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FOREWORD

This report presents the results of an experimental investigation
of V/STOL thrust augmenter wings in flight at slow forward speeds. Two
rectangular wing planforms of differing relative chord lengths were tested.
The augmenters were positioned in the aft portion of the wing so as to
produce increases in circulation lift. Two blown flap configurations were
also tested for comparison.

Surface pressures as well as total forces and moments were obtained
on the semispan models at two flap deflections and a range of momentum
coefficients. The results are compared with predictions made by use
of Spence's jet flap theory.

Volume 2 contains tabulation of (1) surveys at the pressure
augmenter exit, (2) downwash surveys downstream of the wing, and
(3) all force and moment data acquired during the test.
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A STUDY OF A VTOL
THRUSTING EJECTOR IN LOW SPEED FLIGHT

By Vearl R. Stewart
Rockwell International

North American Aircraft Division
Columbus, Ohio

SUMMARY

Results are presented of a wind tunnel test to quantify the perfor-
mance of a VTOL Thrust Augmenter Wing (TAW) and a comparable blown flap con-
figuration during low speed flight. The objectives of the study were to
obtain a systematic and comparable set of data and to determine the ability
of Spence's jet flap theory to predict the aerodynamic effects of the TAW.
The ability of the theory to adequately predict the characteristics can be
increased by correctly utilizing the individual components of the theory;
therefore a secondary objective of this study was to break out the com-
ponents making up the jet flap theory, and where possible, to better define
those components. The data obtained from the test portion of the study
included longitudinal forces and mcments,surface static pressures, aug-
menter exit surveys, and downstream flow field surveys.

Results of the study indicate that jet flap theory when modified to
account for the TAW components is able to predict the characteristics with
a reasonable accuracy. The modifications are: (1) increase jet momentum
coefficient (C U ) in the theory by the thrust augmentation ( ^), i.e., Cu
becomes QC 1J (2) account for augmenter inlet momentum (ram drag) in the
drag and pitching moment equations; and (3) account for increased wing
aspect ratio due to the endplate required to close out the augmenter.
Based on augmenter exit surveys, it appears that forward speed has no
appreciable effect on thrust augmentation ratio or entrainment of this
type of augmenter.

INTRODUCTION

Ejectcrs provide a means of increasing the engine thrust as well as
a means for deflecting the thrust in a direction to provide lift and/or
control for a V/STOL vehicle. Several studies have shown augmentation values
of 1.6 to 2.0 at static conditions, References (1) to (4). Ejectors can be
utilized in several possible configuration arrangements. One such con-
figurational arrangement is the thrust augmenter wing (TAW) concept. In
this concept the augmenter is locatel in the wing trailing edge and is
capable of defection from full down (for vertical flight) to angles
approaching the wing plane (for transition). An example of a TAW con-
cept for VTOL is the Navy/Rockwell XFV-12A (see Reference (5)).

Most of the test data obtained to this date on TAW concepts have
been very configuration-oriented and not complete enough for broad design
or analysis application. In general, those data are not sufficiently



general or detailed to allow the designer to determine the component inputs
into loads and to prepare stability and control estimates for general con-
figuration concepts. An understanding of the component loads breakdown,
the flow field characteristics, and the effect of forward speed on these
parameters is needed.

In order to gain this understanding, data have been obtained from
test of a model with the necessary instrumentation at speed conditions
representative of transition to conventional flight. A TAW configuration
was tested with two chord lengths of the wing, and similar tests were
made with the augmanter rearward components removed co form a more con-
ventional blown or jet flap.

The results of these tests are analyzed with regard to overall aero-
dynamic performance and are compared to Spence's jet flap theory of Refer-
ence (6), as presented by McCormick (Reference (7)).

2



SYMBOLS

k

a	 - Wing Aspect Ratio - see Table I

AE	- Augmenter Exi L Area Perpendicular to
Mean Angle

Aj	- Nozzle Exit Area

bw/2	 - Wing Semispan

c 
	 - Wing Haan Aerodynamic Chord

Cf /c	 - Flap Chord to Wing Chord Ratio

CL	 - Lift Coefficient, Lift/qSR

CD	- Drag Coefficient, Drag/qSR

CD	- Augments.- Secondary Flow
Ram

OM2 (11che62)

cm' (inches')

cm (inches)

CM

Cu	 -

D	 -

F	 -

K1	-

K2	-

Kb
M

^	 M
p

M
s

AT

t	 P

Pa

PS

PT

PR

q

q 

Pitching Moment Coefficient, Pitching Moment/gSRcw

Momentum Coefficient, M^Vi!gSR

Throat Width	 meters (feet)

3-D Correction Factor, Function of
At and ^Cu

Induced Drag Correction Factor for Taper

Induced Drag Correction Factor for Part
Span Flaps

Lift Correction Factor for Part Span Flaps

Mach number

-	 Primary (nozzle) Mass Flow kg/sec. (slugs/sec.)

-	 Secondary (entrained) Mass Flow
of Augmenter kg/sec. (slugs/sec.)

-	 'Total Mass Flow,	
M 
	 + Ms kg/sec. (slugs/sec.)

