vortex ring of given
radius, the thickness (and volume) increases with either decreasing
ring velocity or increasing ring strength. Related to this, we note
also that the tube has a greater i1nfluence on vortex rings with

smaller values of 60 That 1s, deviations from the solid curve are

*T corresponds to the maximum in Qsalongthe z axis and R' corresponds
to the zero along the p axis (away from p = 0).
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The variation of T/R with Uy for different values of €.

Solid curve: unbounded vortex

Dashed curves:
1st: € = 0.30
2nd: € = 0.40
3rd: € = 0.50
4th: € = 0.60
5th: € = 0.70
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FIGURE 3-12
The variation of R'/R with ﬁo for different values of €.
Solid curve: unbounded vortex ring

Dashed curves
Ist: e = 0.50
2nd: € = 0.60
3rd: € =0.70
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greater for slower and for stronger vortex rings. For € ¢ 0.3 there
is little influence of the boundary on the thickness of the vortex
ring. As € increases, however, the effect of the tube becomes more
and more apparent as an increase in the thickness and volume of the
vortex ring over the same ring in an unbounded flow.

The variation of R'/R with ﬁo as a function of € is shown in
Fig. 3-12 where again the solid curve corresponds to the unbounded
vortex ring and the dashed curves to increasing values of €. For
values of € up to about 0.4 the effect of the tube on R'/R is
negligible and for values up to 0.50 slight. It is interesting that
the effect of the tube is to 1nczease R' for large values of Go but
decrease R' for small values of U,. As € increases, the point at
which the dashed curves cross the curve for an unbounded ring moves to
the left. That is, for very large vortex rings, as in Fig. 3-10, the
effect of the wall is to decrease R' over an identical, but unbounded
vortex ring.

We point out once again that the relationships plotted in Figs.
3-11 and 3-12 are purely kinematic. Thus, measurements can be used in
conjunction with these results to calculate quantities of interest.
In Chapter 5 we discuss the use of flow visualization measurements
together with these kinematic relationships to calculate the total

circulation of vortex rings.

3-4.2 The Effect of a Finite Core on Ring Shape

As was discussed in detail in Section 2-5 we have made the
assumption that in calculating the relationships between the shape and
other parameters of the vortex ring we can neglect the finite extent
of the core and concentrate the strength of the vortex ring along a
circle. In this section we perform a calculation to test this

hypothesis.
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A vortex ring with € = 0.40 and a/R = 0.25 was chosen for the
test.* Thirty-seven vortex filaments were distributed in a roughly
circular area with radius b such that b/R = 0.30. The vortex
filaments were weighted according to the vorticity distribution in a
real vortex ring as measured by Maxworthy [36, Fig. 6]. The sum of
strengths of the individual filaments is the total circulation of the
vortex ring. Using the linearity of the Biot-Savart law (see Section
2-1) the potential field was computed by adding the fields of the
individual vortex filaments.

The constant potential lines for a bounded vortex ring with the
total circulation concentrated along a single vortex filament are
compared with the vortex ring having a finite core in Fig. 3-13. The
37 vortex filaments over which the circulation of the vortex ring 1is
distributd are indicated with dots.

A careful comparison of the constant potential lines (e.g.,
using a light table) shows that differenes in vortex ring shape
between the finite core vortex ring and circular vortex filament are
extremely small. There appears to be a very slight bulge 1in the
vortex ring with the finite core, but T and R' are virtually
unchanged. Even near the core where one might expect greater
differences they are slight. This would suggest that for the purposes
of computing the streamline and potential fields outside of the core
of a vortex ring, a vortex filament model 1s quite accurate. In
computations of the velocity of a vortex, of course, the size of the
core remains a critical factor (Section 2-3). A comparison was also
made between unbounded vortex rings, but with the same result as the

bounded case.

*These values were chosen because most of our experimentally produced
vortex rings had values of € below 0.4 and calculations based on the
Kelvin/Lamb formula suggest that for these rings, a/R v 0.25

(Section 5-3).
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4

Experiment

Big whinls have Little whirks which feed on thein velocity;
Little whols have smallen whuls and 80 on to viscosdity.

-L. F. Richandson

Complementing the thecretical calculations, an experiment was
performed to observe real vortex rings as they propagate up a tube.
We combine qualitative observations with flow visualization
measurements to study the characteristics and development of vortex
rings from very low to very high Reynolds numbers. In Chapter 5 these
measurements are combined with the kinematic relationships described
in the last chapter to calculate the total circulation of our

experimentally produced vortex rings as a function of time.

4-1  APPARATUS

BASIC APPARATUS. The basic apparatus is shown schematically in
Fig. 4-1. A plexiglass tube with an internal diameter of 11.88 ecm., a
wall thickness of 1 em., and a total height of 55 cm. 1s secured
vertically on a heavy, cast iron mount. Seven circular orifices of
different size, 2.5 cm. thick and tapered at an angle of 60° are
mounted 1in the tube. Defining d as the orifice diameter and D as the
tube diameter, the orifice sizes used in the experiment are:

d/D = 0.10, 0.15, 0.25, 0.32, 0.42, 0.48, 0.64.
By mounting two Endevco accelerometers on either side of the tube it

was discovered that when filled with water the tube exhibited a

70
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Basic experimental apparatus.
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cantilever mode of vibration with a natural frequency of roughly 35
Hz. To dampen out these unwanted oscillations a heavy metal support
was added to the top of the tube.

A single pulse of water is ejected through an orifice by an
hydraulically activated piston. The piston speed and stroke length
are adjustable. A linear potentiometer is attached to the piston to
monitor its xp-t characteristics, and a travel dial is used to measure
the stroke length Xp. From these measurements the average piston
speed up is calculated, and from

u

_ o) -
uj- (/D)2 (4=1)

the slug flow, or "jet" velocity determined. Defining the jet

Reynolds number as

u d
Re., = _J1_ (4-2)
J Y)

and combining with Eq. (4-1) we see that there is a general increase

in Rej with decreasing orifice size.

EXPERIMENT. The piston speed is adjusted to produce tube
Reynolds numbers of roughly 5000, 4000, and 3000 where

Du
Re, = —P (4-3)

The piston travel time 1s held roughly constant at about 0.770 sec;
thus more fluid 1s ejected at the higher Reynolds numbers.

In Fig. 4-2 the main components of the experiment are sketched.
The potentiometer output, a direct indication of xp(t), is displayed
on a Tektronix oscilloscope and recorded photographically. Either an
accelerometer attached to the piston or a pressure transducer mounted
flush with the tube wall 1s used to trip the oscilloscope. It is

found that, except at the lowest values of Re the xp—t slope is

T’
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nearly linear, indicating constant piston speed. An example is shown
in Fig. 4-3a. The upper curve is output from an accelerometer
attached to the piston showing piston acceleration and deceleration
periods of about 15 msec. For the lowest values of ReT, the xp-t
characteristics are as shown in Fig. 4-3b. We approximate this piston
trajectory as 1/4 of a sine wave.

In order to visualize the flow, either dye is inserted into the
chamber below the orifice or hydrogen bubbles are produced from thin
rings, 1/16 inch in diameter, which just fit on the underside of the
orifice (see Fig. 4-2). The rings are insulated and wrapped in a
spiral fashion with 2 mil platinum wire to serve as the cathode in the
electrolysis process. Two thin strips of 5 mil platinum sheet are
glued vertically to opposite sides of the tube for the anodes. About
25 cc. of sodium sulfate was dissolved in the water as an electrolyte
and 150 volts applied between the anode and cathode. Tiny hydrogen
bubbles are swept into the vortex ring as 1t forms, all
redissolving except for those trapped in the center of the core, a
relatively stagnant region. In this way bubbles can be used to
measure R, the radius of the vortex ring to the core centerline.

The use of dye, of course, allows visualization of the total
extent of the vortex ring. Red food coloring was injected into the
chamber below the orifice to a concentration of about 2% by volume.
Dye gives the best description of the formation process as well as
qualitative features such as the heaviness of the wake behind the
vortex ring. Quantitative measurements of the shape of the vortex
ring (i.e., T and R') are made using the dye visualization.
Unfortunately, although the core region 1s usually darker than the
outer region of the vortex ring, it usually does not contain enough
detail to determine with precision the location of the core

centerline.

MOVIES. High speed 16 mm. color movies were taken for all

combinations of orifice size and tube Reynolds number. Over 190
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(b)
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FIGURE 4-3

Piston trajectory characteristics.
20 msec/div.
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sequences, or "runs," were filmed of vortex rings ranging in Reynolds
number from about 690 to 50100. These movies were subsequently
analysed to obtain both qualitative and quantitative data.

With the hydrogen bubble technique lighting i1s a major problem,
The intensity of the reflected light from the tiny bubbles 1s very
sensitive to the lighting angle, and the round tube added unwanted
reflections. By adjusting the lights so as to come from above the
movie camera at an angle of roughly 10° from the vertical, we were
able to obtain hydrogen bubble movies for all but the slowest vortex
rings. When using the dye the lighting was from behind the tube and
reflections were not a problem.

