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AERODYNAMIC PRELIMINARY ANALYSIS SYSTEM II
PART I THEORY
By E. Bomner, W. Clever, K. Dunn

North American Aircraft Division, Rockwell International

SUMMARY

An aerodynamic analysis system based on potential theory with edge con-
sideration at subsonic/supersonic speeds and impact type finite element
solutions at hypersonic conditions is described. Three-dimensional config-
urations having multiple non-planar surfaces of arbitrary planform and bodies
of non-circular contour may be analyzed. Static, rotary, and control longi-
tudinal and lateral-directional characteristics may be generated.

The analysis has been implemented on a time sharing system in conjunc-
tion with an input tablet digitizer and an interactive graphics input/output
display and editing terminal to maximize its responsiveness to the preliminary
analysis problem. CDC 175 computation time of 45 CPU seconds/Mach number at
subsonic-supersonic speeds and 1 CPU second/Mach number/attitude at hyper-
sonic conditions for a typical simulation indicates that program provides an
efficient analysis for systematically performing various aerodynamic config-
uration tradeoff and evaluation studies.
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INTRODUCTION

Aerodynamic numerical analysis has developed to a point where evaluation
of camplete aircraft configurations by a single program is possible. Pro-
grams designed for this purpose in fact currently exist, but are limited in
scope and abound with subtleties requiring the user to be highly experienced.
Many of the difficulties are attributable to the numerical sensitivity of
the associated solution. In preliminary design stages, some degree of appro-
ximation is acceptable in the interest of modest turn-around time, reduced
computational costs, simplification of input, and stability and generality
of results. The importance of short elapsed time stems from the necessity
to systematically survey a large number of candidate advanced configurations
or major component geametric parameters in a timely manner. Modest computa-
tional cost allows a greater number of configuratims and/or condltlons to be
ecaanically investigated.

One approach in this spirit is to employ panel approximatims which
reduce the member of simultaneous equations required to satisfy flow boun-
dary conditions. Surface chord plane formulations, locally two dimensional
crossflow body solutions and non-interfering panel simplifications are exam-
ples of approximations which can be used for this purpose.

Finite element analysis when combined with realistic assessment of 1limi-
tations and estimated viscous characteristics provides a valuable tool for
analyzing general aircraft configurations and aerodynamic interactions at
modest attitudes for subsonic/supersonic speeds and evaluation of compressible
non-linearities at high Mach numbers.
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LIST OF SYMBOLS

Projected oblique cross section area

Influence coefficient. Normalwash at control point i due
to vortex panel j of unit strength

Area of quadrilateral panel i

Reference span

Local chord

Reference chofd

Average chord

Section drag coefficient

Drag coefficient

*Flat plate skin friction coefficient

Boundary condition for control point i

Section lift coefficient

Rolling, pitching and yawing moment coefficients
Lift coefficient

‘Section normal force coefficiént _

Pressure coefficient (P-P&)/q

Net pressure coefficient (Pg-Pu)/q and vortex panel strength

Axial,side,normal force coefficient



- LIST OF SYMBOLS (CONTINUED)

c* ¢ Te
e T7

f;:;y,Fz ““;;;;e components

g(x) Axisymmetric outer solution to potential equation

h Radius of curvature of cross sectional boundary

i,jk Unit vectors in X,y,z direction respectively

K Drag due to 1lift factor or skin friction thickness correction
factor

Ké Equivalent distributed sand gain height or attainable suction fraction

s Effective length

2(1i,n) Length of segment i, i+l of contour Cp

L | Equivalent body length or geometric length

L/d Body fineness ratio

M Mach number -

My, My Mz Moment components

n Unit normal

DPsq,T Rolling, pitching and yawing velocity about x, y and z

9,4, Nondimensional angular velocities pb/2U, q&/2U and rb/2U

P Pressure

Py Prandtl number



ai

w

LIST OF SYMBOLS (CONTINUED)

Free stream dynamic pressure 1/2 o112
Recovery factc;r

Unit Reynolds number or radius of curvature
-Reynolds number based on [ ]

Gas constant

Segment arc length

Body cross sectional area or surface area

Reference area

Static temperature R or tangent of quadrilaterzl panel
leading edge sweep

Airfoil thickness ratio

. X,y,z nondimensional components of perturbation velocity

Freestream velocity

Jet velocity

Complex potential function

Body axis coordinate system

Cylindrical coordinate system

Complex number y+iz

Angle of attack

Local angle of attack at surface control point i

Angle of sideslip or 11-M¢l
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Subscript
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LIST OF SYMBOLS (CONTINUED)

Vorticity strength per unit length or ratio of specific heats
Horseshoe vortex strength in Trefftz plane

Deflection or impact angle

Lateral surface coordinate

Body slope

Dihedral angle of quadrilateral panel or boundary layer momentum thickness

Sweep angle
Absolute viscosity

Kinematic viscosity, 1/p
Density

Source density

ﬁSide edge rotation factor
Perturbation velocity potential
Total velocity potential

See figure 3

Leading edge rotation factor

camber
center of gravity
friction

lower surface



LIST OF SYMBOLS (CONTINUED)

LE leading edge

T recovery

t thickness

T tip

TRAN transition point

u upper surface

v vortex

w wave

o freestream condition
Superscripts

! first derivative or quantity based on effective origin

second derivative

Eckert reference temperature condition



SUBSONIC/SUPERSCNIC

The arbitrary configurations which may be treated by the analysis
are simulated by a distribution of source and vortex singularities.
Each of these singularities satisfies the linearized small perturbation
potential equation of motion

B+ b 9,0

The singularity strengths are obtained by satisfying the condition
that the flow is tangent to the local surface:

=T
am

A1l of the resulting velocities and pressures throughout the flow may be
obtained when the singularity strengths are known. A configuration
is composed of bodies, interference shells and aerodynamic surfaces(wings,

canards, tails etc.), The following types of singularites are used to
represent each. - : '

wing and vertical tail

- chord plane source and vortex panels -

fuselage and nacelles
-surface source line segments-

——
e v
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e -

interference shell
~-yortex panels -

The first step in the solution procedure consists of obtaining the
strengths of the singularities simulating the fuselage and nacelles, from an
isolated body solution. The  present analysis uses slender-body theory to



predict the surface and near field properties. The solution is composed
of a compressible axisymmetric component for a body of revolution of the
same crossectional area and an incompressible crossflow component, ¢ ,
satisfying the local three dimensional boundary:conditions in the (v,z)
plane. The crossflow is a solution of Laplace's equation

@334- <Pzz =0
A two-dimensional surface source distribution formulation is used to
obtain this solution. When the body singularity strengths are determined,
the perturbation velocities which they induce on the aerodynamic surfaces,
or other regions of the field, are evaluated.

The assumptions of thin airfoil theory allow the effects of thickness
and 1ift on aerodynamic surfaces to be considered independently. Therefore,
the effects of the aerodynamic surfaces can be simulated by source and
vortex singularities accounting for the effects of thickness and 1lift,
respectively. The source and vortex distributions used in this program
are in the form of quadrilateral panels having a constant source or vortex
strength. The vortex panels have a system of trailing vorticies extending
undeflected to downstream infinity. The use of a chordwise linearly
varying source panel is provided as an option to éliminate singularities
associated with sonic panel edges at supersonic Mach numbers.

The panels are planar, that is they have no incidence to the free stream
(although dihedral may be included), since thin airfoil theory allows the
transfer of the singularities and boundary conditions to the plane of the
mean chord. These boundary conditions are satisfied at a single control
point on each panel. For thickness,the control point is located at the panel
centroid while the effects of twist, camber, and angle of attack are .
satisfied at the spanwise centroid of each vortex panel and at 87.5

percent of its chord.

A cylindrical, non-circular, interference shell, composed entirely of
vortex panels, is used to account for the interference effects of the
aerodynamic surfaces on the fuselage and nacelles. The boundary conditions
on an interference shell are such that the velocity normal to the shell
induced by all singularities, except those .of the body which it surrounds,
is zero. The boundary conditions are satisfied at the usual control points
for vortex panels.

The following sections define the details of the solution procedure.
Included are discussions of the isolated body analysis, surface finite
element analysis considering edge effects, and evaluation of aerodynamic

.characteristics including drag References are cited for the reader
interested in further pursuing a partlcular point.



BODY SOLUTION

According to slender body theory!:2 the flow disturbance near a
sufficiently regular three-dimensional body may be represented by a
perturbation potential of the form

P = Ply,Z;5%) + g) (1)

9(a,2;%) is a solution of the 2-D Laplace equation in the y, z cross flow
plane satisfying the following boundary conditions

VP =jv+kw=0

2 ¢
S * ©° on C(x) (2)
C(x) and n, are defined in figure 1 . A general solution for ¢ may be

written as the real part of a complex potential function W (2) with 2=y + 1iz.

§« W - R{AWIEZ+3AwZ]

Temed

A useful alternative representation of ¢ and W is obtainable with the aid
of Green's theorem:

P RW - -2l T InE-AS (3

. )
where «(3) is a "source' density for values of I = yc + iz, (yc,2zc) being
‘coordinates of a point on the contour c(x).

The function g(x) is obtained by matching ¢ of equation (1) which is
valid in the neighborhood of the body with an appropriate 'outer' solution.
g(x) is then found to depend explicitly on the Mach number M and
longitudinal variation of cross-sectional areas S(x)

X
1

30 = — { 5'<*>~9'-(%A>~%J5"<t>i~(x-r>alt+-‘;j S'(t) dm (2-0) At
° %

——;—S|(O)}~\.X-;—5'(I)ﬂa~(l-x)} M<
(4)

X
Q&) = _ilw_r{ s'axy dn(2 o) -J .S"(t)sz(x-t)c\t} M >

where

B o= fl1-mt]
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The body axis perturbation velocities are obtained by differentiation
of equation (1)

W= P s P q'x)

At supersonic speeds, -zone of influence considerations require that u = v =
w=0 for x-ar < 0.

Solution of the preceding equations is based on an extension of the
method of reference 3,

CROSS FLOW COMPCNENT

The reduction of computations to a numerical procedure utilizes the
integral representation of ¢ given in equation (3) by discretization of
the cross sectional boundary into a large number of short linear segments
(figure 2) over each of which the source density o is assumed constant at
1 value determined by boundary conditions. ' - "

Computation of 6(i,n) over the segment i, i+l proceeds by applying -~
the boundary cendition equation (2) at each segment of Cp. If v9=g=jv+kw
represents the velocity vector, the corresponding complex velocity in the
cross flow plane is obtained by differentiation of W in equation (3) with
respect to Z:

ciw e - ga)
V-iw 2 Z-1 4.3 5)

The contribution by the sources located on segment i, i+l to the velocity
at Pj,n is first evaluated. Noting that i, i+l makes an angle 8(i,n)
with respect to the horizontal axis, we have
' Lt BLi,m)
I = dae

and the contribution to the integral in equation ( 5) may be written:

S’t’),q\,

' =L BLiym)
A{ V(i) Lu.)(j,-w)} = -20(,N) & -_-‘-’1._3-_.._
Za,; 3

"

3.

b
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Figure 2. Cross-section Boumdary Segmenting Scheme

12



After integration of the last temm and summation over all contributing
segments, the result may be written

. ] ~20(i,m)
Vi, = e wli,m) =-2 F SU,n)e

i

R(i"',i,n\) . P
{ Ry LS ]
in which, referring to figure 3 , the quantities R(i,j,n) and §(i,j,n)
are defined by the relationships
R(L,J"VL)G = 23“—1

SCiyi,m) = P,y - VLT

To insure uniqueness of the complex velocity, care must be exercised
in assigning values to-the angles V¥ (i,j,n) and ¥(i,j,n). Referring to
figure 3 , these are measured counter-clockwise from the positive y
axis so that when facing from P; , to Pj.j n , a point P ,n just to the
left of i,i+1 shall define an angle Y (i,] ,n) = 6(i,n). As PJ n
traverses a path around Pj n to a point just to the right of i, 1+1 ¥(i,j,n)
increases from 6(i,n) to 9(1 n) +2m . The same holds true for ¥(i,j,n)

as PJ ,n traverses a path around Pj+] n. In consequence of these definitions
$(i,j,n) becomes -7 when approaching i,i+1 from the right and 7T when
approaching from the left. This discontinuity reflects that exhibited by
the stream function upon traversing any closed path which encloses a
distribution of finite sources.

From the boundary condition equation (2 ), we have

—(—a:\' .i,-:: Vi, A:«SLJJ«) - Wi, m) ceo B4,

After substitution of v and w from equation (6 ), this last expression
becomes

24 .. .
- S_n-\) E (3, )T le,m) 7
d4,M s

where

O(4,0) = Z{A:“l 0L, =) = 8Li,wy)] A ____Rri‘("»‘-“}
'.'1:13“"3

t g‘-L:"x”’\\ MY_ 9(4,4\)— 6(&,4\‘)]}
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(i, j,n

INFLUENCED
POINT

Wii,jn)

Figure 3. Details of Variables Pertaining to Segment i,i+1
of Boundary Cp '
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The surface normal perturbation velocity - (3P/3~). may be written in terms
of the body slope (37%/2x] ; , the angles of attack e , and sideslip /3
and the angular velocities D, q,r as

- (32), - BF) [ w0 rg] seom

4y 4y~

+ [ p- = T (R Xeg)* 5— (22, )] Al 0(j,m)

Satisfying equation 7  at each of the points P. ona given contour

n
boundary yields a set of equations for o (i,n). I

AXTSYMMETRIC COMPONENT

Differentiation of g(x) must be carried out with due concern for the
nature of the improper integrals appearing in equation (4). The result is

3 = Z"fr{ S'A) Im 20emT) o+ L0 - T
- = SO —— sm- s Lo))mx - 0y Jm (x )} M ol
1 i 1 " 3 Y "
where
1 N-t
I o= j Qa(x -t)S"£)dt = Z LS;.' S 1 0m (% - %D
® L TN

-~

X

.

