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FLYING-QUALITIES CRITERIA FOR WINGS-LEVEL-TURN MANEUVERING
DURING AN AIR-TO-GROUND WEAPON-DELIVERY TASK
Robert I. Sammonds
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and
John W. Bunnell

Air Force Flight Dynamics Laboratory
Air Force Wright Aeronautical Laboratories
Wright-Patterson Air Force Base, Ohio

SUMMARY

A moving-base simulator experiment conducted at Ames Research Center
demonstrated that a wings-level-turn control mode improved flying qualities
for air-to-ground weapon delivery compared with those of a conventionally
controlled aircraft. Evaluations of criteria for dynamic response for this
system have shown that pilot ratings correlate well on the basis of equivalent
time constant of the initial response. Ranges of this time constant, as well
as digital-system transport delays and lateral-acceleration control authori-
ties that encompassed Level 1 through III handling qualities, were determined.

INTRODUCTION

Dive bombing is the most common method of delivering free-fall, non-
nuclear weapons against ground targecs. Ccmpared to the lcw-level attack
mode, it offers the advantages of better target acquisition, reduced vulner-
ability to certain types of hostile ground fire, and delivery of large-yield
low~drag weapons. However, the delivery variables (airspeed, altitude, and
attitude) are not as easily attainable as in low~level bombing and the attack
is often less accurate. To secure a direct hit, the aircraft must arrive 1t
a particular point in space with the correct airspeed, dive angle, and "g"
loading, and with proper corrections made for existing wind conditions.

Motivation for improving the dive-bombing task is threefold: 1) to
increase the aiming accuracy; 2) to decrease pilot workload; and 3) to
decrease aircraft vulnerability by decreasing the time to acquire the target,
aim, and launch the weapon.

Previous investigations (refs. 1-3) have shown that certain advanced
control modes can provide a large increase in the combat potential of conven-
tional aircraft because of the control mode's effectiveness in increasing



agility and preciseness of aircraft maneuvers. One of the most promising of
these advanced control modes for use in the dive-bombing task (ref. 3) 1s
wings-level turn (WLT). This mode permits a heading change by commanding a
lateral acceleration while holding the wings level (¢ = 0) and maintaining a
zero sideslip (B = 0). This maneuver eliminates the pendulum motion of the
fixed depressed reticle sight (pipper) that occurs during rolling maneuvers
when the aircraft's roll axis and the sight do not coincide. Elimination of
the pendulum motion allows for a more rapid and accurate acquisition of the
target than can be accomplished with a conventional airplane, thus reducing
time over the target by permitting increased delivery speeds.

Although existing flight and simulation data show the potential advantages
of WLT capability, there is a lack of systematic research on the flying-
qualities criteria required for use in design of this control mode. The pur-
pose of the research reported herein was to conduct a systematic, parametric
investigation of the variables affecting the performance of an aircraft during
an air-to-ground weapon-delivery task using the WLT control mode and to com-
pare these results with those for a conventional, current-generation (bank to
turn) fighter aircraft. This program was conducted in Ames Research Center's
six-degrees-of-freedom Flight Simulator for Advanced Aircraft (FSAA). Evalua-
tions were obtained for a range of equivalent system dynamic characteristics,
digital transport delays, and control authorities. Results are presented in
this paper in the form of pilot ratings, commentary, control usage, and time
histories.

SIMULATION TEST PROGRAM

Description of Simulator

This investigation was conducted using the six-degrees-of-freedom Flight
Simulator for Advanced Aircraft (FSAA) shown in figure 1. This simulator,
described in reference 4, was equipped to represent a fighter cockpit with a
center stick, all necessary instrumentation (fig. 2, table 1), a head-up dis-
play (fig. 3), and hydraulically actuated control loaders on all three axes.
The head-up display provided the pilot with a fixed depressed reticle sight,
digital readouts of velocity and altitude, a vertical scale to indicate dive
angle, bugs to indicate the desired rclease altitude and airspeed, as well as
a conventional pitch ladder. The altitude and airspeed scales located on
either side of the display were movable and indicated the rate at which each
parameter was varying. The digital readouts of velocity and altitude were
updated at varying time rates depending on the rate of change of each variable
to make the digital presentation more readable. The control loaders were pro-
grammed to give the cockpit control force-feel characteristics typical of an
advanced fighter aircraft. The desired and the actual force-feel character-
istics obtained are shown in figure 4 for all three axes.

The pilot in the cab was provided visual and aural cues as well as motion
cues. The visual cues consisted of a black and white bull's-eye target —
located on a terrain board (fig. 5) and displayed on a color TV monitor —



viewed through a collimating lens mounted above the instrument panel. The
visual scene was generated by a computer-driven, six-degrees-of-freedom TV
camera that duplicated the aircraft motion with respect tc the dive-bombing
task, but restricted the pilot to a forward view (no side-window viewing capa-
bility). Scale-sized buildings were placed near the target to add realism fo
the scene, The performance capabilities of the visual display system (see
VFA-07, table 4.2.1-1 in ref. 4) were modified in the pitch plane by biasing
the pitch prism to obtain the necessary look-down capability for the dive-
bombing tagk. The maximum pitch displacements, as used, were +10° to -40°.
The downward limitation effectively limited the desired dive angle for the
bombing runs to -30°. The aural cues consisted of engine noise modulated by
engine rpm and introduced into the cab through stereo speakers.

Mod~ling

A conventional six-degrees-of-freedom mathematical model was developed to
represent a state-of-the-art fighter aircraft. This model was used as the
baseline aircraft and had flying qualities similar to those of the F-15. The
physical characteristics of this aircraft and the nominal stability deriva-
tives used during th- dive-bombing task are presented in tables 2 and 3,
respectively. Block diagrams of the pitch, roll, and yaw control systems,
including CAS modes, for this basic aircraft are shown in figure 6. Time
histories of the aircraft response to longitudinal, lateral, and pedal step
inputs are presented in figures 7, 8, and 9, respectively.