In order to accurately determine the film speed, a four stage
timer was constructed* (see Fig. 4-2) consisting of four divide-by-ten
integrated circuits connected to light-emitting diodes so as to be
visible in the movies. The diodes, which have a rise time of about 5
microseconds, are arranged in four circles of ten each, each circle
representing a decimal place. A sine wave generator provides the
power and calibration for the timer. With the timer visible in the
movies, very accurate calibration of film speed was obtained. For

most runs the film speed was about 100 frames per second.

4-2 QUALITATIVE OBSERVATIONS

As dyed water 1s ejected through the orifice we observe the
rollup of the emerging cylindrical vortex sheet into a vortex ring
(see Section 2-4), 1ts detachment from the orifice, and its

propagation up the tube. In some cases the vortex ring can be

*By William Janeway to whom we are indebted for a great deal of
help with the electronics and experiment.
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observed to veer from the tube axis and interact with the tube wall as

well.

SMALLEST ORIFICES. The smallest orifices (d/D = 0.10, 0.15)
produce the smallest and most energetic vortex rings. Associated with
the high jet Reynolds numbers, the vortex rings have very high values
of ring Reynolds number and are turbulent in character. For these
small orifices the formation of a vortex ring 1is followed by the
production of a turbulent jet.® The vortex ring initially occupies
the tip of the jet, but due to the concentrated nature of the
vorticity within the ring, soon breaks away and travels independently
up the tube. After the piston has stopped, the jet quickly diffuses
and spreads. The vortex ring, on the other hand, travels rapidly up
the tube followed by a fairly heavy, turbulent wake.

A photograph and drawing of turbulent vortex rings are shown in
Figs. 4=Y4 and 2-Tb respectively. Within the vortex ring we observe a
somewhat discernible core region surrounded by a lighter region of
turbulent fluid. With the hydrogen bubble visualization, short
wavelength fairly small amplitude waves can be observed along the
core. In addition, a bending mode of oscillation is sometimes
observed; as the vortex ring travels up the tube, the ring of bubbles
defining 1ts core 1s observed to bend back and forth symmetrically

about the ring axis.

INTERMEDIATE ORIFICES. The intermediate sized orifices (d/D =
0.25, 0.32, 0.42) are associated with intermediate values of jet
Reynolds number, intermediate ring Reynolds numbers, and
intermediate size vortex rings. For an example of an "intermediate"

vortex ring, see the photograph at the beginning of this report (just

#During the piston motion, a jet of dyed water is indeed observed, but
after the piston has stopped this turbulent region continues to move
and develop. In what follows we call this turbulent region a "jet,"
although it may not at all times correspond to an actual jet.
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FIGURE 4-4 ,
Example of a vortex ring at the highest Reynolds numbers.
Note the formation of a turbulent jet behind the vortex ring.
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before the abstract). As can be observed from this photograph, these
vortex rings tend to be well formed, laminar, and in general appear to
be quite stable. The core region is typically well defined, and the

vortex rings propagate with little or no observable wake.

LARGEST ORIFICES. The largest orifices (d/D = 0.48, 0.64)
produce the slowest vortex rings with the lowest Reynolds numbers. A
result of viscous diffusion and convection of vorticity, dye 1s
observed 1in a laminar wake region behind the vortex ring (see Faig.
2-Ta). An 1interesting phenomenon 1s observed with the vortex ring
filmed at the lowest Reynolds number. Apparently a result of
interaction with the free surface in combination with the tube wall,
the extremely slow, clearly viscous vortex ring 1s observed to bend
back as it approaches the top of the tube. That 1is, the symmetry
plane (the 2z=0 plane of Fig. 2-3) takes the shape of a spherical cap,
nose foreward. As the vortex ring encounters the free surface the
cap flattens out again, and the ring breaks down.

In general, when the vortex rings encounter the free surface the
radius quickly increases, followed by a rapid breakdown.¥* the visual
result, especially for those vortex rings with little wake, 1s a dyed
region of fluid at the bottom of the tube where the ring formed, a
dyed region at the top of the tube where the ring collapsed, and clear
water 1n between. The smallest vortex rings with very high Reynolds
nunbers, however, had sufficient energy to propel them completely out
of the tube. ;

TRANSITIONAL VORTEX RINGS. Between the three groups of vortex
rings which were labeled above as coming from the smallest,

intermediate, and largest orifices, are "transitional" vortex rings.

*The increase in radius is understood by considering the image
vortex ring on the opposite side of the free surface. For beautiful
photographs of the breakdown of a vortex ring at a surface, see
Magarvey and MacLatchy (33).
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These rings are characterized by two major features. First, one
observes in these vortex rings characteristics from both the higher
Reynolds number and lower Reynolds number rings they separate.
Secondly, these transitional vortex rings generally show more signs of
large amplitude instability than do the others. For example, the
transitional vortex rings between the high Reynolds number/small
orifice and the intermediate Reynolds number/intermediate orifice
vortex rings (d/D v 0.15, 0.25) show signs of generally larger scale
turbulent motions, but visually the development of turbulence appears
to be somewhat intermittent. Relative to the rings at the highest
Reynolds numbers, they generally exhibit larger amplitude oscillations
as well. One such transitional ring exhibited a "rocking™ type of
instability (see Section 4-4.3), and another a large amplitude bending
mode of oscillation. The transitional vortex rings between the
intermediate and the largest size orifices (d/D v 0.48), on the other
hand, show signs of large amplitude 1instability in the sense that a
greater number of these raings would rather abruptly move towards, and
interact with the tube wall. At these Reynolds numbers other
researchers have observed the development and growth of large
amplitude fairly long wavelength waves along the core centerline
(Section 2-4.2).

INTERACTION WITH THE TUBE WALL. The interaction of a vortex
ring with the tube wall 1s an interesting phenomenon. Except for the
vortex rings produced with an orifice which was intentionally made
very irregular (Section 4-U4.3), the location where the ring collides
with the wall appears to be random. As a vortex ring makes contact,
one side tends to remain fixed, or "stick" to the wall while the other

rotates around.¥® From the hydrogen bubble visualizations one observes

*Again this can be understood by visualizing the image system with
the 2-D analog of Fig. 3-8.
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that when the core of the vortex ring touches the wall, vortex
stretching manifests itself as a rapid twisting of the vortex core
before the ring collapses into a generally turbulent mass of water.
Subsequently, this turbulent, vortical region 1s observed to rotate
away from the tube wall, apparently the result of the cancellation of
some vorticity by viscous forces at the wall, resulting 1n a net

vortical motion away from the wall.

4-3 QUANTITATIVE RESULTS

4-3.1 Data Acquisition

Data was reduced for 26 sequences or "runs" using both the dye
and hydrogen bubble visualization techniques. The runs are numbered
from 1 to 26 in the sequence indicated in Table 4-*. The values for
Re,. given 1in this table are rough and should be used only as a guide.

T

The calculated values of Re more accurate values of d4/D, Rej, and

’
other information a33001atedTw1th each run are given in Table A-1 of
Appendix A. The first step in the acquisition of data was to project
each run onto a large sheet of graph paper and, by advancing the
projector frame at a time, carefully outlining the vortex ring with as
much detail as possible at many locations in 1ts evolution. With the
f-stage timer, the film speed was accurately determined for each run.
Thus, knowing the number of frames between each outline, we were able
to determine the time history of the vortex rings. Because of the
care (and time) which was taken in this initial process of "freezing"
the vortex evolution onto a large sheet of paper, the outlines have
proved invaluable 1in later interpretations of the data.

At an average of 35 points per run the followng data was

recorded for each vortex ring (refer to Fig. 2-5):
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Run d R;zgh
Number D T Visualization
1 0.10 5000 dye
2 0.10 4000 dye
3 0.10 3000 dye
4 0.15 5000 dye
5 0.15 5000 H2
6 0.15 4000 dye
7 0.15 4000 H2
8 0.15 4000 H2
9 0.15 3000 dye
10 0.15 3000 H2
11 0.25 5000 dye
12 0.25 5000 H2
13 0.25 3000 dye
14 0.32 5000 dye
15 0.32 4000 dye
16 0.32 3000 dye
17 0.42 5000 dye
18 0.42 5000 H,
19 0.42 4000 dye
20 0.48 5000 dye
21 0.48 5000 H2
22 0.48 4000 dye
23 0.48 3000 dye
24 0.64 5000 dye
25 0.64 4000 dye
26 Irregular orifice dye
TABLE 4-1

General identification for experimental vortex ring runs
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x(t) The distance from the orifice; 1.e., the trajectory.

R(t) The radius to the core centerline. This was obtained
accurately for the vortex rings visualized with hydrogen
bubbles, and for three rings visualized with dye. The
others were estimated.

R'(t) The radius of the vortex ring to the outermost streamline.
From the dyed rings, this 1s taken to be the edge of the
dyed region.

T(t) The thickness of the vortex ring. Also obtained from the
dye visualizations, this measurement was generally less

accurate than that for R' due to the presence of a wake.

Initially the data was reduced completely by hand [{4], but when the
PDP-11/45 computer was made available for my use all the data was
stored on peripheral disk back storage and subsequent data reduction

handled via algol programs.

