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I. Introduction

The equations governing compressible viscous flow have been known for

more than a century. Although many special-case solutions have been

determined analytically over the gears. many others of interest have

continued to defy mathematical analysis. Wind tunnels and other experi-

mental facilities have served as invaluable tools in the integration, by

physical simulation, of these equations of fluid motion. During the

last decade the computer has come to share — through its use of numeri-

cal simulations — the work of the earlier analytical and experimental

tools in determining new flow solutions.

Like the limits on the range of problems that can be solved analytically,

there are limits on the range of flow cases that can be accurately simu-

lated in experimental facilities. The experimental limits are imposed

by such factors as tunnel size, wall interference, and stream uniform-

"	 ity (1]. Similarly, the range of computer flow simulations is also
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	 limited, principally by computer speed and memory storage. Fortunately,

the limits of the theoretical, experimental, and computational techniques

are different; as a result, the range of applicability afforded by the
6

three is greater than that attainable with any one of them. Moreover,
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in regions where they overlapo one approach can be used to verify the

results of another.

Nevertheless, we still cannot solve all fluid flow problems of interest,

nor can we anticipate that capability in the near future. Nowever,

because of the present rapid and potential large growth of computer

capabilities, such emphasis is being placed on the development of com-

putational fluid dynamics (2,3). 1ef'ore we can calculate the flow field

about a complete aircraft configuration at flight Reynolds numbers,

there will have to be great progress in developing powerful and reliable

computer hardwAre, in understanding and modeling the physics of turbulent

flow, and in devising accurate and efficient numerical methods. That

progress will depend, to a significant degree, on theoretical, experi-

mental., and numerical research. One element, the devising of an effi-

dent numerical, method, is discussed in this paper.

During the last XQ years many significant contributions have been made in

the development of computational methods for solving the equations of

compressible vicous flow. Chief among these has been the development

of noniterative, block-tridiagonal implicit methods. These methods,

whic% are not subject to restrictive stability conditions, are such

more efficient than the earlier explicit methods. The newer methods are,

however, such more complicated than the earlier ones and frequently still

require long computation times. The goal of the present research is to

develop a method for solving the compressible form of the Navier-Stokes

equations at high Reynolds number that is unconditionally stable, com-

putationally more efficient than existing methods, and simple and

2



straightforward to program. The method to be described is the UVlicit

analogue of the explicit finite-different Method the author presented

In 1969 (see 141). The now method uses the 1%9 method as its first

stage. The second stage removes the restrictive stability condition of

the 1969 method by recasting the difference equations in an implicit

form. The resulting matrix equations to be solved are either upper or

lower block-bidiagonal equation# and art solved more easily than the

block-tridiaegonal matrix equations of existing methods. The method is

second-order accurate in space and time and is presented in conservation

form in two dimensions. Its extension to three dimensions is

straightforward.

11. The Navier-Stokes Equations

In two dimensions and by neglecting body force and heat sources, the

unsteady compressible form of the Navier-Stokes equations may be written

in conservation form as

at ♦ ax + ay •0

where

P

U •Pu
Pv

(e)

PU
Put + ox
Puv + tzy

(e + CX)u + tyxv - k ax
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Ov

puv + tyx

G	 pvi + a 

(e +oy)v + tau - k a

and where

(au ^ Lv	 2p auOX 
a p - X

\ax ay^	 dx

(
tyu 

av\
Txy " TV 	 + ax J
ay . p - 

aVaX + a , ' ay

in terms of density p; x and y velocity components u and v; viscosity

cA^officients X and p total energy per unit volume e; coefficient of

heat conductivity k; mid temperature T. Finally, the pressure p is

related to the specific internal energy c and p by an equation of

state, p(c, p), where c 	 e/p - (u2 + v" .r'2

The Navier-Stokes equations adequately describe aerodynamic flow at

standard temperatures and pressures. If we could efficiently solve

these equations there would be no need for experimental tests when

designing flight vehicles or other aerodynamic devices. As John

Von Neumann said in 1946 [S], "Indeed to a great extent, experimentation

in fluid dynamics is carried out under conditions where the underlying

physical principles are not in doubt, where the quantities to be observed

are completely determined by mown equations. The purpose of ezp^triment

Is not to verify a theory but to replace a computation from an unquestioned

theory by direct measurements. Thus wind tunnels, for example, are used

at present, at least in part, as computing devices to integrate the

partial differential equations of fluid dynamics."