-	 Pressure pascals (pounds/in.2)

-	 Atmospheric Pressure pascals (pounds/in.2)
2

-	 Static Pressure pascals (pounds/in.	 )

-	 Total Pressure pascals (pounds/in.2)

-	 Pressure Ratio,	 PT/Pa

-	 Freestream Dynamic Pressure, ^pV22 newtons/meter2 (pounds/ft2)

-	 Dynamic Pressure at Tail Location newtons/meter2 (pounds/ft2)

3



r -	 Thrust Recovery Factor

SR -	 Reference Wing Area

t -	 Wing Thickness

t -	 Temperature

T -	 Thrust

to -	 Total Temperature

V -	 Velocity

Van -	 Freestream Velocity

Vj -	 Nozzle Jet Velocity

X -	 Horizontal Dimension, Positive Aft

Y -	 Lateral Dimension from Plane of
Symmetry, Positive Right

Z -	 Vertical Dimension from WRP,
Positive Up

a -	 Taper Ratio

0 -	 Thrust Augmentation Ratio

K• (Re)

newtons (pounds)

K' (R')

meters/sec (feet/sec.)

meters/sec (feet/sec.)

meters/sec (feet/sec.)

meters (feet)

meters (feet)

meters (feet)

Augmented Thrust

P	 - Air Density

a	 - Angle of Attack

6 Thrust Angle

F	 - Downwash Angle

6 F	- Mean Flap Angle Measured from WRP

6 C	
- Centerbody Angle Measured from WRP

6FWD	
- Nose Flap Angle Measured from WRP

6AFT	
- Aft Flap Angle Measured from WRP

6D	- Diffuser Half Angle Measured from
Mean Angle

Isentropic Thrust

Kg/meter (slugs/ft

degrees

degrees

degrees

degrees

degrees

degrees

degrees

degrees
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MODEL AND APPARATUS

Model Description

The model tested was a floor mounted semispan model representing
an unswept, untapered augmenter wing configuration and is shown (Figure 1)
mounted in the 4.27 x 4. 88 meter (14 x 16 feet) test section of the
Rockwell International Columbus wind tunnel facility. The model was
tested at mean flap deflections representative of STOL or transition
operation.

The wing cross-section and augmenter are shown in Figure 2. An
overall model sketch and dimensions are presented in Figure 3a. The
augmenter has two Coanda slot nozzles and a hypermixing centerbody nozzle.
Figure 3b presents a sketch of the centerbody nozzle. The centerbody has
an external hinge arrangement to allow the jet to be located at the center-
line of the throat at mean deflections of 90 degrees (vertical flight mode)
and yet to close for cruise flight. The model nozzle gaps are arranged
suc;i that the flow split from the three nozzles is: each Coanda approxi-
mately 25 percent and Lhe centerbody 48 percent with 2 percent applied
on the end wall's for control of flow attachment.

The augmenter consists of a fined nose section with a hinged lower
surface flap, a hinged centerbody and an aft flap. The nose section
flap and the centerbody retract to provide the airfoil section. The
c;ose section flap leading edge is tangent to the forward circular Coanda
radius at all flap angles. The surfaces open to provide the augmenter
wing. Several angle relationships are important to the discussion. The
mean angle ( 6 F) of the augmenter is the average angle of the inside sur-
faces of the nose flap and aft flaps. The thrust angle (6) is the balance-
measured thrust angle at static tunnel conditions, and the diffuser angle
(6D) is the variation of the inside surface from the mean angle, positive
for positive diffusion. The centerbody angle (6CB ) was fixed for maximum
static augmentation ratio and was 70 degrees at e - 40° end 60 degrees at
6 - 30°. All angles (except 6 D) are measured from the wing reference plane.
Figure 3c presents the augmenter nomenclature.

The basic augmenter wing model has a relatively short leading edge
ahead of the augmenter throat. A modification to the wing chord was
achieved by adding a chord extension of .254 meters (10 inches) ahead of
the basic wing. The two chord lengths chosen would be representative of
those which might be used in a thrust augmenter wing (TAW) configuration.
Although no attempt was made to match other variables, such as, surface
thickness and throat width to flap length, the chord lengths chosen for
this study are closely representative of the Rockwell XFV-12A TAW. The
short chord could be considered to represent the canard while the longer
chord is representative of the nose lengths associated with the XFV-12A
wing geometry.

The configuration was modified to provide a jet flap configuration
by removal of the aft flap and centerbody of the basic model. Thereby,
four separate configurations wer^ tested. These are shown in Figure 4,
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and are two TAW configurations with flap chord to wing chord ratios of
0.40 (Augmenter,l) and 0.28 (Augmenter 2) and two jet flap configurations
with flap chord to wing chord ratios of 0.61 (Jet Flap 1) and 0.365 (Jet

Flap 2). The TAW Cf/Cw ratio is based on aft flap length and the respec-
tive wing chord lengths. The model geometry of the four configurations
tested is shown in Table 1.

Instrumentation

The model instrumentation consisted of a five component force balance,
instrumented air supply system. surface pressure instrumentation, and flow
field pressure survey apparatus. An external five component post balance
was used to measure normal force, axial force, pitching moment, rolling
moment, and yawing moment. The rolling and yawing moment data from a
semispan model such as this are utilized primarily as a diagnostic
and are not presented. Normal, axial, and ,pitching moment data were
transferred to stability axis reference system and are presented.