The WLT flight-control mode was modeled as a transfer function, relat-
ing lateral acceleration to rudder-pedal deflection, of the form
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The block diagram in figure 10 shows the manner in which the WLT mode was
mechanized for the simulation. A proportional-plus-integral sideslip-angle
feedback was included to ensure minimal sideslip. The commanded lateral
acceleration was introduced directly to the sideforce equation and the calcu-
lated yaw rate (including feedback terms) was used directly in the yaw equa-
tions of motion. Although this technique did not simulate any real aircraft
or aircraft design, it did facilitate the variation of important flying-
qualities parameters ani allowed the study of pure, uncoupled responses, thus
justifying the idealized simulation.

Test Conditions

The gain (Ky), time constant (T;), transport delay (A), natural frequency
(wp)» and the damping ratio (5} of the Ay/8pgp transfer function were subject
to variation, either singly or in combination, during the experiment. The
primary investigation was to evaluate the effect of the undamped natural



frequency and the damping ratio on handling qualities of the WLT control
mode. The matrix for these runs is shown in tabie 4 for various values of
bandwidth (wp). Bandwidth i1s defined as the frequency at which the amplitude
of the Bode plot decreases by 3 db from a steady-gstate condition (see sketch
in table 4).

Additional investigations were made to evaluate the effect of adding
various amounts of lead (T;) to an obviously deficient system, various amounts
of transport delay (A) to a system having good handling qualities, and three
levels uf commanded authority (Ky). The matrices for these programs are pre-
sented in tables 5 and 6.

Task

The test program was limited to an air-to-ground weapon~delivery task
using a {ixed depressed-reticle sight and an unguided bomb. The piloting task
was to roll onto the target from a 90° heading offset at an altitude of
3,048 m (10,000 ft), establish a -30° dive angle, and relesse the bomb at a
specified set of release conditions (airspeed and altitude). For all runs,
the desired release conditions were a dive angle (y) of -30°, a velocity (V)
of 365.76 m/sec (1,200 ft/sec), and an altitude of 1,524 m (5,000 ft). The
high release velocity was determined from preliminary runs in conjunction with
the initial and release altitudes because it resulted in a difficult task —
one that could be accomplished with a good system, but could not be accom-
plighed with a poor one. The average time for each run, from target acquisi-
tion to bomb drop, was between 4 and 5 sec. A schematic of the dive-bombing
task and a sketch of the target is shown in figure 1l1. Because the visual
presentation in the cab did not provide for side-window viewing, the initial
heading chang- and roll-in until target acquisition was an open-loop task that
had to be learned by the pilots. They were given sufficicnt practice time to
become proficient at this maneuver.

The bull's-eye target located on the terrain board (see figs. 5 and 11)
consisted of concentric circles 50, 100, 570, 1,000, 1,500, and 2,000 it
(scale) in diameter. A normal run was made with respect to the center of the
bull's-eye. However, in order to severely exercise the aircraft's WLT capa-
bility, a secondary target, a large white dot, was located on the cuter ring
of the bull's-~eye (see fis. 11) normal to the line of flight. Approximately
half of the time, in a random manner, a light at the center of the bull's-eye
signaled the pilot to bomb the secondary target. This signal was activated
only after the pilot was aligned with the primary target, thus necessitating
a heading change of about 12° in about 4 sec. Bombing runs to primary and
secondary targets will be referred to hereinafter as the fine and coarse tasks,
respectively. Although this alternate maneuver probably is not representative
of an operational situation, it was selected as a means to subject the WLT
mode to a severe heading-change maneuver to evaluate its gross maneuvering
capabilities. A similar task could have been induced using wind shears or
gusts, but it was felt that the target-change maneuver would generate com~
parable results.
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Data Acquisition

The parametric evaluation of the WLT control mode was accomplished by
two USAF pilots (A and B) from the 3246th Test Wing (AFSC), Eglin AFB, and by
one pilot (C) from the USAF Test Pilots School, Edwards AFB (sece the appen. v
for pilot resumes). Each pilot made at least two runs at both primary and
secondary targets for each set of parameters being evaluated, with the targets
+eing selected in a random manner. Each pilot was allowed to make as many
funs as was required for an accurate evaluation of the task. At the end of
each set of runs, for a given parameter, the pilots were instructed to give
pilot ratings for both the fine and coarse tasks - based on the Cooper-Harper
(C-H) rating scale shown in figure 12 — giving reasons for the ratings, as
well as comments on flying qualities and ability to accomplish the task. A
maximum C-H rating of 7 was established as the worst condition since there
was never any danger of losing control of the aiicraft.

Pilo®s A and B were responsible for the parametric evaluations listed in
table 4. Each of these pilots went through the matrix at least twice., Addi-
tional repetitions were made for points having a spread of more than one pilot
rating. Ratings for each pilot were averaged to obtain a single value for
each parameter variation for each pilot. Average ratings for the two pilots
combined were obtained from averages of each pilot for the configuration. The
parameters in the matrix were selccted randomly to avoid direct comparison
with an adjacent point in the matrix. A baseline WLT condition having a
natural frequency (wp) of 4.5 and a damping ratio (;) of 1.0 was specified and
used for all practice and training runs. Pilot comments could then be com-
pared with this baseline WLT configuration. Runs were also made with the
conventionally controlled (bank-to-turn) aircraft for comparison.

These same pilots (A and B) were also responsible for evaluation of the
matrix shown in table 5; however, because of time limitaticns, they only went
through this matrix once. The third pilot (C), from Edward. .FB, was respon-
sible for the control authority evaluation of table 6.

Pertinent input and response parameters were recorded both on eight-
channel Brush recorders and on magnetic tape. Initi.i and release conditions
and bomb scores were recorded at the end of each run; however, CEPs were not
calculated from the bomb miss distances because of the small sample size for
each condition (2~4 runs).

Table 7 shows the individual pilot ratings for each parameter {nvesti-
gated. Where more than one rating is listed, they are for repeat runs. Pilot
ratings presented in the figures are either an average of each pilot's ratings
or combinations of the two.

RESULTS AND DISCUSSI :

As a prelude to the parametric evaluation of the WLT control mode, sev-
eral preliminary eimulations were conducted to establish the baseline airplanc



configuration, the dive-bombing task, and the mechanization of the WLT con-
trol mode.