T 20 = J}Zm(x,_-t)s'"(t)dt = 2 ( e Qm(x =%



To compute the second derivatives of the equivalent body cross sectional
area required for g'(x),the first derivatives at %, are found by finite
differences between x; and Xp47. Second derivatives S"(Xp) at X'm

(Xin+1 + Xm)/2 are then found by finite differences between S' at %y and
¥m+1. Finally S"(xp) is determined by linear interpolation of S"(Xy)

between X m and X mel,

- PERTURBATION VELOCITIES

The axial velocity u depends on (2¢/3x) and the axisymmetric solution
g"(x). (3¢/2x) is obtained by differentiation of the integral in equation
(3) to first obtain an exact expression which is then approximated by
evaluating the result over the segmented boundary.

The derivation of 39/2x must take into account the fact that the
path of integration in equation (3) is a function of x. Referring to
figure 1 increments of a dependent variable taken along C(x) are denoted
by d( ) and increments taken normal to € are denoted by §( ). Differentia-
tion of equation (3) then yields

29 _ i) §3%
ok - T2 Re{ SRANCINIEE B of s RS
- 3( T3 Aml(Z-3) %’:—ﬂ} ' (8)
From figure 1
§(4s) = §vde » 5w S (©)

where H(3) is the radius of curvature of C(x) at 3 . 1In addition, we have
from figure 1

———
=

$3 Sv e—2(9---'511')
$x $x (10)
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To evaluate

Introducing equations (9 ), (10), and ( 11

ax

2%  we note,

& = 9o, T Lo men) ~F([,m)
Sx Sx-=0 3% (ll)

) into equation ( 8 ),

a3

.?i,-age{ $ 6 - £ 2 az-nrda - fle 1o}

h 93X

Again, assuming that quantities in the brackets of the integrands are

constant over 1i,i+l,

3 Sq T Sv A@(‘:r‘)m)
3;-)3,«2 3 { (GO = ?x'}w\ S Ci,m)
- c(i,*)(%), S(‘-:":"‘)}

where

AP (e,5,m)

G lu,n)

{ ﬁ(ingi,v\.)-ﬁ'(&,w) Sne RUis1,4,m)
- RULi,m) Tl ~) Aw R{i,5,%)
= R, i) T i,m) §C0, 4,

+ ﬁ(i,m}
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The radius of curvature h(i,n) and the derivatives §e¢/Sx , §»/§x are
approximated at the mid points of the segments i,i+l as follows

a) S/ $§x - the derivative at the mid-point X p of the interval
Xn,Xn+1 is set equal to the divided difference between ¢ (i,n) and < (i,n+1).
Linear interpolation between these derivatives then yields &g/8x
at Xn.

b) $v/8x - referring to figure 4 , the displacement §7 is
determined by linear interpolation between 835 i,n and § % j+1,n.
§7/(xn+1 - xn) then represents 3v /&xat X'n. Linear 1nterpolat10n between
the stations x'p then yields &¥/8x at xq.

c) 1/h: - B at Pj p is determined by 1nterpola‘c10n between values of
8(i,n) at P'; . The curvature 1/h at B i,n is then set equal to the
divided difference between & at P1+1 n and’ 6 at Pin.

The lateral and vertical perturbation velocities, Vv and w , are
obtained from

. G
Vet ld = -2 S)d
-3

Integration over the boundary with constant segmént source density yields:

-1 )
V(d,m) - b wli,m) = ZZ T~ e {ﬁm R(;\;'L’::)‘) —ié(i.i,ﬂ}

Thus
ve $. 0= 2 Z_G"(;,M{L%:‘—’-}l ces 6(i,m) — g(z,;,m)&.eu,m)}
W ¢ - Zq-u m){ KO3 A, 8im) = §0i,4,m) o0 84, m}
z REL4,m)
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Figure 4. Interpolation Procedure for Determination
of (8¥/8x Jin
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SURFACE SOLUTION

The wing, canard, vertical and horizontal tail are simulated by a
system of swept tapered chord plane source and vortex panels with two edges
parallel to the free stream. The coordinates of the panel corners are
specified with respect to an (x,y,z) system having its x axis in the free
stream direction and its z axis in the lift direction. The panel
influence equations are written in terms of a coordinate system having a z
axis normal to the panel and an x axis along one of the two parallel edges.
A coordinate transformation is necessary to obtain the coordinates in the
panel reference system. If the plane of the panel is inclinded at an angle 6p
with respect to the y, z plane, a transformation into the panel coordinate
system (xp,yp,zp) is accomplished as follows:

X,.c b3

[, = Yoo, + ZA:'“-Q,.

. control
Z, = =N AE + 2o O, point
panel
3
(x‘,:"a‘)
* influencing
EZr 2 panel w,
vﬁ
>
A
M.c = u'?
Ve =V, ©o(8.-8,) +W, A.'.,.(ep.gc)
We = = Vp An (G- 6,) t Wpcad(8,-6)

A transformation of the (up,vp,wp) velocities into the coordinate system of
the panel on which the control point is located (ug,Ve,Wwe) results in the
axial, binormal and normal velocities induced on the panel.

For the image of the influencing panel, the signs of y, 8¢ and Ve are
changed while using the same calculation procedure.
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PANEL SINGULARITY STRENGTHS

The source singularity strengths may be found directly by equating
each source panel strength to the slope of the thickness distribution at
its control point. For panel i

U':‘ - (42,\
where Zy refers to the shape of the thickness distribution. The influence
equations for the source panels can then be used to obtain the velocities
induced by the source panels anywhere in the flow.

The determination of the vortex panel singularity strengths are the
final step in the solution procedure. They are obtained by solving a set
of simultaneous equations utilizing the vortex panel influence equations to
relate the singularity strengths to the boundary conditions at the control
points of the vortex panels. The boundary conditions permit the condition
of tangential flow to be satisfied.

Each vortex panel j haV1ng singularity strength Cp induces a set
of velocities ( Au ,A:l, ) on panel i. Therefore a set of influence

equations can be written:

-
“Q. = Z Aii <:P. * b\c.
[ :‘ 3 .
v
Vci < z A‘J Q’.i - Vo-
4 ]
w
V'Jc.; = > /-\ii Cy. + W,
. J4 *

where (uoj, Vo:i, Wg;) refer to the velocities 1nduced by all other body

and source singularities, and written in the coordinate system of the panel
containing the control point. Since the resultant velocity along the normal
at a panel control point must be zero,




. ie.
Ve, = %)

and the following system of equations results

This set of linear equations can be solved for the Cp and, since it

assumes symmetrical panel loading, can be used to determine the longitudinal
characteristics. A similar set of equations exist for the calculation of
the lateral/directional characteristics. This set assumes an antisymmetrical
panel loading and has a correspondingly different set of influence
coefficients Ajj.

BOUNDARY CONDITIONS

Several types of basic and unit boundary conditions are¢ considered
and can be classified as either symmetric or antisymmetric. Linearized
theory allows the superposition of these basic umit solutions. The p, q
and T rotary derlvatlve boundary conditions are the result of placing the
configuration at «= 0, A= 0 in a flow field rotating at one radian
per second.

Symmetric:

1) basic (dz/dx) - W, - W
<]

(dze/dx) = surface slope due to twist and camber

W,, = normalwash induced by slender
body thickness and camber

Yo = normalwash induced by source panels

22



2) Unit alpha

3) Unit q rotation

4) Unit flap

Antisymmetric:
1) Unit beta

2) Unit p rotation

3) Unit r rotation

4) Unit flap

w
- — Cab D, =
e e 8

w, = normalwash induced by slender body
at unit alpha

)
o) e

(%=%_) eaf - ‘,‘9,_‘

Wy = normalwash induced by slender body

undergoing umit q rotation

" = 1, for flap panel

s = 0, for others

w °
" e A& A

A, = normalwash induced by slender body
at unit sideslip

2 2
- T (3-8 ) em0- ¢ (2-%.) - O,
\,, = normalwash induced by slender body
undergoing unit p rotation

2 k]
—_— (X=X.,) Am B - O
b i -7 § % R.

wRQ = Noma.lwgsh induced by slender body
undergoing unit r rotation

¥ = 1. for flap panel

S = (., for others
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CONSTANT SOURCE AND CONSTANT VORTICITY PANEL INFLUENCE EQUATIONS

The source finite elements have a discontinuity in normal velocity across the
panel surface while the vortex finite elements have a discontinuity in the
tangential velocity in a direction normal to the panel leading edge. The magnitude
of the discontinuity, in each case, is constant over the panel area. In addition
the vortex panels have a system of trailing vorticies extending undeflected tc
downstream infinity.

A constant pressure or constant source panel with a quadrilateral shape
can be constructed by adding or subtracting four semi-infinite triangular
shaped panels4. These semi-infinite triangles, each determined by a corner
of the quadrilateral, can be assumed to induce a velocity perturbation every-
where in the flow. However, each corner represents only an integration limit,
and all four corners must be included to make any sense.

- \;,‘3,,0)
-

i ~
- I SR
- - - | ~ X0
~ - N
Rl . ] ~ ( .
S ) NG
~

]

i

I

If it is kept in mind that four corners must be included, one of these
triangles having sides determined by v = 0 and x-Ty = 0, induces the
following perturbation velocities:



R = %"+ @' g%z 1 Ao
de =
% % 2
R = 1= M 2 PAwo

’P R= (Tx«»p:‘) x3-T(3,t)

u.’(x,:.)z,T) 2 -

% ' Rex (x-T3) ¥r LA R+(Tx+p’3) . -t 2R
0 — — - Z e ———
fon2m =T ap i SRl o

THa' R - (Tx*/ﬁn)

' Q Jtihp R¢(Tx*,6:s) }
* Z

Q"& 1 R*x _ T * JT‘*ﬂl R +{(Txs »A‘g:)
AUTEEAR e - LT i ’Q"KJ—‘I XN

Tiep R - (Tx+p1)
v

.
w;(’,34337> = - —‘.;TF

e canan
S
N
N
[e———

constant vorticity pazel

R4 {TA° R 4+ (T2sA7) . 2R
$,(,4,2,T) = { L% o /-”)ﬁ%' 2 )-A TR R - (Tae i) * @-Ty) Kam mxyﬂﬂvi’)
- (2-%) [ Tz —2';_- La (arat) + K-Tw) y -2—-] }
. Cate -1 2R -+ 3
Welx,3,3,7) = —= { Ko T T 2-%) Ko 3 }

[
1

& | - 2R 2R -3 2x
" T - (2- T S L A
Yy (%,3,2,7) aﬂtTM xy - Tlyteat) T G ¢ M[ A 2 (n",z")}}

o xazry = SRl Reo a1 g PR Reedy 3R
vix,3,2, gr| 2 R-% TRt 27Q A R-(Tasga)  (32d)

- e [ Tl et - ‘Ex—‘)]}



The total panel solution is built up by combining each of the four
corners.

é(x)‘.aa) = ¢(x~x,,~3-~=“z)‘$‘,) = é(x.xll ‘3-31.1231.')
- ¢(x'x33 ‘3“3_‘,2,1:.,) + ? (x-x,,g-a’,z)'r,)
Ulx,4,2) = WiX=%,9-9,,Z,T,) - wulx-%x,,9-%,,Z,T)
- LL()('X;;J ‘3"3332)1-3) * M‘(x'XQ)\s‘ﬁ,q)EzT".)
etc.

These results hold for both subsonic and supersonic free stream velocities.
In the latter case, only the real (downstream) contributions are considered.

The perturbation potential expressions are derived in Appendix A. Sub-
sequently,verification of the perturbation velocities is presented.

26



LINEARLY VARYING SOURCE PANEL INFLUENCE EQUATIONS

In supersonic flow constant source panels having a sonic edge have a
real singularity along an extension of this edge. The singularity occurs
because:

Qg H 4 eRr, "{T(x -X,) "'bzka'nl)} 1 €R,* [‘r(x-x,}*ﬂ"tn-nt)] oo
€ 2 a e R, -[Tix-x)+p(n-3)] 2 € R, = [T (x-x3)40" (53]
Cx=%,) =T (3-3,)

€. (T‘*ﬁ‘) -0

(Y‘ "51‘)

Control points which are near the extension of this edge will have large

u and v velocities induced upon them. The singularity can be eliminated by
using panels which have a source distribution which varies linearly in the
chordwise direction. The resulting continuous source distribution eliminates
the singularities. The linearly varying source panel influence equations can
be found by integrating the constant source panel influence equations with
respect to X. '
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These velccity components satisfy the same criteria as the velocity E:omponents
for the constant source panels except that the source strength is propo?tlonal to
‘x-Ty. The source panel finite elements are constructed with the following

properties.
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1. All panel leading and trailing edges are at constant (Z), side edges
are at constant y.

2. Each source finite element is composed of a pair of chordwise adjacent
panels.

3. The source strength varies linearly with chord measured from the
leading edge of a panel pair, i.e. the maximum value of the source
strength is proportional to the local chord and attains this maximum
on the panel edge joining the panel pair.