The surface pressure instrumentation consisted of one chordwise row
of taps on the upper and lower surface and one spanwise row of taps on
the upper surface. Pressure data and the instrumentation locations are
presented in detail in Appendix C.

A traversing survey rig was developed and used to survey both the
augmenter exit and the flow field in the area of the horizontal tail
locations. The exit survey was accomplished with a rake of three pitot-
static tubes (Figure 5). The exit was traversed at several stations.
Data were recorded by individual transducers for each of the six
pressures. The downwash survey was made with United Sensor five hole
directional probes. The probes are accurate to approximately 40 degrees
angle. Figure 5 shows the downwash survey rig. Surveys were rode in
both vertical and spanwise directions.

Test Procedure

The test v ies conducted in the 4.27 x 4.88 meter V/STOL test section
of the Rockwell International wind tunnel located at Columbus, Ohio. The
V/STOL test section can be operated at speeds of zero to 80 knots. The
samispan model described in the preceding sections was mounted on a five
component port balance. Figure 6 shows the schematic in.ta,llation of the
model, balance, and air supply.

The high pressure air for the nozzles crosses the balance through
a trombone pipe arrangement. This air supply system results in a small
hose tare which is accounted for in the data reduction. The balance was
calibrated with the hoses in place. Me calibration change for hose -
pressure was checked during the balance calibration. A separate balance
calibration matrix was required for the hoses pressurized or nonpressurized.

The tests were conducted in three phases. The primary portion con-
ducted was a force and surface pressure test. The balance data and sur-
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Table 1 Model Geometry

Him: (Baal*)

Section: t/c 17% Supercritical L.E. Radius 2.54 cm (1.0 in.)
Taper:	 1.0
Span: bm/2	 152.22 cm (59.93 inches)

Chord: cm	 57.46 cm (22.62 inches)
lvist: ,	 noN
Incidence:	 none
SW /2	 .875 m2 (9.414 ft2), B • 5.3

Trailing Eda:e F1

Chord:
Span: bAp/2

Hinge:
Deflections:
Nozzle:
Flaperon Exter

39.4% k • 20.12 cm (7.92 inches)
117.93 cm (46.43 inches) (full span outboard of fuselage)

.60 x/c
300 , 400
.191 cm (.075 inches) Gap

sion (E): 6.43 cm (2.53 inches)

Lover Surface Flap:

Span: bFF/2	 117.93 cm (46.43 inches)

Deflections:	 30", 400
Nozzle:	 .191 cm (.075 inches) Gap

CentrrbodX:

Span:	 117.93 cm (46.43 inches)
Deflections:	 Variable position, 00 through 900
Nozzle:	 Hypermixing, gap • .38 cm (.15 inches)

Fuselage:

Approximate .2 scale Type "A" TAW Sami-Span Transport Model

Reference Geomet=:

&Menter 1 ' Augmenter 2	 Jet Flap 1	 Jet Flap 2

Span
(Total) cm(In.)
(Exp.) cm(In.)

Chord
(Undeflecied)2cm(In.)

Area	 m (ft )
Aspect Ratio
(Total)

Center of Gravity (x/c)

152.22(59.93) 152.22(59.93) 152.22(59.93) 152.22(59.93)
117.93(46.43) 117.93(46.43) 117.93(46.43) 117.93(46.43)

57.46(22.62)	 82.86(32.62)	 37.67(14.83)	 63.07(24.83)
.875(9.414)	 1.261(13.576)	 .574(6.172)	 .961(10.334)

5.3	 3.67	 8.06	 4.83
0.430	 0.605	 0.651	 0.790
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face pressure data were obtained through a range of angles of attack from
-12 degrees to 20 degrees for each of the four configurations discussed
at various levels of blowing coefficients and thrust deflection angles.
Thrust deflection angles were maintained at approximately 30 degrees and
40 degrees fur all testing. The thrust deflection angle was determined
from measured forces at static (zero forward speed) conditions. Effect
of fo-iward speed on thrust deflection angle was not investigated.

The second test portion consisted of a series of augmenter exit
surveys to investigate the effects of forward speed on the augmentation
ratio and secondary mass flow of the system.

The third portion of the test consisted of a downwash survey behind
the augmenter and jet flap configurations. Fibure 5b shows the setup
for the downwash survey. The measurements were made at several heights,
span stations, and at three longitudinal positions behind the wing.

Data Reduction

The data are presented in the standard engineering coefficients
about the stability axis system shown in Figure 7. Heyson wall correc-
tions and solid blockage corrections have been included in the coefficients.
A discussion of Heyson corrections can be found in References (8) to (11).
The pitching moment coefficients are referenced to the center of the aug-
menter for all configurations including the jet flap configurations, see
Figure 2. This moment center was held constant for all configurations
tested for purposes of data comparisons of the induced load centers.
The aft center of gravity results in a Nrery unstable configuration in
certain cases, particularly the jet flap c-^nfigurations; reference c.g.
locations are shown in Table 1. The surface pressures have been inte-
grated and compared to balance forces.

Augmenter exit surveys were recorded as total and static pressures.
Examples are presented in Appendix A.

Downwash surveys were reduced to angle and dynamic pressure ratios and
are presented as a function of position.