Simulator Validation

Validation of the baseline (bank-to-turn) airplane configuration was
based on the subjective assessment of a number of pilots from the Air Force
Flight Test Center (AFFIC), Edwards AFB; Air Force Flight Dynamic lLaboratory
(AFFDL), Wright-Patterson AFB; and Ames Research Center. All were experienced
at flying modern fighter aircraft (F-4, F-15, A-7, and T-38) and with air-to-~
ground weapon delivery. Most were graduates of either the Air Force or the
Navy test pilots school. All agreed that the baseline configuration was a
good representation of a modern state-of-the-art fighter aircraft with good
flying qualities. The F-15 pilots felt it to be comparable to an F-15.

-

The dive-bombing task was thought to be su.tisfactory for (he evaluation
of the WLT control mode, although there were some misgivings due to the lack
of side-window viewing. However, the open-loop task of acquiring the target
from a 90° heading offset was easily learned. The mechanization of WLT
thiough the rudder pedals was thought to be natural and was readily accepted
by all evaluation pilots. The simulator motion provided realistic onsets of
the lateral accelerations being commanded, but constraints on the simulator
motion restricted the instantaneous lateral accelerations to :2.4 m/sec?

(8.0 fr/sec?).

Wings-Level Turn
Frequency- The matrix shown in tablz 4 can be broken down into an evalua-

tion of three underdamped ({ < 1), two overdamped (7 > 1), and one critically
damped configuration having the following transfer functionsa:

n n
A K /3.25
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where a and b are the real roots of the quadratic equation (see table 8).

Figures 13 through 15 show the variation of pilot rating as a function
of natural frequency (wn) for the three underdamped ases (¢ = 0.3, 0.5, and
0.7). Figures 16 through 18 show this same variation as a function of the
low-frequency root (a) for thn two overdamped cases (’ = 1.4 and 2.0). The
critically damped case 18 included in each figure for comparison. Average

6



pilot ratings are shown in figures 13 and 16 for pjlot A, in figures 14 and 17
for pilot B, and in figures 15 and 18 for both together.

All cases show that pilot ratings improve with increasing frequency for
a given damping ratio, indicating that increased quickness of response was
favorable. This improvement in response is readily discernible in fig-
ures 19(a) and (b), which show time histories of pedal displacement and lat-
eral acceleration for frequencies of 1 and 8 rad/sec and a damping ratio of
0.7. For the low-frequency case (w, = 1.0) there is considerable lag between
pedal input and the lateral acceleration obtained. This response is signifi-
cantly improved at the higher frequency (wn, = 8.0). Similar results were
obtained for the overdamped cases.

It can also be seen in figures 13 through 15 that there is considerable
variation in pilot rating due to the damping ratio (g), with the ratings
improving with increased damping. Time histories (figs. 20(a) and (b)),
typical of this condition, show the improvement in aircraft response because
of an increase in the damping ratio, with the frequency being constant.
Although the lag between pedal input and response appears similar for the
different damping ratios it is obvious that the large overshoots occurring for
the lower damping ratio would make it more difficult to put the pipper on the
target and hold it there, thus increasing the pilot workload.

Since the high-frequency root (b) in the transfer function for the over-
damped cases

A K /3.25
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is generally well separated from the low-frequency root (a), this transfer
function can, in most cases, be treated essentially as a first-order system.
Figures 16 through 18 show this variation clearly as there are no significant
differences in the data obtained for damping ratios of 1.4 and 2.0.

Pilot ratings obtained for the critically damped case are considerably
worse than for the overdamped cases and somewhat worse than the hest under-
damped case (z = 0.7) for frequencies less than about 8 rad/sec. Although the
reason for the poorer ratings for the critically damped case can probably be
discerned from the data presented in tables 4 and 8, further discussion on
this matter will be postponed until later in the report (see section on
Bandwidth).

In general, pilot comments regarding these data indicate that the ratings
are primarily related to the amount of observable lag in the system. The more
apparent the lag, the worse the pilot rating. As the lag increases, the sys-
tem response slows and it becomes more difficult for the pilot to control the
inputs without getting overshoots. In extreme cases, the pilot either camnot
get the pipper over to the target or cannot stop it, once it is moving, with-
out incurring large overshoots. Although this apparent lag can he attributed
to either frequency or damping, the pilots generally seem to prefer quickness
(increase in w,) to damping, feeling that they can overcome some lack of



damping if the response is quick enough. However, there appears to be a limit
to the amount of quickneas and damping desired. For extreme cases of high
damping and frequency, the pilots complained that the response was jerky and
somewhat less than optimum. The very fast starting and stopping of the motion
was disorienting. Indications of this degradation are evident in data pre-
sented in figures 16 through 18.

Bandwidth- It was hypothesized that the pilot-rating data might better
correlate on the basis of the system bandwidth, where bandwidth is defined as
the frequency at which there is a 3 db drop in amplitude from the steady-state
condition (see table 4). Smooth variations of the average pilot ratings were
obtained with this variable for each damping ratio, but there was a definite
and distinctive progressive degradation in flying qualities accompanying a
decrease in damping. These data are presented in figures 21 through 23. Time
histories in figures 24 aad 25 show that for 2 given bandwidth there are sig-
nificant ¢differences in the time response between pedal input and lateral
acceleration as a function of the frequency and damping. Since the same band-
width can be obtained for various combinations of damping and frequency (see
table 4), the higher the frequency and damping for a given bandwidth, the
better the pilot rating. It can also be seen from table 4 that the bandwidth
decreases with increased damping for a given natural frequency. This varia-
tion probably accounts for the poorer ratings shown in figures 13 through 15
for the ¢ = 1.0 condition as compared to that for a damping ratio of 0.7.
Even though this decrease in bandwidth continues for damping ratios greater
than 1, the disparity in the highest frequency roots ({ 2 1.0) for systems
with the same bandwidth can account for the differences in ratings. Thus,
since bandwidth alone cannot be a criterion, phase margin must also be a
factor. Preliminary work by Systems Technology, Inc. (ref. 5) has shown
correlation of these data on the basis of bandwidth, defined as the lowest
frequency for which the open-loop phase margin is at least 45° and the gain
margin is at least 6 db. In this definition, the closed-loop system bandwidth
is implicitly defined as the open-loop crossover frequency.

