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SUMMARY

An investigation of approximate theoretical techniques for predicting
aerodynamic characteristics and surface pressures for relatively slender
vehicles at moderate hypersonic speeds was performed. Emphasis was placed on
approaches that would be responsive to preliminary configuration design level
of effort. Potential theory was examined in detail to meet
this objective. ‘

Numerical pilot codes were developed for relatively simple three
dimensional geometries to evaluate the capability of the approximate equations
of motion considered. Results from the computations indicate good agreement
~with higher order solutions and experimental results for a variety of wing,
body, and wing-body shapes for values of the hypersonic similarity parameter
M§ approaching one.
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1. INTRODUCTION

An examination of the literature for airbreathing hypersonic concepts provides
an indication of the flexibility and generality required for a prediction
technique. Typical configuration development variables include wing section,
incidence, height, dihedral, planform, effectiveness of longitudinal control
surfaces for trim, effectiveness of empennage for directional stability, and
propulsion system-airframe interactions.

State-of-the-art response to these prediction requirements is provided
by hypersonic impact methods as well as linearized analysis and design algorithms.
These approaches can treat significant geometry complexity with minimum
response time and cost, with efficient predicted data coverage in terms of
Mach number, angle of attack, trim deflection, yaw angle, etc. Shortcomings are
present, however, in both the impact and linearized methods. For the former, inter-
ference between surface elements is totally ignored in implementations such as
- classical Newtonian, tangent wedge, and cone theories. Cross-flow interactions and
stagnation point singularities are also implicitly disregarded. In the latter,
shocks, vorticity, and entropy wakes and layers are excluded. Furthermore, -
superposition of elementary solutions such as those for thickness and angle of
attack freely used in linear models are, stnctly speaking, invalid at hyper-
sonic speeds.

A need exists for new aerodynamic prediction techniques to use in the
optimization of air vehicles designed to travel at hypersonic speeds. Propul-
sion, structure, and cooling considerations limit the range of cruise Mach
numbers to be considered to between 4 and 8. One requirement of a new
aerodynamic prediction technique is that it be more accurate than simple non-
interfering panel methods. Another specification is that it be more computa-
tionally efficient than currently available explicit finite-difference methods
so that it can be incorporated into a practical design procedure. The new
approach should include enough of the physics of the flow to allow realistic
optimization and should penmt consideration of appropriate interactions’
between components of promrslng hypersonic arrangements, since this has been
found to be the key to increasing aerodynamic efficiency at supersonic speeds.
Less exact non-linear theoretical formulations hold the promise of meeting this
objective and providing economic design codes which are responsive to
preliminary vehicle definition efforts.




2. LIST OF SYMBOLS*

¢ mean aerodynamic chord
Cp drag coefficient, D

qS
CL 1lift coefficient, L

qS
Cn pitching moment coefficient, M _

qSc
Cp pressure coefficient, P-Pw
Goo

D drag
L lift
M Mach number or moment
P static pressure
q dynamic pressure
S reference area
o angle of attack
8 flow deflection angle

SUBSCRIPTS
o free stream

*Additional specialized nomenclature is defined in the theoretical sections




3. METHODOLOGY

Emphasis is placed on approximate theoretical approaches which are capable
of treating relatively general three dimensional problems but still sufficiently
simple to be responsive to vehicle preliminary design efforts. The basic intent
of the methodolgy is to produce future improvement in lift-drag ratio of
hypersonic cruise vehicles. As a result of the strong impact that favorable
interference has had on supersonic design and the use of such concepts in recent
advanced hypersonic aircraft studies, candidate analysis should be general enough
to systematically treat such problems. Finally, interest in high aerodynamic
efficiency emphasizes relatively slender configurations at modest angle of attack;
that is, moderate values of the hypersonic similarity parameter.

Theoretical effort was recently undertaken (1) to advance hypersonic aerodynamic
prediction capability at the preliminary design level. A numerical three-
dimensional second-order refinement of the Prandtl-Glauert model proposed by Van
Dyke (2) was developed as a first step up from linear theory. . Such a formulation
incorporates nonlinear behavior but retains the isentropic approximimation. This
approach is known to extend the prediction success for airfoil and cone surface
pressure to substantially higher values of the hypersonic similarity parameter than
first-order theory. Typical three dimensional prediction improvement provided by
_the numerical second-order analysis is presented in-figures 1 and 2. These results
indicate sufficient promise to pursue extension of the analysis to treat simple wing-
body combinations. In addition, the study of second-order potential
theory indicates that the next level of theoretical richness vis-a-vis a full
potential equation of motion formulation should be explored as a means
of removing edge singularities and improving treatment of characteristic surfaces.

Hypersonic small disturbance theory was considered in an earlier study . (1) -
in recognition of the progressive non-isentropic behavior of the flow as the value
of the hypersonic similarity parameter increases. Finite difference analysis of this
approximation (3) indicated that the solution was essentially as complex as that
for the Euler equation and thus would not be particularly responsive to preliminary
design level of effort. This approach was not pursued in the present study on the
basis of this finding and the previously cited success of potential analysis
at moderate hypersonic conditions.
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4. SECOND ORDER POTENTIAL ANALYSIS

4.1  APPROACH

The solution accurate to second order for the flow around wing-body
combinations of aerodynamic interest may be represented by the velocity
potential, & , written as the sum of the first and second order velocity
potentials.

2)
§("a§,i) = ¢(X,‘AJ§) + @ (x,3,2)

The condition of no flow through the boundary requires that
[cra & + Alne, 8, +VE]- R =« 0o

on the surface of the configuration. The solution , ¢ , accurate to first
order, must satisfy the Prandtl-Glauert equation,

2 2. 3, a3
o ¢ - {"‘”«la'i*fsgﬁ?;i $ - °
and the the boundary condition
{—é* *'“m‘:‘:;_ + Vq‘}';& = O

on the surface. For the coﬁfigurations of interest the aerodynamic surfaces
are assumed to be thin, and the first order boundary condition is satisfied on
the mean camber line in accordance with thin wing theory.

2¢ V¥
= - o Ceol)
Im ax e M

Such a solution may be obtained by placing source and doublet singularities of
appropriate strength on or inside the surface of the configuration.

The method used in this report to obtain first order solutions utilized
axial singularities and quadrilateral source panels on the body surface in
conjunction with quadrilateral source and vortex panels to represent the
(thin) aerodynamic surfaces. The vortex panels, used to represent lift, were
of constant strength, while the source panels, used to represent thickness,




could be made to vary linearly in either the chordwise or spanwise direction.
The vortex panel and body source panel strengths where obtained by solving a
set of simultaneous linear equations and thereby satisfying the boundary
conditions at a set of control points. When the panel singularity strengths
were obtained the flow propertles could be obtained anywhere in the field.
The second order potential, %, utilizes the first order solution. It must
satisfy the nonhomogeneous Prandtl-Glauert equation

Qe = M, ——{[(n M)+ e ml & ¢;+[¢’Z+«”]‘}

as well as enable the boundary conditions to be satisfied to second order on
the surface.