3
3
a, Q5@ - &)@,
% £
- X X
. A (2):F) » (‘E);(%)*

o

The perturbation velocities induced by this pahel pair are composed of
contributions from six corners. '

- .
u(x,a,i) =z :- {umu-x,,:-s,,a Ty - um(x-xa,z-a_j)a,-ra)
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If there are N panels in the chordwise direction there will be N-1
singularities or unknown source strengths associated with them. The
linear variation in the source distribution means the value of dz/dx
must be zero at the leading and trailing edges ¢f each span station.
This may be an undesired restriction and therefore the use of linearly
varying source panels is optional.
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EDGE EFFECTS

The low pressure created by high velocities around a surface subsonic
lsading edge results in a suction force. As the edge becomes thinner or the angle
of attack increases, the flow deviates from potential conditions resulting in a
progressive loss of theoretical suction and an increase in drag. Generalizing
a concept due to Polhamus®, it is assumed that the leading edge vortex created
by the detached flow in effect rotates the lost suction force perpendicular to
the local surface.

In order to implement this philosophy, a method of determining the spanwise
variation of potential suction was developed using linear thin wing theory
and involves finding the coefficient of the {x term in the chordwise net
pressure distribution. The analysis is applicable to multiple surface problems
of arbitrary planform in the presence of bodies at any Mach number. If the
chordwise net pressure distribution on a thin wing at any given span station
1s expanded in a series

N
Acp = AOC»Ot‘;—'4> + Z A"\A‘:vmmcﬁ
oy 12)
$= & =2 (1-ce0d) = Aln"14

it-is shown in appendix B that the leading edge nondimensionalized suction force
per unit length 1is

C ( A THRUST i T Tz /61 Az (13)
= ——— T +
K can 1, 8 =T
where T = Xowd,,
2 2
A = -

and ¢ is the local chord

Only the first term in equation 12 contributes to the thrust, since it is
the only contribution which is infinite at the leading edge. If the chordwise
pressures are known at M points along the chord, the coefficients A, are
obtained by fitting a least square error curve described by N terms of the
series, through the points, where N < M, The pressure distribution is
obtained using constant pressure panel analysis,
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The method used to compute the suction force at surface tips is similar

to that for the leading edge.

By using the .irrotational property of the

flow, it is shown in appendix B that the tip suction force is:

where

Ch\lb

’,7'4#!)(
7%
e

Cn

TG = [T -
T3z ¢ M, Mo } £(xydx (14)

surface average chord

tip chord

tip surface lateral surface dimension
faction of chord

- ’/1
) * .
Cnt) S8 Traxl E (Pma- 7Y

is local section normal force coefficient

and as - 7,,, the net pressure coefficient is assumed to be of the form

ACo(1,m) = /é[._ (Z V] B e (15)
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The sectional leading edge suction attained in the real flow, €5 (y), is
estimated by6

Cely) = Woly) 5 y)
where
o.6
- 2 (22 e
Ksly) = 2Me(i-mg) | &l <m *
/B C5m
and
y ll?.-
Me = - V2 CP_'[(‘*C'P'.) = f]
cp = ¥ ﬁ"l C"P,\.\M

't
, ﬁﬂr(s—m;)"

~ .
LOS + 35y M)
2 R x 10°
Cepum® T - Ryx10 64 100 o0

C Cos™ N

K¢
3
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The chord of the normal section, Cp , is defined so as to place the maximum
thickness, t , at the mid chord as indicated in the following sketch. The
associated leading edge radius is designated by 1,

Leading
Edge

Maximum

///// Thickness

Potential tip suction is assumed to be fully rotated as a result of vortex
formation in the present analysis.
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AERODYNAMIC CHARACTERISTICS

Longitudinal and lateral-directional forces and moments due to thick-
ness, tw1st and camber, pitch, sideslip, and the dimensionless rotary
velocities P, §, and'? are obtained from surface pressure integrations of the-

various configuration components .
BODIES

The pressure coefficient, to an approximation consistant with slender
body theory, is

,\ (;( CU) A

cpr B = 2 founy 0 [ i G B [ o

A~ (x—XCG) '\(_ZC(: 2 2 (20)
(:,3-1' 5/ b/2 By(~?y-%z

The forces and moments are obtained from the surface integrations
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In terms of these expressions, the commonly used aerodynamic coefficients
are

- 2
. X S
Cx* q,LZ Sres
2
c, =y .=
qV Srer
Fz L2
Cz - q\.z SreF
C :r_’f_ LB
o q.l_s b SREF
M i3
C = X
m q_\.a [ SP\EF
M, L3
C, 5 3
qL b SOger

where L is the body length and € , b and S..¢ are configuration reference
chord, span and area,respectively.

34



_Crosscoupling betwegn'the‘pitch, sideslip, and rotary motions through
the product and quadratic terms in equation (20) is neglected.

PLANAR COMPONENTS

Surface pressure distributions are calculated for planar components
using the first-order linearized form

2 W Ce _]
2 =S 2 =2 e NET
CP u [Umo x 4

The +/- signs refer to the upper and lower surfaces respectively. The term
0o consists of the velocities induced by the isolated bodies and
other vortex and source panels. These velocities are obtained by multiply-
ing the Yy~ influence matrices by the appropriate panel strengths. The
€P.zy/, term accounts for the {f perturbation velocity induced by the
local distribution of vorticity and changes sign from upper to lower
surface. The total {} and “"ne7 values are the result of taking linear
combinations of all the basic and unit solutions.

The net pressures for each of the basic and unit solutions are integrated
numerically to give the section forces and moments, component forces and
moments, and configuration forces and moments.

Since the vortex panels have a constant pressure distribution, a block
integration scheme is employed. With the exception of drag, these basic
and unit force and moment coefficients are combined in a linear manner to
produce the aerodynamic characteristics for any desired flight condition.
Since drag varies in a parabolic mammer, it must be considered on a point
by point basis as defined in a later sectiom.

The longitudinal normal force distribution on the bodies is calculated
for each solution. The lcad distribution on the interference shell portion
of the body is given by integrating over all vortex panels at a given
longitudinal station.

normal force

N
C. w2 7 Cp A. COS 6
n¥ERRT ) P AL :

-
L
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where N is the number of panels around the shell, L is the length of the

body, X is the length of the interference shell segment, A is the panel
area, and C} = 2 for a centerline body or €1 = 1 for an off centerline body.

This carryover load distribution is added to the previously calculated
isolated body lengitudinal load distribution.

The section characteristics of planar components are determined by a
chordwise summation of panel data at each span station and are given by
the following equations:

local normal force

weighted normal force

weighted 1ift force

Ne.
< L Ve cos ©;
Ce T T ASCA\,@Z Puamy A *

center of pressure

N
}

c N TR

Az
XC‘P‘ -

C
Cr =
" Cava

where N¢is the number of chordwise panels, and As is the width of the span
station and is given by

as =\/ay? + pz?
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Component forces and moments including edge vortex effects are given
by the following egquations:
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- where N is the number of vortex panels on half of a syrmetrical component (or total
for an asymmetrical component) and F1, F2 are given by

symmetric loading F1 = 1 asymmetric geometry
= 2 symmetric geometry
Fp = 1 asymmetric geometry
= () symmetric geometry
antisymmetric loading F1 = 1 asymmetric geometry
= 0 symmetric geometry
' F, = 1 asymmetric geometry
= 2 symmetric geometry

For the 1eadihg and side edge vortex terms, Ng is the total number of spanwise

panels for both component halves, Ngr is the number of tip chordwise panels, XTCp
is the axial location of tip vortex center of pressure, As' = ASV/'1 + T2 and the
rotation factors $tand T are derived in appendix B and defined.below.

Leading edge vortex rotation:

SLe 2 -sink(cosAcosf)r wsx(cos@sug~SmwesNAcos§)

* %\"—\\Sma((coswt 51n8) &+ cosx( cos@cos g+ SING SyuAS /N 531
‘ .

J?‘Yt o8 © SINACOS S+ sinesivg 4 A_?. ls,pecasg-casas;u./leugl

where § is the slope angle of the leading edge camber line and the sign of coefficient
Ao(from equation 13) is used to determine the direction of vortex rotation.
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Side edge vortex rotation:

TL = ': Cobe Hik B + C;__‘:\__g____(swx SIN S+ CLOS <o:~.ecass)
\c"“a\

c’ho
= *t coed® + 4 SIND <05 §
Ty | el

where § is the slope angle of the tip camber line, * is plus for the left side and
negative for the right side of the configuration and the sign of coefficient Cn,
(from equation 14) is used to determine the direction of vortex rotation.

The X coordinate of the center of pressure is given by

CmC + X

xC.P. = CL (e}

For interference shell components, the total forces and moments of the
corresponding isolated body are added to those of the shell.

The forces and moments for the complete configuraticn are obtained by suming
those of the individual components.
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DRAG ANALYSIS

Estimation of configuration aerodynamic efficiency requires the
calculation of drag. The analysis separates the computation into skin-
friction and pressure drag components that are assumed to be independent
of each other. The following form is considered and produces non-

parabolic polars as a result of the incorporation of attainable suction
considerations.

Cp = Co + C + C + Cop

D
Viscous ~ CWAYE DEASQ LT

Ehe specific techniques used for the various drag evaluations are discussed
elow.

SKIN FRICTION

Several well established semiempirical techniques for the evaluation
of adiabatic laminar and turbulent flat plate skin friction at incompressible
and compressible speeds are used to estimate the viscous drag of advanced
aircraft using a component bulldup approach. A specified transition point
calculation option is provided in conjunction with a matching of the
momentun thickness to link the two boundary layer states. For the
turbulent condition, the increase in drag due to distributed surface
roughness is treated using unformly distributed sand grain results.
Component thickness effects are appreximated using experimental data
correlations for two-dimensional airfoil sections and bodies of revolution.

Considerations such as separation, component interference, and discrete

protuberances (e.g. antennas, drains, aft facing steps, etc.) must be
accounted for separately if present,
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In the following, a discussion is presented for a single component
evaluation in order to simplify writing of the equations and eliminate
multiple subscripting. The total result is obtained by a surface area
weighted summation of the various component analyses as described on
page 63.

Laminar/Transition

A specified transition option is provided in the program. The principal
function of the calculation is to provide the conditions required to
initialize the turbulent solution. In particular,the transition point
length and momentum thickness Reynolds numbers are required.

R < R TRAN
X rran L
R = 044 y/R, <"
etnnu TRA
where
*
¢t . Z T=
e T*
T T
— = ]+ 0.72 | e <]
= [=-1]
Te g-t 11 ¥-1 2
-1-_—:. = ]. .+ Pr -3 M, = ] = 0.851 -_I.-’H"
s T
= - = 2
A 2270 %00 i gy gec/fr

This solution is based on the laminar Blasius result (8, chapter VII)
in conjunction with Eckert's compressibility transformation®. This
option permits an assessment of the reduction in skin-friction drag if
laminar flow can be maintained for the specified extent. It does not
establish the liklihood that such a condition will be realized in practice
or to what extent.
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Turbulent

Smooth and distributed rough surface options have been provided in the
analysis. In either case, the solution is initialized by matching the
momentum thickness at the transition point produced by the laminar/transition

solution. That is, an effective origin (commonly referred to as a virtual
origin) is established for the turbulent analysis.

For the hydraulically smooth case

Ce R = 2 R

ax 8

R = C.R /C ¢, from equation (21)
ax F 7l ax F for known - C.R_,

AX = RAX /R

TRAN
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where

XTm\u * RXT&'N /R
« = (2A'- e)/,/a‘+ +at
Y J—- 3/1/5'* 44’

2

¥-1 Tos
Ao =M x

Toa
B = (."’"E[‘d'"]"l:.)-;-l
y o= .88
w o= 0.7¢

The compressible turbulent flat plate method used here is that proposed
by Van Driest!® based on the Von Karman mixing length hypothesis in

conjunction with the Squire-Young formulation for profile drag (8 , chapter
XXIV) as applied to a flat plate.
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For the distributed rough case

Ax\ * xrnnu
-2.5 -
Cp' s [ 1.89 + 1.62 Lam %, (1 v = ML)
R - 2R /fc.
“L*' ef&nu v
Ax;‘-’ = RAX,/ R

(2 4]

A = L- X + ax

TRan

. g S o N
- L3
Ce = (18 vrczdy S0 ) (Irr 5 M)
+ 2
T

C. = max [ C, , Cr 1

Snoeru Rove

The turbulent flat plate method used here is that of Schlicting
(8, chapter XXI) which is based on a transposition of Nikuradse's densely
packed sand grain roughened pipe data. The effect of compressibility is
due to the reduction in density at the wall as proposed by Goddard!'
.The selection of the equivalent sand grain rcughness for a given manufac-
turing surface finish is made with the aid of Table II which was taken from

Clutter!?
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TABLE II

Equivalent Sand Roughness

Type of Surface Ks (inches)
Aerodynamically smooth 0
Polished metal or wood 0.02 - 0.08 x 1073
Natural sheet metal 0.16 x 1073
Smooth matte paint, carefully applied 0.25 x 1073
Standard camouflage paint, average application 0.40 x 1073
Camouflage paint, mass-production spray 1.20 x 1073
Dip-galvanized metal surface 6 x 1073
Natural surface of cast iron 10 x 10°3

Thickness Corrections

The foregoing evaluations produce as estimate of the shearing forces
on a flat plate (at zero angle of attack) for a variety of conditions. As
an actual aircraft has a non vanishing thickness, an estimate of pressure
gradient effects on skin friction and boundary layer displacement pressure
drag losses is required. A common procedure for accomplishing this and the
one which will be used here is based on non-lifting experimental correlations
for symmetric two-dimensional airfoils and axisymmetric bodies. The
following relations derived by Horner (13, chapter VI) are used, respectively.