Equivalent time cons*ant- Since neither frequency nor bandwidth (as
defined in table 4) fully correlates the data, a parameter other than fre-
quency was sought. An evaluation of the pilot comments, recorded during the
simulation, showed their concern for the initial time-response characteristics
of each configuration on flying qualities. As a result, equivalent time con-
stants were calculated for each test condition listed in table 4. For the
overdamped and critically damped cases, the time constant was taken to be the
time at which the response to a unit step input reached 63.2% of its steady-
state value. For these cases the responses were given by

- t -w t
A =K([ll1~-e no_ wte n
y y n

for 7 = 1, and

-bt -at
ae -be
R Ky(1+ C b )



tor § > 1, where a and b are the real roots of the quadratic equation
(table 8). For the underdamped oscillatocy response, time constant was based
on the envelope of the response as calculated by

-Lw t
A =kK|l1-e T
y y

This time constant was equivalent to the time to damp to 36.8% of the initial
amplitude.

Pilot ratings in figures 26 through 28, presented as a function of these
equivalent time constants, show excellent correlation for all data, both fine
and coarse tasks. It should be pointed out that pilot ratings for both tasks
are nearly the same, differing by only about half a rating. Time constants
and average pilot ratings feor the two pilots are shown in table 9.

These data show that there is a minimum equivalent time constant
(0.15-0.2 sec) at which optimum performance of WLT 1is achieved. Level I
performance {C-H £ 3.5) was obtained for time constants less than about
0.4 sec for the fine task and less than about 0.35 sec for the coarse task.
The WLT ratings became unacceptable at time constants greater than about
1.5 sec. These results agree with pilot comments that the lag of the system
was the most important factor determining their ratings. As previously men-
tioned, the pilots felt they could tolerate some lack of damping if the
response was quick enough; but if it was too quick, performance became jerky
and disorienting and flying qualities deteriorated somewhat. The slight break
in the curves (figs. 26 to 28) at the low time constants is indicative of this
deterioration.

The distribution of all pilot ratings for pilots A and B (table 7) are
shown in figure 29 for poth fine and coarse tasks as a function of the equiv-
alent time constant. The symbol legend denotes number of times each rating
was repeated. These data show a band of approximately *1 pilot rating for
each time constant. This is indicative of the repeatability of ratings and
the validity of results in figure 28.

Time histories — showing the effect of pedal input on lateral accelera-
tion response as a function of the equivalent time constant — are presented
in figures 30 and 31 for underdamped and overdamped cases, respectively.
Although the time constant in these figures is a function of w, and a con-
stant damping ratio, the data are directly comparable on the basis of the time
constant without regard to either the damping ratio or frequency stipulated.
These data show that the system's response quickens with decreasing equivalent

time constants.

The equivalent time corstant is effective as a correlating parameter for
these data. Apparently this is because it directly ropresents the time lag
for the overdamped cases as well as the time to damp to some percentage of the
initial amplitude for the underdamped cases (particularly those with low
damping).



Lead and Transport Delay

Tests were conducted to examine the effect of adding lead to an obviously
deficient system and of adding transport delay to a previously good system
(figs. 32 and 33, respectively). Figure 32 shows the average pilot ratings as
a function of the lead time constant for the transfer function
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where ¢ = 1.0, w, = 4.5. These data show that adding small amounts of lead
was beneficial, but that too much (T; = 0.6) became degrading. A T; = 0.3
resulted in fast response with essentially no overshoot and the best pilot
rating of any system tested, whereas a T; = 0.6 resulted in jerky response
and a discernible degradation in the rating. Time histories for lead time
constants of O and 0.3 sec (fig. 34) clearly show improvement in system
response due to addition of the 0.3 sec lead term to the transfer function.
Unfortunately, data showing system response to addition of the 0.6 sec lead
was not recoverable from the magnetic tape.

The effect of adding a transport delay to a good system is shown in fig-
ure 33 for the transfer function

(K /3. 25)e A8
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where = 1.4, wp = 15, a = 6.30, and b = 35.70. These data show that add-
ing even small amounts of delay resulted in degraded performance as noted by
the increase in C-H ratings with increased delay. Time histories of these
responses (fig. 35) show this clearly. This agrees with previous findings
that the more lag or delay in a system the more difficult the tracking task
becomes. Unfortunately, time histories for the 0.49 sec transport delay were
not recoverable from the magnetic tape.

k>

Equivalent time constants calculated for both lead terms and transport
delays (table 10) are plotted in figure 36, superimposed on the data band of
figure 28. The time constants obtained using various amounts of lead agree
well with the data trend established in figure 28 for both fine and coarse
tasks. These data clearly show the degradation in performance for systems
that are too cuick (T; = 0.6, T = 0,07) and further emphasizes that there is
some minimum equivalent time constant for optimum performance.

The equivalent time constants calculated for various transport delays
(Tpasic * A) are also in relatively good agreement with the basic data except
for the transport delay of 0.49 sec (v = 0.68). Both pilots rated this sys-
tem unacceptable (C-H = 7) because of large overshoots and PIOs for both
fine and coarse tasks. This poor rating is almost certainly a result of low
stability margin contributed by the time delay. Although both phase and gain
margins are positive for this case, the phase margin is marginal for good
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stability. Then, with the addition of the pilot's own time delay, the system's
stability degenerates further with the resulting large overshoots and PIOs.
The pilot rating shown for a delay of 0.105 sec (v = 0.29) for the coarse task
also appears to be in disagreement with the basic data. This data point, how-
ever, is influenced by a C-H rating by pilot A that appears to be poorer

than would be expected from figures 33(a) and 35(b). Pilot B's rating would
make this data point fall more in line with the basic data.

Control Authority

During an earlier simulation, an investigation was conducted to evaluate
the authority required for WLT maneuvering during the air-to-ground weapon-
delivery task. Three levels of maximum commanded side acceleration were pro-
vided (0.5, 0.75, and 3.0 g). The authorities of 0.5 and 0.75 g's were
gelected as reasonable or desirable for a control mode of this kind, whereas
3.0 g was selected as sort of an open-ended value so the actual acceleration
being used could be determined.