A second order solution using the source volume formulation described in
reference 1, encounters numerical difficulties for complex configurations,
‘wings with subsonic edges, and supersonic wing-body configurations. The
primary reason is that source volume strengths require the calculation of
spatial derivatives, and these cannot be obtained accurately enough from the
first order solution when using the panel formulation. In addition the
velocity discontinuities present in supersonic flow are accentuated, since the
discontinuities introduced by the panel corners and edges do not attenuate
with distance. Also no reasonable mesh densxty of spatial source volumes can
properly account for the large gradients in flow properties near subsonic
edges.

Therefore the second order solution was obtained using an approximate
method which does not require the use of a spatial ‘distribution of sources.
This solution can be used even when large gradients are present (e.g. with
subsonic edges). The solution is a three dimensional modification of the
exact second order solution for the pressure coefficient on thin airfoils in
two dimensions. _

9‘@,, ) . | | f [ .t oy '
. — = Culx,u) = - Zt <ﬁx + X(M){g(l'”,)ﬂ tod "' ‘;; ‘f’ﬁz @4}
% FoVa | | 3 o
where D?'cp; o, (MY = ! ¥ M
' > (l-n‘)[ L + (l-n‘)}
and 92530 = ("”;)7‘;{1' R AR GUTLNE R SN

¥ (x,y) represents the upper or lower surface of the airfoil. This solution,
in effect, represents a local type solution, and all first order velocities
represented above should be in a coordinate system rotated to make the z-axis
normal to the local surface (e.g. with nonplanar configurations), but with no




local angle of incidence.

The derivation for this method of solution is presented in section 4.3,
and the derivation for the exact two dimensional solution, from ref 2, is
presented in section 4.2. The solution uses only the first order flow
properties on the aerodynamic surfaces in conjunction with another first order
type solution to the homogeneous Prandtl-Glauert equation. This other first
order type solution is necessary to satisfy the boundary condition to second
order,

¢

5z ° % 0 hT %

3‘#(2) 2

>3 = ¢$ﬁ+¢n*/g+‘P[(l~m,)¢xx+’¢m]

A particular solution using axial line sources, accurate to second order,
was used to help represent the body.

(2 2 g0 Ma 1 3
$ (x,7) = M_9 [é'*‘:"‘—j;;z"‘f',.]*‘i‘”.f?s,.

This particular solution satisfies the second order axisymmetric
nonhomogeneous Prandtl-Glauvert equation to second order.

2z

@) > a ¥ T 2
ﬂz? = ”:3;{[(‘-”0')*%”;]4& * ¢:} * N +w~ 4,‘-

where ¢(x,r) is the first order solution to an equivalent axisymmetric body.
This particular solution was combined with a solution to the homogeneous
equation, :

‘l. % 3
2 P - -3 Y ~a)
aQ ? = {(l ” ) x * v 3vr * 2v¢? * v 395 } é -
in order to satisfy the boundary conditions.

‘The second order accurate axisymmetrio axial flow solution was combined
with first order cross flow and axial solutions using the body paneling to




obtain the pressures on the body. The resulting solution is actually a hybrid
solution combining second order accurate axial velocities with first order
non-axisymmetric and cross flow velocities. Although a second order pressure
coefficient is sufficient for plane type flows, for flows around bodies the
exact isentropic pressure formula:

. { [l_ 1’3‘": (Zuouz¢vt¢w‘o.2xaw)},.i | }

] 2
7¥M

Cp =

was found to result in far more accurate pressure predictions when used to
calculate flow about cones.

In a sense, the second order requirements on the body are not as
stringent as on the aerodynamic surfaces since the boundary conditions on the
body are satisfied on the actual surface, rather than the mean camber line,
and the cross flow velocities may be small compared to the axial velocities.
In addition the nonlinear expression for Cp in terms of the velocities is used
on the body. The terms missing from the complete second order solution on the
body are due to the second order non-axisymmetric perturbation velocities from
the surfaces and fraom the non-homogeneous Prandtl-Glauert equation.

4.2 EXACT TWO DIMENSIONAL ANALYSIS

Consider flow past a thin airfoil at angle of attack a:«ge,, where «,
and «,are the inclinations of the mean camber line and the free stream with.

respect to the x=-axis.

Z, (x) = o (R-%,)

To second order the solution may be written
(3
Fx,zy = dexyay o+ oix2)

b
where ¢ and ¢‘z are solutions to

2 432 31
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and

2

Q) 2 3 2 . 2 2
g ¢ = ﬂwg—x'{[(hﬂo)'r%ﬂ'ﬂa,]ﬁ + [‘#z*“w] }
with boundary condiﬁions
¢% (x,o‘) = z:(x) - <;<.- =y

@ , '
$, (%,0) = [2,00-,]8 (x,0) + (=M Y[ Z 00 - %, (3-x,0] &, (x,0)

To second order the pressure coefficient on the surface is
C = =2 ¢ x + * - [ 1,48 ® ot |
, . (%,0) qu CXORE I (G é‘u‘a) + [#il.x,o).d-&.] L ]+ [Z'(n)-dotx':{o)] e,‘:“(x,c)

To facilitate the solution we define
Yo = 4

: X
LA PIETN NS A0S |
~o0 ‘Pa_ ‘-'-"(\"M;) ¢x

-

and

. S = l0-mDgi- 4]

$x,2) such that '
. 9, - (-5 é, $,

‘Therefore 4)“ . &zx and
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Also

a'($é) = o |
O ($4,) = Gomiy[G-miyd®s ¢7 1 R A
O (24d,) = - [G-miygl- ¢7]

O (x40 « =) @'(@d) = 2C-miyg

The boundary conditions can be rewritten
¢z("a°> = Y - %, - ey

€2)

4' (x,0) = ¢*(¢£+ctm}-v(t-l"l:)¢x‘[‘/"-\f:+dmxl

c, = -a{ $ .+ ¢i=’ r {0087+ “z"“...)"* as] + ¢“[w-w¢wwx]}

(2) .
$ (x,2) may be written as the sum of a particular integral -and a solution to
the homogeneous equation. : ,

)y ’ +

) ' ¥e M @)
¢ (xX,2) = ¢ I e
(%,2) - (x,2) +'(1~H.‘)[l+ + (:-m;)} ¢n (x,z)

The part1cular mtegral may be wrltten immediately

T

Me RN
4’? (x,z) = Zm%)['* 4 G-m} )1[(\# \P”{x)c/’ ‘p]
4
R £3] Mo
because -T(:M)[Z¢(¢ ]
" () * >
o ¢P = M;v[_(*%(‘m>}[('” )‘#’ *(¢ o )]

ki) "": 2 z_ 2
e [C-m)d = (hrar) lx

1 .
2 o 214 o]
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and at z = @

(2)

ﬂ:, hd | ; 2 T T .
(#' ) G-ml)H [‘4' ’4_. ":4; ] {I%[('-”ﬂ) ¢n+ (4’;*’“«-) -do 1+ ¢zx LP«‘I; *d‘o"]}

R

@)

820 b (b » Gemiy( ¥ %*-»*Hu :