I
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Unfortunately the solution of these equations for flows at high Reynolds

umbers with strong viscous-inviscid interactions has defied mathematical

.
analysis. Of the two key features of such flow — separation and

turbulence — we have been able to slake substantial progress during the

last decade in the calculation of laminar separation using numerical

methods. The calculation of turbulence largely rsmsins an unsolved

problem. Although the Navier-Stokes equations adequately describe such

flows, computer speed and memory limitations sake it imposoible for the

computational mash to be fine enough in all spatial directions to resolve

all significant eddy length scales of a high-Reynolds-number turbulent

flow. As Bradshaw said in 1972 161, "In turbulence studies we are

fortunate in having a complete set of equations, the Navier-Stokes

equations, whose ability to describe the notion of air at temperatures

and presavres near atmospheric is not seriously in doubt (it is easy to

show that the smallest significant eddies are many times larger than a

molecular mean free path). We are unfortunate because numerical solu-

tion of the full time-dependent equations for turbulent flow is not

practical with present computers."

In an approach that circumvents the turbulence problem, the Reynolds or

"time-averaged" Navier-Stokes equations are solved. Thus, instead of

seeking a time and spacially resolved solution of a rapidly fluctuating

turbulent flow, only the time-averaged or mean flow solution is sought.

This solution is sufficient to determine the principal quantities of

Interest, such as lift, drag, and heat transfer. The time-averaged

equations look very similar to the original Navier-Stokes equations

i
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except that some new termso called Reynolds atress and turbulent host-

transfer terms. appear. These now terms represent the additional mixing

caused by turbulence and are determined by models. The models vary from

simple algebraic expressions to sets of additional differential equations

that need to be solved. Although much progress has already been made in

the understanding and modeling of the physics of turbulence, mu_ib more

is needed before we will have the capability to numerically predict

turbulent flow separation with confidence.

111. Numerical Method Applied to a Model Equation

Before discussing the numerical solution of the Navier-Stokes equations

it is worthwhile to consider the solution of the following simpler model

equation

auaU	 a2U
ac C ax +v ^x

The flow variable U governeA by this equation convects with speed c

and diffuses with kinematic viscosity v. The implicit analogue of the

author's 1969 method applied to solve this equation yields the follow-

ing set of finite-difference equations {7):

n	 Ate	 n	 btv	 n	 n

	

eU	
n

i • . AX i++^ - ^i^ + Ax  ^U1+l 
2U1 + Ui-

1

P:

	

	 1 + AAt)dUE1+^ ^Un + t 6Un+1Ax
/ i	 i 4x	 i+1

Un+1 11n + 6Un+1

	

i	 i	 i



'R

a	 Ate
.M^ -

	 (tF'	 +1 ) + &tV	 + e^ +AU 
+1	

'1	

= 
K - 2LY!

Ox

C

UO+1 . (tin + el + 6e)

	

where A is chosen so that A > max (jej + ^(2v/nx)	 (Ox/at), 0.0).

The above procedure contains two steps. The first step predicts a new

solution at time t . (n+1)nt at each mesh point i from the known

solution at time t a nAt, using a one -sided difference to approximate

the first derivative term and a centered difference for the second

derivative. The second stage of the predictor step enables the locally

calculated solution changes QUi to travel and diffuse throughout the

flow field and then calculates implicitly the solution change 6U1

to be used in the third and final stage to determine the predicted

solution Un+i . The second step, or the corrector step, of the proce-

dure is similar except that it uses opposite one--sided differences to

approximate first derivatives.

The second stage of each step represents an implicit approximation to

the following equation

Mt at	 ant ac
-.- a	 sa	 ax

with

nui • At atei
and

aUi+' . At ac^	 ac.i
7
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This equation describes the spreading of the solution cbanl* et(;Ul;t),

a term of order At, with speed -A In the predictor and #1 in the

corrector, The net effect, if 1 is of the order of unity, is the

addition to the equations of motion of a term of second order (the

difference of two first-order terms). The spreading equation is also

related to that obtained by differentiating the model equation by L.

The philosophy behind the procedure is as follows. First the rate of

solution change is calculated locally at each mesh point, using an

explicit approximation to the governing physical equations. This local

rate of change is only valid for a short time, equal approximately to

the time required for a flow disturbance to travel from one mesh point

to its neighbor. Explicit procedures are restricted, usually for sta-

bility reasons, co time steps At less than or equal to this charac-

teristic disturbance transit time. Second, this time-step restriction

is removed in the second stage by allowing the locally determined rater

of solution change to convect and diffuse globally throughout this flow

field ' governed by an equation related to the physics of the flow. This

latter equation is solved implicitly to determine the rate of solution

change at each point that approximates the actual rate during the

entire interval At.