Blowing moment coefficient was changed by variation of both nozzle
pressure ratio and tunnel speed to provide the desired levels for the
force testing; however, during the exit survey and downwash tests, the
nozzle pressure ratio was maintained at a pressure ratio of 1.5 for all
surveys to provide a direct basis for comparison of velocity effects.
The low level of P R - 1.5 was chosen because of limitations in stiffness
of the surveying mechanism. :.igher pressure ratio would have required
considerably higher tunnel speeds and would have more than doubled the
forces acting on the rake.

The thrust utilized in calculation of blowing momentum coefficient and
augmentation ratio is the ideal nozzle thrust for each pressure ratio
tested.

Thrust m FpVJ ; Ou 
Thrust

S
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Mass flow was measured by calibrated venturis located upstream of the
model pressure control valves.

TEST RESULTS

General

The TAW was tested at thrust angles 	 30 and 40 degrees and at
diffusion angles of 0, 8, and 16 degrees lo.,* !,oth nose lengths. The
diffuser angle variation has two effects cri u,e augmenter characteristics.
At a constant mean angle, reducing the diffuser angle redu..es the static
augmentation ratio (0) and increases the thrust angle. In order to pro-
vide data more useful in comparison and to facilitate data analysis, the
thrust angle change was kept constant by simultaneous changes to diffuser
angle and mean angle. The variation of static augmentation ratio (^)
with diffuser angle is shown in Figure 8. A second order change in
was noted with pressure ratio ( see Figures 9 and 10).

It is felt the pressure ratio effect is a corner flow separation
problem and will be eliminated with forward speed. Previous data obtained
on this model at other conditions have shown that although a small change
in ^ is noted at static conditions, the data may be compared as a function
of C . These data are presented in Reference (4) and are reproduced in
Figdes 11 and 12.

The basic lift, drag, and pitching moment data for the Augmenter 1
configuration at the diffuser angles of 0, 8, and 16 degrees are presented
in Figures 13, 14, and 15, respectively, for 40 degree thrust angle and
in Figures 16, 17, and 18 for the 30 degree thrust angle. The Augmenter 2
data are presented in Figures 19 to 24 for the same conditions. Jet flap
data are presented in Figures 25 and 26 for the Jet Flap 1 and in Figure
27 for the Jet Flap 2. Figure 28 presents the data for the basic wing
with no flap deflection and two chord lengths.

The augmenter data for both nose lengths show that as the augmentation
ratio is increased by larger diffuser angle deflection, the entrainment,
lift, and stall angle increase. At diffuser half angles of 8 and 16 degrees,
the circulation lift buildup is similar to jet flap results, large lift
changes for low values of C . The pitching moment becomes more positive
as the entrainment increases, indicating a forward lift center as well as
the augmenter inlet momentum effect. Diffuser angles of zero degrees have
a different characteristic. Low augmentation values are obtained at 6D = 0;
the augmentation ratio is less than 1.0; therefore the mass entrainment is
also lower. This results in reduced circulation lift at the lower levels
of C u . With the diffuser open to 8 or 16 degrees, providing for reasonable
augmentation level, the augmenter configurations do not show stall below
20 degree angle of attack. The jet flap configurations stalled at angles
of attack of approximately 16 degrees for C. of 1.0 and 2.0, but did not
show stall at angles of attack up to 23 degrees with C p = 4.0. The stall
angles are readily apparent in the lift coefficient vs angle of attack.

9



Effect of Diffuser Angle

The augmentation ratio of any augmenter increases with the diffusion
of the augmenter until the diffuser angles become large enough to induce
wall separation. The effect of the diffuser angle on augmentation ratio
at static tunnel conditions was shown in Figure 8. The diffuser angle
also has an effect on the aerodynamic characteristics at forward speed.
Lift data are presented in Figure 29 as a function of C u for both aug-
menter configurations. The data show considerable spread at a given Cu
with greatly reduced lift for the lower diffuser angles. Figure 30
presents the same data as a function of OC or gross Cu. The data
show better correlation here, indicating t9at circulation lift is more
of a function of the gross thrust of the augmenter; however, some dis-
crepancies are still to be noted, particularly with the short chord
augmenter. The diffuser angle of 16 degrees gives the maximum aug-
mentation level obtainable with this particular augmenter configuration;
thus, the augmenter is entraining the maximum amount of secondary air
at this condition. As the entrainment is reduced through the closing
of the diffuser, the external flow separates from the aft surfaces of
the centerbody and aft flap, thereby reducing the circulation about
the airfoil and resulting in the reduced lift coefficients seen in the
data. The correlating parameter chosen for this report is C. or 0C.,.
The parameters involving velocity ratios have been developed and may be
of interest. The data necessary to compute various velocities can be
found in the tabulated data, Appendix C.

k

Pitching moment and drag coefficients are also significantly affected
by diffuser angle; however, here the effect of ram drag contributes a
large portion to the apparent effect of diffuser angle. The variations
of drag coefficient are presented in Figures 31 and 32 as a function of
Cu and OC respectively. Again, better correlation is shown with OC.,
but the separation effects discussed for the circulation lift are apparent
at low values of OCIt wou.td appear that if a TAW configuration could
be developed such gist the separation at low Cu levels does not occur,
OCu will be a suitable parameter for data correlation.