2
- [ ~'-’%1,”: Lo+ (F-%e a0 4,

) @ :
therefore the solution for ¢ is complete if

2
= [»]
r:1¢”

and at z = @
@) - | 2
U SEAA RTINSy
therefore
c % - a ¢ | | B H: . s
> " u~m;,)[ = <;-n;,][~(m )45 .t (¢+« y —r

v (b va ) & | & ] }

The angle of incidence of the free stream may be eliminated from the
above expression. This means the solution to order two will depend only on
& = ct°+ t’(°°

Let
3 @Y (€5) 2
(=M )é, = (z-m;)¢o * [(r-m@)z¢x-x¢z}«m

then since

Dz[(xmm;)zﬁﬁ x¢s] = ©

kA (2)
o’ ¢,
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and at z = 0

@)

¢,

2

L}
o
9~
+
~
-e
]
o€
2

2 (2) _ 2 (l)- .
(l-,mm)cjau* = (! no)¢°* e(m[x,-ﬁz* ¢ 1
and therefore
1
- -2 {4 g Do B st 4 4 o 471

Since each term in the above expression depends only upon o =dk 44, the
pressure coefficient to second order is the same whether the free stream or
the airfoil is placed at an angle of incidence. Replacing ¥ with its
expression in terms of geometry yields the expression,

2 (-m2) £l (l -M%)

e - 2{4’ . ......’.__....[1‘9- ¥l ][z(’ " )‘#x ¢:+ 9523‘(29)-0(1)* cﬁ::)]}

(2)

ey s G, v [B0-ax] b,

4.3 EXACT SKEWED WING ANALYSIS

Let $( $,3) be the :EirstA order solution which satisfies

z 4 2

o'¢ = {a- m)a; :3;}92,= o

¢ (5,00 = E(I)- &, &

-}

then Cp to second order may be written:

c = - 5 + ! 5y 22, H‘ 2 A a "
Ce = a{ 4’5 R(M)[-z-(i-ﬂ )¢g* E(ﬂ" “w)"a'“ao* [z-"‘e(z'xo)]‘#s,s* ‘px}

3=0
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A
where P(3,3) is a solution to

and

L 3 MY
Rim) = (-m*) [ L 4 ()-n‘)]

- This exact two dimensional solution may be applied to an infinite skewed
wing in three dimensions because with a rotation of coordinates all flow
properties depend only on two dimensions. Consider the following
transformation. .

- 3 e ®
T TR g )
= t )
T= 7w (Tx) 57 T TR D
= -
3 z 2

9Z
i 3 ) > 3
X = W(E"‘”?) X -wl__"“;,::.:(mi T-s‘i)
- - FUPTIRY 3 - 1 =
3 sy CTI+7) '3-5 T 7 ~‘T'5-34-‘T3;i)
- -2 s =
2 3 P-¥ ] 23
= $(3,3) Cpl3)
- = C. (% -
s PO, E) JreTe rL%3) ety
M: - Mz(,HT‘") U = Ut(l*"f"’)
and since —— = o [ 2.2.1= o
3—1 H 2X a\a
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The two dimensional solution may be written in three dimensions as follows:

8- G ' SO . ., ~
-;_-{;,u; = Cp(%,%) =-2{4" + X(M)[.-E(I-M“)ﬁx + —a-cﬁnd- -2:(4’;“@)-%“@*[z'“}x"‘o)]és‘; @xl}

where ‘
- "~
¢2(X, ﬂJO) = é*(x)\A) —c(o— «

2

2 3t 3 >
= - z ———— —— a————
D¢ = [(I M"’)axt' 3:)‘* “‘] $(x,9,2) = o

and

k3

O¢ = o

P, (%,9,0) = (""\:)*fx[z;d,,]*‘fazz* [Z-etx-xs][C1-M0) &+ *311

However, the exact solution in three dimensions is:
e ' 2 2, ,t T, 2
Cal%;4) = -2 { ¢* 1-‘-5(1-!‘)0)4" ff-£¢a+-é-(¢;e(~) “T%e " [g"o"“"-’]ﬁ; cp‘-féx } .
B (x,30) = b [ ]t BB (B ] (G- g 4 T+ $,
g = o

The only difference between the two solutions is éx , With

R(MY = -(—'-:"_,-;-)[w—‘fii—-—-’ﬁ:?-]

4 (1-Mm%)
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multiplying the second order Cp terms, and the boundary conditions for &.

The coefficient (1-MZ) multiplying the &, ¢; term is the factor which would be
present if mass-flux boundary conditions were used, and the second term is due
to the perturbations of the spatial source distribution,

O¢ = plyz = M;%{[(;-mi)*%m;]cﬁ:+¢;+ ¢;}

on the plane z = 4.

When applied in three dimensions the transformed two dimensional equation
should give the exact second order pressures whenever the flow is locally two
dimensional and may be approximated by an infinite skewed system. The Mach
number, M, used in calculating the coefficient R is equal to M,cos® (i.e.
the normal Mach number). Whenever M cosé is equal to unity, )z becomes
infinite, indicating the second order solution is not valid near M = 1. If M
© is used for calculating R the solution remains finite except near M= 1.
Since R is a slowly varying function of M (see figure 4.1.1), except near
M=1, X(M,) could be substltuted for R(M,) without much change in the
. result.

4.4 SOLUTION STRUCTURE

Consider a span station where second order characteristics are to be
computed, and write all variables in a coordinate system rotated to make the
z—axis normal to the local surface.

poe

Since the first order solution is linear, the first order perturbation
velocities can be considered to be the composed of four parts.

1. Contributions from all panels due to an incremental
change in angle of attack (add load velocities).

2. The incremental contribution from all panels due to
the twist and camber of the aerodynamic surfaces.

3. The velocity perturbations due to thickness.

4. The velocity perturbations due to the body in axial flow.

16




Some components have an odd or even part with respect to the local z = 0
plane. Therefore we can write,

$ = w = g[us“tAux_‘]-hx(uxzaug]wz{_uti:mr]+ Cu, 2 aw,]
¢:\= v = ef[v,tavl+yivytayl+tlvetay]l+[v, tay ]
= W = X W, + X W » T{Wotaw ]+ w

where * indicate ugper or lower surface. The contributions having a * have
an odd symmetry with respect to the local z = 0 plane.

The surface displacements are composed of three parts.
1. Displacements due to angle of attack.
2, Displacements due to twist and camber.
3. Displacements due to thickness.

Therefore we can write,
ol + b
Y - Yo+ ox¥ TV

" All contributions to the second order terms are composed of products of first
order terms. These terms will have either an odd or an even symmetry with
respect to the local z = @ plane. The odd symmetry terms in th Cp expression

contribute to a ACp across the aerodynamic surface while the even symmetry
terms contribute to an equal Cp on each side.