The method is, according to linear theory, unconditionally stable

(unbounded At), requires the solution of bidiagonal equations only,

and is second-order accurst* tender the constraint that vAt/Ax=

remains bounded as At and Ax approach zero (i.e., a remains of

the order of unity).
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Note that if the quantity A to Soros the second stop* reduce to

it	 • eve

and

BJ1t
^1+^ a Ae+

or no implicit procedure at allp and the sothod ins identical to the

1969 method. Such s choice for l results if the chosen time step At

already satisfies the stability condition of the 1969 method.

of r
ICl
- °-^

ox

Because of this feature. the method has an advantage in numerical effi-

ciancy over existing implicit methods. Not only ore tine numerical pro-

cedures simpler — bidiagonal versus tridiagonal — but in flo g regions

for which At satisfies the a'f7-nve tkability condition, the method

reducs from an implicit to a simpler explicit one.

IV. Numerical Method Applied to the Wavier -Stokes Equations

Applying the method to solve the Wavier-Stokes equations we obtain the

following implicit predictor-corrector set of finite -difference

equations.

AUK

p:	 L

Un+1

i,

n

-A t A+^- ^x +^

0+ A^

At 
Ax
	

(.I

n	 +1
• Ui 'j + 6Ui d

U

0y

	

- 
At A+^a4	

6Ui
+1 

a AU1

	

Ay	 ,j	 0i
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A ^^ A C

i,j	 Ax	 Ay

	

it (	 +

1 + At 
a-A	

I+ et A-^. .» AU"+1 As+1C; Ay	 i
	

el 
0i

n+1 1 	 n*	 +1

UI.
	 (Unid

  ♦ Ui.j 
# QO o j

v

where A+/Ax, A;,/Ax, 4+/AY and A_/Ay rare difference operators define) by

A+!w 
zi+%=i ' zi.j

	Ax	 Ax

	

Ax	 Ax

AyA+	
' zi'j+1 - zit

	

Ay	
AY

and

i zi.j - zIIJ-1
Ay	 ay

As for the model equation, the first derivative terms are one-sided

differenced (as shown above) and the second derivative terms are centrally

differenced. The matrices JAI and ( HI are matrices with positive eigen-

values and are related to the Jacobians of F and C. Let S x 0 Sy
, and

their inverses denote the matrices that diagonalise A and E with

P a A a k a 0 (viscous terms neglected). If the gas equation of state

is perfect, p . ('r - 1)pc. A a $; 1 AASx . and 0 a Sy IA BSy where

10
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0	 0

1/P	 0

0	 1 /P

-ua -vo

0	 0

1/P	 0

0	 I /P

-u$ -v8

i
i
i

0
0
0
a

0
0
0
e

1 0	 00 Pc 0
sx	 0 0	 1

0 -PC 0

1	 0	 0
0	 1	 0

S  	 0 0 pc
0	 0 -Pc

4 /C I
1 u/P
0 )(00V/P1

-1/c = 1
0 u/P

1
)(00

v /P
1

U 0 0 0 v 0 0 0

0 u+c 0 0 0 v 0 0

^t, "0 0 u 0 AS "	 0 0 v+c 0

0 0 0 u- 0 0 0 v-c

and where c . 6_rip is the speed of sound, a . (1/2)(u2 + v 2 ) and

a a y - 1.

The matrices S  and S y are each given above as the product of two

matrices. For each, the right matrix represents a transformation from

conservative to nonconservative variables, for example, from (6p, 6pu,

6pv, 6e) to (6p, 6u, 6v, 6p). The left matrix transforms from noncon-

servative to characteristic form (6p - 6p/c 2 , Pc6u + 6p, 6v, -pdu + 6p)

and (6p - 6p/c 2 , 6u, pc6v + 6p, -pc6v + 6p) for the S  and Sy matrices,

respectively. The inverses Sri and Sy l are simple to derive. The

matrices JAI and 121 are defined by

JAI - Sx'DASx	and	 151 - SyIDaS7
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AA2 • max

where

AA1	
0	 0	 0	 Aai	 0	 0	 0

0	 AAz	 0	 0	 0	 Aaz	 0	 0

D n 	 .	 D •A	 0	 0	 AA!	 ar	
0

0	 0	 0	 AAy	 0	 0	 0	 Na4

2v	 1
11u, +	

Ax

PAX - ^ At	
0.0

AA2
max ( +cl +2 ,1

- 2a •	 oo^

As •mix JIUI + pax v 2 At • O.Oy

AAy • max Il u - cl	
+ 2v

pAx
_ 1

2
Ax 0.01
Qt

max81
1 1,1
	

2v
 + pay

_ 1
2 At

0.0)

AB2	
Max JIVI + pay

 _ 2 A ' 0'0)

71B 3 • MAX I v + c	 + - 2 A 0.0'ay

718	 aMX
(
Iv_cI+

PY I At •	 0.0)

and
V a Max {N, a + 2N, Q

Viscous effects are included through the use of the viscous coefficient

v. For some test problems th,.s coefficient had to be increased during

the initial part of the calculation when large transients in the solu-

tion occurred.