Pitching moment coefficients for Augmenters 1 and 2 at a . 0
are presented in Figure 33. These data are presented at an angle of
attack of zero and as a function of C u only. Correlation on d;C is
no batter than C u due to the ram drag input into the moments. As will
be discussed in the following sections, the effective ram drag arm is
shown to be a function of the blowing coefficien% CThe ram drag
moment arm acts at some percentage of the stream tu ge of the entrained
air. As C increases, the stream tube of the entrained air also increases
in area. he analysis shows that much of the increasein size is above
the wing; therefore, the position of the apparent location of the pitch-
ing moment force shifts upward. The surface pressure, as will be discussed
in the wing component lift distribution section, shows the induced pressures
to be concentrated on the leading edge section at all blowing coefficients,.

i
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Effect of Forward Speed

The effect of forward speed on the augmenter characteristics is
seen in several parameters. The major items of interest at forward
speed are circulation lift, induced drag, augmentation ratio, and
secondary mass flow which results in ram drag. The pitching moment
coefficient also varies with forward speed but is a result of the
combination of the above major items. The circulation lift generated
by the augmenter is the sum of the angle of attack lift, flap lift,
and to the lift induced by blowing through the augmenter. Induced
drag is the result of circulation lift. Investigation of forward
speed effects on augmentation ratio and ram drag were broadened in
this study to include a pressure survey of the augmenter exit at
several conditions. Previous analyses had attempted to obtain a
wind-on augmentation by solving the jet flap drag equation,

CD - -rocµ + CD + CD + CD
0	 i	 Ram

K 1 CL 
2	

K2 OI 
2	

A V.

- -
r 

u + CD0 + 7M + 2t^tCJ + 7r  + ^µ + qS
	 (Eq. 

1)

This procedure indicated a sizable increase in augmentation ratio (@)
with forward speed.

The exit pressure surveys (Appendix A) taken do not show an increase
in mass flow or augmentation ratio due to forward speed and, in fact,
show a decrease in local thrust at a blowing coefficient of 2.0. Figure
34 presents the average exit thrust from the exit survey indicating a
reduction in ^ as the speed increases. The data are shown as a function
of Cu. Since the survey data are for a constant primary pressure ratio
of 1.5, the momentum coefficient (C ) is directly proportional to T/V2.
The mass flow is less consistent than thrust and indicates variations of
tlO% (see Figure 35) compared to,

t	
Ms	 A	 t

1	
(Eq. 2)

M 
	 Ajet	 t o

Due to the variations encountered in the survey results combined with
the force data, it is concluded, in practice, that no significant wind
effects can be attributed to the augmentation ratio or mass flow. The
jet flap theory drag equation shown earlier has several other variables
which are not firmly established and which may be a factor in the apparent

increase. The major items are thrust recovery (r), CD 
0 , 

the induced
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drag, span factor, K1 and K2 , as well as the effective aspect ratio of
wing endplate. These individual items will be discussed ir,.,, a following
report section entitled, Jet Flap Theory Comparison.

Downwash Survey

The flow field behind the TAW and the jet flap was measured by use
of a United Sensor calibrated five -hole probe. Survey locations are
shown in Figure 3. The probe has been calibrated to yield both angle
of attack (downwash) and sideslip as well as dynamic pressure. For
purposes of this test only angle of downwash and dynamic pressure were
of interest since tbQ entire flow field was behind the wing and no
cross-flows were experienced. Figures 36 and 37 show the variation of
the dynamic pressure ratio qh/q for the augmenter. Figures 38 and 39
present comparable data for the jet flap. The data show that the qh/q
is relatively uniform for the region surveyed at constant blowing con-
ditions. With blowing off (C - 0), the data show a wake behind the
wing. The free stream q is obtained at heights of approximately 1/2 c
above the wing plane. With blowinp on, the value of q h/qm is .8 to
.95. The accuracy of the total pressure measurements is ±5X to
±10% so that while the absolute levels indicated are not adequately
defined, the trends are probably correct.

The five-hole probe is arranged as shown:

A--7^-^^
ALL

Al,

/ Ŝ

 SECTION A-A

The total pressure is a function of pressure 5 and the static
pressures an average of pressures l to 4.. The NACAL V/STOL tunnel is
not vented to the atmosphere, and the total pressure in the test section
may be as much as 1 psi above atmospheric pressure during tests; therefore,
it can be seen that the dynamic pressure measurements are a small per-
centage of the total pressure reading. All pressures are referenced to
atmospheric.

q - P
T 

-
 

PS

At a tunnel velocity of 50 knots, q - 8.5 lbs/ft 2 - .059 lbs/in 2, P S was
approximately .45 psi above the reference pressure; therefore, the qh
is obtained from

q - PT - PS

- 14.809 - 14.750 - .059
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Small errors in either the static or total pressure measurements
can result in sizable qh errors. Assuming a 1% error in PT would result
in an 8.6% error in qh.