@)

Cp = -2 4& +
(?-) - ' . 2 2 s 2 v, 2 .' ‘L ‘
= - 2RX(M [‘Z("'V”->¢,( + T¢3 + -z—(¢!+ X)) - T * (- o(o(x-xo)]¢z; @x ]
and
?'- = et ISR J z 1 2 2 2 2 »
¢‘ = & [L\“ +(A_b\‘) 1 + ¥ [b\.x«h(gu,f) ] + T [ur-..(AqT) ] + [u'h*(A“'x)L_]

+z«x[udux~au‘auv‘] LEZ L4 O A au, ]+ 2¥T[ U, + au aw,]

“z-“.,[““\_‘* Yl&‘,* Tb\;r] + ?.Aub [o( au + YAU\.‘, ¥ 'L'Au,r]

i+

2 2 2
a{ < \&“A\A* + ¥ WyldUy + T Wedu, + woaw,
+ ’N \ :
«¥ [w aun,+ Ueaw 1+ «T(wan+ Ugdu ]+ ¥T[Aiau, + Upan, ]

> &‘{“A\&“ﬁ- Yaw, * Tau ] + aun {« Wt ¥t T )

17




2
2 k3 2 2 2 2 2 . 2
$ = W, o YW+ T (W + (aw ) ] =+ W,

+

2Ky w“w‘ + 2T w“w,t +2Y7T wxw,r

+

2w, [aw, + Yw o+ Tw ]

i+

2Taw, [ xw « LANNE w, )

SIS A AT AN TR A R AL A A

't Xx P

Tt [\P“ \kt'“:‘ \{‘Ttn] t [\P,\kt:tx* t‘k‘xu]

[ 3 ° 3
with similar terms for ézo

The expression d, is calculated from the second order boundary condition
for &9 . The odd symmetry second order boundary conditions will be satisfied
by a homogeneous solution using source panels, while the even symmetry second
order boundary conditions will be satisfied using vortex panels and will
contribute to a net A (p across the surface.

Qz(i,‘ia.o) = (-m2) ¢“ [¥-ot, ]+ ¢1~k$ + [‘F‘ei,(x;x,)][(l'fﬂ;)ﬁ'* 4’&5] : .

where

z

P = ._z'_Lq);«cP;]

= ozl 9]

By setting the various coefficients =, ¥, or T equal to zero, the
second order effect of various combinations of angle of attack, camber and
thickness may be analyzed from the basic solutions. The terms aw,and w, are
due to the lift due to thickness and are generally small, and in fact are zero
for planar configurations. The terms sw and w, are the lift induced by the
boedy in axial flow and are also in general small. For planar configurations
or when there is symmetry about the z = @ plane, the velocity expressions

18




simplify,

,,,,, 95* = w = x[u:.‘z au ] + x'[v.xtmg” + T,  ow
¢: = v = afvs av 1+ ,x[v*:Av*] + TV, * Vv,
= = +
and

) RN
¢ = w [ u:f(a.u«)"] r ¥TLuy +aud'l ¢ Thug e u

2y [ W U+ an an, ] T m Uy +2¥T U u, v2u, (o s Yu, e Tu ]

. 2 %
4 2{ KU AR+ TR AU+ [‘l'u.(q- u‘_][qg\,\“rfYAux] }
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5. FULL POTENTIAL ANALYSIS

The full potential equation either in conservative form
or nonconservative form is frequently used for the treatment
of transonic flow fields, where the local Mach number in
general does not exceed ~1.4. However, if the assumptions
of irrotationality énd.isentropicity are reasonably valid
theﬁ the full potential equation is expected to yield results
comparable to Euler equations, even for supersonic/hypersonic

flow fields.

The full potential equation can be obtained from the

continuity of mass relation by assuming the flow to be
irrotational and isentropic. In the Cartesian system (x,y,z),

the continuity of mass can be written as

3 (pu) Btmﬂ d(Pw) _ ;
8x Yy T Taz =0 (5.1)

where pu, pv, and pw represent mass flux in the x, y, and z
directions, respectively. For an irrotational and isentropic
flow, the density p, and the velocity components u, v, and w

are expressed in terms of the velocity potential ¢ as
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\ o (5.2)

J

Here, the density and the velocity components are normalized

: ' 1/y-1
0w |1 - Thuied v ez v ez - )

with respect to the freestream values.

Equation (5.1) is séid to be in conservatioh form. The
nonconservative form of Eq. (5.1) can be obtained in the
followiﬁg manner. Différentiating the mass flux terms in

Eq. (5.1), we get

p(ux + Vy + wi) *up, *+ vpy *wp, = 0. | (5.3)

where

= - P + +
az,(uux vV, wwx)

= . 2 + +
o) (uu vvy wwy)

y a? y
= - P + +
Py 2 (uuZ Vv, wwz)

and a is the local speed of sound expressed as

a2 = 2| (5.4)
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Substituting for Pys py and e, and writing u, v and w in
terms of ¢ in Eq. (5.3), the nonconservative form of Eq. (5.1)

can be written as
(a% - 0Q)0xx * (8% - 0030, + (2% - 67)¢,,
- 20,60, - 26,66, - 20.6.6.. = 0 . (5.5)

x'y'xy = “"x"zxz yiz'yz

4

The full potential equation can éither be solved in conservation
form~(Eq. (5.1)) or nonconservative form (Eq. (5.5))} In
general, conservation form is preferred because it allowé for
the correct weak solution (presence of discontinuities like
shocks and slip surface) to form in the course of the
calculation. |

In this report, two different approaches will be described

to solve the conservative full potential equation.

5.1 VECTOR APPROACH

Equation (5.1) contains three unknown variables: wu, v
and w. The density p is expressed in terms of the velocity
as shown in Eq. (5.2). 1In the vector approach, the velocities
u, v and w will be obtained by solving the follow1ng three

equations:

(owly + (ov)y + (W), =0 - | (5.6)
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v - u - 0 . ' (5-7)

(5.8)

=
'

=
[}

o

Equation (5.6) is the same as Eq. (5.1) and Egqs. (5.7) and
(5.8) are the irrotationality conditions. These three equations

can be conveniently represented in a vector form as

Bx + Fy + Gz =0 (5.9)
where
pu . pV oW
E = v Py F = ""u ’ G = 0
W 0 -u

‘Equation (5.9) is hyperbolic with respect to the direction
x if the velocity component'u is greater than the speed of
sound. Assuming u > a, éolution to Eq. (5.9) can be obtained
by marching in the x direction using any stable and consistent
finite-difference scheme. Equation (5.9) is in Cartesian frame.
In order to apply the surface tangency condition at the actual
body location, a body fitted coordinate transformation is

essential. If we denote the coordinate transformation as
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g = o(x) ;5 n o= n(x,y,z) ;s & = E(x,y,z) (5.10)

then, the transformed equation corresponding to (5.9) can be

written in conservation form as

.ﬁc + §g +‘&n =0 | | (5.11)
where

- 1

;- EE, + Fiy + GE, ' (5.12)

- Enx *'ng + an

‘and J is the Jacobian of the transformation
J=E&En, - &En, . (5.13)

In this report, Eq. (5.11) is solved using the MacCormack4

predictor-corrector method assuming o to be the time-like
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hyperbolic direction. At every marching step, the E vector
is advanced. Before calculating the F and G vector, the
density p and the velocity components u, v and w must be
extracted from the E vector. This decoding process is given

here.