The control system was mechanized to give full pedal travel for each of
these authorities (see table 4). Results of these tests are in figure 37,
where each curve is a cumulative frequency distribution of the lateral accel-
erations used during the coarse task maneuver for a configuration having an
equivalent time constant of 0.71.

These cumulative distributions were calculated from the commanded lateral
accelerations used over a designated time interval for increments of time
equal to 0.001 sec. The designated time interval was taken as the time between
the minimum side acceleration, occurring after the target change signal was
initiated, until the time of the bomb drop. This time interval relates to the
time the A, input was effective in creating a heading change and differs from
the time of pedal input due to lag in the Ay response. Typical time histo-
ries showing the relationship of the pedal input and A, response for each of
the three control authorities are presented in figure 3§.

The curves in figure 37 show the probability of exceeding given levels of
authority for each of the three authorities selected. The lowest level of
authority (0.5 g) proved inadequate for either the fine or coarse task. Even
though the maximum authority of 0.5 g was used nearly 50% of the time, the
pilot could produce a heading change that was only about half of that required
(coarse task) to complete the task of acquiring the target before passing the
release altitude of 1,524 m (5,000 ft). Figure 38(a) shows the time history
for this case. Full pedal input was reached in about 1 sec after the signal
for a target change, but the full side acceleration of 0.5 g was not obtained
for another 1.5 sec because of lag in the system.

For an authority of 0.75 g, pilots still could not translate the pipper
through a heading change sufficient to acquire the target in the time allotted
to complete the task. It was possible, however, to accomplish the fine task
with this amount of authority. Figure 38(b) shows the time history for this
case.
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With an authority of 3.0 g, the pipper could easily be translated to the
target without using the full limit of authority. The time history of this
maneuver (fig. 38(c)) shows that a maximum lateral acceleration of 2.5 g was
used, but only momentarily. Figure 37 shows that for 50X of the time the
probability is that no more than 1 g will be required. The time history data
also show that the heading change was completed in sufficient time to do some
fine tracking on the target, as evidenced by the oecillatory nature of the
pedal input. However, the lag in this particular configuration prevents lat-
eral acceleration from following rapid changes in pedal input. A quicker sys-
tem would have shown a closer correspondence between pedal input and side
acceleration (see fig. 34(b)).

It becomes readily apparent from the data in figures 37 and 38 that the
authority required to accomplish the desired heading change to acquire the
target is dependent on the equivalent time constant (1) of the system being
investigated. The control power and time response required to make a partic-
ular heading change, based on the second-order model used in this investiga-
tion, can be seen graphically in figure 39 for a time interval of 5 sec and a
release velocity of 710 knots. Since the heading change required for tnis
task was about 12°, authorities of 0.5 and 0.75 g's for a gyatem having an
equivalent time constant of 0.71 sec were clearly inadequate for the task.

An authority of 3 g would have been adequate even for a marginally acceptable
configuration with 1t = 1.5 sec. Figure 39 shows that the time constant (t)
significantly affects the authority required. This figure can also be used

to estimate control authority and time-response requirements for incremental
heading changes and time durations that differ from the particular task inves-
tigated in this experiment.

Comparison With Conventional Airplane

Pilots A and B, who evaluated the WLT control mode, also evaluated the
conventionally configured (bank-to-turn) airplane for both fine and coarse
tasks for the same release conditions — an altitude of 1,524 m (5,000 ft), a
dive angle of -30°, and a release velocity (V) of 365.76 m/sec (1,200 ft/sec).
Individual pilot ratings (table 7) for the coarse task were in close agree-
ment, and the task was rated as being essentially impossible to accomplish
(C-H = 6-7). Although this basic aircraft had flying qualities similar to
the F~15, it was nearly impossible to bank the airplane, make the necessary
heading change, and level out on the target in the time allotted for the task
due to both the control authority of the aircraft and the pendulum effect of
the pipper. These resu.ts for the conventionally configured aircraft 1llumi-
nate the benefits of WLT for it was shown that the task was easily accom-
plished when using WLT with good response characteristics (t * 0.15-0.2).
One should remember that the task was made particularly difficult so that
advantages or disadvantages of different control modes and parametric varia-
tions woulu become obvious.

Pilot ratings for the fine task varied from 3 to 5 (table 7) and depenued

largely on the ability or luck of the pilot being able to roll out onto the
target with the pipper properly aligned. Normally, if more than one bank

12



maneuver was required tc compensarte for the pendulum effect of the pipper,

the task became very difficult. Pilot A felt the task was difficult but

could be done easily with the right guesswork as to the amount of bank modu-
lation needed to overcome the pipper's pendulum effect. He gave this task a
rating of 5. Pilot B described the aircraft's damping and control sensitivity
as "nice" and said that he could accomplish the task with a minimum of com-
pensation. He gave this task a rating of 3.

It was the general feeling of pilots A and B that WLT with good response
characteristics was a significant improvement over the basic aircraft for the
air-to-ground weapon-delivery task. WLT greatly simplified the lateral track-
ing task and allowed more attention to be devoted to the longitudinal task, in
comparison with the basic aircraft,

CONCLUDING REMARKS

Piloted six-degrees-of-freedom motion simulator investigations at Ames
Research Center demonstrated that the WLT control mode was very useful
1) in decreasing pilot workicad during an air-to-ground weapon-delivery task,
and 2) in improving airplane flying qualities in comparison with those of a
conventional aircraft, particularly if any significant amount of heading
change was required to acquire the target.

The parametric evaluation of frequency and damping requirements for the
WLT control mode showed that pilot ratings for various combinations of damp-
ing ratio and frequency response correlate extremely well on the basis of time
required for lateral acceleration response to a unit step input to reach 63.2%
of its steady-state value. This equivalent time constant correlated the data
for underdamped, overdamped, or critically damped responses.