The measurement of angles is a function of pressure ratios, and
large errors are less likely to be encountered. Sample results for the
downwash angle are presented in Figures 40 acid 41 for the TAW configura-
tion. Large downwash angles of 20 to 25 degrees are shown in the wing
plane with blowing. These levels reduce to 10 to 15 degrees as the
test location is moved above the wing plane. The downwash angle is 5
to 10 degrees with no blowing. Longitudinal displacement does not
materially affect the downwash angles.

The jet flap downwash angles for the same conditions are presented
in Figures 42 and 43. At this fuselage station the downwash angles are
reduced due to the increased longitudinal distance from the trailing
edge. Moving forward to compensate for the forward shift of the wing
trailing edge results in increased downwash angles (see Figures 44
and 45).

The complete downwash survey results are presented in Appendix B.

Surface Pressure Distributions

Surface static pressures were obtained at a midspan station for al,l con-
figurations tested. Figures 46 to 49 present chordwise pressure distributions
at an angle of attack of zero for the range of blowing coefficients tested.
For Augmenters 1 and 2 (Figures 46 and 47) the diffuser angle is 8° and
mean angle is 30°. For Jet Flap configurations 1 and 2 (Figures 48 and 49)
the flap angle is 30 ® . As expected, there is a significant increase in the
nose section lift due to the increasing blowing rates. The greatest effect
of blowing, however, is on the blown flap surfaces. The aft flap of the
augmenters experiences a downward load due to reduced pressures in the
augmenter.

The effect of change in angle of attack is shown in Figure 50 for
Augmenter 1 and in Figure 51 for Jet Flap 1. The data show an increase in
the negative pressure coefficient near the leading edge with increasing
angle of attack but little effect in the pressure at the forward flap knee
or on the pressure centerbody and aft flap in the augmenter. For a given
value of C and a, the aiagmenter configuration has greater suction on the
airfoil nose than does the jet flap and less peak suction near the flap, thus
indicating an increase in circulation lift due to thrust augmentation.

The effect of diffuser angle for Augmenter 1, shown in Figure 52 for
a - 0 and in Figure 53 for a - 8°, is similar to the effect of increased
blowing shown in Figure 46. Increase in diffuser angle increases the
entrainment and augmentation ratio. Therefore, it produces a change in
pressures similar to that of increasing C u . A reduction in leading edge
suction can be seen at dD . 0 indicating the stall discussed earlier.

13
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A direct comparison of the pressure distributions of Augmeenters 1 and
2 is shown in Figures 54 and 55 for a- 0 and 12 0 . respectively. and in
Figures 56 and 57 for the jet flap configurations. The data show the same
general, results for the two nose lengths with greater leading edge auction
indicated on the short nose.

Wing Component Lift Distribution

The surface pressure distributions show that most of the circulation
lift buildup occurs on the wing nose. Figure 58 presents the lift break-
out of the Augmenter 1 configuration. The sectional lift coefficient was
obtained from integration of the surface pressures presented in Appendix C
for the configurations tested. The lift component is made up of the pressures
on the three augmenter surfaces plus the lift component of the nozzle thrusts;
in this case only the alt and centerbody nozzle thrust contribute to the lift
since the forward nozzle ejects in the thrust dircction. The sketch below
shows the component breakdown.

The lift breakdown can be written as

(Eq. 3)

T 1 sin(gl + a) T2 sin(82 + a) T 3 sin(®3 + a)

C^ - C^1 + C12 + C13 +	
qS	 +	 qS	 +	 qS

where

CZ - Integrated surface pressure loads

T - nozzle thrust
6 - nozzle angle
a - angle of attack
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The term T/qS is the blowing coefficient (C U ) for each nozzle;
therefore the lift equation can be written as

(Sq. 4)
C1 = C, l + C12 

+ C1 3
 + 

^41 
sin( ®l + ac) + 

CM2
 sin(®$ + a) + Cµ3 sin( ®3 + a)

The pressure data show that within the range of C u tested most of the
lift is carried on the nose section with generally small negative lift
on the centerbody and aft flap and a positive lift increment due to the
thrust angle. The negative lift on the centerbody is the result of
the down facing portion becoming adjacent to the large negative pressure
field in the throat of the augmenter. The aft surface negative lift
forces are caused by the negative pressures within Lne auygmenter over-
coming the upper surface negative pressures resulting from the deflection
of the streamlines.

Comparison of the integrated surface pressures with the overall
force data is shown in Figure 59 for Augmenter 1. The section lift
coefficients have been adjusted to a three-dimensional value by the
jet flap correction factor discussed in Reference (7). The values of
the 3-D correction factor for the augmenters tested are presented in
Figure 60. The F values were computed utilizing an effective aspect
ratio to compensate for the endplate effect of the augmenter endwall.
The effective aspect ratio was determined from the lift curve slopes
of the configurations with the augmenters closed. The basic wing lift
characteristics were presented in Figure 28a.

JET FLAP THEORY COMPARISON

Lif t

Estimates of TAW STOL characteristics have been made by use of the
jet flap theory summarized in Reference (7). The data obtained during
this study on TAW and jet flap configurations have added to the data
bank, and it is now possible to present a one to one comparison. The
theory provides corrections for 3-D effects by the following equation:

I

3

i

At + 2C u/ 7r
F (^ ^ Cu) .	 _,.