5.1.1 Decoding Procedure

€, = pu )
"E = EJ = e, = V' | (5.14)
93=W

The velocities v and w are nothing but e, and €, respectively.

The component u is obtained from the relation

ui*l o i [f(u%//(gé)]l | (5.15)

where i denotes the Newton iteration and f(u) is represented as
fu) = Aaw'tl + BuYl 4 0= 0

where
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B=XlyMiey2 ¢+ w2 - 1) -1
= Y-1
C (el) .
Once u is computed from Eq. (5.15) the density is given by
e v '
1
P T ° | (5.16)

- Usually, two or three iterations are enough for the recursions

to converge in Eq. (5.15).

'5.1.2 Shock Jump Relations for Potential Flow

In the present approach the outer shocks are treated as
computational boundaries and fitted as part of the solution
by satisfying the appropriate shock jump relations across

them.

Let the shock be defined as a constant n surface.
n(x,y,z) = C . . (5.17)

The unit vector normal to the shock is then defined by

(see Fig. 5.1)

N = (nxif nyf + nzl?)/\/n; + n; + n2 (5.18)
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where i, 7 and k are the Cartesian unit vectors. Let the

-dependent variables Uys Vis Wys Pq be known on the upstream

side of the shock. For the discussion in this report,'these
are freestream values. Then, if the shock geometry defined

by Nys N and n, is known, one should be able to compute

y .
Pgs Uy, Vy and w, on the downstream side of the shock. On
the other hand, if the density behind the shock, Pys is known
along with two of the direction cosines of the shock normal,

say n, and n,» then Nyes Uy Vo and W, may be computed. These

y

two situations may be termed the direct and inverse shock

- jump problems.

5.1.2.1 Direct Shock Jump Relations

Ny n

v’ Nys Ugs Vi, Wq,y P = 1.0 are known.

Mg = |Uyl/a,

Py is computed by Newton iteration to satisfy

Y+l _ -1 2 2 -1
(Dz) (lrMs + 1)02 *x‘z—'M
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1 ) Ny
h'd = +* U — 1 (5019)
2 1 IN(DZ n; + n; + n;

: 1
Wy =Wy ¥ “1N(E; - )

Z 3+ 02 + n2
‘(“x ng * ng

5.1.2.2 Inverse Shock Jump Relationé

» N, are known along with Pgs Ugs Vi,

Two out of Mys ny

Wis P = 1.0.

a? = oYtz

UlN = Ms'al

As an example, n_ is assumed unknown

X

. w2 . T2
A=u - Uy

B = ulcvlny +wyn,)
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= 2 _ g2 2 2 _ 2 2
C = (vl U1N)ny * (wl U1N)nz * 2vlwlnynz

n. = (- B +VB% - AC)/A o (5.20)

X

(The particular root to be calculated must be specified)

2

- 2 2
UIN - (ulnx * Vlny * wlnz)/‘/nx * ny * n,

. 1 )' Nx
u, = u, + U of=— -
2 1 1N(p2 vnZ + ng o+ ng
1 ny
VvV, = v, * Uf=— -1
2 1 1N(°2 ) VnZ +n2 +n?
1 N2
W, =w, * U o= -1
e ol ) RS

Tﬁe vector approach which solves Eq. (5.11) has both
advantages and disadvantages. The main advantage is that
it is casted in a convenient conservative form which is
readily adaptable to any hyperbolic finite difference  scheme,
especially the MacCormack method. The disadvantages are

that one must store p, u, v and w at each grid point, which
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means enormous storage requirements for a three-dimensional
problem (Euler solvers require even more storage than fhe
current full potential vector approach due to the addition
of the more variablé pressure), and the decoding process which‘
involves solving a polynomial is very time consuming.

In order to alleviate the above mentioned disadvantages
of the vector épproach, an alternate method for sdlving the
conservative foim of the full potential equation is proposed

in the next section.

5.2 SCALAR APPROACH

The method to be described in this section is termed
scalar approach because the objective of the method is to
solve for the scalar velocity potential ¢ rather than for
u, v, w and p as in the vector approach. Such a method would
eliminate the decoding prbcess déécribed in Section 5.1.1
and also substantially reduce the storage requirement because
only one variable, ¢, need be stored at each grid point.

Both these factors should éontribute toward increasing the
computational efficiency and speed. In what follows, an
implicit marching scheme utilizing a mathematically sound
density linearization method which solves for the scalar
velocity potential ¢ is described.

Referring to Fig. 5.2, lét us assume that the ¢ information
is given at all points in planes i, i-1, and i-2. The objective
is to compute the ¢ information in plane i+l by solving Eq. (5.1).
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Figure 5.2. Implicit Computational Molecule
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The implicit finite differenced form of Eq. (5.1) can be
written as

[pi+l,j,kui+l,'j,k - °1,j,k“1,j,k:|
Ax

N [Pya1, 4ds, k141, 19,k Pitl, {-%, kVi+l, 1=k, k | (5.21)
! by .

-

. (Pi41, 4,108 441, 4, kbds = P+l 1, kb 1+1, 4, kb
Az

- -

= 0 L

In Eq. (5.21), the flow quantities like density p and velocity components
4, Vv, and w appear at the i+l level, which makes it difficult to solve
for ¢ at i+l without introducing some kind of a linearization. Since
p is a complicated function of ¢, the logical variable to linearize is
density.

Consider the first bracketed term in Eq. (5.21) which represenis the mass
flux balance in.the x-direction. To write this in terms of ¢ 1+1 valueé,
let us linearize p 4+l in terms of p 1 and p 1 in terms _oAf‘ Pyt To 'maintain_

the conservation law form both p ., and p, have to be linearized. Thus,

= -ae cen . )
P11, 1, k%41, 1,k T ) P10,k T (3" Ax)i PR (e T B (5.22)
where

%% = - YMi<““x v W) . | (5.23)
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Substituting Eq. (5.23) into Eq. (5.22) and rearranging the terms results

in the following. For convenience, the subscripts j and k are suppressed.

= = a2 N2y2
P141%41 = ["1 Py Mag“i] U141
' (5.24)
+ DZ-‘Y 2(ud + u, v + u,w?)
g Moluy *ugvy Uy

Z.YMZu ;

2=Y\2
- pi - ik ivi'i'l pi Miu.w

4V 1+1

where

¢ -¢ : ‘
| +1 ,
Yi41,9,k ( : Ax i)j X o backward diffgrenced
| (5.25)

' C % ek T e, 910k
i+1,3,k 28y

- central differenced

. J e gmen T gk
i+l,3i,k 2Az

Similarly, expanding Pi,j.k about Pi-1,j,k (even through fi,j,k is
known, to maintain conservative differencing it has to be expanded

about Pi-l,j,k)’ we can write (suppressing j and k indices)
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= _ ad=Yy2.2 ]u
Pi,5,k%,1,k ~ [pi—l Py 1 Mabiog %

2Yz
ilMc(uil+uil 11+uilil) (5.26)