CORRECTIONS. For vortex rings formed with the smaller orifices
1t 1s often the case that the piston stops ejecting water while the
vortex ring 1is traveling up the tube. The trajectories for these
rings were therefore corrected by subtracting the piston trajectory

from the vortex ring trajectory. That 1is:

x(t) - xp(t) t < 'rp (4-1)

x4y -y t> T
p p

where Tp and Xp are the piston travel time and stroke length
respectively. 1n addition 1t was necessary to correct the radial
values for the effect of refraction. This was made difficult by the
presence of three substances with different refractive indices: a
cylindrical column of water, a 7 cm. thick plexiglass tube, and the
surrounding air. Defining p, as the apparent radius as seen from
outside the tube and p as the real radius, a short algorithm was

developed to calculate p/p, as a function of pA/po. The result is
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plotted in Fig. U4-5. All values of R and R' were corrected for

refraction with this algorithm.

4-3.2 Vortex Ring Velocity

The trajectory of each of the 26 runs was plotted using linear,
semi-log, and log-log scales. It was discovered that for many runs
one, two, or three linear periods, or "regimes," can be readily
identified on one of the three trajectory plots. 1In each regime the
properly plotted trajectory can be fit with a straight line, the slope
of the straight line changing from one regime to the next over a

relatively short period of time.

DATA ANALYSIS. Having made the i1nitial discovery that for some
vortex rings the time dependent form of the ring trajectory (and thus
velocity) can be identified within regimes, an extremely careful
analysis was undertaken to objectively search for and identify such
regimes 1n all the runs, and to accurately determine the slopes and
intercepts of each linear regaime.

One approach used was to compute and plot, using each of the
three scales, the velocity distribution for each run. Between each
two data points the slope, or "velocity" was computed. The velocity
range was then divided into bins ana the number of slopes in each bin
determined and plotted. Ideally, a trajectory with three linear
regimes, for example, would have three peaks in the velocity
distraibution, and as the number of bins 1s increased, each of these
peaks should split into two or more due to oscillations about the
mean. Of course, the noise level should go up as well. An example 18
shown in Fig. 4-6 for Run 9. Using a linear scale, three regimes can
be clearly identified, resulting in three broad peaks in the velocity
distribution with 10 bins. Increasing the number of bins to 15, the
three peaks are better defined and begin to split. With 30 bins each

major peak has split into two smaller peaks. In general, however,
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this method did not work well. Due to the low number of points in
each bin to begin with, the noise level is usually too high to obtain
the quantitative information desired.

A more fruitful approach to objectively identify these linear
regimes 1s to choose a point near the beginning of a regime, and
compute the slope from that data point to each successive point.
Numbering the data points 1, 2, 3, ... , and plotting the slope from
the first point to each successive point vs. the point number, we
would expect that i1f a linear region exists, the plot would oscillate
at first, but soon settle down around the mean slope of that regime.
The end of the regime would be 1dentified as the location where the
plot begins to move away from the mean slope. Having identified the
end of a regime, one can then choose a fixed point near this end, and
repeat the procedure in the opposite direction in order to identify
the beginning of the regime.

This technique worked quite well, with two modifications.
First, rather than compute the direct slope to succesive points, the
least squares fit to a straight line was computed. The resulting plot
can be expected to dampen more rapidly to the mean value desired. 1In
addition, the mean value for the slope of a regime 13 now obtained
with a least squares fit over all the data points within that regime.
The second modification was to compute the average residuals along
with the least squares fit, and plot them also against point number.
When the end of a regime is encountered, the value of the residual
increases sharply. The result 1s an excellent indication of the
beginning or end of a regime.

Using Run 9 again as an example, a plot of least squares fit
slopes and residuals from point 9 (the beginning of the first
regime) to succeeding points is shown in Fig. 4-7. The end of the
first regime 1s clearly identified from the plot of the residuals as
point 20, and the slope is seen to oscillate but soon settle down

around the value 83.7.
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RESULTS. The result of this analysis is that one, two, or three
linear regimes can be identified for all our experimentally produced
vortex rings (except for Run 8; see Section 4-4.3). We find that
based on the scale used, the vortex rings can be divided into three
groups which parallel the three classifications discussed

qualitatively in the last section. These groups are:

1., Smallest orifices/Highest values of jet and ring Reynolds number:
x(t) « In t (semi-log scale).
2. Intermediate orifices/Intermediate values of jet and ring Reynolds
number:
x(t) « ¢t (linear scale)
3. Largest Orifices/Lowest values of Jet and ring Reynolds number:

In x(t) <« 1In t (log-log scale).

The slopes for each regime for the 26 runs are given in Table A-2 of
Appendix A.

The observation that regimes can be identified in the trajetory
has significance with respect to the velocity of the vortex ring.
What we have found 1s that at all Reynolds numbers vortex rings
propagate through regimes where the time dependent form of the ring
velocity can be identified, two regimes being separated by a sudden
change in the velocity of the vortex ring. In addition, we find that
the form of time dependence can be grouped by Reynolds number as

follows:

1. High Reynolds number, turbulent vortex rings:

A
_ .n -
U = - where An > An-1 (4-5a)

2. Intermediate Reynolds number, laminar vortex rings:

U = Bn where Bn < Bn-‘ (4-5Db)

3. Low Reynolds number, viscous vortex rings:

-,
U = constant x t & where a >0¢n 1 (4-5¢)
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The subscript n indicates a regime; the values An’ Bn’ and %lare
constants within a regime but different from one to the next. For
example, a vortex ring of "intermediate" Reynolds number travels with
a constant mean velocity for a period of time, goes through a rapid
change involving a decrease in speed, and continues into the next
regime again with a constant velocity, but slower.

Consistent with the description of "transitional" vortex rings
given 1n the last section, we find that the transition in the time
dependent form of ring velocity as you move from one group to the next
does not happen abruptly. For example, the first two regimes of Run i
are best represented with a semi-log scale but the third regime with a
linear scale, indicating a transition from the turbulent to the
laminar group. Between the intermediate and low Reynolds numbers is
Run 22, where a linear scale 1s best in the first regime, but a
log~-log scale in the second.

One additional note should be made with respect to repeatability
of these results. After reducing the data for Runs 9 (dye) and 10
(hydrogen bubble) 1t was discovered that the values for Tp, Xp and
therefore ReT and Rej were nearly the same. One would hope therefore,
that the trajectories of the two vortex rings would be close to one
another. Indeed, as 1s shown in Fig. 4-8, when plotted one on top of
the other there is very little difference between the two. This

observation gives us confidence 1n the stability of our experimental

procedure.

4-3.3 Vortex Ring Radius and Thickness

Along with the trajectory, the radii R and R' and the thickness
T of the vortex rings were measured. Radial values were corrected for
refraction from the calculations presented in Fig. 4-5. Values of R'
and T were obtained from the vortex rings visualized with dye, and R
from those visualized with hydrogen bubbles. Accurate values of R

were also obtained from dye visualization measurements in Runs 13 and
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15, and fairly accurate values in Run 14, With these runs clear
water, which was entrained upon formation of the vortex ring, marked
the center of the core.

The volume of the vortex ring was computed from T and R' using

the formula for an ellipsoid,
4 2
Vv=73TR"T (4-6)

in order to compare with the volume of fluid ejected from the orifice

vV ..
= The ratios R'/py, R/po, T/Po, V/VeJ, and T/R' were computed and
plotted as a function of time for each run. These plots are given
also in Appendix A, Figs. A-1 through A-26. The mean of R'/py and
T/R' are approximated with straight lines calculated by a least
squares fit.

Using these plots together with the traced images of the vortex
rings, a formation time 1s determined for each run. The vortex ring
13 estimated to have completed its initial formation process and to be
independent of the ejection at this time. A list of these initial
times t, and the resulting initial rang Reynolds numbers for each run

18 given in Table B-1 of Appendix B.

k-4 DISCUSSION

4-4.1 Reynolds Number Dependence

It was found that the three classes of vortex rings which are
1dentified by the time dependent form of velocity can be grouped by
Reynolds number. In Section 2-3.2 we pointed out that thevelocity of
a vortex ring 1s directly proportional to the strength and inversely

proportional to the radius of the vortex ring. That is,

I' ~ UR (4-7)
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A change i1n velocity, therefore, 1s an indication of changes in the
total circulation of the vortex ring which result fromdiffusion of

vorticity from the core and convection into the wake.

HIGH REYNOLDS NUMBERS. The vortex rings at very high Reynolds
numbers are found to be dominated by small scale turbulent motions.
Qualitative observations of these rings suggest that vorticity 1is
constantly being ejected from the vortex ring into a rather heavy
wake, apparently a result of turbulent diffusion from the core (see
photograph in Fig. 3-4 and drawing in Fig. 2-7b). This being the
case, one would expect from Eq. (4-7) a decrease in velocity
consistent with a rapid loss of strength from turbulent diffusion and
convection of vorticity.