A + 2 + 0.604 Cu$ to .876 Cµ

The 3-D corrections from Reference (7) are presented in Figure 61 for
several aspect ratios. The F values utilized in the analysis of the
two augmenter configurations tested during this study were presented
in Figure 60.

(Eq. 5)
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The span correction factor Kb can be obtained from Figure 62.

The data from the tests are shown in Figure 63 reduced to a 2-D lift
(3CR136) as a function of flap chord/wing chord (C f/Cw). Excellent agree-
ment is seen for both the jet flap and TAW characteristics. The reference
chord for the TAW is the aft flap section.

The C tM (Cf/c - 1.0) has less consistent agreement, particularly with

the jet flap configurations. The jet flap apparently has carryover lift
on the fuselage approximately equal to the wing loading; in other words
Kb - 1.0. The TAW does not indicate as much carryover and does in fact
agree well with jet flap theory for the 100% chord jet flap theory. A
possible reason for this is the reduced lifting area of the TAW con-
figuration compared to the jet flap configuration. The centerbody of the
TAW is nearly vertical and presents little lift surface to the pressures.
Most of the circulation lift increments are carried on the section ahead
of the augmenter and little change is noted due to angle of attack on the
centerbody or aft surface of the TAW configurations. It should be noted
that the agreement between jet flap theory and the TAW shown in Figure 63
is with the maximum diffuser angle of 16 degrees, the maximum entrainment
as well as peak 2 point. Reductions of diffuser deflection will reduce
the circulation lift as discussed earlier and the agreement of the lower
levels of Cu will not hold.

Figure 64 shows the effect of C u on the lift for the TAW and Figure
65 shows the same variable for the jet flap. The slope of C L vs Cu at
high values of C should be equivalent to the blowing coefficient times
the sine of the trust angle in the case of the jet flap and OC sin 9 for
the TAW. The data show that from C - 2.0 to C - 4.0, this relationship
holds. At lower C levels the blowing rate is insufficient to fully attach
the flow and the rate of change of CL with Cu is higher. At high angles of
attack the slope exceeds C u sin 8 since C, - 2.0 was not sufficient to
fully attach the flow.

Drag

The force in the longitudinal axis is composed of the jet thrust,
profile drag, the induced drag, and in the case of the augmenter, a ram
drag term. Jet flap theory accounts ; r)r these terms as follows:

K 1 CL 2
CD - -rC4 + 

7r S. + 2C
u

2
+ K2 

AC 	 + CDO
7r At + 2Cu

(Eq. 6)

r
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The terms are defined as:

CL Total lift coefficient

r	 Thrust recovery factor

K1 Induced drag factor due to nonelliptical load

K2 Induced drag factor due to part span flap

4CL Lift due to flaps

C D 0 Drag	 a - 0; C u - 0

Modifying this to fit the TAW gives:

	

Kl C $	 K OC 2

	

CD - -rOCU + MAK + 2	 + rrAt + a, + CD + CDO (Eq. 7)µ	 a	 Ram

where

0	 Augmentation Ratio

M V
CD	Ram drag s

Ram	 q
g

V.	 Free stream velocity

Assuming the K1 and K2 terms from Reference (7) will hold for both
augmenter and jet flap, the definition of ram drag, and utilizing an
aspect ratio which accounts for the endplating of the augmenter end
wall, it is possible to solve for the quantity rOC U or in the case of
the jet flap rCU.

Figure 66 shows the drag coefficient as a function of C u for the
TAW with the indur;sd drag, profile drag, and ram drag removed. The
rOC variation indicates almost that thrust recovery (r) is nearly one
forU this particular configuration; rOC U for a 0 - 1.4 is approximately
1.4 C . A similar comparison of the jet flap configurations is shown in
Figure 67 for the two nose lengths. The results show rC to be 0.9 C
to 0.95 Cu . This is slightly higher than shown in Reference (7) where
about 0.2 loss is taken for nozzle efficiency and scrubbing drag on the
flap nose, however. The 0.9 value for r is not unrealistic. An r
approaching 1.0 can be expected for the TAW at these angles since the
m term accounts for nozzle efficiency, scrubbing, drag, etc.

The data obtained during this investigation have shown that in the
solution of the jet flap equations for an augmenter of this type the
static value of augmentation ratio and the full ram drag due to the entrained
secondary mass flow should be used. It is possible that other augmenter con-
figurations, in particular those which rotate the inlet into the flow, may
show increased augmentation with forward speed similar to that experienced
by a jet engine.

t

i
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r)	 for Jet Flap

for Augmenter
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Pitching Moment Characteristics

Reference (7) provides a suggested method of handling the pitching
moment of jet flap configuration. Continuing the lift breakdown as a
function of flap deflection, chord, and lift, a term of dC H/dCL (ac) as e

function of C f/Cw and Cu has been developed. This variation io presented
in Figure 68.

Utilizing this value for placement of the circulation lift and the
thrust arm gives:

Z
Cm • (eg - ac)CL +	 Cµ + "^ CD	 (Eq.8)

E"	 c-	 c	 D

where

CL is Lhe lift due to circulation
r

CL a	 CL
 - CCU

sin e + a) Augmenter

r

a	 CL - Cu sin(6 + a) Jet Flap

cg 0	 distance from nose to eg (+ aft)
Rc

- 4A
c

Zcg 0 Drag arm

a	 M Thrust arm (+ ahead of cg)

C0
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The agreement between the calculated Cm and the test data for the
jet flap configuration is shown in Figure 69.