2-Y, .2
- P Mauy Y1y

= f

A8y Vi T R

N
L
8!0

Combining Eqs. (5.24) and (5.26), one can write the first term in
Eq. (5.1) as

e [, - ol M

2-Y, 2 .
141 = Py M%34Vi4
' (5.27)
2=Y. 2. 2-Y,2 2 2 2 ] . =
=Py Mwuiwiwid»l £, + 0y Mau, (ug + vy + wy)

In Eq. (5.27), only the velocities u, v, and w appear at the
unknown i+l level. The density is lineari;ed in such a way (using
Egs. (5.22) and (5.23) that it appears only at the known i and i-1
levels. Substituting for u, v, and w in terms of the velocity |
potential ¢ from Eq. (5.25), and defining a differential velocity

potential A¢ such that A¢ = ¢, Eq. (5.27) can be

i+l,j,k ) ¢i’j’k’
finally written into delta form as
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Aow o 1| 2¥aala, 1 2V 3
9x A? Py = Py Mguy(86 - 3T Py Mauv, 5 46

- L Z.YMZu w 2 Ap - L :f 2-‘{M2u3

- 5.28
ix P1 M"Y 3z Bx |71 7P MY (

There are some interesting physics featured in Eq. (5.28) Which will
be discussed later. Now, consider the second term in Eq#(S.i) whose
finite differenced form is:given’by the second bracketed term in Eq:z(S.Zl).
Here again, both the demsity and‘velocity v appear at the i+l level and
some kind of a density lineafization is essential to solve for ¢ at

the i+l level. A simple linearization of the type

Pip1, 14,k = Pi, 445k : A
-\ - (5.29)

piflyj“;i’k = pi’.j‘;i:k

is sufficient for the y~derivative treatment in the Cartesian framework
since the velocity component v is usually subsonic for a predominantly
supersonic flow in the x-direction. If the v component does go from
subsonic to»supersonic or vice versa, then the density linearization

given by Eq. (5.29) will have to be modified to a slightly complicated
form, which will not be discussed here. Using Eq. (5.'29) ; the second term

in Eq. (5.1) or Eq. (5.21) can be written in the delta form as
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9 ) 3

v _ 3 2 20 4 9 -
3y By P1+1 3y P T By P13y Gpan T 6y T 9P

3 5 3 (5.30)
-E-;pii;A(b-b—g; (pivi) o
Similarly, the z-derivative term in Eq.' (5.1) can be linearized and
written as
(5.31)

dow . 9 3 )
“%"5’2"1‘5&'“"'32("1"1).‘

Combining Eqs. (5.28), (5.30), and  (5.31), we have the final density

 linearized form of the full potential equation.

B ap oL 2,2 3 ap oL 272 2
, or Ad e pi M”uivi’ay Ad A pi Mwuiwi 3z Ad |

'(5.32)

where

- a2 Y2 2
g = Py = Py Mouy

1 = Al V2.3
Ry " & {fi ey Mauy
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In Eq (5.32), both the y and z derivative terms appear in an implicit
manner which makes it difficult to solve without some approximations to
the left hand side. Factoring the left hand side into (x,y) terms and

(x,2z) terms for computational implementation, we get

L1 2 2,93 3B _1 2. 3,3, 3 -

( o &P Mui¥s 32 T2 %2 az)( o &P Muivs 3y Ty Pidy ) M = Ry

\ ' ‘ : _J A ' J
Y Y

A | B
~ (5.33)
In the above equation A and B are operators where the operator A gives
rise to an implicit molecule in the x-z planme, while B results in an

implicit molecule in the x-y plane. The solution procedure for Eq.f(5.33)

. is twofold. Define A¢* = BAp and then.pe:form the following:

\.

AM* = Ri
BAD = Ag¥ ’ (5.34)
Osv1,9,k = %1,4,k T 40 .

The implicit operator A when written down results in a tridiagonmal form

as shown below.
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. T\;:::\\ c
NN

Ap* | = R . (5.35)

For the solution procgdure to converge, it is necessary and sufficient

that the above tridiagonal‘mat;ix possess diagonal dominance such that

o] > |a| + |e] . (5.36)

The diagonal term b looks like

S B (pi,j,k‘*‘i * P4kl

: (5.37)
bx? - Az? ) ) |

In order to ensure diagonal dominance the term B/Ax? has to be negative.
Let us.go back and review the term B with the physics of the problem

in mind.

U P (5.38)
B pi pi Mooui °

Also, the density is related to the speed of sound and Mach number through
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Y-l _ 20 | | (5.39)
Py = ay -

where a, is the local speed of sound.
Substituting Eq. (5.39) into Eq. (5.38) we get

N
: u (5.40)
g=p, [1--2]).
i a2
i
If we assume the flow is supersonic in the marching direction x, then
it implies ui > a;, which means,
2
u
1--2)<o
3
(5.41)

or

B<o.

This diagonal dominance property was achieved only through the particular
form of the density linearization assumed in Egs. (5.22) and (5.23).

If we had assumed at that point that °i+l,j,k = pi,j,k without the

second term (%%) ', then the final expression for B would have resulted
i3,k

inf = Py which would always be positive, and diagonal dominance is not

ensured. Thus, the form of density linearization is very critical for

convergence of the solution procedure.
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5.2.1 Arbitrary Coordinate System
The entire analysis described in Section 5.2 assumed é
Cartesian framework where it is convenient to explain the
density linearization concept and also simple to construct
a computer program to test fhe concepts. However, for the
treatment of wing-body configurations, a body-fitted
coordinate transformation is essential for application of
body boundary conditions. In this section, a brief introduction
is made for the inclusion of a coordinate transformation into
Eq. (5.1) and the associated density linearization procedure.
Considering the general transformation given by

Eq. (5.10), one can write Eq. (5.1) in the form

(%) |, o) | o(%) |
Y + 5E + T 0 (5.42)
where
U = uo, *+ vcy *wo, = A1¢o + A2¢g + A3¢n 3\
V = uEx + VEY + wSz = A4¢c + A5¢€ + A6¢n
r (5.43)
W= uny * V“y *own, = A7¢c * A8¢€ * A9¢n
vy-1 _ -1 2 '
o = {1 - Ma,(Ud>0 + V¢E + W¢n - 1) /
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In

2
Rt ey e

ExNx * Eyny * B,

2 4 2 4 pn2
ng *ongy + o0}

e (5.43)

Eq. (5.42), the direction o can be considered as the

marching direction (time-like hyperbolic direction), provided

the projection of the velocity in the direction normal to the

constant ¢ line/surface is supersonic.

This is illustrated

in Fig. 5.3 and the verification of the above statement will

become clear once the density linearization is introduced

into the first term of Eq.

(5.42).




Constant £ 1ine/slUrface

I
Js Y
Constant @ line/surface
o, 4 o, A c A :
- x 1o+ 7y jo+z ok ' Tg~ unit normal vector
n, = ‘ -
o . ' ,
- . .
’ /,,Xz +..0‘y2 . .0,22 qg ~ velocity vector
‘ + Vo 4+ w . . . + (]
I uo, o, a u A 8 Ay®s + ,-A3¢?7
q . Ng = ‘ = =

\/de + gyzfoéz ~\/ox2.-‘o;<ry2fg- 0,2 ~\/o-x2 + a'yz + 072

For 0 to be the marching direction (@ . fg) >a
where a 'is the local speed of sound.