From the trajectory plots we find that for Re_, n 20000 - 30000

and above the decrease 1n vortex ring velocity gozs inversely with
time. From Eq. (4-5a), U = An/t. An increases from one regime to the
next, suggesting a possible increase in velocity; however, the slope
analysis 1indicates that the velocity at best remains constant during
this short transitional period, and might decrease slightly.

Both Maxworthy [38] and Krutzsch [28] have reported a 1/t
velocity dependence for vortex rings at high Reynolds numbers, as well
as a transitional period where the velocity rapidly changes. Their
data, however, i1ndicates a decrease in the slope An rather than an

increase. The reason for the discrepency 1is unclear.

LOW REYNOLDS NUMBERS. At the opposite extreme are the vortex
rings at very low Reynolds numbers which are dominated by viscosity.
The observance of a laminar wake suggests a loss of vorticity from the
vortex ring resulting from viscous diffusion of vorticity from the
core and convection into the wake. We would expect, therefore, a
decrease 1in total circulation and velocity consistent with the much
slower process of molecular diffusion.

Qur experimental results indicate that for ReR v 1000 - 2000 and
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below, a much less rapid decrease in velocity is observed. From Eq.
(4-5c):

u v la (4-5¢)
n

where an increases fromizne regime to the next and has values " 0.13
to 0.27. This result 1is consistent with the models for viscous vortex
rings discussed in Section 2-4.2. For the extreme of a thin, viscous
core of vorticity the velocity decreases more slowly than (4-5c¢), like
-ln t. On the other hand, in the asymptotic 1limit of large times,
when the core has the maximum thickness possible, the velocity

-3/2. The measured rate of

decrease is more rapid than (4-5¢), like t
velocity decrease is consistent with these models since the size of
the core for experimentally produced vortex rings is generally
somewhere between these two mathematical extremes. It is interesting
that both the asymptotic and the measured velocities have a power law
form. The observation that ¢ n increases from one regime to the next

might suggest that for large times oh +3/2.

INTERMEDIATE REYNOLDS NUMBERS. We have found that for a very

wide range of Reynolds numbers Re_ "V 2000 to 20000, the vortex rings

R
propagate through regimes of constant velocity. That is,

where Bn decreases from one regime to the next. These vortex rings
tend to be well formed with little or no apparent wake, indicating
little loss of vorticity from the ring, and therefore little change in
ring strength; an example 1s shown in the photograph just before the
abstract. Whereas the vortex rings at high Reynolds numbers are very
turbulent in character, and those at low Reynolds numbers are viscous,
the vortex rings in the intermediate Reynolds number range exhibit a
basically inviscid character. It appears that the Reynolds number is

high enough for these rings that viscosity i1s not important, yet low
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enough that turbulence has not developed.

4-4.2 Periods of Rapid Change: Instabilities

Between each regime is a short period of rapid change in
velocity, suggesting sudden changes in the structure of the vortex
ring. It 1s natural to suspect that these sudden changes 1n velocity
are related in some way to the development of instabilities along the
vortex core. There 1s some evidence to support this view.

Waves along the vortex core result in oscillations 1in the
measured vortex ring radius about a mean (see figures in Appendix 4).
It 1s reasonable to suppose that a breakdown in the structure of the
core, say by the breaking of unstable waves [36], would manifest
1tself as unusually large oscillations, or a sudden change in the rang
radius. As the core reorganizes from such a breakdown, finite
amounts, or chunks, of vortical fluid might be ripped from the core,
convected to the outermost region of the vortex ring, and finally
deposited into a wake. Such a sudden loss of a finite amount of
vorticity would result in a sudden loss of circulation, and therefore
a rapid decrease 1in ring velocity. We might also expect that as a
vortical chunk 1s convected around the core it would eventually show
up as a bulge in the outermost dyed streamline, moving around the
vortex ring into the wake--at some time later than the occurrence of
the decrease in velocity.

Bulges following the pattern just described have been observed
in several of our vortex rings, resulting in an increase in R' as the
bulge moves around the ring into the wake (see, for example, Fig.
A-14Db, Appendix A). Likewise, one can observe in the data large
oscillations and sudden increases in R and R' at times which appear to
be correlated with the periods of rapid velocity change. From the
hydrogen bubble visualizations one observes as well periods where the
vortex core suddenly contorts into an S shape.

In order to test for a possible correlation, all of these
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periods of apparent instability were recorded and plotted against the
nearest period of sudden change 1in vortex ring velocity. This plot is
shown 1n Fig. 4-9. Many of the regions of instability correlate well
with the regions of sudden velocity change. There 1s certainly a
suggestion that the sudden changes in the velocity of the vortex raing
are related in some way to the development of instabilities along the

vortex core.

4-4 .3 Additional Observations

In several runs other observations were made which should be

noted.

ROCKING INSTABILITY. We discussed in Section #4-2 the
transitional Reynolds numbers which appear to be characterized in part
by the occurrence of unusually large-amplitude oscillations. An
example 1s the vortex ring of Run 5, representing a transition between
the high Reynolds number, turbulent vortex rings, and the intermediate
Reynolds number, inviscid vortex rings. This vortex ring was
basically turbulent in character, but exhibited an interesting
oscillation. From hydrogen bubble visualizations, we observe that
early in 1ts life the vortex core suddenly became contorted, marking
the initiation of a two cycle oscillation, or rocking motion, as
indicated schematically in Fig. 4-10. Although the vortex ring
traveled straight up the tube 1t oscillated through two changes in
orientation. Accompanying these changes, the radius of the vortex
ring was observed to increase and then decrease (see Fig. A-5b).
Since U Vv IR we observe as well an increase and decrease in the mean
velocity of the vortex ring around the general 1/t decrease
characteristic of turbulent rings. This large amplitude oscillation
1n the mean velocity is shown in Fig. 4-11. The points represent the
velocity computed directly between data values, and the solid curve is

the '/t dependence about which the data points oscillate. The
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The rocking oscillation observed in Run 5.
The change in radius has been exaggerated for
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two-cycle oscillation in velocity shows up as smooth, large-amplitude

deviations from the mean trajectory curve of Fig. A-5a.

TURBULENCE IN THE AMBIENT FLUID. In general, the 26 runs for
which data was reduced were chosen from sequences where motions in the
ambient fluid were minimal. Run 8, however, was chosen because the
turbulence level in the water through which the ring would propagate
was obviously quite high. Since Run number 7 has nearly the same
initial conditions as Run 8, the two trajectories are compared in Fig.
A-8. 1Initially the trajectories coincide, but as the vortex ring of
Run 8 enters the turbulent region, it abruptly slows down. The sudden
increase 1n the turbulence level (or in the turbulent viscosity)
apparently results 1n a very rapid increase in turbulent diffusion,
and 1n the loss of vorticity from the vortex ring. The subsequent
decrease 1n strength and impulse, then, appears as a rapid decrease in

the velocity of the vortex ring.

VISCOUS INTERACTION WITH THE TUBE WALL. 1In Section 4-2 we
discussed the interaction of vortex rings with the tube wall for cases
where the ring Reynolds number is high enough that upon contact with
the tube wall, the vortex ring rapidly breaks down into a turbulent
mass of fluid. When the Reynolds number is very low, however, changes
in ring structure can come about only through molecular motions.

Such was the case with Run 24. After formation the vortex ring
is observed to move towards the tube wall. Upon contact, the core of
the vortex ring nearest the tube wall 1s observed to grow very large
in size, apparently a result of viscous production of vorticity at the
tube wall which 1s of opposite sign to that in the core. 1In this run,
however, the vortex ring did not completely break down at the tube
wall, but reformed and proceeded to move towards the opposite side of
the tube.

Especially significant is that in both the period before the

vortex ring made contact with the wall, and after 1t reformed and
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moved towards the opposite wall, the velocity exhibited a power law
time dependence (see Fig. A-24). This observation lends support to
the supposition that a power law 1is characteristic of the velocity of
vortex rings at very low Reynolds numbers, and therefore
characteristic of the rate of loss of carculation due to viscous
diffusion. In addition, since this vortex ring clearly went through a
breakdown and reformation process as 1t interacted with the tube wall,
we might conclude that the rapid changes in vortex ring velocity
observed 1in general between regimes are also due to a breakdown and

reformation of the structure of the vortex ring.

IRREGULAR OCCLUSION. Along samilar lines are the results for a
turbulent vortex ring formed from a very irregular orifice (Run 26).
With application to arterial stenoses (see Section 5-4), clay was
applied to the tube wall around an orifice, creating an extremely
irregular occlusion. The jet Reynolds number was " 44900; a
turbulent, incoherent vortex ring was observed to travel up the tube
and collide with the tube wall always at the same location. As shown
in Fig. A-26, even for this very irregular vortex ring a 1/t
dependence in velocity is observed with a sudden change in speed at
one, and possible two points in its evolution. This lends support to
a 1/t dependence in velocity as characteristic of vortex rings which

are dominated by turbulent diffusion.
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Combination of
Theory with Experiment

Descartes' Vontex System

5-1 TOTAL CIRCULATION AS A FUNCTION OF TIME

In Chapter 3 we developed the mathematics to kinematically
relate the total circulation of a vortex ring in a tube to 1ts speed,
size, and shape. 1In this chapter we use these kinematic relationships
to compute the total circulation as a function of time for our
experaimentally produced vortex rings. The concepts behaind this

calculation are discussed at length in Section 2-5.