CJ + 4
. Koe 2. z ] o+ K, = + 60(?)
c % 3
>
= =2 . esE) e 1
Cor
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Horner recommends K, = 2 for airfoils with maximum thickness at 30%
chord and X;= 1.2 for NACA 64 and 65 series airfoils. In this regard, the
best information available to an analyst for his particular contour should
be used. This is especially true for modern high performance shapes such
as the supercritical airfoil, etc.

Total Viscous Drag

The aircraft total viscous-drag coefficient is estimated by a sum of
=
the preceding analysis over all components (i.e. wing, fuselage, vertical
tail, etc.). That is

Co 2. i Cr, <§‘ ) K,

f Uar
FEY

The component length used in the calculation of the skin friction
coefficient is the mean chord for planar component segments and the physical
length for bodies and nacelles.

BASE DRAG

Blunt base increments are estimated at subsonic and supersonic speeds by

)
where ACy = - C, BAsE
BAsg Gase Sier
2

- Ca = Q.139 + 0.419 (M - 0.16!) Mg < |
Bag e 4

- Cp : 0.06% + 0.042 (M_- 3.84) M 2 |
BMSE oo " w©

The expressions for the base pressure coefficient are derived from correlation
of flight test results for the X-15, various lifting bodies, and the space

shuttle. Power effects are treated as reductions in base area in the present
analysis.
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POTENTIAL DRAG

One hundred percent suction drag due to 1lift and supersonic wave drag
due to thickness can be evaluated by integration of the momentum flux
through a large circular cylinder centered on the x axis and whose radius
approaches infinity.

wave drag momentum £lux

¥ il

yl

N trailing
vorticies
X

The resulting expression for the ftotal pressure drag is as follows:

i { * e '
Ce SREF = -'?.j} C‘Ex 51_&/’\2 t jj (§a+ Qt)"!Aa = CDWSKE&: *'C'Dveatzap
A

3 A—\

The first term vepresents the wave drag due to momentim losses thru
the side of the cyvlinder caussd by standing pressure waves. The second
term represents the vortex drag which arises from

)

behind in the TreffZz plane by the systam of t "'1

C

the kinetic energy left
ng vorticies.

,.—J-
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Vortex Drag

The vortex drag may be computed when the distribution of trailing
vorticity in the Trefftz plane is known. The assumptions of linearized thin
wing theory result in a vortex sheet which extends directly downstream of
all lifting surfaces. By changing a surface integral for kinetic energy to
a line integral over the vortex sheet in the Trefftz plane the following
expressions for 1lift and drag result .

Cavg

C,. = C (") coa BC7) a7
Serer N

C

c . Cave J SRS PEENEIRY |

o, Seer N ™
C

where
C vortex sheet branches

E - weighted section normal force coefficient <m</cpave

Weo asymptotic normal velocity on the vortex sheet

1 vortex sheet branch coordinate

inclination of vortex sheet with respect to y axis
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The program computes the normal velocity on the vortex sheet, LJ.-‘: R
by assuming the vortex sheet is composed of finite trailing horseshoe
vorticies whose strength is propertional to the local section Cp(s). The
normal velocity is computed at a control point located midway between the
trailing vortex segments.

control point i

L =S A

("b E) | 3

Each vortex j induces a contribution to the normal velocity at
section 1.
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Wave Drag

The integral for wave drag

Co,, Seer = -zjj é&c,bw rdxdg
A

2

may be simplified by allowing the cylindrical-surface of integration to
recede infinitely far from the disturbance. Under these conditionms, the
spatial singularity simulations can be reduced to a series of one-
dimensional distributions. The basis for this reduction is the finding by
Hayes (14) that the potential and the gradients of interest induced by a
.singularity along an arbitrary trace on a distant control surface, say PP'
of figure 6 (or alternately described by the cylindrical angle @), is
invariant to a finite translation along the surface of a hyperboloid
emanating from the trace and passing through the singularity. As the apex
of the hyperboloid is a great distance away, the aforementioned movement is
along a surface which is essentially plane; it will be henceforth referred
to as an ''oblique plane''. Since a singularity is a solution of a linear
differential equation, all singular solutions which lie on the surface of the
same hyperboloid (oblique plane) may thus be grouped to form a single equi-
valent point singularity whose strength is equal to the algebraic sum of the
individual strengths and which induces the same potential (momentum) along
the trace as the group of individual singularities.

This finding provides the basic technique for reducing a general spatial
distribution of singularities to a series of equivalent lineal distributions.
This is accomplished by surveying the three-dimensional distribution longi-
tudinally at a series of fixed cylindrical angles, ® . At each angle, the
survey produces an equivalent lineal distribution by systematically cutting
the spatial distribution at a series of longitudinal stations along its
length. At each cut, the group of intercepted singularities is collapsed
along the '"oblique plane' to form one of the equivalent point singularities
comprising the lineal distribution .
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The far-field expression. for the wave drag of a general system
of 1ift, and side force elements is

2T e oe
1 1 ' ' .
Cow S&" T 4-17‘J jj )\e(e”e) kg(e“e) L\le‘-ezla\e,aazae
Q ~» -
where
hole,8) = {(e,8) - 35(6,9),&3«.8 -q (€,8) 08
A
is the equivalent lineal singularity strength at the
cylindrical angle 8
fle,0) = equivalent source strength per unit length
;%lJ 39 = equivalent lifting element strength per unit length
;% U g,le,0) = equivalent side force strength per unit length

These strengths are deduced from the three dimensional singularity
distributions by application of the superposition principle along
equipotential surfaces. For a distant observer such surfaces are planar in
the vicinity of the singularity configuration. The individual singularity
strengths aré related to the object under consideration by the requirement
of flow tangency at the solid boundary. Lomax (15) derived the following
approximate expressions between the equivalent singularity strengths and a
slender lifting object.

Y
f(e,8) ~ U 5z Al<,0)

360 = Fpu [eay

Lpu jC,Az

<

L]

NN

where (see figure 7 )

A (e,86) is the Y-Z projection of the obliquely cut
crossectional area

c is the contour around the surface in the oblique cut
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Utilizing the singularity strength expressions derived by Lomax, the

following expression for wave resistance based on the far field theory of
Hayes is obtained

Zr L8 o)

2
! 3 A ) o
CouSue =" o j f j{ s Aten0)g 2 52‘[“*91%-,8%*mei%te,.ese\zj}
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In order to facilitate subsequent discussion, the above result is
manipulated into the following form

z-:r"

Co S. = H L A (€50) Hce,,e>9«1e.-e,x=\e.o\e,ae (23)
w Ree 4“,1.1_1(9) e
a 0 o
where
€
Heté,e) = Aleg,8) - -i-,fo Cple, e> A8 o\ad' wedz] d€
o &

A requirement for this transformation is that

Hel (0,8) = F!e!(l':e) =0
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In accordance with equation 23, the wave drag of a configuration is
the average of the wave drag of a series of equivalent bodies of revoluation.
The drag of each of these bodies is calculated from a knowledge of its
longitudinal distribution of normal cross-sectional area. For each
equivalent body, these areas are defined to be the frontal projection of the
areas and the accumulation of pressure force in the theta direction
intercepted on the original configuration by a system of parallel oblique
planes each inclined at the given Mach angle. The common trace angle (¢)
of the system identifies the equivalent body under consideration.

Nacelles are assumed to swallow air supersonically. That is, the duct
is operating at a mass flow ratio of unity. Consistent with this assumption,
the equivalent body cross sectional area distribution is increased by the
oblique projected duct capture area at all stations ahead of the duct
which are intercepted by an eblique plane.

Blunt base components are extended (maintaining constant cross
sectional area) sufficiently far downstream to prevert flow closure around
the base.

In addition to a geometric description, a definition of the pressure
distribution acting on the configuration is required. The vortex panel
analysis is used for this purpose. The thickness pressures for planar
components have tacitly been neglected under the assumption that the surfaces
are sufficiently thin that the net pressure coefficient is representative of
pressure acting on the oblique section.

Estimation of the wave drag based on equation 23 depends on solution
of integrals of the type

1 1
I + ” G GTCx) A 14 ,- %, 1 dx,
LI -

of a numerically given function G(X). Evaluation of such forms has been
studied by Eminton 16-17  for functions having G'(X) continuous on the
interval (0,1) and G'(0) = G'(1) = 0. In such situations,G'(X) can be
expanded in a Fourier sine series. It can then be shown that
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where

w
A, = -T%j Gx) Al NP AP
]

Eminton then solved for the value of the Fourier coefficients which result
in I being a minimum, subject to the condition that the resulting series
for CG(X) be exact for an arbitrarily specified set of points 0,1, €i, i = 1,=.

This approach produces the following result

2 -~ -

= 2 -
=3 [aw c.m)} * TTZZ_ S -S-ii
;sl :‘sl
where
Ci * G(g)-G(e) - [@U) -Gla] .,

€, = : 1 4 ¢ & wn
. i

5 1
T {#]}

. __;-(ei_e.),, € v€; -2€;€; +27 €:€;01-€;)(1-¢;)
d A €,v€;-2€:€;-2/c;€;(1-€;)(1-€;)

+2(ep e )Y€ € im€)U-€))

The solution of equation 23 for wave drag is éccomplished by use of the
following identities.

G(e;)e) * Hc(e"’e)

I(e)
C S = s
°w(‘e> REE l.'(e)
ur T/
1
Co, z —a-;r-f CDO(B)AE s —é—f Co,(B8)A8
® -M/3
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ZERO SUCTION DRAG

The zero suction drag due to 1lift is calculated bv numerically
integrating the net pressure distribution times the projected area in the
streamwise directicn over each of the planer surfaces. The following
block integration scheme is used to sum over all mquadrilateral panels.

n
1
Co_ = Fo— Z Ce A =,
e ' s&zr et ¢ < ¢
where
3C,. d<Ce
Ca = Cp + = Loy § —
H ‘wre Y-8 ER
and

X,; 1is cue to twist and camber, § is the control surface deflection,
and &= 1 for control surface panels and <= 0 for non ceontrol surface

panels. Fj = Z for symmetric gecmetries and F} = I for asymmetric
geometries.

Edge forces are not considered in this evaluation.
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DRAG DUE TO LIFT

The drag due to 1lift for the total configuration is based on linearized
potential (100 percent leading edge suction) calculations plus corrections to
account for suction losses and associated edge vortex forces

Ng 2 "’Qr
' X
e Z 1-Ks,) Cs.C. AS. o, + cs A&y T
CDL ° . Srer 5__'( s;) Cs, C; A4S Jto, - Z’ Se Q) ®5
where
QD\OQ va ™M <]

~ C -
Cov + By chw)-\-a\c&

and the leading edge and side edge rotation factors,<p and Tp, are derived
in Appendix B and defined below.

Ji.D = Codk Cod N ond + Ano ((rd DamS ~ Aln O AlnA cos )

A [- Cot o oA\ An + Aimot (o0 § MS*}&A@A‘:\AA:AS)}

o

where § is the slope angle of the camber line perpendicular to the leading edge

and the sign of coefficient Ay (from equation 13) is used to determined the
direction of vortex rotation.

l (- Coaol Avn S + At ol con 8 cad § )
, :

where 8§ is the chordwise slope angle of the tip camber line, plus refers to
the left side and negative to the right side of the configuration and the sign

of coefficient Cny. (from equation 14) is used to determine the direction
of vortex rotation.

As estimate of the average level of leading edge suction for the complete
configuration is based on the following equation:

E' - CDL
SUCTION = z-l‘————

here Cpy = Cp; for K¢ = 0
B, o L = Coy, S
100
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HYPERSONIC

High Mach number analysis is based on non-interfering constant pressure
finite element analysisls.

An arbitrary configuration is approximated by a system of plane
quadrilateral panels as indicated in the following sketch.

The pressure acting on each panel of a vehicle component is evaluated by a
specified compression-expansion method selected from the following Table.
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Impact Flow Shadow Flow

Modified Newtonian

Modified Newtonian+Prandtl-Meyer
Tangent wedge

Tangent-wedge empirical
Tangent-cone empirical

OSU blunt body empirical

Van Dyke Unified

. Blunt-body shear force

. Shock-expansion

10. Free molecular flow

11. Input pressure coefficient

12. Hankey flat-surface empirical
13. Delta wing empirical

14. Dahlem-Buck empirical

15. Blast wave

16. Modified tangent-cone

Newtonian (Cp = 0)

Modified Newtonian+Prandtl-Meyer
Prandtl-Meyer from free-stream
OSU blunt body empirical

Van Dyke Unified

High Mach base pressure
Shock-expansion

Input pressure coefficient

Free molecular flow

®

NO 00 OO R W
B e o s o s
NO OO =) ON U W

A discussion of the various methods is presented in appendixC. Specific analysis
recommendations are provided by the program on a component by component basis.

In each method, the only geometric parameter required for determining panel
pressure 1S the impact angle, §, that the quadrilateral makes with the free-stream
flow or the change in angle of a panel from a previous point where

and
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Ve =V cos a cos B 1 - Vg sin 8 5 + Ve sin o cos 8 k

T = (x"xcg) i+ (‘f‘)’cg) 3 + (Z‘zcg) k

Panel switching between impact or shadow conditions is based on § > 0 in the former
case and § < 0 in the latter.