Figure 5.3. - Definition of a time-like marching direction.
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Consider the first term in Eq. (5.42). The objective
now is to linearize the density term p in such a way we can

not only show the requirement for ¢ to be the marching

direction but also be able to solve for ‘the velocity poten-

tial ¢. Let p be expanded about o where Po is some neigh-

boring known state.

P =0py * (%g)OAG + oo o (5.44)
where

T IS 1 FTUE N HN VR B

30 af |0 30 "o 0 30 g 0% “ni-

~ Using Eq. (5.44) we can write

3c

3 pU ‘ .
TT) _ 3 .%o U -
ff - = 35.{[90 - th"o¢c + V0¢E + w0¢n + fo}]j} (5.45)

where

Q
L ———
L{o
[and
~———
Q
[
©
Qlo
(¥ Lon}

') 5 (1 Po ,
Y (7 Zg{”5¢o * UgVodg * Wolgo, * foqo})-

(5.46)

45




Substituting for U in terms of Al’ A2 and AS’ and rewriting

‘Eq. (5.46), we get

2 2
120 25
WoUg £4U0
+ A3- a2 (bn' a2
0 0
(5.47)
where
a() _ ier,i,x - i3,k . backward \
a0 Ao - » differenced
a() ¢ )ie1, 41,k ‘;( di+1,5-1,k | 5.48)
F)3 ZAE f .
central
\.; differ-
enced
3() _ ier,g,001 - (ie1,5,k-1 j
an 2An
P

To ensure diagonal dominance for stability, the term

2
Us

2
A3y
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appearing in Eq.’(5.47) has to be negative. This implies

(if backward differencing is used in o)

or ; for stability . (5.49)

The quantity‘Uo/va; is nothing but the projection of the
velocity vector a in the direction normal to the constant o
surface as shown in Fig. 5.3. Thus, it is verified that for
o to be the marching direction, U/va; has to be supérsonic.
The Cartesian framework described in Section 5.2 (Eq. (5.27))
is contained in Eq. (5.47)‘as a special case (set o=x; E=y;
n=z; Aj=1; A, = Ag = 05 J=1;5 Uy=uy; Vy=vys Wo=wg).

The forﬁulation fbr the séalar approach in the transformed
coordinate system o,&,n is at present in the conceptual stage
as far as the treatment of (%;) -and (%F)n terms in Eq. (5.42).
Results from the scalar approach to be presented in this report are

based on the Cartesian system (Eq..(S.l)).
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6.0 RESULTS

6.1 SECOND ORDER COMPARISONS

Comparisons were performed to determine the success of the proposed second
order analysis technique in prediction of surface pressures, forces, and moments.
‘The following sections present comparisons between first and second order
analysis, experimental data, and higher order numerical calculations.

6.1.1 Wing Alone

Figures 6.1.1 through 6.1.3 present first and second order results for wing
alone cases. The predictions are based on using perturbation velocities obtained by
placing the free stream at angle of attack. The comparisons indicate that even for
wings with subsonic edges and in cases where the flow was far from two dimensional,
the predictions were quite good. The integrated lift and moment calculation shown
in figure 6.1.3 demonstrates a substantial improvement in the aerodynamic center
prediction for a wing with a subsonic edge. Reference 1 presents similar results
for a wing with a supersonic leading edge based on a source volume method. The
present analysis gives virtually the same answer.

6.1.2 Bodies of Revolution

The pressures and velocities on bodies of revolution were computed by combining
a first or second order axial solution with a first order cross flow solution. Cone
thickness and angle of attack comparisons between hybrid second order analysis and the
complete Euler equations, figures 6.1.4 through 6.1.6, demonstrates that a second
order analysis can yield considerable improvement over first order results even for
values of M§ near 1. The-results for a non-lifting parabolic body of revolution,
presented in figure 6.1.7, show that the difference between a first and second
order analysis is greatest in regions of highest flow deflection angle near the
nose and tail as would be expected . A

Figures 6.1.4 and 6.1.5, demonstrate that the second order velocities computed
for axial flow past cones compares very favorably with the exact solutions. The
second order solution appears to be accurate to values of M§ approaching 1.

Figure 6.1.6 show how the isentropic pressure coefficient formula, when combined
with the accurate velocity predictions result in good prediction of the pressure
coefficients.for lifting cones.

Results for M = 6 flow past the body shown in figure 6.1.8 are presented
in figure 6.1.9. For analysis purposes the nose region of the body has to be
modified to avoid slopes which exceed the Mach angle. A conical forebody extension
having a slope slightly less than the Mach angle was used for this purpose. In the
“nose region, where the values of M§ were large, differences between the analysis and
the experimental data are noticeable. The greater slopes present on some bodies
can restrict regions which may be usefully analyzed.
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6.1.3 Delta Wing-Body

Figure 6.1.10 present results for the pressure coefficient calculation for
flow past the wing-body combination shown in figure 6.1.8.. For most regions on the
wing, a comparison with the experimental data is reasonably good.
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Figure 6.1.8. Simple Wing-Body. Component Interference Model
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6.2 FULL POTENTIAL COMPARISONS

In this section, results will be presented for both the
full potential vector approach (Section 5.1) and the full
potentialrscalar approach (Section 5.2). To verify the
validity of the full potential theory, results are presented
for various unit problems such as supersonic flow over
two-dimensional wedge, supersonic leading edge delta wing,
subsonic leading edge delta wing, and a simple conical

wing-body combination.

6.2.1 Conical Wedge Flow

Figure 6.2.1 shows the schemétic diagram of supersonic
flow past a wedge with an attached shock wave. To implement
the vector approach, a conical transformation of the independent
variéblgs was chosen to align the shock with a constant

coordinate line.

(6.2.1)

vy
[}

y/x
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Figure 6.2.1. Schematic Diagram of Supersonic Flow Past a Wedge
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This transformation coupled with the use of the strong
conservation law form of the vector equation (5.11), and the
conservative differencing provided by the MacCormack'séheme,
results in fairly weak oscillations across the shock.

To start the solution procedure, freestream values are
specified at all grid points at an initial x location
(x = 1.0). The solution is then marched along the x direction 
until an asymptotic steady state is reached. Care is taken
to make sure that the grid points chosen enciose the shock.
Freestream values are méintained at the outer boundary while
surface tangency is imposed on ﬁhe wedge boundary. .