COMPUTATION. The basic kinematic relationships were derived in
Section 3-4.1, where we related the following non-dimensional

parameters:

U _R R' T (5-1)
me{‘, €—60, andRorR

U =
U 1s further divided 1into Uo - U1’ the velocity of the vortex ring if
1t were 1in an unbounded flow less the velocity induced by the presence
of the tube. 61’ a function only of €, 1s given by Eq. (3-32). U,
1s paramaterized using the core parameter a/R as defined by the

medified Kelvain/Lamb formula¥*:

~ 8 1
Ug = 1n _§ -3 (5-2)

*For a detailed description of the use of a/R see Section 3-4.1.

102
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Since the relationships among the parameters in (5-1) were
computed totally from kinematic considerations, they apply at any
instant in time where the shape of a vortex ring is well represented
by concentrating its total circulation along a circular filament. As
we discussed in Section 2-5, such a representation involves two
approximations. The first, concerning the effect of a finite core on
the shape of a vortex ring, was addressed in Section 3-4.2, and the
second, which concerns the effect of a wake, will be discussed 1n
Section 5-2.1.

Because when usang dye visualizations, measurements of R' are
generally more accurate than measurements of R, we recast the
relationships involving R into more useful relationships involving R'.
In Figs. 3-'1 and 3-12 are shown the calculations for T/R and R'/R as
a function of a/R for different values of €. Combining these
calculations we compute T/R' as a function of R'/pg for different
values of a/R, as shown in Fig. 5-'. R'/p, = 0 corresponds to the
unbounded vortex ring. As we noted earlier, we see that the thickness
(and volume) of a vortex ring increases with increasing a/R, or
decreasing velocity; for R'/py, < 0.4 there 1s relatively lattle
influence from the tube wall on the shape of the vortex ring.

The calculations represented by Figs. 5-1 and 3-12 are in a form
suitable for calculating the total circulation from flow visualization

measurements. At any instant in time, we compute T as follows:

1. A flow visualization measurement of T/R' and R'/p, defines a point
on Fig. 5-1. a/R is determined by 1interpolating between the
constant a/R curves.

2. Knowing a/R and R'/py, € 1s determined from the calculations
which led to Fig. 3-12.

3. Knowing a/R and ¢, ﬁo 1s calculated fiom Eq. (5-2) and 61 from Eq.
(3-32). Subtracting the two we find U.

4, Havaing computed U and R (z€pg), we see from Eq. (5-1) that a flow

visualization measurement of U yields the total cairculation, T.
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We have calculated not only the strength of the vortex ring, but also
its radius, R from measurements of R', T, and U. This algorithm is
used with our flow visualization measurements to compute the change in
total circulation as the vortex rings travel up the tube.

As discussed in the last chapter, the trajectory, radius, and
thickness of our experimentally produced vortex rings are well
represented by a mean motion plus oscillations about the mean which
result from instabilities and waves along the vortex core. Since 1t
is the mean motion with which we are interested, smooth curves are
passed through the data to compute I

The analysis of the mean trajectory was discussed in the last
chapter. We discovered the existence of regimes for all our vortex
rings, where the time dependent form of the velocity 1s given by Egs.
(4-5). The vortex ring strength is computed using the values within
each regime as given in Table A-2. A discontinuity in I' will
therefore occur at the (artificial) points of discontinuity in
velocity between regimes.

A least squares fit to straight line segments 1s used as well to
approximate the mean values of R'/py and T/R'. As shown 1in Appendix A
by the dashed curves, in most cases a straight line is a reasonable
fit to the data. As a result, however, small discontinuities are

necessarily inserted into the calculation for T .

RESULTS. The total circulation is calculated as a function of
time for 17 runs in which the initial ring Reynolds number ReR ranged
from 690 to 50%'00. These results, plotted along with the velocity of
the vortex raing for comparison, are presented in Appendix B, Figs. B-?
through B-17. The velocity 1s indicated with dashed curves, the
circulation with solid curves. 1In order to compare the velocity and
strength in a reasonable way, the scales are adjusted so that each
tick mark represents roughly 10% of the mean value.

It should be remembered that the mean values of the vortex ring

data have been fitted with piecewise smooth functions, so that
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discontinuities result in the plots of velocity and strength. 1In
reality, of course, these changes occur smoothly, although over a
short period of time. Using the least squares analysis as a guide,
approximate transitions over these short periods have been indicated

with smooth, dotted curves.

FORMATION. As we expect from Eq. (#-7) and as discussed in
Section U-4.1, 1n most cases the strength of a vortex ring as it
propagates up the tube follows the velocity of the vortex ring.
However, some differences are apparent. In many cases, even though
the velocity 1s constant or decreasng at the beginning of a run, the
strength 1s increasing. Careful examination of the plots in Appendix
A and the original outlines made from the movies indicates that the
vortex ring is forming during this period and vorticity is still being
concentrated 1n the core. Thus, the strength of the ring increases

during this formation process as suggested by the plots.

UNCERTAINTY. The uncertainty in these plots is very difficult
to assess. In order to get a feel for the extent of the oscillations
about the mean, the velocity and strength were computed and plotted
point by point. This involves the calculation of derivatives by
taking differences between data points, resulting in deviations from
the mean which are very large and unrealaistic. Indeed, this is
perhaps the primary reason for fitting the vortex ring trajectory with
a smooth curve before taking derivatives to compute the ring velocity.
Calculating the velocity and strength between every two data points,
however, provides a check for the calculations in which mean values of
the vortex ring parameters are used.

An example calculation is shown in Fig. 5-2 for Run 1. The
points and dashed lines represent the values computed directly from
the data, and the solid curve represents the mean computed by fitting
the data with piecewise smooth curves. We see from Fig. 5-2 that the

transition region, which appears as a discontinuity when the mean
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curves are used, 1s shown as a smooth but rapid change when the

velocity and strength are computed point by poant.

5-2 ACCURACY OF THE COMPUTATION METHOD

5-2.1 The Effect of Wake Vorticity on Ring Shape

The kinematic model which 1s used to compute the circulation i1s
based on two approximations (Section 2-5). The effect of a finite
core on the shape of a vortex ring was assessed in Section 3-4.2 and
found to be of 1little consequence. We have yet to assess the
importance of vorticity in the wake on the shape of a vortex ring.

Clearly any such effect will be most important for the rings
with the heaviest wakes, so we consider the experimentally produced
vortex rings which have the highest (Run 1) and lowest (Run 25)
Reynolds numbers. Taking the difference of the initial and final
strengths from Figs. B-1 and B-17, and dividing by the distance the
vortex ring has traveled, we find that for Run ' the average strength
per unit length 1s Vv 12.3 cm?/sec/cm and for Run 25 v 0.15 cm’/sec/cm.
If we now divide by the average total circulation of each vortex ring

we find that, on the average:

strength 1n 1 cm. of wake 0.018 Run 1

strength of vortex ring 0.013 Run 25

That 1s, for the highest Reynolds number ring there is about 1.8% of
the total circulation in 1 cm. of wake and about 1.3% for the vortex
ring at the lowest Reynolds number. We therefore use Run 1, the worst
case, to test the influence of a wake on vortex ring shape.

We consider the same parameters which were used to test the
effect of a finite core: ¢ = 0.40 and a/R = 0.25. From the movies we

observe that trailing vorticity tends to be distributed in a region
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about half the radius of the vortex ring. In order to model the wake,
then, we distribute the vorticity within this region behind the vortex
ring over two rows of circular vortex filaments. The strength of each
filament is weighted as estimated for Run 1. Using the linearity
of the Biot-Savart law, the streamline field 1s computed by summing
the individual fields of the vortex elements.

The streamlines for the vortex ring with and without a wake are
given in Fig. 5-3. The vortex elements which model the wake are
indicated with dots. the effect of the wake 1s to distort the
streamlines behind the vortex ring and to cause a slight asymmetry
about the z = 0 plane in the shape of the vortex ring. As is shown 1in
Fig. 5-3c¢, the rear end of the ring is drawn out slightly resulting in
a slightly thicker vortex ring.

The difference 1n thickness due to the presence of the wake, as
compared with a wakeless vortex ring, 1s about 3%. This is well
within the precision of the experimental measurements. Furthermore we
have chosen a vortex ring with a heavy wake so that for other rings
the effect 1s probably not even as great. We therefore conclude that
the effect of the wake 1s negligible for typical vortex rings, and the
size and shape can be accurately predicted by concentrating the total

circulation of a vortex ring along a circle.

