NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
SPACE FABRICATION DEMONSTRATION SYSTEM

QUARTERLY PROGRESS REPORT NO. 6

NASA-MSFC Contract NAS8-32472
SPACE FABRICATION DEMONSTRATION SYSTEM

QUARTERLY PROGRESS REPORT NO. 6

NASA-MSFC Contract NAS8-32472
This Space Fabrication Demonstration System program quarterly reporting period witnessed the completion of the aluminum beam builder effort at Grumman, Bethpage, New York under the base contract and the initiation of continued contract efforts in two distinct areas, i.e.-

- Engineering support of the aluminum beam builder at NASA-MSFC, see enclosure (1)
- Design development of a composite beam cap fabricator, see enclosure (2)

Both areas have proceeded satisfactorily during this reporting period, though the beam cap flange rippling problem has reappeared in the third rolling mill after its installation in the beam builder. This problem will be subject to intensive investigation and resolution during the next monthly reporting period.
The bi-weekly telcon review and the periodic meetings of all associated program management personnel at NASA-MSC, Grumman and Goldsworthy, reference (a), has been of assistance in keeping all informed on program progress, problems and their resolution. At this time we see no difficulties in meeting our program goals and objectives during the next reporting period.

DISCUSSION

WBS 1.1 PROGRAM MANAGEMENT

Figure 1, SFDS Master Program Schedule which outlines progress made with regard to the aluminum beam builder and Figure 2, SFDS Composite Beam Cap Fabricator Schedule show program efforts to date. The former shows that while we are on schedule with our hardware effort, which is described in more detail below, we are behind schedule in supplying a final report on the base-contract effort. This report is being prepared and will be submitted during the next reporting period. The latter schedule shows excellent progress being made in the composite program, described in more detail below.

WBS 1.2 DESIGN AND DEVELOPMENT

The composite beam cap fabricator orientation meeting was held at Goldsworthy Engineering, Incorporated on December 7, 1978. NASA-MSFC and Grumman program management representatives were briefed by Goldsworthy on their progress to date (they had been under contract six weeks at the time) and their project plan. Included in their informal working presentation were the following:

- Pultrusion Dies - they have completed the design for processing both open and closed beam caps of thermoset materials. They plan to modify these dies experimentally for thermoplastic material processing. The prepreg tape layup mandrel design for both cap configurations and both materials was also shown. These, the dies and the mandrel have been ordered.

- Pultrusion Machine - they are setting up an experimental machine to perform the process development effort associated with this project. It was shown to us during a tour of their facility.
Materials - they have gone through an extensive review of available graphite reinforced thermoset and thermoplastic materials with several suppliers, reference (b), and are in the process of making their final selection for demonstration purposes based upon price and availability. Review of and availability of those not selected will continue as the process development efforts proceed. It should be noted that efforts associated with thermoset process development will precede those for thermoplastics, the reverse of that shown in figure 2, in order to minimize pultrusion die expense.

WBS 1.3 FABRICATION AND ASSEMBLY

The lower right aluminum beam cap roll forming mill was delivered to NASA-MSFC and installed in the beam builder on December 8, 1978. The beam builder was brought to full operational status and beams of one to six bay lengths were produced to demonstrate full system capability. The problem encountered with the lower right mill while the beam builder was still at Grumman, that of cap flange waviness, reappeared. A Yoder Company field service representative was called in to adjust the machine. He had moderate success. See enclosure (1) for more detail on this problem as well as beam builder operation at NASA-MSFC in general. Further testing and evaluation of the lower right mill during the next reporting period is planned in order to solve the waviness problem.

CONCLUSION

With the exception of the persistent flange waviness problem the SFDS program is progressing satisfactorily within cost and schedule. Resolution of this outstanding problem is forthcoming.

RECOMMENDATION

Continued close surveillance of all program elements by NASA-MSFC, Grumman and Goldsworthy program management personnel to assure success.

Should you have any question with regard to the above, the enclosed or the program in general, please contact us.

Very truly yours,
GRUMMAN AEROSPACE CORPORATION

Walter K. Muench
SFDS Program Manager

cc: Distribution: NASA-MSFC, Grumman, Goldsworthy
<table>
<thead>
<tr>
<th>CODE</th>
<th>COPIES</th>
<th>ATTENTION</th>
<th>BLDG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EH 43</td>
<td>1</td>
<td>Hill M. Walker</td>
<td>4711</td>
</tr>
<tr>
<td>EH 44</td>
<td>1</td>
<td>James H. Ehl</td>
<td>4711</td>
</tr>
<tr>
<td>EH 44</td>
<td>1</td>
<td>Charles N. Irvine</td>
<td>4711</td>
</tr>
<tr>
<td>EP 12</td>
<td>1</td>
<td>W. Prastrofer</td>
<td>4610</td>
</tr>
<tr>
<td>EP 13</td>
<td>11</td>
<td>Erich E. Engler</td>
<td>4610</td>
</tr>
<tr>
<td>EM 34-13</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS 24D</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP 25G</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 01</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVPRO</td>
<td>1</td>
<td>D. Miller,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Navy Contracts</td>
<td></td>
</tr>
</tbody>
</table>