The data show improved pilot ratings with decreased time constant
(response is quickened), but there is a minimum time constant (tr = 0.15 sec)
for optimum performance. A further decrease in the time constant results in
excessive quickness that degrades ratings because of jerkiness and pilot dis-
orientation. In general, equivalert time constants less than about 0.4 sec
resulted in pilot ratings of 3.5 or better for both fine and coarse tasks.

The effect of adding lead to the basic transfer function can be inter-
preted in terms of the equivalent time constant, with these corresponding to
the ones obtained from the frequency and damping variations. Any addition of
a transport delay to a basically good system degraded the performance and
increased the pilot ratings (i.e., made them werse). Most pilot comments
regarding degradation in performance pertained to various amounts of trans-
port delay or lag in the system. Only for cases having low damping and low-
frequency response did oscillatory motion become a problem. For cases having
either high damping and high-frequency response or excessive amounts of lead
the problem became cne of excessive quickness.
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The variation in control authority of 0.5, 0.75, and 3.0 g for a config-
uration having an equivalent time constant of 0.71 sec showed that both the
lower authorities were inadequate to accomplish an abrupt target acquisition
task and that 0.5 g was even inadequate for precise target tracking. For the
highest authority (3.0 g) a maximum of 2.5 g was used, but only momentarily.
For 75% of the time there was a probability that one would not exceed 2 g,
and for 50% of the time the probability one would not exceed 1 g. Since the
control authority required is also dependent on the equivalent time constant,
a quicker response time (smaller time constant) would lead to a lower control
authority necessary to accomplish the heading-change maneuver.
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APPENDIX

Pilot Resumes

This section contains brief resumes of experience and qualifications of

the pilots taking part in this investigation.

Pilot A

Position: Test pilot, USAF/Eglin AFB
Flight time: (h)
Single engine 176
Multiengine 2801
Other 56
Total 3033
Ratings: Single~ and multiengine ratings
Instrument rating
Commercial pilot certificate
Airplanes: RF-4C, F-4C, T-38, A-7D, T-37

Pilot B

Position: Test pilot, USAF/Eglin AFB
Flight time: (h)
Single engine 180
Multiengine 1750
Other 50
Total 1980
Ratings: Single- and multiengine ratings
Instrument rating
Airplanes: F-~4, T-38, T~37, A-7

Pilot C

Position: Instructor, USAF Test Pilot School/Edwards AFB
Flight time: (h)
Single engine 230

Multiengine 1360
Other -
Total 1590

Ratings: Single~ and multiengine ratings
Instrument rating
Airplanes: F-100, F-4, A-7, A-37
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TABLE 1.~ COCKPIT INSTRUMENTATION

Attitude indicator, 2 axis
Horizontal situation indicator
Angle of attack indicator
Altimeter

Instantaneous vertical speed indicator
Normal acceleration, g units
Engine rpm

Indicated airspeed, knots

Mach number

Speed brake position indicator
Longitudinal acceleration, g units
Turn/bank indicator

Sideslip angle indicator

Lateral acceleration, g units
Clock

TABLE 2.- AIRCRAFT PHYSICAL CHARACTERISTICS

Gross weight. ., . . . « .+« o 15,843 kg (34,928 1b)
Reference wing area (9) . . . . 56.49 m? (608 £t2)
Mean aerodynamic chord (2). . . 4.88 m (16.00 ft)
Wing span (b) . . . . . . . . . 13.02 m (42.70 ft)

Center of gravity location. . . 26.5% ¢

Roll moment of inertia (Ixy). . 34,264 kg-m?® (25,270 slng-ftz)
Pitch moment of inertia (Iyy) . 211,114 kg-m? (155,700 slug-£t?)
Yaw moment of inertia (Izz) . . 237,960 kg-m? (175,500 slug-ft?)
Product of inertila (Ixz) « « . =1,091 kg-m2 (-805 slug-ftz)

Engines (2)

. P&W F-100-PW-100

TABLE 3.- STABILITY DERIVATIVES
(M =1.09, a = 0.75°, and Alt. = 5000 ft)

(égp -0.263 Cng 0031 }
| Cag -.0025 Cog 100005
t d
i !
G, -00044 Cng .000287E
| DT
cy .00065
DT CnGR -.0016 :
! |
z C26R .000056 CYg -.017 g
 Cn, -.30 Crg, .0023 ?
—— |
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TABLE 4.- TEST MATRIX — TRANSFER FUNCTION
Bandwidth for Combinations of Frequency and

Damping Ratio

z| 2.3 .5 .7 1.0 1.4 2.0
Wn
0.5 | 0.719| 0.64
1 1.42 1.27 1.01 0.64 | 0.41 ) 0.27
2 2.84 2.5 | 2.02 ] 1.29 .82 .53
3 4.26 3.81, 3.03 | 1.93 | 1.22 .80
4.5 | 6.39 5.72 1 4.55| 2.90 | 1.84 | 1.20
6 6.06 | 3.86 | 2.45 ] 1.60
8 8.08 5.15 3.26 2.13
10 6.44 4.08 2.67
12 7.72 4.90 3.20
15 6.12 4.00
19 7.75 | 5.07
23 6.13
28 7.46

%Bandwidth frequency.

AMPLITUDE

-

-

-3dB {—

18

|
t————BANDWIDTH ——+

w




TABLE 5.- TEST MATRIX — LEAD AND TRANSPORT DELAY

4 T A

4.5| 1.0 0 --

4.5 1.0 1| -

4.5 1.0 3| --

A (K_/3.25)(T1s + 1)e P8 4.5 1.0| .6 | ==

R 15 | 1.4] -0

PED Ly L Y 15 1.4 | =--| .105
" “n 15 1.4 | == .24
15 1.6 | == | .49

TABLE 6.- TEST MATRIX —

CONTROL AUTHORITY

wn 4 Ky
A K /3.25 2 0.7 3.0
s lm 20 .71 .15
PED o 1 2 .7 .SOJ
n n
4" - ;
(
#
2+ 4
o
o A :
<O ] 2
2 7
z
i 1 . q L i 4
-4 -3 -2 -1 0 1 2 3 4
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TABLE 7.- Concluded.