5-2.2 Comparisons with Measured and Estimated Values

We would like to test the accuracy of this method with other
methods for computing the total circulation of a vortex ring. To do
this it is necessary to have both flow visualization measurements

of T, R', and U as well as an independent calculation for r,

MEASUREMENT. Sullivan et al. [60] have measured ', U, R, and
a/R using a laser doppler velocimeter (LDV) for two vortex rings
produced in air at different Reynolds numbers. They include a

photograph for one vortex ring, that with the lower value of Reynolds
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The streamlines for a vortex ring with a wake
compared with a wakeless vortex ring.
a) The wakeless vortex ring.
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The streamlines for a vortex ring with a wake
compared with a wakeless vortex ring.

b) The vortex ring with a wake.

c¢) Comparison of outermost closed streamlines.
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R = 3040, Rer = 7780), thus allowing comparison with our

method. Measurements with the LDV require the repeatable production

number (Re

of vortex rings, so the photograph i1s only one of many rings measured.
By integrating the measured velocities around the core, they
calculated a total circulation of 1124 cm?/sec. Using the photograph
to measure T and R' and their measurement for U we calculate with our

method a total circulation of 1135 + 60 cm?/sec.

ESTIMATES. The initial strength of our experimentally produced
vortex rings can be approximated by relating the total circulation of
the fluid ejected by the piston to the jet velocity and orifice size.
If you consider a slug of fluid of length L ejected from the orifice
with velocity uj(z) the total circulation content of the ejected fluid

1S given by*:

' .= J u, dz (5-3)
€J 0
The total circulation of a newly formed vortex ring 1s therefore

approximately given by

M(to) = o) r, (5-4)
ej J

where V(t,) 1s the initial volume of the vortex ring and Vej is the
volume of fluid ejected from the orifice. Using these expressions,
the inatial strengths of our vortex rings were estimated and compared
with our calculated values.

In Fig. 5-4 are shown the comparisons between the values of
total circulation calculated using the kinematic theory, and the
values measured by Sullivan et al. and estimated from Eq. (5-4). The

comparison is felt to be excellent.

*This expression, which is straightforward to derive, agrees with
that used by Saffman (55) to estimate the initial circulation of
vortex rings. Maxworthy (36), however, includes a factor of 1/2
for reasons which are unclear.
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VORTEX RING RADIUS. Earlier we pointed out that in the process
of computing the strength of vortex rings from measurements of T, R',
and U we compute the radius R as well. For most of our dye
visualizations the estimates of R are not accurate enough to warrant
comparisons with the computed values of R. For Runs 13 and 15,
however, we were able to obtain accurate measurements of both R' and R
due to the presence of clear water along the core centerline. We were
also able to provide a good estimate for R in Run 4, although not as
accurate as for the other two runs. It would be of interest,
therefore, to compare the data for these runs with the mean values of
R computed using the kinematic theory. These comparisons are shown by
solid curves in Figs. A-13b, A-14Db, and A-15b of Appendix A. The
comparisons for Runs 13 and 15 are excellent and for Run 14 quite
good. It is interesting that in both Runs 13 and 74 the predicted
value for R initially decreases as does the data. We also made the
comparison between the computed values of R from the dye visualization
of Run 9 with the hydrogen bubble measurements for R in Run '0. These
two runs were found from the trajectory and experimental parameters to
be very close to one another. The solid line through the data in Fig.

A-10b shows the comparison and once again 1s quite good.

One additional note can be made with regard to the accuracy of
the Kelvin/ Lamb formula, Eq. (2-15). Sullivan's measurements suggest
that the Kelvin/ Lamb formula overestimates the velocity of vortex
rings by as much as 30 to 40%. Thus, even 1f it were possible to
measure a/R using flow visualization, the expression cannot be

expected to accurately predict the strength of a vortex ring.

5-3 VORTEX RINGS AND THE REYNOLDS NUMBER

REYNOLDS NUMBER RELATIONSHIPS. As discussed in Section 2-4.2,

two definitions for the Reynolds number have been commonly used to
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characterize vortex rings:

. 2R . I _
ReR =5 Rer =35 (5-5)

As we found from Eqs. (2-16) and (2-22b) T v UR so we expect ReR and
Rer
produced vortex rings, it would be of interest to compare these two
definitions. In Fig. 5-5 we have plotted ReR

newly formed vortex rings. This plot suggests that at the initial

to be closely related. Having computed T for our experimentally
against Rer for our

time of formation, tO:

ReIJbZReR (at t = ) (5-6)

Inserting the definitions in (5-5) results in:
T = 4UR (at t = tg) (5-7)

The Kelvin/Lamb formula, Eq. (2-17) suggests that the proportionality
factor between .T and UR is a function of the core size, a/R:
r =s4mr [m&B-L ]'1 (5-8)
a 3
Using thais formula together with Eq. (5-7) to estimate the core

parameter of the newly formed vortex rings we find that
a/R ~ 0.25 (at t = tg) (5-9)

It was for this reason that a/R = 0.25 was chosen in our assessment of
the effect of a finite core (Section 3-4.2) and wake (Section 5-2.1)
on the shape of a vortex ring.

It would also be of interest to study relationships between the
Reynolds number of vortex rings and a Reynolds number based on the
ejection of fluid from the orifice. We have observed qualitatively
that as the jet Reynolds number increases, so does the ring Reynolds
number. In Fig. 5-6 we have plotted ReR and ReI,against Re‘j on a
log-log scale. We note that at Rej n, 25000 there is an abrupt change
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in the trend. This suggests transition to turbulence in the Reynolds
number ranges:

Rej 20000 - 30000

ReR 25000 - 35000

Rer 50000 - 70000

REYNOLDS NUMBER GROUPS. 1In Section 4-U4 we discussed
correlations between the three Reynolds number groups of vortex rings,
and the rate at which vorticity diffuses from the core and is
convected into the wake. These ideas are supported by our
computations of the time rate of change in strength, shown in Appendix
B. The rate of decrease in total circulation from high Reynolds
number, turbulent vortex rings is observed to be much greater than the
rate for low Reynolds number, viscous vortex rings, an indication of a
more rapid rate of diffusion due to turbulent motions as compared with
molecular motions. Most interesting, perhaps, is the very wide range
of intermediate Reynolds numbers in which the strength of the vortex
ring changes very little (in a regime), consistent with the absence of
an observable wake. These vortex rings appear to have a basically
inviscid character.

In order to characterize these groups in a concise way consider

the coefficient of drag for a vortex ring defined in the usual way as

Ch = T u%s (5-10)

D 18 the drag force on the vortex ring, U its speed, and S the frontal

surface area. D and S are given by:

D = (pmv) g% S = ﬂn'z vV = ﬁﬂrR""—T

Inserting these values into (5-10) yields

8T du

CD = 3T ae (5-11)
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In the case of a solid sphere drag 1s a result of shear forces
along the sphere's surface and flow separation behind the sphere. The
drag force of a vortex ring, however, results from the loss of
vorticity, strength, and impulse from within the volume of fluid
comprising the vortex ring. Within a regime, the high and low
Reynolds number vortex rings will therefore have a value of CD
consistent with the rate at which they lose vorticity, whereas vortex
rings at intermediate Reynolds numbers exhibit no drag, and thus have
a zero coefficient of drag.

Since it is the motion within regimes which characterizes the
three groups of vortex rings, we choose points in the middle of each
regime to compute CD. These values are shown plotted against ReP in
Fig. 5-7. This figure nicely 1llustrates the three groups of vortex
rings. The high Reynolds number, turbulent vortex rings have the
highest values of CD; the low Reynolds number, viscous rings have
generally lower values of CD; and those vortex rings in the
intermediate Reynolds number, "inviscid" group have zero coefficient
of drag.

The transition region between these groups is expected to depend
in general not only on the Reynolds number, but also on such factors
as geometry and roughness of the orifice, piston speed
characteristics, the state of the ambient fluid into which the vortex

ring propagates, etc.

5-4 ARTERIAL STENOSES AND THE WALL PRESSURE

A motivation for the study of vortex rings propagating up a tube
is its application to arterial stenoses. An arterial stenosis is a
constriction in an artery which results from the buildup of
cholesterol along the arterial wall, or from a diseased heart valve

which will not open completely. As blood is forced through these
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constrictions, sounds called murmurs are produced. Murmurs can be
heard with a stethoscope, and have been used in a qualitative way for
years to assess the severity of a stenosis. To determine with
precision the degree and location of a stenosis, however, usually
requires investigative surgury or the use of radiocactive tracers.

In recent years interest has developed 1in the possibilaty of
using murmurs in a more quantitative way in order to predict with more
accuracy the severity and location of a stenosis. Understanding the
source of murmurs, however, requires an understanding of the
formation, development, and structure of the turbulent flowfield which
is produced as blood is forced through the constriction.

Based on the suggestion that the flow of blood through a
stenosis reaches a quasi-steady state at peak systole, studies in the
past have concentrated mainly on steady flow models [65]. As is shown
in Fig. 5-8, however, the acceleration of blood into the aorta 1is
extremely rapid (~ 4650 cm/sec?), so that, at least for a valvular
stenosis, the flow is dominated by pulsatile effects. Farther from
the heart a steady component 1s superposed over the ejection pulse,
but pulsatile effects, especially for highly occluded vessels, are
st1ll expected to play an important role in the development of the
post-stenotic flowfield.