AERODYNAMIC CHARACTERISTICS

The pressure on each panel is calculated independent of all other panels (except
the shock-expansion method). If the vehicle is rotating,the local pressure coefficient
must be corrected back to free-stream conditions. That is

- V12
CP = CPiocal 7 2

Vehicle component forces are obtained by summing panel forces

ACe = 1 ZCP nyA

b
<

ACy 1
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) , .
aC, = L CP (2-2¢g) nyA + P Cp (y-Yeo) 1 A].
! bSREF[:E: & :E: w

fl

ACp %. [ZCP (x-xcg) n,A + ZCP (,z‘zcg) nXA.]
CSREF

ACp= 1 [ZCP (xxcgdngh = > Cp (r¥ey) nXA]
bSREE )

where

A = panel area

X,¥,z = panel centroid

Configuration buildup and total vehicle coefficients are obtained by appropriate
summation of component contributions.

The conversion of the body axis force characteristics to 1ift and drag coefficients
is based on the standard trigonometric relations,

CD = Cx cosa cosp - C}, sinp, + Ciz sine cosg
CY' = Cy cosa sinpg + Cy cospg + CZ sine sing
CL = -C i Sine + CZ cosa
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The vehicle static stability derivatives in angle of attack and sideslip are
calculated by the method of small perturbations. Since the basic force and
moment characteristics are non-linear, these parameter vary with attitude angle

cxa B — Ao
C . - {Cc_\
C = ( z )ce T Ao (Cz/a
Zoy Ac
'C . - (C
C = (\ m)a TAc ( mi,
my Ay
c = (CY >f' tAB - (CY)f’
Yg AR
c = <Cn )ﬁ taf - <Cn>f’
ng ‘ AP

The damping derivatives due to vehicle rotation rate are given in a
similar manner

c = Cen) gtag " (Cm> q /_<§_
m,:\l :« Aq 2V
etc,

The contreol surface derivatives are also calculated by the method of small
perturbations,

Lé Ad
o i} (cm)é L AE (Cm>5

m ¢ Abd
c _ (Cl-)é +Ab (C1>5

e = ab
(CY)s s AB (‘CY)f

cY6 B AS
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CONCLUSICONS

An aerodynamic configuration evaluation program has been developed and
implemented on a time sharing system with an interactive graphics temminal
to maximize responsiveness to the preliminary analysis problem.

The solution is based on potential theory with edge considerations at
subsonic/supersonic speeds and impact type finite element analysis at hyper-
sonic conditions. Three-dimensional configurations having multiple non-planar
surfaces of arbitrary planform and bodies of non-circular contour may be
analyzed. Static, rotary, and control longitudinal and lateral-directional
characteristics may be generated.

CDC 175 computation time of 45 CPU seconds/Mach number at subsonic-super-
sonic speeds and 1 CPU second/Mach number/attitude at hypersonic conditions
for a typical simulation indicates the program provides an efficient analysis
for systematically performing varicus aerodynamic configuration tradeoff and
evaluation studies.
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APPENDIX A

SUBSONIC/SUPERSONIC FINITE ELEMENT DERIVATIONS

VELOCITY PERTURBATION POTENTTAL

The expressions for the velocity potential induced by the source and vortex
finite elements can be derived from the velocity potential for a point source:

Source at Ko, B, ,2

L ¥ ] (]

2 Y
Ao R = (x=%) + B [L‘s--A.)za- (z-2)]
4T R

795 (x,4,2) = =

Therefore the velocity potential for an area in the %, = 0 plane having
constant source density is:

| A Mgda,
f‘( X, :)2) 5 - Py jj R
3

2

ng, = o

a'é, = o
2 2 (
> > B

g = 1-M:
< °°>9Xz+ Da" 2zt
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A doublet at x,, Yo, Zo. 1s the derivative of a point source:

9y (%,3,8) = —. B Gl LY N O 5N
o ) 3z, s +rR® 4w RY

Integrating from x, = ¥, to infinity yields the potential for a line
doublet or elementry horseshoe vortex.

2,20

T e ] (x-3,)
Q, (1,%,2) = J Qo M, = T aoea {(Z»Qv.) * R }
x‘

And an area of constant vortex strength is obtained by integrating this
expression over the panel area:

Ao in j -3 (%=~%,)
é‘( (x, 3, z) - 4q f (3_30);, Y { (2')1.) *‘_'Ti"—} é‘ﬁoé‘ﬁc.
S )

l

The solution to these integrals is performed in the following sections. All
integrals may be checked using tables 1 and 2 at the end of the Appendix,

The velocity expressions may be obtained by differentiating the velocity
potentials using table 1.
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SCURCE PANELS

"First the integration is performed over the panels in the x,
direction.

_ R+ (X-%,)
- L% R = (x-x,)

<

3

[y 5.‘) * Q
where
) S (%3 -%) T (Xy4-%3)
A (3,-a)) » Cags)

To integrate with respect to y, a change of variables is introduced:

* F o= (x=x)= T(3a-1,)

(X=%X,) = 3*‘7
T o Tla-p (3-3,) = —;7
T = TEZ 2z = =3
when A x‘ T-= T5

T o= (X=Xg) = T (a-3,) = (X=x,) = Ta(a-1)

which is independent of y,
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Therefore the integral may be performed with ¥ = constant

B, "
- o R+ (X%g) "“3 - g "'I"an R+ (X+7) A,‘[
2 R = (x=x,) ° . T 2 R-(3+7)
3, 1,

. 1,
_ R+(3e7) .t BR+(3+37) + 3R
- {7 ’?"’3 R~ on-;) B2 BR-(3r0") s 37-3° ]
Y T“',@z
St T

which may be checked using table 2.

Each of the four integration limits corresponds to a corner of the
quadrilateral. Placing the origin of the x,, y, coordinate system at one
corner, the contribution to $ becomes:

(' . STa) g JTHR Re(Txaf -
¢(x)12T)__¢&—{3‘12’2¢2Rx+(x ) g YTep ReMxrP) | ¢ -~ ER

4T

and combining each of the four corners:

5(3)3)2) = +()‘-x‘-‘n-:l’z)‘rﬂ) - ¢("x7_l :-5tJ2)TA)

- ¢(x'x3:3'3312,T0> * ¢(x-x,, ‘3;‘3“)2)1-3)
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VORTEX PANELS

Analogous to the source panels the integratidn is first performed in
the x, direction. ’

“ X,1{‘
2 -Xo -2
—— {ene 2 fow, = —_———T——{cz-wx-x.wﬂ}
(3-3)%*+z* R ° (§3)+2t
X, Yot %y

changing variables and integrating with respect to 7

b % ‘71.
: 3
= (2-2)(x-%x,) + R } 3 = . . =l
j (3"&.)‘, a2t { et } e J (7‘*3") {(Z A)(x D } 7
s, 3!

T
= (z-m{ sk-—%— * §-§;-L3<7‘vs‘)}
7)

1 T
. 321‘ S BR+(X+B7) - . R+(T+7) -3 =t IR
82 BRr-(T+a'7) z R~(3+y) 37-3°
1
therefore for one corner or integration limit
- 3
3.7 P ! ' fTha R+ (T« » A7) ' Rex
= == (%phe -~ 2,,2————-—-———-—— = T2 5 Xog ———
$Cx,3,2,7) = — .{(T ROF Fat ¢ THAY R-(Tx+ %) z R-x

tep

-1 ZR ! LI . - g
- (J‘-T:\)L«m - (Z-L)[Ta—iﬂa«g(gﬂ Jrlx Ta)jo« Z]}

and
5("§’E> = é(‘."s‘a._‘n E'TA) - '#(x-x‘ )‘3“.\”2,1;)

- é("”‘s»‘a-ﬁs» Z,Ty) =+ ¢(""‘9:3-‘54a2-‘?a)
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VERIFICATION OF THE PERTURBATION VELOCITY EXPRESSIONS

To establish that these are the correct pe;turbation velocities the
following criteria must be met:

1. Iaplace's equation must be satisfied

p'lé“, %a:\-t é!e 2 0

or the equivalent,

3 %
¢ b\‘ * u‘)‘
V‘ - QQ

2. The correct discontinuity or jump in the perturtatian veloeity must
occur at the surface of the quadrilateral panel area., For the source
‘panel the jump occurs in the normal or w velocity and on the vortex
panel there must te a jump of constant magnitude in the u perturbation
velocity over tne panel area. The perturbatiocn velocities should be

continuous elsewhere, except on the trailing vortex sheet of the
ycrtex panel.

3. The perturbation velocities must go to zero as upstream infinity is

approacked.

k., For the vortex panel the trailing vorticity must extend straight tack
to downstream infinity. This means that any discontinuity in the v
velccity must be zerc cutside the spanwise boundaries of the panel arzd

must be zero upstream of the panpel.
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The first criteria can be established by using the derivatives given in
table 1.

The second criteria can be established by noting that all terms except

=1 2R . -t 3
y SR 814 Kow @ —
23 = T(yte2h) z

are continuous at Z = 0. Consider these terms keeping in mind that the
contributions from all four corners must included.

If we let

¥e (x-2) - T(3-3,) = (x-%)-T(3-3,)

Rp + (x=x) + a'[(a-3p'+ 2]

and use

Ko A - g = _jc,,_:'_if_g_

I - AR

then the contributions from both corners on the leading edge can be combined
as follows.

x =1 ZR, _ x -4 2R,

§(3-3,) - T 2% ¢33y -T2

ot {z (3¢3-3) -T2 IR, - { X(3-3,)-Ta"] r{,__}

L (a3 -T12*1( 333y -Te ]+ E*R.Rz
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If we define
z

{
2 e

90:‘- -l‘:- (o]
-

-, X

aA$(2) - Ln 52) - Lom $¢2)

Zz2 »o0*

then

-y 2R\

A z -} 22. - -)
§(3-4,)-Ta?

29

T Aamm o

b »0o
b <0

2 w0

- 2R, } .
S(am3p-Te! ~TTAom 2 el (3°3)(4-3,)<0

$(3-3) T

am

n

7|
w
brd

)
be
’
by,

x,_\.___*_.'.z_z___}g{

- 277 %

o

0

o]

(4-4))(3-4 ) >0

CRA3,)0s .5\ ) >0

< b 5.3(5° 3\3‘ -]

Therefore when a similar procedure is carried out for the trailing edzge of
2 source panel we obtain the following jump in the w verturbation velocity.

Av: 29
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Considering

For the vortex panel (subsonic) we have an additional term.
both additional terms from the leading edge corners:

- ("-a) -1 Q-3 - Z2(3,-9,
Tom” D - Kam 2 o R v
2 % SRS RES
o (3-3,)(1-3,) >0

Lo {M‘——-“"" - Koo 2e } .
2 € T Aan 2 (3=39,3(4-3,) < ©

220
] {9=93,0(3-3,) 20
A { I S __...3':t} .

z a2 (4-3)(%"3N<«0

2w

o ]
Therefore combining the terms 1 2
- 2R, _ - (33 e (3;3,)
2

-l iR|
A io,,\ - j‘-&
{ I(y-3,)-TE 1(a-3,)-Ta?

(a-3)(3~3)) >0
2 <0

- 41T otherwise

N

A:-q.“ o

$ru,
b S Y
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The contribution from each panel corner is:

C - 2R "
Awn = £ a FHon N e = Koud 2
8 x3=T(a'2h) z
CeT - 2R -
Ay = - z L ION‘ -Iaw\' 2
8 Xy - Tlatead) z

Therefore suming all four panel corners

Adw
av

w o
o ©

33, 35

of
trailing
vorticity
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To verify the third criteria we must show that all of the functions
approach zero when all four corners are considered as X «» - w

_/Q’a R+x _ _';- ’Q‘a (31"' 2%)
_l_z_ /\‘a ﬁ;;n‘:;t‘t) _ ‘;’Q’Q (3\_’ 2%)
- L.z /\pa (R-K)t + —;— ,Q,aa pl

Therefore considering both corners on the leading edge of the panel

1]

Lo R = 1xI

X = = 0o
9““ { lq% '4-(‘.&) LA 0(&‘% jL"‘ %ﬁi=°
X oo R+ (x-x,) - xeky) T Crox,p

&, R, 4+ (x=-%,) .

X - -bs (3-sp)t+ 2t

D YT R« (Tx+A3) o Lay/'r‘q-,e,‘--r,
%Fﬁ R - (Tx+@q) ¢ (Tog s

S L

and therefore this limit is also zero when both corners of the leading or
trailing edges are considered. Since all terms are accounted for, the
perturbation velocities are zero far upstream.
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Since (THe YR = (Tx+ 1613)7' ﬂz f_(x-'r:\)1'+ (teahz']

' YTHp R + (Tx‘bptn) - 2t [~/T‘ +A R+ (Tx 4-16‘::)]1
2 La./rﬂp‘ R - (Tx+p@'3) 2 5,&’ Lea-rays (-r’q.,a‘)a‘]

! A Lx-Ta)t+ (128N 2]

z {T+f" R - (Tx*p’;)')]z

there is an apparent singularity along the line

(r=-Txy)=o0o , 2 =* 0

However this singularity may be removed by combining the contributions from
both corners of the leading or trailing edges of the panel. Along either of
these edges the values of ’

(x=%:) = TLy-3)) and z

are the same for each of the panel corners.

-]
-
. N LC
~ L B i o
~ o wh . 7
- (.,5,,0) .?L é-?
\bo..
;. - .b_-g‘..' o
: A\, 4
‘P...' ,A\\
'*p o Pt\'b
7=
'(L'." 1..\ -
RS
,<L

. .
It can be seen from the above diagram that (Tx +83) will have the same sign
on a point (x,y,0) which lies outside the spanwise boundaries of the
guadrilateral. Therefore cutside the spanwise boundaries the term

Q‘Q [ (x-7Ta)"+ (T b 2t ]

can be canceled by combining both corners, and the resulting term

. 0 TR R, t [(TWxex,)+ p'la-3)]
- e 25 ,/1-11.'4.‘ R, t [ T(x-%)+a'(3-3p])

-¢i1l zot be singular if the correct + or - sign is crosen. ¥ithin the spanwise
roundary an actual singularity occurs on the panel edge.
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R+ R
he term %
The term 35 log e

also has a possible singularity. This term
can be written

2
log R+x - log (R+x)

] }
z R-x ¢ s weet)

For the source panel the singularity mey be removed for points along 3+a =0
which are outside of the panel boundaires.