(b) Transport delay, A

Wy 4 A T Pilot A | Pilot B
15 1.4 0 0.19 2/2 2.8/2.5
15 1.4 | 0.105 .29 5/3 4/3
15 1.4 .24 .43 5/3 4.5/3.5
15 1.4 .49 .68 7/7 7/7
(c) Lead time constant, T,
W 4 T T Pilot A | Pilot B
4.5 1.0 0 0.48 4.3/4 5/4
4.511.0 0.1 .37 2/2 5/4
4.5( 1.0 .3 .16 2/2 2/2
4.511.0 .6 .07 4/3 3/3

(d) Basic airplane

Pilot Coarse Fine
A 7 5
B 6 3

TABLE 8.~ REAL ROOTS OF QUADRATIC DENOMINATOR
[(s + a)(s + b) = 82 + 2Lw,s + w,?]

wh g a b g a b

1 |[1l.4 0.42 2.38 2.0 | 0,27 3.73
2 .84 4.76 .54 7.46
3 1.26 7.14 .80 | 11.20
4.5 1.89 | 10.71 1.21 | 16.79
6 2.52 | 14.28 1.61 22.39
8 3.36 | 19.04 2.14 | 29.86
10 4.20 | 23.80 2.68 37.32
12 5.04 28.56 3.22 | 44.79
15 6.30 | 35.70 4,02 | 55.98
19 7.98 | 45.22 5.09 70.91
23 6.16 | 85.84
28 7.50 | 104.50
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TABLE 9.- EQUIVALENT TIME CONSTANTS AND AVERAGE PILOT RATINGS
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TABLE 10.- TIME CONSTANTS AND AVERAGE
PILOT RATINGS FOR LEADS AND TRANSPORT
DELAYS

(a) Lead (T,;)

4.5 {1.0 | O 0.48 | 4.65/4
4.5 | 1.0 .1 .37 3.5/3
4,5 1 1.0 .3 .16 2/2
4.5 | 1.0 .6 .07 3.5/3

(b) Transport delay (A)

w, T A T C/F
15 1.4 | 0 0.19 2.4/2.25
15 1.4 .105 .29 4.5/3
15 1.4 .24 .43 4.75/3.25
15 1.4 .49 .68 7/7
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MOVING AIRSPEED SCALE, MOVING ALTITUDE SCALE,

10-knot INCREMENTS 200-ft INCREMENTS
PITCH LADDER 10
| — }
INCREASING] INCREASING
VELOCITY 40 A5 ALTITUDE
470 | J— _
- T
/
—
o
2 ALTITUDE
RELEASE
BUG
AIRSPEED  FIXED DIVE ANGLE
RELEASE DEPRESSED H'NDLCATORU
BUG RETICLE (-28° 7O -32°)
50 mrad REF.
CIRCLE
2 mil AIM DOT.

Figure 3.- HUD schematic.
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STICK FORCE, ib

STICK FORCE, Ib

40.r
= DESIRED AFT STICK
-== ACTUAL LIMIT
20+
0
BREAKOUT +0.06 Ib
GRADIENTS, ib/in.
L A 856
=20 B 4.0
SR ARD STICK LIMITS, in.
LIMIT FWD 290
a) AFT 5.43
_40 —t y - i e g
Or
RIGHT STICK
20+ LIMIT
B
0 BREAKOUT t 1 1b
GRADIENTS, Ib/in.
A 5.0
=20} B 3.67
LEFT STICK .
LIMIT STICK LIMITS + 4 in.
_40 b)_L - Y . A I ¥
-4 -2 0 2 4 ]

STICK POSITION, in.

(a) Longitudinal stick.

(b) Lateral stick.

Figure 4.- Force-feel characteristics.
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160

- DESIRED
- == ACTUAL

120

&

BREAKOUT : 7 1b
GRADIENT 45 Ib/in.
PEDAL LIMITS + 3.25 in.

RUDDER PEDAL FORCE, Ib
=)

5

-120

Y J
-4 -2 0 2 4
RUDDER PEDAL POSITION, in.

(c) Rudder pedal.
Figure 4.- Concluded.
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MACH NO. AND DYNAMIC PRESSURE

YES
MACH < 1 %‘- = (1+0.2M2)35

NO

P, _ _18e6.9em’

P, (7M12-"2’s

Py = (:J;) X pyg (h)
p, FROM STD. ATMOS. TABLE

!

Qc ® PPy

!

Agpc = f (g,

!

!

LIMIT: 0<DRC1<1.0

!

T =3.232 DRC 1 + 0.6464

(c) Pitch ratio changer mechanization.

Figure 6.~ Coatinued.
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~
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MACH FUNCTION, py/p,

A - i — od

8 16 24 32 20

IMPACT PRESSURE, p,-p,. 100 Ib/ft?

(d) Pitch ratio changer multiplying facrors.
Figure 6.~ Crutinued.
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VCAL AND o

!

TEMPC = 3.3 (800/Vpp, )2 - 2.1

v

LIMIT TEMPC: 0 <TEMPC<5.0

!

AP = 375 fora < 1.0
0.0 10<a < 7.0
0.375 (« - 7) a>70

v

FPSAL = TEMPC - AP

v

LIMIT FPASL: 1.25 < FPASL

(g) Lateral CAS limit schedule.
Figure 6.- Continued.
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SHmecH

'

a1 . —

TEMPA= 10 if 6y <20
= 6667 itsy>20

!

TEMPB= 40+ 4.286 (5y+3) if by <20
= 40-4.167(5y-2) ifsy>20

v

LIMIT TEMPB: TEMPA < TEMPB <40

¥y

CAMLAT = TEMPB/8

(h) Lateral ratio changer.
Figure 6.- Continued.
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Vc AL’ knots

'

800 -V
RCASOUT = <______°_A_"_) 3.876
165

v

RCASLIM = 3875forM< 1.0
2.208 for M > 1.0

Y

LIMIT RCASQUT: 0 < RCASOUT < RCASLIM

5y (deg)

'

CAMDIR = 06085, . foM<15

0 forM> 15

!

LIMIT CAMDIR: -15<CAMDIR <75

(k) Yaw ratio changer.