As 1s indicated in Fig. 5-8 our experiment was designed using
parameters relating to the arterial stenosis. Because the peak
Reynolds number of blood ejected from the aorta 1s about 5000 we chose
tube Reynolds numbers of roughly 5000, 4000, and 3000, and a piston
travel time of roughly 0.170 seconds to correspond to a single
ejection of blood from the heart. With regard to arterial stenoses we
are most interested in the smallest orifices which correspond to the
highest degree of occlusion. These orifices are associated with the
production of turbulent vortex rings followed by the production of a
turbulent jet. Entirely a result of the pulsatile nature of the flow,
the vortex ring travels up the vessel and collides with the vessel

wall, causing large pressure fluctuations.
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IRREGULAR OCCLUSION. In order to visualize the development of
vortex rings with a more physiologically realistic oceclusion, an
orifice was made very irregular by applying clay to the tube interior
to an area reduction of roughly 92%. It was found that highly
turbulent, rather incoherent vortex rings could still be readily
identified and observed to travel up the tube, colliding with the tube

wall always at the same location.

WALL PRESSURE. Since the fluctuations of the arterial wall are
heard at the surface of the body as noise we would like to analyse the
pressure at the tube wall due to the passage of a vortex ring, and
compare this with an estimate of the magnitude of pressure
fluctuations which might result from a collision with the arterial
wall. The pressure at the tube wall can be calculated from the

unsteady Bernoulli equation:

39

P 5c +4p v

+ p = constant (5-12)
u 13 the velocity at the tube wall and § 1s the unsteady potential

function. Since
t
& = &(pg, z ~ { u(zg) dz )

we find that the pressure at the tube wall relative to the pressure at

infinity is given by:

P-P = - l/zpm(u2 - 2ul) (5-13)

[oe]

where U 1s the velocity of the vortex ring. We write u in the

non-dimensional form:

ulpa, 2) = g 800, 2) (5-14)

Computations for ﬁ, obtained by taking the 2z deraivative of & in Egs.
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The non-dimensional wall velocity as a function
of z/p0 for different values of €.
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(3-19), (3-23) and (3-27) are given in Fig. 5-9 for different values
of ¢ .

In order to compute the pressure at the tube wall as a vortex
ring passes by we need to know I, U, and R as a function of time. U
and R are obtained from experimental measurements, and we now have
computations for . Since we are concerned most with the smallest
occlusions which produce the most energetic vortex rings, we compute
the pressure as a function of time at 1.5 tube diameters from the
orifice for Runs 1 and 3. The results are given in Figs. 5-10 and
5-11. Time 1s measured from the formation of the vortex ring and the
vertical line indicates the time at which the vortex ring passes the
point where the pressure 1s computed. We note that the peak pressure
drop does not necessarily coincide with the time when the vortex ring
is 1.5 diameters downstream, and that the pressure profile is
asymmetric. This is because the vortex ring is both loosing strength
and increasng i1n size as it travels up the tube.

The peak pressure change at the tube wall due to the passage of
these turbulent vortex rings is apparently on the order of /3 - 1
mbar. It is interesting to note that this 1s the same order of
magnitude as the peak rms wall pressure measured in steady flow models
of arterial stenoses [65].

The pressure resulting from a collision with the vessel wall,
however, can be expected to be much higher. Using Eq. (2-14) to
estimate the i1mpulse of the vortex ring, one can obtain an order of
magnitude estimate for the pressure imparted to the tube wall due to a
collision by a vortex ring. Based on values for the smallest orifices
one estimates pressures at least one order of magnitude larger than
what 1s shown in Figs. 5-10 and 5-1%. This would suggest that the
production of vortex rings behind arterial stenoses might be important
with respect to flow-induced vibrations at the vessel wall. Indeed,
the repetition 1n collisions of vortex rings with the vessel wall
behind an arterial stenosis might account for the commonly observed
phenomenon of post-stenotic dilatation--the weakening of the arterial

wall behind an arterial stenosis.
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Summary

{The) wornkd tube represents an infanitely complex process
of . . . movement and development which 48 centered 4n a
negion indecated by the boundances of the tube. Howevenr,
even outscde the tube, each 'particle' has a f4eld that
extends through space and menges with the §elds of othen
parnticles. A more vived amage of the sont of thing that
45 meant 44 afforded by considering wave forms as vortex
dtwetures in a fLowing Atream . . . The §Low
patterns merge and unite, 4n one whole movement of the
{loweng stream. There 44 no Sharp deviseon between them,
nor are they to be negarded as separately on andependently
existent entities.

-grom D. Bohm, "Fragmentation and Wholeness”

As is indicated by the title of this report, kinematic and
dynamic aspects of vortex ring propagation in a tube have been
discussed. The kinematiecs is embodied in the mathematics which was
developed in Chapter 3, and the dynamics enters via the flow
visualization measurements discussed in Chapter 4. Using the purely
kinematic theory together with the data, we computed the change in
vortex ring strength as a function of time, a dynamic result. We

should now like to summarize what we have learned.

KINEMATICS. We exploit two important properties of the
Biot-Savart Law. Fairst, since only conservation of mass for an
incompressible flow is used in its deravation, it is a purely
kinematic expression. Whether the flow 1s viscous in character or is
dominated by turbulent fluctuations, if the vorticity field is known
or can be adequately modeled at a given instant in time, then the
velocity field can in priciple be computed at that time from the
Biot-Savart Law. We provide such a model for a vortex ring in a tube
in order to compute the kinematic relationships among the vortex ring
velocaty, radius, thickness, and strength. To the extent to which our
model is accurate in computing these relationships, it applies for all
vortex rings be they viscous in nature, or highly turbulent.

Another important aspect of the Biot-Savart Law is the linearity

of the vorticity field with respect to the velocity field. Making use

130



Chapter 6 Summary 131

of this property we split the vorticity field in two parts: the
vortex ring itself, and the wake. We found that effects of the wake
on the shape of the vortex ring are at most about 3% and can be
neglected.

In addition, we show that the effect of a finite core on the
vortex ring shape 1s slight, so that we can accurately model the
vortex ring by concentrating its total circulation along a circular
vortex filament placed axisymmetrically in a tube. In a frame of
reference fixed with respect to the tube we find that the outer
flowfi1eld of a bounded vortex ring, like the unbounded vortex ring,
has a dipole character, but with more of an axial flow due to the
confining nature of the tube [Fig. 3~4]. The wall-induced flow on the
vortex ring is in a direction opposite to 1its motion [Fig. 3-5] so
that the tube acts to slow the vortex ring down. The extent to which
the speed of the vortex ring is decreased (as compared with the same
ring 1n an unbounded flow) depends on the relative radius of the
vortex ring to that of the tube [Eq. (3-32), Fig. 3-7].

In a frame of reference moving with the vortex ring, the extent
of the vortex ring, that 1is, the volume of fluid moving with the core
13 defined. The speed with which the vortex ring travels depends on
dynamic considerations such as the change in size of the core, the
distribution of vorticity, etc.; however, general kinematic
relationships among the ring velocity, strength, size, and shape must
be met at all times. We compute these relationships [Figs. 3-11 and
3-12], and find that, for a vortex ring with specified strength and
size (i.e., radius), the thickness and volume of the vortex ring
increases with decreasing speed. In addition, we find that the effect
of the tube 1s to 1ncrease its volume further. Thus, from kinematics,
we conclude that the effect of a tube on a vortex ring is, in general,
to decrease 1ts velocity and aincrease 1ts volume as compared with the

same vortex ring in an unbounded flow.
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DYNAMICS. Once the total circulation, radius, and velocity of a
vortex ring have been established from the dynamic processes of vortex
formation, convection, and diffusion, the shape of the vortex ring is
specified by the kinematic relationships just deseribed. We therefore
work backwards, and from measurements of the velocity, radius, and
thickness of a vortex ring traveling up a tube, determine its total
circulation as a function of time-- a dynamic calculation. It should
be kept in mind, however, that the dynamics enters through the
experimental measurements of the time rates of change in ring
velocity, thickness, and radius--the role of kinematics 1s to relate
these quantities at any instant in time to the total circulation of
the vortex ring.

With experimental measurements of vortex rings from very low to
very high Reynolds numbers we find that the vortex rings can be
divided into three groups which are characterized by the rate at which
total circulation is lost from the ring into a wake [Fig. 5-T7]. At
. 20000 - 30000 and above),

turbulent diffusion of vorticity and its subsequent convection out of

very high ring Reynolds numbers (Re

the vortex ring results in a roughly 1/t decrease in ring velocity and
strength. On the other hand, at very low Reynolds numbers (~ 1000 -
2000 and below) the much slower process of molecular diffusion results
in a less rapid decrease in vortex ring velocity and strength, like
1/ta where a v 0.13 to 0.27 for our experimentally measured vortex
rings. There is a very wide range of intermediate Reynolds numbers
(v 2000 - 20000), however, where the vortex ring has basically an
inviseid character. Viscous diffusion proceeds at such a slow rate
that very little vorticity is lost from the vortex ring, and the total
circulation of the vortex ring remains essentially constant.