A comparison of the solutions obtained by using the Euler
equation, the vector approach full potential equation (Eq. (5.11)),
and the Cartesian. scalar approach (Eq. (5.33)), is shown in
Fig. 6.2.2. The results from the Euler and full potential
vector approach show noticeable oscillations across the shock
wave yhile the scalaf approach seéms to provide'smooth monotone
"results. For this simple supersonic wedgeAflqw example, the
scalar approach demonstrated at least a factor of 10 speed-up
in the computational time over the Euler solver as well as
‘the vector approach. Also shown in Fig. 6.2.2 are the

theoretical linear and second order solution.
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Figure 6.2.2. Supersonic Flow Past Wedge: Numerical Solutions
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6.2.2 Supersonic Leading Edge Delta Wing

For a flat plate delta wing with a supersonic leading
edge, the solution on the windward and leeward sides afe
independent of each other. We will study the wiﬁdward or
compression side in this report for this will test the
numerical method's ability to capture three dimensional shocks
and also check out the equations developed to fit the leading
edge sHock (see Fig. 6.2.3 for a schematic view of the flow
field). For both shock capturing and shock fitting calculations,
an initial solution is ;pecified on an initial data plane at
x = 0.1. Theysolution is then,ad#anced downstream until it

converges to a conically similar steady state.

6.2.2.1 Shock Capturing

The coordinate transformations used 'in the calculations

where the shock is captured are

g =X
E = z/x (6.2.2)
n =y/(x - ztanA)

-The constant coordinate lines in the physical and computational

domains are sketched in Fig. 6.2.4. Freestream values are
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Figure 6.2.3. Schematic Diagram of Delta Wing Flow Field
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specified at all grid points in the initial data plane. For
this coordinate system it is advantageous to specify zero
derivatives in the £ direction at the boundary BC where the

flow is two-dimensional.

6.2.2.2 Shock Fitting

The coordinate transformations used in the calculations

where the shock is fit are given by

£ o= z/x : | | (6.2.3)

,y"'ybody
Yshock ~ Ybody

n=

The corresponding constant c&ordinate lines are . sketched in
Fig. 6.2.5. The exact two-dimensional solution is imposed on
the boundary BC at every marching step. The shock jump
relations are imposed at the shock boundary CD. To start

the calculations, an initial shock shape is chosen which
determines the solution at all grid points on CD. At every
spanwise grid point the initial values of the dependent
variables are assumed to be those at the corresponding shock
grid point. The shock slope at C is fixed at the exéct value

for all steps.
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For the vector approach, both the shock capturing and
shock fitting échemes were implemented while the scalar
approach results presented here are baséd on shock capturing
procedure. In Fig. 6.2.6, pressure coefficient results from
the full potential vector and scalar approach are compared
with results obtained with a shock captﬁring Euler solver and
second order potential theory for M_ = 4.0, A = 50° and
@ = -5° -10° and -15°. Although the full potential scalar
approach and vector apﬁ}oach predict identical results, the
scalar approach is an order of magnitude faster than the
Euler or the full potential vector approach. For low angles
of attack (a = #Sf], the full potential solution is
‘ indiétinguishable from the Euler solution.

From comparing the second order theory solution witﬁ the
FPE and the Euler éoiutions, the inability of the second order
theory implementation to shift thé cross flow sonic line
(junction of the two-dimensional and three;dimensionél regions)
becomes clear. The FPE is superior in this respect, as far as producing

results comparable to Euler solvers.

6.2.3 Subsonic Leading Edge Delta Wing

One of the advantages of full potential theory
over the linear or second order theory is that it does not

create any leading edge singularities, and thus can easily
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Figure 6.2.6. Comparison of Pressure Coefficient on Supersonic Delta Wing
at Various Angles of Attack, Mw = 4.0, A = 40°

80




handle subsonic leading edges. The second order finite difference
results for the subsonic leading edge cases are shown in

Ref. 1 which indicate pronounced dsc;illations in pressure

in the neighborhood of the leading edge because of the
singularity inherent in the(thedry. This behaviour

is avoided by using full potential theory as illustrated

in Figs. 6.2.7 and 6.2.8. Figure 6.2.7 shows the results
obtained using the full potential vector approach. All four
cases (A = 20f4'; 28°50', 38539'Aand 43f38') are presented.
There are no oscillations in the surface pressure coefficient.
Some breaks ih smoothness are evident near the leading edge

on the wing surface. Tests reveal that this is due to the
dlSCOHtanltY in the grid used (analytic metrics were also
used for these calculations and so the mesh was not implicitly
smoothed out by the numer1ca1 evaluation of metrics). For
‘the low freeétfeam Mach number of ‘2 considered, tests showed .
that the solutions to the FPE and Euler equations are
indistinguishéble because of the negligible entropy generatién.
‘However, this would be true even for higher Mach numbers for
slender delta wings with subsonic leadiﬁg edge because the
leading edge compression system is relatively weak for these
cases except possibly when the leading edge is very close to

the Mach cone associated with the freestream Mach number.
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Figure 6.2.7. Pressure Coefficient on Series of Delta Wings with Subsonic
Leading Edges using the Full Potential Vector Approach
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The results from the full potential scalar approach are
compared in Fig. 6.2.8 with the vector approach results. The
scalar approach results are much superior and also required

much less time to compute over the vector approach.

6.2.4 Cosine Wing-Body Combination

The wing-body configuration consisted of a flat plate

delta wing with a conical fuselage represented by the formula

Ybody _ 0.1678 Tz z
< = 3 (1 + c?s 0 098x) 0 <'5c'< 0.2098 .

The shock capturing versions of the finite difference
methods using the Euler equatién and the full potential vector -
and scalar appfoaches were used to compute the pressure
coefficient on the surface of the wing-body combination
and the results are shown in Fig. 6.2.9. It is evident that
for the low angle of incidence considered here the full
potential and Euler solutions are in good agreement. The
scalar approach program utilizes 3 linearization of the actual
body boundary conditions because the code at present is in
terms of a Cartesian system in which the body is not in
" general aligned with grid points.

The results are in qualitative agreement with the results

obtained by Kutler5 for a similar geometry. The salient
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Mo = 4, o = 5°, Compression Side.
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features of the pressure distribution on wing-body combinations
similar to the ones considered here are as follows: (;) A
two-dimensional region between the supersonicvleading edge
- and cross-fiow shock (a part of which is shown as AB in
Fig. 6.2.5). (2) A pressure rise across the cross-flow shock
denoted by BC. (3) Compression up to the junction of wing
and body denoted by CD. (4) An expansion followed by compression
on the fuselage denoted by DE.

Here again the scalar approach demonstrated a‘significanf
(at least a factor of lb) improvement in computational speed

over the Euler solver or the full pdtential vector approach.
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7. CONCLUSIONS

Based on the theoretical development and comparison with higher order
results/experimental measurements, the following conclusions are made.

1. Improved prediction of supersonic/hypersonic aefodynamic characteristics
and surface pressures for a simple wing, body and wing-body shapes has
been demonstrated for non-linear potential analysis.

2. Second order theory provides a systematic means of extending linear
analysis to values of the similarity parameter M§ approaching one.
Fifty second CPU solution time/Mach number is typical for a wing-
body problem.

3. Full potential analysis successfully eliminates subsonic edge
singularities and linear characteristic approximations of second
order theory. The scalar formulation is an order of magnltude
faster than the vector approach and Euler solvers.

4. Potential theory provides an advanced aerodynamic prediction technique
that is responsive to the preliminary design problem at moderate
hypersonic conditions.

5. ‘Further effort is required to extend the analyses to more general
geometries and develop configuration design codes.
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