Figure 6.~ Concluded.
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Figure 7.- Aircraft response to longitudinal step input.
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PILOT COMMENT CARD

1. INITIAL IMPRESSIONS OF CONFIGURATION

2. AIRCRAFT RESPONSE TO

CONTROL INPUTS

(RESPONSE TIME, OVERSHOOT, DAMPING, SETTLING TIME, ETC.)

3.

CONTROL FORCES AND SENSITIVITY

(FORCES, DISPLACEMENTS AND HARMONY)

4. MISSION PERFORMANCE

(ABILITY TO ACQUIRE TARGET AND TO MAKE EITHER LARGE OR SMALL
POSITION CORRECTIONS)

8.
e OVERALL TASK

COOPER-HARPER RATING

* PARAMETER BEING EVALUATED

6. SUMMARY COMMENTS

(REASONS FOR C-H RATINGS AND ANY SPECIAL COMMENTS PERTAINING TO

THE EVALUATION)

HANDLING QUALITIES RATING SCALE

[ ADRONASY PORSELECTED TASK OR
AEOWASD OPERATION®

ARCRAPT DEMANDS ON THE MLOT IN SELECTSD

CHARACTERISTICS TASK OR REQUIRED OPERATION®
E xcelient Pilot compensation not a factor for
Highly desirable desired performatice
Goad Pilot compensat:on not a factor for

Negligitle deticiencies

desited performance

Far -Some mildly
unpleasant deficiencies

Mirnimal piot compensation required for
desired pertormance

Minor but annoying

Desired pyerformance requires moderate

deticiencies plot compensation
Moderately objectionable  Adequate performance requires
deticiencies considerabie pilot compensation

Very otnyectionable but
toler able geticiencies

Adequate perinrmance 1equires extensive
piiot compensaton

s 1t Deficiencies
sstistactory without warrant
improvement’ mprovement
Is adequate ficien
performance Deticiencies
sttamnahie with & reqQuire
tolerabie pilot improvement
work load?

Major deticiencies

Adeguate performance not attainghie with
max Hmum tolerable piiot compensat:on
Controtiability not in question

Major deticiencies

Considerable piiot compensation s réguited
tor control

Majur detic encies

intense pilot compensation s required 1o
retgin control

1 Improvement

Ne

{ mandatory

Major deficiencies

Control will he lost during some portion of
tequited operation

o
.

L Piiot decisions I

Coope: Hatper

“Oetoetoin

Ret NASA YND 5153

S reguirett petghOr Nyisives Sesgiatae Gf TLght phase and of

Jubpheses w-th gl Mgty g COAT LN

Figure 12.- Pilot comment card and rating scale.
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r
3 -
PR=35

5 Il (UNSATISFACTORY)
£ 65
e ! 11l (UNACCEPTABLE)
'6 a) ® 1 " L 1 _J
-
T,
§ LEVEL |
[- 4
S
g

b) ‘

-

Wy, red/sec

(a) Fine task.

(b) Coarse task.

Figure 13.- Effect of natural frequency on pilot rating, Pilot A.
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“n “n O 07
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AVERAGE PILOT RATING

can,rad/um

(a) Fine task.

(b) Coarse task.

Figure 14.- Effect of natural frequerncy on pilot rating, Pilot B.
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(a) Fine task.

(b) Coarse task.

Figure 15.- Effect of natural frequency cn pilot rating, Pilots A and B.
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i) 1 v 14
’ a4 20
|
1 ™ LEVEL I
X/ A A A
04 4
PR=35
]
1)

AVERAGE PILOT RATING

b’ i i - L 1 J
0 2 4 6 8 10 12
a, rad/sec

(a) Fine task.

(b) Coarse task.

Figure 16.- Effect of low-frequency root on pilot rating, Pilot A.
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LEVEL 1

AVERAGE PILOT RATING
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8, rad/sec

(a) Fine task.

(b) Coarse task.
Figure 17.- Effect of low-frequency root on pilot rating, Pilot B.
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AVERAGE PILOT RATING (2 PILOTS)

a, rad/sec

(a) Fine task.

(b) Coarse task.

Figure 18.- Effect of low-frequency root on pilot rating, Pilots A and B.
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Figure 19.- Effect of frequency on the time history of the lateral
acceleration response to pedal input, ¢ = 0.7.
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(b) w, = 8.0.
Figure 19.- Concluded.
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Figure 20.- Effect of damping ratio on the time history of the lateral
acceleration response to pedal input; wp = 4.5, ¢ < 1.0.
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57



1 ( LEVEL |

b pOOO

AVERAGE PILOT RATING

BANDWIDTH, rad/sec

(a) Fine task.

(b) Coarse task.
Figure 21.- Effect of bandwidth on pilot rating, Pilot A.
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AVERAGE PILOT RATING

BANDWIDTH, rad/sec

(a) Fine task.

(b) Coarse task.

Figure 22.- Effect of bandwidth on pilot rating, Pilot B.
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AVERAGE P!'LOT RATING (2 PILOTS)

BANDWIDTH, rad/sec

(a) Fine task.

(b) Coarse task.

Figure 23.- Effect of bandwidth on pilot rating, Pilots A and B.
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Figure 24.- Effect of bandwidth on the time history of the lateral
acceleration response to pedsl input, wy ™ 2.0.
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Figure 24.- Concluded.
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Figure 25.- Effect of bandwidth on the time histery of the lateral
acceleratio. response to pedal input, wy = 3.0.
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Figure 26.- Effect of response time constant on pilot rating, Pilot Al
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Figure 29.- Effect of equivalent time constant on the distribution of the
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Figure 30.- Continued.
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Figure 32.- Effect of lead time constart on pilot rating.
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80



PEDAL DEFLECTION, in.

N
[+
I
o
1.2+ 2‘24‘
of 2 of
o - -
g
12 &-2at
L -l L
W
-24+ §~43~
- 2 -
-36+ ~72
L 5 rb)‘ 4 i A A A ol I — |
2 o 10 20 30 40 5.0
- TIME, t, sec

(b) T; = 0.3, v = 0.16.
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Figure 35.- Continued.
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Figure 37.- Cumulative frequency distribution of commanded side
acceleration, Pilot C.
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