Computation of the pitching moment coefficients of the TAW has to
consider the other variables which contribute to the pitching moment.
Based on the data taken during this study, it appears the major other
contributor is ram drag. The equation can be modified then to:

e

T

Z
Cm . (cg - ac)CL + 4L CD

	

1-	c	 0

+ C aT 1 OC + Cr C
	4 	 D

J	 R

i

(Eq. 9)
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ac ^ 2X/c

Rr	
u

0 
2	

OC + 
Zcg + 2

Based on the pressure data, it appears that the circulation lift
acts forward on the wing, at about 50% of the distance between the nose
and the center of the augmenter throat.

The ram drag pitching moment arm is, as discussed earlier, a function
of Cu . At a 0C V . 1 the force acts at 1/2 a threat diameter above the
augmenter inlet; at a OC U . 2 the force acts at 1 throat diameter above
the inlet, etc. Utilizing the above moment arms, a comparison of the
calculated values for several configurations tested are shown in Figures
70 to 76.	 Here, again, as in the lift and drag correlations, the agree-
ment is poorer at conditions where separation is apparent due to reduced
entrainment.

CONFIGURATION PERFORMANCE

The augmenter performance can be seen in Figure 77. One possible
sequence of angle of attack, thrust angle, and diffuser angle to accomplish
an acceleration is presented. Starting at 60 knots with the Augmenter 1
configuration at a thrust angle of 40 degrees, the acceleration and
transition are shown. Finial transition to wingborne flight would be
initiated at a lift coefficient of 1.3, a thrust angle of 30 degrees,
a diffuser angle of 0 degree and with an acceleration of .075 at 117
knots.
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This represents only one possible sequence and utilizes the data
obtained during this investigation. It should be possible to delay
transition to deflections of less than 6 o ,30 degrees, and this would
increase the acceleration at the higher speeds. The thrust to weight
ratio was establisl ►ed by estimating an augmentation ratio at 90 degrees.
The augmentation tatio at 90 degrees for the determination of primary
blowing coeffictents was obtained by

4$$ - (090 - 1)sin9 + 1	 (Eq. 10)

CONCLUSIONS

The study of a VTOI. thrusting ejector (TAW) in low speed flight
has demonstrated an aerodynamic relationship between the jet flap and
the thrust augmenter wing. Specific points of interest are:

1. Component breakdown of the loads and pressure distribution
analysis have shown the majority of the induced lift of the
augmenter to be concentrated on the wing nose section.

2. Forward speed has little effect on either the augmentation
ratio or on the entrainment of this particular class of
augmenters. Performance data are functions of the product
of momentum coefficient and augmentation ratios (cC p ) provided
separation is not present on the wing.

3. Thrust recovery of the augmenter at the deflections investigated
is 1.0. Thrust recovery of the jet flap is .9 to .95 at 40
degrees. Jet flap thrust recovery is probably reduced because
of scrubbing losses.

4. Jet flap theory can be used to predict TAW aerodynamic character-
istics with these assumptions:

a. The correlating chord length of the TAW is the aft surface
chord

b. Replacing the blowing coefficient term C with the product
^C	 u

U

c. Thrust recovery approaches 1.0 at S F - 40 degrees for the
TAW and about 0.9 for the jet flap due to the surface
scrubbing loss of the jet flap.

d. Ram drag must be included in drag and pitching moment
equations

e. Ram drag moment arm for computing pitching moment is a
function of blowing coefficient.

x
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5. Downwash angles of 20 to 30 degrees are shown behind the TAW
at thrust angles of 40 degrees.

RECOMMENDATIONS

Since several of the augmenter wing combinations of interest
for airplane configurations utilize tandem augmenters, either spanwise
in the case of the XFV-12A or chordwise as in the case of some NASA
fighter studies, it is recommended that additional forward speed studies
be undertaken to investigate the particular characteristics of tandem
augmenters.
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Â
OA

k1
U A

O

03

 II

Y

M rN

Nv

ooA d

a4 W
^ O

z
L)	

e
tw H A
O

x	 O
O	 U

W

O	 ^

L-74

er1

>+	 .4

Figure 2 Model Wing Configuration Augmenter 1
24

im;
H 1W  c4 in 0 ^ cr% Ow O

W Nvd	
^vQ .

o?.t-• M	 /	 c^ow

v ^•

O	 /

H	 Q:
cn 

U1
d	 1 M

C
v

O
U

H 00 CIA

V

C7

H

43
r1 Q

U W

uN

•N
C-4

O p

N^^.. ~'may



MODEL STA. (261.62 cm)
REF. CG	 (103 in.)
MODEL STA 134.24

	

REFLECTION -7	 (52.85)
PLANE	

//
	 127.38 cm (50.1511)

34.29 cm
(13.50")

DOWNWASH SURVEY
I	 STATIONS

STA 243.8 cm (96 in.)
STA 226 cm (89 in.)

152.22 cm
(59.93")

57.46 cn
(22.62")

14.34 (5.65")

.25 c _____^^^— cW

DIMENSIONS cm (inches)

(a) Dimensional
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