We also discovered, however, that for all our experimentally
produced vortex rings, periods of rapid change in ring velocity and
strength would periodically occur. That is, the time dependent forms
of ring velocity and strength just described are i1dentified in

regimes, two regimes being separated by a rapid change in ring
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velocity and strength. These periods of rapid change are postulated
to result in some way from the growth of unstable waves along the core
of the vortex ring which, as they break, might result in a periodic
reorganization of the core.

Relating to pulsatile effects in arterial stenoses, the pressure
at the tube wall 1.5 diameters from the orifice was calculated for our
smallest occlusion. It was found that the maximum drop 1n pressure as
these vortex rings travel up the tube 1s on the order of 1/2 mbar, the
same order of magnitude as the peak rms pressure measured in steady
flow models. Collisions of vortex rings with the vessel wall,
however, might result in significantly higher pressure fluctuations,
accounting perhaps for the observation that behind an arterial

stenosis the vessel wall 1s often found to be weakened.

SIGNIFICANCE AND FUTURE STUDY. We have found from our
experimental measurements that vortex rings behave in a viscous,
turbulent, or inviscid manner, depending 1n large part on the Reynolds
number. Although other researchers have observed the viscous and
turbulent regions, the existence of a group of vortex rings with an
inviseid character had not been previously established. Likewise,
although other researchers have observed single periods of breakdown
and rapid change 1n velocity for turbulent vortex rings, 1t is
significant that transition periods have now been observed for vortex
rings at all Reynolds numbers, and in many cases more than one.

Such observations have relevance not only with respect to the
evolution of single vortex rings, but with more complicated flows
involving concentrated regions of vorticity. The different rates at
which circulation 1s lost from the core might have implications with
respect to the evolution of more general vortex flows. The rapid
changes i1n vortex strength and the possible 1nstability mechanisms
associated with them might play a role in the production of smaller
scales of turbulence from larger scales, especially for shear flows.

If found to be the case in more general turbulent flows, sudden
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losses of vorticity as vortex tubes become unstable, break, and
reform, when averaged over long periods of time might produce large
contributions to a turbulent viscosity. In addition, since the sound
field in turbulent Jjets arises from non-steady oscillations in the
potential function, sudden changes in vortex ring strength (and
therefore in the potential field) might be expected to result in the
production of noise. It would be of considerable practical interest,
therefore, to examine these periods of rapid change in vortex ring
strength in more detail, to determine what mechanisms are involved,
and to search for such mechanisms in the development of more general
turbulent flows.

Using the kinematic nature of vorticity we have developed a
method to calculate the total circulation of vortex rings from flow
visualization measurements. This technique is considerably simpler to
apply than previous methods which require knowledge of the velocity
field within the vortex ring, and we now have the ability to compute
the time rate of change in strength for single vortex rings as they
propagate. With respect to the evolution of vortex rings, then, it
would be of interest to apply this technique to more extended studies.
For example, by varying systematically the piston characteristics,
volume of fluid ejected, type of orifice used, etc. additional
relationships between the initial conditions and the loss of
circulation from the vortex ring as it evolves can be established.

We might note in closing that the technique we have developed to
calculate the total circulation of vortex rings from flow
visualization measurements can be applied just as well to the study of
vortex pairs, with application, for example, to studies of trailing

vortices behind airfoils with finite span.



APPENDIX A

VORTEX RING TRAJECTORY, SIZE, AND SHAPE PLOTS

for Runs 1 - 26

definitions:
X, Distance from the orifice. [em].
t Time. [sec.]

R Radius of

R' Radius of
T Thickness
v Volume of
VeJ Volume of

Table A-1: Summary

Table A-2: Summary

Figures A-1 to A-26:

vortex ring to core centerline.

vortex ring to outermost dyed region.
of vortex ring to outermost dyed region.
vortex ring, 4/31TR'2T

fluid ejected through the orifice.

of experimental values for each run.

of regime slopes for each run.

a) Vortex ring trajectory plots

b) Vortex ring size and shape plots

135
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. . m/se
. %- Re, (s:: ) (i: ) (e ﬁp f) Rej . (zm)
1 dye .1000 5598 .169 .300 4,509 55978 450.9 1.188
2 dye .1000 4254 172 .232 3.426 42540 345.6 1.188
3 dye . 1000 2471 .208 .163 1.990 24712 199.0 1.188
4 dye .1497 5840 .162 .300 4,704 38931 209.05 1.778
5 H2 1497 5468 .173  .300 4,405 36456 19%.8 1.778
6 dye 1497 4426 . 166 .233 3.565 29508 158.4 1.778
7 H2 .1497 3858 .188 .230 3.107 25719 138.1 1.778
8 HZ . 1497 3719 .195 .230 2.9%6 24796 133.2 1.778
9 dye 1497 2650 .194 ,163 2.134 17664 94.8 1.778
10 Hz .1497 2675 ,191 . 162 2.154 17831 95.75 1.778
11 dye .2525 6224 .152 . 300 5.013 24649 78.63 3.000
12 H2 .2525 5419 .174 .299 4,365 21461 68. 38 3.000
13 dye .2524 2623 .196 .163 2.112 10388 33.13 3.000
14 dye . 3207 5406 .175 . 300 4, 354 16857 42,33 3.810
15 dye . 3207 4025 .178 .230 3.282 12550 31.91 3.810
16 dye . 3207 2647 .193 . 162 2.132 8254 20.73 3.810
17 dye . 4209 6143 .154 . 300 4.948 14596 27.94 5.000
18 H2 .4209 5409 .172 .295 4,356 12852 24,62 5.000
19 dye . 4209 4266 . 170 .230 3.436 10136 19.40 5.000
20 dye .4811 5468 . 174 . 300 4,405 11366 19.04 5.715
21 H2 .4811 5715 .165 .299 4,603 11881 19.88 5.715
22 dye .4811 3871 .189 .232 3.118 8048 13.48 5.715
23 dye L4811 2554 .200 .162 2.057 5310 8.891 5.715
24 dye .6414 5005 .189 .300 4,032 7803 9.800 7.620
25 dye .6414 3899 .186 .230 3.141 6079 7.635 7.620
26 dye ®.3 "13470  N.070 .299 10.85 4900 “120 Ad/AD n, 92
TABLE A-1

Summary of experimental values for each run



1 23.244 27.636
2 22.803 28.364
3 24.236 26.948 (70.128)
4  17.253 23.240 (28.725) 85.741
5 15.997 18.721 (rocking oscillation)
6 110.20 88.346
7 101.52 86.500
8 turbulence
9 83.686 70.421 63.520
10 83.836 70.435 62,410 | Tepeatabllity
11 41.363 37.861
12 35.807 32.448 28,995
13 19.249 17.016
14 18.145 16.676 14,358
15 14.532 13.715 13.056
16 7.175 6.518  6.017
17 9.813 8.866 8.550
18 8.417 7.816
19 6.694  5.944
20 4.819  4.396
21 6.252
22 3.853 (3.170) . 8280 1.568
23 (1.562) .8239 .7650 2.529 2.875
24 .8664 .7313 2.202 2.989
25 .8623 .7681 2.093 2.589
26 3.913 5.974 10.873 (dirregular occlusion)
TABLE A-2 U

Summary of regime slopes for each run

group 1: x = An In t + const.
group 2: x = Bn t + const.

group 3: lnx=Y Int+ 1nC
n n

(x) = cm (U) = cm/sec.
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VORTEX RING TRAJECTORY Run no. 28
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APPENDIX B

VORTEX RING STRENGTH AND VELOCITY PLOTS

Table B-': Initial vortex ring parameters for each run

Figures B-71 to B-17: Computed values of total c¢irculation as a

function of time plotted with the vortex ring

velocity.
Total circulation, or strength: solid curves
Vortex ring velocity: dashed curves
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(sec.) (cmzlsec.)

Run to € ro ReR Rer
1 .112 .19 827 50144 89560
2 .102 .13 731 35091 76393
3 .170 .18 684 31050 71481
4 .122 .20 756 35233 79005
5 <145 .28 38045
6 .100 <25 584 33858 61030
7 .126 .26 33101
8
9 .126 .23 460 23421 48072

10 .136 .25 26459

11 .186 .30 311 15181 32501

12 .180 .31 13845

13 .370 .31 118 7455 12331

14 .450 .42 220 9530 22991

15 .500 .40 120 7217 12540

16 . 960 .36 52,2 3197 5455

17 .583 .38 100 4641 10450

18

19 1.327 .47 64.6 3894 6751

20 1.489 .38 54,2 2291 5664

21

22 1.170 .45 34.5 2205 3605

23 3.00 .44 14.5 937 1515

24

25 3.693 .37 13.0 688 1359

26

TABLE B-1

Initial vortex ring parameters for each run
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The true artist is a tlacuilo
he paints with red-and-black ink
with black water
the true artist is wise
god is in his heart he paints god

into things
he knows all colors
he makes shapes he draws feet

and faces
he paints shadows
he is a Toltec
he has a dialogue with his own heart

-poems from ancient Mexico
retold from Nahuatl texts

To Agnes
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