(x-x,) and ( x - x5 ) have the same sign the combination of the two terms
gives

o Ry lx-x) Ryslx-2) , 2 (%~ J‘-)
iy R -(K-K) a g ~ (X% a RJ-(‘ )

where the correct 51gn is chosen to remove the smgularl‘cy On the panel
edge the singularity is real and cannot be removed.

Lf removable singularity
1

real singularity

)
=0

)
L]
n: ] 1 3
7 ¥
™, ]
- e
5
For a vortex panel the terms (subsonic)
i R+X \ (R+x)
- -z P @ty e 2
z R =% 2 (ate2®)

Both have real singularities for x»0 (downstream) and removable singularities
for %<0 ({upstream). The real singularities occur on the panel edges and on
the edge of the trailing vortex sheet.

if  x<o ° R A A
(a'+2%) o ateat 2 x

80



SUPERSONIC VELOCITIES - SPECIAL CONSIDERATIONS

The velocity perturbation influence equations for supersonic flows are
treated by taking only the real parts of the expressions. This means that
R = x'-a%3zs2) 1is set equal to zero for points which lie outside the
downstream Mach cone from any given cormer. Therefore, R and % log -E—Z-,-’(‘— are
zero for points which lie outside the downstream Mach cone. TFor (r*-4*) >0,
there are no problems using this method.

) \ (Tx = pz;) - 4"'"/6" R
/Tt_p\' 2 (Tx _Ata) - /.r.c_A" '3

% -
If (T -p)«° the real part of

- VRRTY R
is : j.e«\. ' -
VIS (Tx-g3)

therefore, combining two corners

l . Ja-Tt {[-ru..a‘) - A 3)R, = (T(r-%) -] R,}

ATt (T8 =50 = %0430 [ TCx=2,) = B'(3-3,] 4B-THRR,

If 2 = 0 and either R, or Rz is zero and we allow the other to approach zero,
the value of F2 becomes

s 2 2
W (rix-xpy-p (3'5,)1[7(3“*;) -P (3"3‘)1 <o
Fa =
o [Tr-x) - Bla-a[TCx2,)- 8% 4-3,0]1 > ©

Therefore if R, and R, are zero but we are inside the envelope of mach cones
from the leading edge (see figure 5), the value of F2 is set equal to

his

F2 & —mmeee
st

[Tx-%) - R3] [ Tx-x) - B%a-a0] <o
if R, <o R'<o

(x-Ta)" > (a*-ty
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- i t
Te Kamh [eeny =T lgm3]t = [Gexd=TlarapT > (e™T) 2
p‘--r‘ - (x=2,)" < p‘[fa--a.;ﬁ z®)
(x-x)% <« p* (K33 2Y)
z
* a0

. L] L3 ;
intersection of (%-Ty) = LA-THE®

and xta ,b‘( Atez’)

l' BT Ox
occurs on the line —

therefore 1= g'atsn")

I=2aTeTh - (B-THB

B (1-2aTsTh) = G=AWNANY = 4 (AT

4 2 )
4 Ro -2pTa+T'v0 pla =T
X ! A'sta ATt a'br t T

! ~. . 3 . . .

, u; u; \\ " : \\ therefore the line is determined by
! 6.0 ' . \ U _a T a2

, “ ‘\I : \ Tx-pnso - t(ﬂ‘T)X
’ ' / .

% :

or Tx 'Pt:‘.“’ (*=Ta) = (pt-r?) 2t

Figure 5 Supersonic Leading Edge Mach Cone Envelope
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As T = & (sonic leading edge) tae value of (T-p')=~0. In
this case

) (R,-R,)
Lo F2 = [tx-x)=-Tl3-9p] >0

Tp T [ (x-x,) =T33,
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TABLE 1

TABLE OF DERIVATIVES

2

R = x+ By 2Y)

>
R‘;;'R‘-’K

o A

°X 2

R+X
R=X

-

B3 1 gy A RelTaeRW
9% Tira' 2 lﬂa

{T'+@' R=(Tx +4'3)
2 -t ZR =
:K xQ‘T(B“ﬁ'zt) -
- .
R—D-S R = A3y
a t
o3 2 ° 3 -
N '_,_)#qs/'r B R+« (Tx+B ') _
¥y fTiept 2T O 7 T P\—(Tx#p 3
2« 2R _
Q- TOq'r2?)
> _ ]
R3i.‘ R = A2
& 1 R +X -
e 2 23 R~-X =
2 1 kN -/1'"+p R4+ (Tx 4@13) _
¥ 3 Tleat 2 Q4T=4p: R = (Tx ,p’;)
I S ZR -
2 7. -

N Tlqa'+z?)
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{(t’Tz)‘\- (’e,'or‘)z’-} R

- 2Tx+p"1)
[x-Taytr (a2

1R

Xy 1

[x(x-Ta) +82"]

(’-T:)‘ - ('F“'T‘) z‘ R

X2 TER(T2+AW) 1

n‘+z‘ & (1°Tn)‘4‘ (A“r‘)zt R
o T

at“zt R .

2(Tx +n’:) 1

(= -Ta}"q» (A‘o‘r') z* R
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TABLE 2

TABLE OF DERIVATIVES

Rt

. a Tzﬂéz
* (3ot e (alu(rteyty B = constant = ——
@
R;—;R = (3«7)
2 R+(X+7) - 1
3% 2 "-a R=-(3+7) - R
ER ’Q%'szﬂsm‘v) ) 3-37 1
2y a 2 BR-(3+3%) I%a'yr R
_3_ g IR . - 3(3+3'7) N
3 37-3* . (3%a'th) R
?
R.-;?-R = (3+87) _
__:____\_L% R+ (5r7) - G371 0
27 2 R=(Z+y) %+ ™) R
2 BR+ (3+8') - X
27 & 2 BR-(3+0'Y) R
4y v 3R 3L5+1) 1
3.’ };04\ 3_1-5‘ = L¢7t+!‘1) R
9 2 =
R aSR = (B-1)3
2 1 Rexem) A 1225 )R
a3 2'2‘23 R=-(3+7) " {73 R
2 B8R+ (¥+8') . 3(3+0'7) 1
a3y B 2 BR- (3+8") (3*+a'3h) R
k2 - 3R TS+ 1 3CEea’T) o
33 317-3° Qe R (FTar) R
L9 ar+(3+a3'7) IR
T T :

s e 2 -
T 35 e

BR-(3ra')

IR
37-%"

3( sl.’ B‘St)
IR
= S L S
(3 B3Y)
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APPENDIX B

SURFACE EDGE FORCES
LEADING EDGE POTENTIAL SUCTION

In the limit as the wing thickness goes to zero,the increasingly reduced
pressure acting over a decreasing area results in a limiting suction force at the
leading edge. If we consider the leading edge region, the force on the
airfoil may be obtained by integrating over a control surface in the flow,

T -j [@xu(f“z)a,a]o\s
s

where S is a control surface into which the leading edge penetrates and F is the

force on the area enclosed by S. In two dimensions the surface integral becomes
a line integral and since for incompressible, irrotational flow

€= €-Fplurv?)

A AS = c\-aax - 44@‘::

F, = ‘J{[%"Zf“‘"*')]‘\z + fu[w&a-vé‘%}}

3

S PR S P

where C is the contour around the leading edge of the airfoil and Fy is the force
per unit of leading edge length.
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‘As the wing thickness approaches zero, the wing becomes a line segment and
the flow in the leading edge region is identical to the flow around a 180 degree
corner. Incompressibly,it is described by

<. !
= AR e &
W, o+ =2 Almp - U, amb
4 r
Uoe %@:

POINT

where (v,8) is a coordinate system centered at the leading edge,.

and
W v W, ceaBd - u, AP

vV = W, An B + W, Cos B

9«5- R cen & &8
&x k ] -Rﬁ:tee\e

and C is the circle r=R

'I'I'xerefore, since

jem',,\.a - o
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as R == (

YR w = Q{m%eme,ﬁmge&e} = o Ced TO

YRV = a{m-‘;e&e—&l{ewe} x A O

ar
F, = -'a-fa:' {-2 %ie Adn < O A +{A:-."-3£6- m‘%QIMG}AQ

-}
ty. 4
““E'P"'tj [An'8 + ed’B] 48 =--‘521rfaf )
L)

To relate-Fx, the leading edge suction force, to the pressure distribution near the
leading edge, the ACp across the line segment must be evaluated.

On the top 8:0 w T 7:_‘_—0. + U, , Veo
On the bottom &: 2w . -—t
W ﬁ_a. r U, , V*0
da Uy

and if ¢ is the chord length aAc, . —2 : 3. X
) g u.ve V3 o
c - A Tuauar - - F, 2r 0.1 ' 4a *
CoEEET T s A
or AC, * A— C + A .

These expressions relate the leading edge thrust coefficient to the net distribution
ACp, at the leading edge. ’
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In general we can write
Co(d) = Aecek—;:c{» + Z A“/&qm.mé

LS )

where : \ oz
32 2 2 T (1-cead) s A4

cmtd | V-S4 Sy

C 3
e Alatd alng Vi

-t
Ao is the coefficient of the ¥ " term and therefore determines the leading
edge suction force since only the term which is infinite at the leading edge
contributes to the suction.

C, = Y mTA Moz o
For linearized compressible flow the follbwing Mach number correction must be applied
1 z ‘ M L3
Cts_g'éﬂAo /63 L= M.

To derive the expression for a swept wing, an infinitely skewed wing is considered.

U, * Upncot®




Let the subscript or supercript o denote the variables normal to the leading
edge. Then

| acl = A cti$ + 3 A alnmd
and
' 2 at
Ct - —11. . A < ————‘—0-
. TR e

the ratio of thrust per unit length is identical in either system

L] - - Atc At
c, C:_t° q_” : C.Cc 9_, z oy * an

ACp and Ct in the freestream coordinate system are based on freestream dynamic
pressure Q. Thus

o

1, = 1_cea'd

'] i: .o 1‘
ac, = AC"‘;:" = AC, S O
i.p 2

and C,e= Ce—— = (,cceas

L) 9.,. to.
therefore A_ - A’,. Cotr O

2 2 3 ) T a ] o

and ﬂ. = l"”, z C-ot@[-m-ﬂ-}* 0&6{3“6"“"7—)]

. 0’0 [ Reals ¢ 7]
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therefore combining terms

At ' ez 9y, <,
C - T - i Tr ' e
e caxa, 3 R, A, 2. <

%
1

A,
-é-'ﬂ' Cea O -\/:l'mfe +,e;"

'S
[} [y 2
'é'ﬂ. '/7‘4—»6*/6‘ Ac

cod & coad

[}

when 4Cp is given by

ac

1)

A, cod -;-q& * i A,,,‘“‘:""“?‘

SIDE EDGE POTENTIAL SUCTION

The method used to compute the suction force at surface tips is similar
to that used for the leading edge. Since the flow is irrotational
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introduce a change of coordinates

let ¥ be the fraction of chord

T be the slope of a constant 3 line T=: T(3,7)

surface tip

J/
Ay - [Ty - o
A»v, = a\aa
(5'?{ . ) (5?) ) <a7)
Gl QLGN RUE) - # I-Te%>,,+c(£;>,1

or (-‘%)7 Av(E7) = 5[ T ;’—3){ ccw(;%,)s JESRER)

- = 95) [T, 3,1)]
1
)AQ (3, 7) - C__I) )AQ (3,7)

then integrating
z
AVEELT) = T (3 7)-—“ 2T 7+ m(——) }acmn)az (2)
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Near the tip, we assume a net pressure coefficient of the form

Y '3'.- (las” 72)

AC (3 7) =

i
Cas
C& C’Jo {'(IB ; J‘f’(i}o\i = |
_7)'"’% °
where
[ed \/—z. ('Il:ax- 71)
CH——- = C‘M
Casa T max °
Differentiating
—2AC, (3 - ' Cnte
S <o T e S et
l mnax ?\7.«3"‘7) °

Then - as n = npax, equation 2 gives (keeping only the largest term)

g
- A Cava “ [ -
aviy) = o NEMOEy C., | £(xy &dx
’ o
3
, 20.(3) Vo Cava Co
UQQ.V(SI"]) = ————r == o(X) = ,__co_________oJ %(x}o\,‘(’
VT D 2 Vo

Using the expression derived for flow around a corner (equation 1)
with this relation, the suction force at the tip is given by

z
Kl Ca.
Co(3) = . AL af . Lo
CTAX zan: hfZa: ) 3 QT”Innx
g 3 2
F, a7 C; 2
NI
@ CT7nAx o
K Cur T :
2 .
igal - aw ucQT CM J {j {-(X)o\l} o\g
Se 1, - 32 7'_“ Saee s ] {

L

93

in conjunction

1

2
Co. { j&cxm
J«]

,,Z

I



EDGE FORCE AND‘BK»HE¢T INCREMENTS

To account for edge vortex effects, the linearized forces and moments
are corrected to reflect losses in suction and the associated formation of
vortex forces for leading and side edges. The corrections are applied.to the
standard 1ift, side force and drag coefficients. The corresponding increments
in the total moment coefficients are calculated by applying the above force
increments at the appropriate X,Y,Z coordinates for the leading edge stations
and center of pressure for the side edges. |

For leading edge force calculations, the lost suction force for each span
station is given by

C.ec As’ (1 - Ks)

where C, is the coefficient of leading edge suction, C is the local chord, &S ’ _
is the local span station width and K¢ is the leading edge suction recovery factor.
This force is subtracted from the direction normal to the section leading edge and
re-entered as a force component rotated =90° about the leading edge. The sign

of the rotation is determined by the sign of the coefficient Ao in the equation
for leading edge suction.