For rations of the flow in which At satisfies the follownt axplict

stability conditions,

at : 11
	

:
(Jul + c)/Ax + (2v /pox )

and

At <	
1	

_
(I v l + c)/Ay + (2v/phy )

all aA and all a$ vanish and the sat of difference equations reduces

to the 1969 explicit equations. For other regions in which neither

relation is satisfied, the resulting difference equations are either

upper or lower block bidiagonal sgrtxations with fairly straightforward

solutions.

V. Numerical Results

The method was applied to solve for the interaction of a shock wave

ticident upon a boundary layer. The flow field is sketched in Fig. 1.

As shown in Fig. 2, the initial corditton was that of uniform flow, and

the condition at the top mesh boundary w(is such that a shock wave of given

strength would be generated and impinge upon a flat plate at a given

point. The conditions at the upstream boundary were held fixed at their

initial supersonic free-stream values; the downstream boundary conditions

were obtained by zero-order interpolation; the lower boundary conditions

were obtained by reflection.

The mesh contained 32 s 32 points, with 16 spanning the boundary layer.

The time step was chosen so that the free stream moved approximately 1%

during each time step. With this choice the time step satisfied the
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explicit stability conditions everywhere except in the fine mesh spanning

the boundary layer.

In Fig. 3, the computed results are compared with experiment (8) and

with boundary-layer theory in the absence of a shock wave (9). The results

are for Mach 2 laminar flow at a Reynolds number of 2.95 x 10 6 . The

calculation (1) used Sutherland's formula to calculate molecular viscosity;

(2) was run for 256 time steps, at which time the mesh was rezoned to

cover just the interaction region; and (3) was run for an additional

256 time steps. It required about 1.5 min of computer time on a CDC 7600

computer. The results for skin friction and surface pressure compare

favorably with those of theory and experiment.

In Fig. 4 the calculated velocity profiles ahead, within, and aft of the

separation region are compared with the computed results, using the 1969

method alone. The two sets of results agree closely; however, the com-

puter time required by the newer method was more than an order of magni-

tude less than that required by the 1969 method.

The computation times for a series of laminar and turbulent boundary-layer

interactions with shock waves are given in Table 1. For each problem the

flow was computed to the same physical time, which for the new method

required 256 time steps. For the turbulent flow cases, a aimp'a algebraic

eddy viscosity model 1101 was used to account for the effects of turbulence.

For each case, the table shows the Reynolds number, the ratio of the

time step used to the maximum allowed by explicit stability conditions

(Courant-lriedrich-Levy number, or cn), the computer time required per

time step per grid point on a CDC 7600 computer, and the total computer
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time required. The tabulated results show that the now method is one to

three orders of magnitude more off icient than the 1%9 method,

For the test ci.sss considered, the now method is more than twice as fast

per time stop per grid point as the block-tridiagonal implicit methods

in use today. part of the reason for this is the wash-point spacing and

time step chosen; of the total number of mesh points more than half

required only the use of the 1969 explicit method. At these sash points

the chosen time step already satisfied the local explicit stability con-

dition; therefore, the implicit procedure, the second stage, was omitted.

The implicit procedures were required only in the fine mesh spanning the

boundary layer, where explicit stability conditions would have imposed a

severe time-step restriction. It is estimated that if the Implicit pro-

cedures were used at each grid point, the time step per grid point for

a two-dimensional calculation would be 2.45 x 10-4 sec for laminar flow

and 2.75 x 10-4 sec for turbulent flow. The difference between these last

two values represents the additional computation needed to evaluate the

tur ulence model relations.

VI. Conclusion

A new numerical method has been devised for solving the equations of

compressible viscous flow. The method represents the implicit analogue

of the explicit method presented by the author in 1969. It is uncondi-

tionally stable, second-order accurate, and, for many applications, is

more efficient than other methods in use today. Because the new method

uses the 1%9 method as its first stage, many existing computer programs

In which the 1%9 method is used can be updated by adding the described

Implicit second stage.

Sk
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Table 1 CoMputstioa times

CDC 7600 time Total
Case Method cn step $rid point tine

Lminar 1969 0.9 1.25 x 1074 sec 12 sin
R - 3 x 10' Now 20 1.55 x 10" sec 41 sec

Turbulent 1969 .9 1.55 x 10' + sac 2 br*
R - 3 x 106 New 160 1.55 x 10-4 sac id sec

Turbulent 1969 .9 1.55 x 1074 sec 15 hr*
R - 3 x 10 7 New 1200 1.85 x 10' 4 sec 48 sec

*Estimated,

+ ly
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Figure Captions

Fig. 1 Sketch of shocks boundary-layer interaction

Fig. 2 initial flow field for shocks boundary-layer interaction

Fig. 3 Comparison of results. a) Surface pressure. b) Skin friction

Fig. 4 Comparison of velocity profiles
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