The change in the total 1lift, side force and drag is calculated for each span
station and is written as a function of four coordinate system rotations whose
rotation angles. are known from the leading edge geometry. The origin of each
coordinate system is located at the leading edge of the section camber line.

The first transformation involves the rotation of the system (X4,Y4,Z4), whose
X axis is tangent to the local normal camber line, to the system (X3, Yz, 23),

whose X axis is tangent to the corresponding chord plane as indicated in the following
sketch:

y4
24 3 normal
camber line

X4 ,/\./
AXB \\\
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where & = TANT{[ (dz/dx)_+ (42/ax), + (d?./dx)a_;_{ Scos L]

( dz/dx) c 1s streamwise slope due to camber
dz is streamwise slope due to twist
(dz/dx),
(cL?Q//;L>() is streamwise slope due to flap deflection
5¢ :
and

Al is the local leading edge sweep angle.

The sweep term converts the total streamwise slope to a slope measured in the
direction normal to the leading edge.

The two coordinates systems are related by the following transformation
matrix:

( M - = )
C.,fx CosSs O -SINS Cxq
ng SINS O COs3s C,_4

" o - P -

The second transformation involves the rotation of the system (X3, Y3, Z3),
whose Y axis is tangent to the leading edge, to the system (X2, Y2, Z2), whose Y
axis is normal to the configuration center line and in the plane of the surface.

= Y
leading edge /] g h
~
) "~
X

95



The two coordinates systems are related by the following transformation
matrix:

13

- oy — czvaeag g =
Cx, COSA SINA o Cx,
C — |=SINA COSA O
< Y2 ? { Cvs }
o - i am— e -

The third transformation involves the rotation of the system (X2, Y2, Z2), whose
Z axis is normal to the local surface plane, to the sytem (X1, Y1, Z1), whose X, Y,.
and Z axes are in the body axes direction.

} Z2

Y =]

~

The rotation is about the X;, Xy axis and of magnitude ©, the local dihedral angle,
The two coordinate systems are related by the following transformation matrix:

— - A
\ o Q Cx

O COS® -SING .< Cy, »

O SIN® cose| |<,

- I

The fourth and final transformation involves the rotation of the body axis
system (X1, Y, Z1) to the wind axes system (D, Y, L).
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The rotation is about the Y1, Y axis and of magnitude oL , the angle of attack.
The two coordinate systems are related by the following transformation matrix:

- - —_ - -
Co CosSah O SINA Cx,

< C‘Y > = o ' O < CY' ?
. =SINA O COSA C,

L o - - A ‘J

The composite transformation between the (Xj, Y4, Z3) coordinate system and the
(@D, Y, L) coordinate system can then be expressed as

o~ - e —— r -
CD Cx
4
{Cy p= ﬂ < c,Y" ?
c c, |
L - J U

where 2 is the rotation matrix obtained from multiplication of the four previously
specified transformation matrices. '

Expressing Cy4, Cyq and Cz4, in terms of the leading edge suction parametors,
., Cxq = Cscas’ (1 -X%s)

CY.. = (»)
o —-’9‘-'-’—<:cAs’(x—K)
‘Lq - !A.‘ s S

we can now write the change in drag, side force and 1ift resulting from the force
rotation at each span station:

A Cp = Csc ASIU "'Ks) 'QD
ACy, =Cicdhs’() -—Ks)_ﬂ_\,
AC, =¢CcAs"(1-%) S,
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0 = [cosx(cos.kcoss)+sx~a~(~éx~ss:u4c055+c.osesms)]

+ !7/:21 [cose (-cosasins) £ SN (SING SINA SING +Cos © cos 5]

£ = -[cose SINACOSS + SINOSING |

+ }%_ol[-cose SINASING  + SIN®COSS |

(2 = [-SlNog(COS_/\. Cos §) + Cosa(-SIN®SIN A COSE + COS B SIN 5)]

+ l.é\_ei[.smag (~cos A SINT) +cosK(SINO SINA SING +cosscoss)]
A.

For side edge force calculations, the lost suction force at each chord station
is give by

Cic?Ax
C C

where Cg is the coefficient of side edge suction, Cr is the tip chord and Z&%§ is
the local nondimensional chord increment over which Cg is acting. This force is
subtracted from the direction normal to the tip chord and re-entered as a force
component rotated = 90° about the tip chord. The sign of the rotation is
determined by the sign of the coefficient Cny in the equation for side edge suction.

In a manner similar to that for the leading edge forces, the change in the total
lift, side force and drag coefficients is calculated for each chord increment and is
written as a function of three coordinate system rotations whose angles are known
from the tip geometry. The origin of each coordinate system is located on the chord
line at the beginning of each chord increment.
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The first transformation involves the rotation of the system (X3, Y3, Z3),
whose X axis is parallel to the local camber line, to the system (X2, Y2, Z2),
whose X axis is tangent to the tip chord.

Z
2
%,
- chordwise

tip camber line

X3
_n
b
.

X2

§

were 5= TAN™ § (dz/dx), +(dz/dx), + (d.l/d.x)a_#}

(d’l/ d X) c is streamwise slope due to camber

(dz/d )()e is streamwise slope due to twist

(dZ/ dX )5. ~ is streamwise slope due to flap deflection
F

The two coordinate systems are related by the following transformation matrix:

R ~ T N
Cx, COs§ © —SINS| | Cx,
c
ey b o 1 o |<cp
C. SINg O Coss C,
- zJ - _— L 3.4

The sccond transformation involves the rotation of the system (X2, Y2, Z2),
whose Y axis- is normal to the tip chord, to the system (Xj, Yj, Z1), whose
X, Y, and Z axes are in the body axes direction.
z

1
z'l.
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The rotation is about the X2, Xj axis and of magnitude ©, the local dihedral
angle. The twe coordinate systems are related by the following transformation
matrix:

~ B e . —-] -~ ry
Cx, ! o o Cxq
< <y, T o Cose -swe| < Cy, >
C. o] SIN® cose C,
T
- IJ |._ it L o

The third and final transformation involves the rotation of the body axes
system (X, Yj, Z1) to the wind axes system (D, Y, L).

th

D
/ X,

The rotation is about the Y], Y axis and of magitude ot , the angle of attack.
The two coordinate systems are related by the following transformation matrix:

o — T r O
Co | CoSaa O SIH&| | Cyx,

{ CY > (o] \ O ﬁ C’Y‘ >
C. —SIN& O <Cosk| |Cz,
L - 4 L J

The transformation between the (X3, Y3, Z3) coordinate system and the (D,Y,L)
coordinate system can then be expressed as

- — - -
Co Cxg
< Cy " T CY%%
C. C.

- - - -

where T is the rotation matrix obtained from multiplication of the three previously
" specified transformation matrices.
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Expressing CXS’ Cyx and Czz in terms of the side edge suction parametors,

C = (@]
- - C T AX

C, = SNcclax
I N R

we can now write the change in drag, side force and 1lift resulting from the force
rotation at each side edge station:

AC,=Csectax T

c 'o
AC, =Cgc’ A.é.TY
- T
AcC, =¢q A%T‘_

where

'T" = FSINKSIN®G + Cwmo [—-cos«xs:ﬂs +SINACOS© coSS]
D [Cnl)

T =FcCose + M SINGBCOSS
N ., [Crl

T =sFcCos«siNG + l&a[smoasms + Cos cos9 cos § ]
S : . <:"ol .

The minus sign on the first term of each equation is for the right side of the
configuration and the positive sign is for the left side. These force increments

are numerically integrated along each tip chord to obtain the total change in
lift, side force and drag due to side edge force roation.
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APPENDIX C

HYPERSONIC FINITE ELEMENT ANALYSIS

High Mach number analysis has a number of optional methods for calculating the
pressure coefficient. In each method the only geometric parameter required is
the element impact angle, §, or the change in the angle of an element from a
previous point.

The methods to be used in calculating the pressure in impact (§ > 0) and shadow

(6 < 0) regions may be specified independently. A summary of the program pressure
options is presented below.

Impact Flow Shadow Flow

Modified Newtonian 1. Newtonian (Cp = 0)

Modified Newtonian+Prandtl-Meyer 2. Modified Newtonian+Prandtl-Meyer
Tangent wedge Prandtl-Meyer from free-stream
Tangent-wedge empirical OSU blunt body empirical
Tangent-cone empirical Van Dyke Unified

OSU blunt body empirical High Mach base pressure

. Van Dyke Unified Shock-expansion

Blunt-body shear force . Input pressure coefficient

. Shock-expansion Free molecular flow

10. Free molecular flow

11. Input pressure coefficient

12. Hankey flat-surface empirical
13. Delta wing empirical

14. Dahlem-Buck empirical

15. Blast wave

16. Modified tangent-cone

O Q0 =) O WD
O 00~ ONUL R W

A brief review of these methods will be presented in the following text.

MODIFIED NEWTONIAN

This method is probably the most widely used of all the hypersonic
force analysis techniques. The major reason for this is its simplicity.
Like all the force calculation methods, however, its validity in any
particular application depends upon the flight condition and the shape
of the vehicle or component being considered. Its most general ap-
plication is for blunt shapes at high hypersonic speed. The usual
form of the modified Newtonian pressure coefficient is

C = K sin™6
P
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In true Newtonian flow (M ==, Y= 1) the parameter K is taken as 2.
In the various forms of modified Newtonian theory, K is given values
other than 2 depending on the type of modified Newtonian theory used.
K is frequently taken as being equal to the stagnation pressure co-
efficient. In other forms it is determined by the following relation-
ship (Reference 19 ).

C
pnosg
sinzé'
nose

K

where

C = the exact value of the pressure
nose coefficient at the nose or leading
edge

-

! = impact angle at the nose or leading
nose

edge

In other work K is determined purely on an empirical basis.

K = fn (M, &, shape)

When modified Newtonian theory is used, the pressure coefficient in
shadow regions (& is negative) is usually set equal to zero.

This m=thod, described as the blunt body Newtonian + Prandtl-Meyer
technique, is based on the analysis presented by Kaufman in Reference
20. The flow model used in this method assumes a blunt body with a
detached shock, followed by an expansion around the body to supersonic
conditions. This mathod uses a combination of modified Newtonian and
Prandtl-Meyer expansion theory. Modified Newtonian theory is used
along the body until a point is reached where both the pressure and the
pressure gradients match those that would be calculated by a continuing
Prandtl-Meyer expansion.

The calculation procedure derived for determining the pressure co-
efficient using the blunt body Newtonian + Prandtl-Meyer technique
is outlined below.

1. Calculate free-stream static to stagnation pressure ratio
Y L
P = Py _ 2 hlevym e v | YE
Py LY+ M2 Y+l
2. Assume a starting value of the matching Mach number, M

(for Y=1.4 assums= Mq = 1.35)
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10.

Calculate matching point to free-stream static pressure ratio

Y

P 2 Y-1

P 2+(Y-1)Mq2

O]

H]
s

I

Calculate new free-stream static to stagnation pressure ratio

v2m o
P, = Q [1- S
HM " - 1)(1-Q)J

Assume a new matching point Mach number (1.75) and repeat
the above steps to obtain a second set of data.

With the above two tries use a linear interpolation equation to
estimate a new matching point Mach number. This process is
repeated until the solution converges.

Calculate the surface slope at the matching point

Q-P
1-P

., 2
sin =
i 6q

Use the Pfandtl-Meyer expansion equations to find the Mach
number on the surface element, M,

Calculate the surface pressure ratio

-
P Y-1
-6 = Y-1,.2
where
nc is provided as an empirical correction factor
P is the pressure on the element of interest

Calculate the surface to free-stream pressure ratio

2oe () (%)
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11, Calculate the surface pressure coefficient

P
Cp 2 5 & -1
6 Y Mg P

The results of typical calculations using the above procedure are
shown in Figure 1. Note that the calculations give a positive pres-
sure coefficient at a zero impact angle. As pointed out in several
references these results correlate well with test data for blunt
shapes. However, if the surface curvature changes gradually to
zero slope some distance from the blunt stagnation point the pres-
sure calculated by this method will be too high. This is caused by
characteristics near the nose intersecting the curved shock system
and being reflected back onto the body. If the zero slope is reached
near the nose (such as in a hemisphere or a cylinder) this effect has
not had time to occur.

TANGENT -WEDGE

The tangent-wedge and tangent-cone theories are frequently used to
calculate the pressures on two-dimensional bodies and bodies of
revolution, respectively. These methods are really empirical in
nature since they have no firm theoretical basis. They are suggested,
however, by the results of more exact theories that show that the
pressure on a surface in impact flow is primarily a function of the
local impact angle. In this program the tangent-wedge pressures are
calculated using the oblique shock relationships of NACA TR-1135
(Reference 21), The basic equation used is the cubic given by

(sin2 98)3 + b(sinZ es>2 + c(sin2 es) +d

= 0 or
R®> + b RZ + ¢ R + d =0
where
es = shock angle
) = wedge angle
i} M2+ 2 2
b = ———— - Y sin” %
M
2 2 , .
c - 2M4+1 +[(Y;—l) +\—21]Sin26
M M
4 - - cos46
M
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The roots of the above cubic equation may be obtained by using the
trigonometric sclution procedure {see Reference 22) as indicated

below.

where

'

n

it

fi

2 - 9/3 cos (w/3) - b/3

>

-2 /= p/3 cos (w/3 + 60°) - b/3
v-p/3 cos (w/3 - 60°) -~ b/3

!
M)

R, = yy - b/3
R, = Y, - b/3

roots of the reduced cubic equation

2(b/3)° - ‘333 + d

"3 fﬂ“am_(p/_ﬂ:%

sin2 6, = roots of the cubic equation

The smallest of the three roots corresponds to a decrease in entropy
and is disregarded. The largest root is also disregarded since it
never appears in physical actuality.
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For small deflections, the cubic solution becomes very sensitive to
numerical accuracy; that is, to the number of significant digits car-
ried. Since this is dependent on the particular machine emploc red,
an alternate procedure is used.

When the flow deflection angle is equal to or less than 2.0 degrees,
the following equation is used instead of the above cubic relationships
(Reference 23):

Once the shock angle is obtained the remaining flow properties may
be found from the relationships of Reference 21,

6 M2 sin2 Qs
density = Pa = P 53
M~ sin es +5
7(M% sin® 6_ - 1) (M% sin” _ + 5)
temperature = T, = T > s s
36 M™ sin” ¢
| s
7™M sin® 6_ - 1]
pressure z = )
coefficient = Cp = >
0.7 M
where
( ) =  conditions behind the shock

Oblique shock detachment conditions are reached when no solution
may be found to the above cubic relationships. Under these conditinns

the program uses the Newtonian + Prandtl-Meyer method for continued
calculations.
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TANGENT-WEDGE; TANGENT-CONE, AND DELTA WING
NEWTONIAN EMPIRTCAL METHOD

The tangent-cone and the tangent-wedge Newtonian empirical methods
used in this program are based on the empirical relationships derived

below.

For wedge flow

sin 6W
sin 6_= .
s (1 - €) cos (Bs -6,
where
P Yy-1 2
€ = 5= = 1+
D
2 Y+ 1 j 2
v -1) Mns
For cone flow (thin shock layer assumption)
sin &
sing = <
s "(1-i)cos(6 - 58)
2 s c
In the limit as M—®, €= ¢ = Y21 .14 cos 6 -8) =1
’ lim Y+ 1 s
Therefore
wedge cone
T I U . C2(Y+ 1)
S1n6s 5 sin 6w sin es = 713 sin 6C



These limiting expressions for 8 may now be compared with the
data of TR-1135 (Reference 21) at Y = 7/5 using the following
similarity parameters. The exact equations contain three vari-
ables — 05, §, and ¢. Noting that for Y = constant, € = fn(M,g)
only, the preceding equations may be rewritten in the following
form:

wedge cone
¥
M sin 6W M sin 6c
M = Mg ©
ns (1l - ¢ cos (8 -8 ) "% (1-3)cos (o - 5.)

C

The parameter (€ - 8) is approximately constant and independent of
M except near the shock detachment condition. The equations es-
sentially contain only two variables, M__ and M sin §. These are
used as coordinates to plot the data fornvsfedge flow shown in Figure
2. A similar plot could be obtained for cone flow. From the figure
it is seen that the data are nearly normalized with the use of these
coordinates.

For rapid calculations we need relationships for M{IS as a function of
M sin 6 that satisfy the following requiremeants:

1. The effect of shock detachment is neglected

2. At Msing =0, M__=1
ns

3. The solution asymptotically approaches the M =« line

d M
4. Have the correct slope, d—-ﬁ—rsl—is;-gat M sind =0

These conditions lead to equations of the following form

K
= M
wedge M = K M'+te 2
ns W
_Y+1
I:(w - 2
-K M!
cone M = K M'+e ©
ns c
where
M! = M sin §
K, = 2 (Y+ 1)/(Y+3)
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These expressions are compared with the data of TR-1135 in Figures
3 and 4, The cone data are also shown in Figure 5 with the same

scales as in Figure 2 .

The pressure coefficient may now be obtained by the following
relationships for a wedge and cone respectively.

Cp = (357) dMms® =11 /7

C
P

f1

2 sin?s {1

C(y=1) Mpg? + 2]t
4 (Y+1) Mgl

Experimental results have shown the pressure on the centerline of a delta
" wing to be in agreement with two-dimensional theory at small values of
the similarity parameter (M'< 3.0) and with conical flow theory at higher
values. The previous expressions derived for wedge and cone flows have
been combined to give these features. The resulting relationships are

given below.

KW
. K - =2y M
M = K.M' +e © 2
ns C
ForY = 7/5
M = 1.09Msing + e 0-39 Msind

ns

The similarity parameter relationship for pressure is

M° Cp = (ﬁ—l.) (Mns2 - 1)

The shock angle and pressure coefficient calculated from the above
equations are compared with the experimental results (Refercnce 28)

in Figures ¢ and 7, respectively.
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Figure 3,

Wedge Flow Shock Angle Empirical Correlation
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Figure 4, Conical Flow Shock Angle Empirical Correlation
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Figure 6.

Delta Wing Centerline Shock Angle Correlation
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OSU BLUNT BODY EMPIRICAL METHOD

The OSU (Ohio State University) blunt body empirical equation

describes the pressure distribution about cylinders in supersonic

flow. The equation was presented in Reference 25)and was stated

to match '"all the data obtained on the cylinders in the present test

series with a maximum deviation of 2.5 percent.' The expression used is

P
p—-— = 0.32+0.455 cos6 +0.195 cos 280 + 0.035 cos 36 -~ 0.005 cos 460

where
0 = peripheral angle on a cylinder
(= 0 at the stagnation point) = 90° - §
Py = surface pressure
Py = tctal pressure rise through normal shock

. The pressure coefficient is calculated from the relationship

b
P1\/ % /Y 2
S (vl e

@)
1

where
P
b L Y2
- = K5sM +1
Py 2
K = stagnation pressure coefficient = C
‘ pst;ag
= freestream pressure
o]

= ratio of specific heats = 1.4

VAN DYKE UNIFIED METHOD

This force calculation m=thod is based on the unified supersonic-
hypersonic small disturbance theory proposed by Van Dyke in
Reference 26 as applied to basic hypersonic similarity results.

" The mathod is useful for thin profile shapes and as the name implies
extends down to the supersonic speed region.

118



The similarity equations that form the basis of this method are
derived by manipulating the oblique shock relations for hypersonic
flow. The basic derivations are shown on pages 753 and 754 of
Reference 31, The result obtained for a compression surface under
the assumption of a small deflection angle and large Mach number
is (hypersonic similarity equation).

c, = |l +\/("X__t_1>2+_é__

where H is the hypersonic similarity parameter given by M&. The
contribution by Van Dyke in Reference 26 suggests that this relation-
ship will also be valid in the realm of supersonic linear theory if

the hypersonic similarity parameter Mb is replaced by the unified

supersonic-hypersonic parameter(\/ M2 - 1)6. This latter param-
eter is used in the calculations for this force option in the arbitrary
body program.

A similar mzthod may also be obtained for a surface in expansion
flow with no leading edge shock such as on the upper side of an air-
foil. The resulting equation is

c, =382 |o-Ytn -1
P YH

where again H is taken to be(\/_M2 - 1,)6 in the unified theory approach.

SHOCK-EXPANSION METHOD

This force calculation method is based on classical shock-expansion
theory (see Reference 27). In this method the surface elements are
handled in a 'strip-theory' manner. The characteristics of the first
element of each longitudinal strip of elements may be caiculated by
oblique shock theory, by conical flow theory, or by a Prandtl-Meyer
expansion. Downstream of this initial element the forces are cal-
culated by a Prandtl-Meyer expansion.

By a proper selection of the element orientation the m2thod may be
used for both wing-like shapes and for more complex body shapes.

In this latter case the me=thod operates in a hypersonic shock-expansion
theory mode.
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FREE MOLECULAR FLOW METHOD

At very high altitudes conventional continuum flow theories fail and
one must begin to consider the general macroscopic mass, force,
and energy transfer problem at the body surface. This condition
occurs when the air is sufficiently rarefied so that the mzan free
path of the molecules is much greater than a characteristic body
dimension. This condition is known as free molecular flow and the
method of analysis selected for this program is described in
Reference 28. This msthod was also used in Reference 29, The

equations used were taken from these references and are presented
below.

Pressure coefficient

- 2-f f [ T . 2
_ 1 n . n b ~-{S sin 8)
Cp = —SZ = S sin & +35° —_Too e

2 2. b 5 T g s ert(s o )
+ (Z-fn)(S sin” & +—2-)+-E-\[§ —,I-.-;Ss1n6'[+er( sin &
’ 3

Shear force coefficient

c; = (C—E\f,_;-g—)ﬁ- e~(8sin 5)° +NTS sin & |1 + erf(S sin )
where .

S = speed ratio = /N2 M

f = normal momentum accommodation coefficient (=1.0 for

n Newtonian and = 0. for completely diffuse reflection)

& = impact angle |

Tb = body temperature, °K

Ty = free-stream temperature, °K

erf = error function erf (x) = -—fo: e'xz dx

ft = tangential momentum accommodation coefficient

(= 0. for Newtonian flow and 1.0 for completely
~diffuse reflection)
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The pressure force acts perpendicular to the surface and this direction is
readily obtained since the element normal has already been determined in
the geometry subroutines. The shear force acts in the direction of the
tangential velocity component on the surface and this direction is deter-
mined by taking successive vector products as follows,

The procedure is illustrated in the
accompaning sketch where the in-
cidernt velocity vector is defined as

V=Vxi+Vyj+vVxk

and trte surface normal as

" First, a surface tangent vector (T) is defined by the cross prodﬁct of the
normal and velocity vectors;

T = TX1+TYJ+TZk
where

Ty = N*:{;}Vz‘Nz Vy

Ty = Nz Vx -Nx Vg

Tz = Ny Vy-Ny Vy

Then the direction of the shear force (S) is given by the cross product of
the surface tangent and normal vectors;

i+S8,j+S, k

S = Sx Y

z
where
S, = TyN, -‘"TZ Ny
Sy = T, Ny -Tg NZ.,
Si = Ty Ny - Ty Ny
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The final components of the shear force in the vehicle axis system are
given by

SHEAR, = (SHEAR) (SX)/STOTAL

SHEAR, = (SHEAR) (SY) / STOTAL

SHEAR, = (S.HEAR) (sz) / STOTAL
where

SHEAR is the shear force as calculated by the free molecular flow
equations.

S 2 > > 1/2
TOTAL = (SX +SY +.SZ )

In using the free molecular flow method the above analysis must be
carried out over the entire surface of the shape including the base,
shadow regions, etc. When the free molecular flow method is
selected, it is used for both impact and shadow region.

The plane formed by the velocity vector and the surface normal is
referred to as the velocity plane (shaded region in the sketch),
since both the incident and surface velocity are in this plane. This
definition is correct for two-dimensional flow, however, it is only
an approximation to the shear direction in the general arbitrary-body
case,

HANKEY FLAT-SURFACE EMPIRICAL METHOD

This method uses an empirical correlation for lower surface pressures on
blunted flat plates. The method, derived in Reference 30, approximates
tangent-wedge at low impact angles and approaches Newtonian at high impact
angles. The pressure coefficient is given by

Cp =1.95 sin® § + 0.21 cos & sin 5
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DAILEM-BUCK EMPIRICAL METHOD

This is an impact method that has been derived such that tangent-cone and
Newtonian results are approximated, respectively, at low and high values
of the impact angle. The empirical relationships presented in Reference 31

are
3/4

i . 5/4
for 5 < 22.5° C.p = 1+ (sin 46) 374 (sin 8) /
(4 cos § cos 20)
- o _ . 2
for 5 5 22.5 Cp = 2.0sin" ¢

BLAST WAVE PRESSURE INCREMENTS

This method uses conventional blast-wave parameters to calculate the over-
pressure due to bluntness effects. Force contributions détermined by this
procedure must be added to the regular inviscid pressure forces {tangent-
wedge, tangent-cone, Newtonian, etc.) calculated over the same vehicle
geometry., The specific blast wave solutions used in the Program were de-
rived by Lukasiewicz in Reference 32

1 +]
2 (Cp) 143 3
P _aAuMm "D - + B
P ® (X - X)/d

where
Cp is the nose drag coefficient

d is the nose diameter or thickness

Xy 1is a coordinate reference point

and the coefficients A, B are

Flow | | A | B

j
Two-Dimensional 0 0.121 } 0.56

Axisymmetric 1 | 0.067] C.44
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'MODIFIED TANGENT-CONE METHOD

This method, originally developed for use on cones with elliptical cross-
sections, modifies the tangent-cone result by an increment representing
the deviation from an average pressure divided by an average Mach number,
More specifically, the following equations are used (after Jacobs, Reference

33):

cptc B Cpav 2

= C -
P Ptc Mavg

C

where Cp is the surface pressure coefficient

CPtc is the conventional tangent-cone pressure coefficient

Cp is the average pressure coefficient

avg
Zcpt A/ZA, A is element area

Mavg is the average Mach number, defined for an equivalent
cone having pressure coefficieit C .
Pavg

HIGH MACH BASE PRESSURES

For a body in high speed flow it might be expected that any base regions
would experience total vacuum. That is,

c 1
P T Y2
2‘1)

However, the viscosity of real gases causes some pressure to be felt in
base region and experimental data have shown this to be roughly 70%
vacuum for air. Therefore, the expression

has been included in the program.
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