DISTRIBUTION: GRUMMAN

<table>
<thead>
<tr>
<th>NAME</th>
<th>COPIES</th>
<th>MAIL STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. A. Guarino</td>
<td>1</td>
<td>B11-25</td>
</tr>
<tr>
<td>D. A. Imgram</td>
<td>1</td>
<td>A13-25</td>
</tr>
<tr>
<td>R. W. Johnson</td>
<td>1</td>
<td>A13-25</td>
</tr>
<tr>
<td>A. Alberi</td>
<td>1</td>
<td>A09-25</td>
</tr>
<tr>
<td>J. Huber</td>
<td>2</td>
<td>A04-12</td>
</tr>
<tr>
<td>P. Jacknis</td>
<td>1</td>
<td>C03-25</td>
</tr>
<tr>
<td>L. Junen</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td>A. Weyhrer</td>
<td>1</td>
<td>A01-10</td>
</tr>
<tr>
<td>H. Morfin</td>
<td>1</td>
<td>A09-25</td>
</tr>
<tr>
<td>W. Muench</td>
<td>4</td>
<td>A09-25</td>
</tr>
<tr>
<td>R. Panza</td>
<td>2</td>
<td>---</td>
</tr>
<tr>
<td>L. Rooney</td>
<td>1</td>
<td>A02-25</td>
</tr>
</tbody>
</table>

DISTRIBUTION: GOLDSWORTHY

W. E. Haynes 2
SFDS MASTER PROGRAM SCHEDULE

FY 1977

<table>
<thead>
<tr>
<th>CY</th>
<th>MONTH</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

PROJECT MILESTONES

- **NASA/MSFC REVIEWS**
 - ATP 2/16
 - OR 3/18
 - OR 4/28
 - TRG 6/30
 - TRG 8/29
 - TRG 10/29
 - TRG 12/19
 - TRG 2/20
 - TRG 4/20
 - TRG 6/20
 - TRG 8/20

- **GRUMMAN MONT QTRLY REVIEW**
 - M/1
 - M/8
 - M/9
 - M/12

- **MONTHLY REPORTS**
 - 1/20
 - 3/20
 - 5/20
 - 7/20

- **QUARTERLY REPORTS**
 - 1/20
 - 4/20
 - 7/20

- **FINAL REPORT**

WBS LEVEL

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **CONTRACT ADMIN WBS 1.1.1**
 - MAJOR PROCUREMENT
 - ADMIN WBS 1.1.1
 - CONTRACT MONITORING/CUSTOMER INTERFACE WBS 1.1.1.2

- **PROJECT MGMT WBS 1.1.2**
 - WORK PKG MGMT WBS 1.1.2.1
 - FRM MONITORING & CONTROL WBS 1.1.2.2

- **STRUCT MEMBER DEVEL WBS 1.2.1**
 - WBS 1.2.1.1
 - TRUSS DESIGN RECVTS DEFINITION
 - MATERIALS EVAL/SELECTION WBS 1.2.1.2
 - PROCESS DEFINITION WBS 1.2.1.3
 - DETAIL TRUSS DESIGN & ANALYSIS WBS 1.2.1.4
 - TRUSS/JOINT TOL LEVELS WBS 1.2.1.5
 - TRUSS/JOINT TOL TESTS WBS 1.2.1.6

- **FAB FACILITY DESIGN WBS 1.2.2**
 - SYS RECMTS DEFINITION WBS 1.2.2.1
 - CONFIG LAYOUT WBS 1.2.2.2
 - ROLL FORMING SUBSYS WBS 1.2.2.3
 - MAG DISP SUBSYS WBS 1.2.2.4
 - WELD PROCESS SUBSYS WBS 1.2.2.5
 - CONTROL COMP WBS 1.2.2.6
 - TRUSS CUTOFF & SUPPORT SUBSYS WBS 1.2.2.7
 - DESIGN DEVEL TESTING WBS 1.2.2.8
 - COMPOSITE/ATTACH PARA STUDIES WBS 1.2.2.9

- **FAB FACILITY ASSY WBS 1.3.1**
 - ASSEMBLY WBS 1.3.2
 - ASSEMBLY DEVEL RIG WBS 1.3.2.1
 - FINAL ASSY SFDS WBS 1.3.2.2
 - CONTROL INSTL WBS 1.3.2.3
 - PACK & SHIP WBS 1.3.2.4
 - ASSY SFDS WBS 1.3.2.5

- **FAB FACILITY ASSY WBS 1.4.1**
 - SYS DEBUGGING WBS 1.4.1.1
 - ESTABLISH OPERATING PARAMETERS WBS 1.4.1.2
 - PRODUCE TRUSS (FINAL ACCEPTANCE TEST) WBS 1.4.1.3
 - SYS DEBUGGING WBS 1.4.1.4
 - PRODUCE TRUSS WBS 1.4.1.5

- **PRODUCT ASSURANCE WBS 1.4.2**
 - STRUCT ELEMENT TEST WBS 1.4.2
 - EVAL TEST RESULTS WBS 1.4.2.2
 - NONDESTRUCTIVE TESTS WBS 1.4.2.3

FIGURE 1 - Status of 12/15/78

- DEVELOP FLT DEVO PLAN WBS 1.5.1.1
- DEVELOP DETAIL ESTIMATE RECMTS WBS 1.5.1.2
- DEVELOP COST ESTIMATES WBS 1.5.1.3
- DEVELOP FLT DEMO SCHED WBS 1.5.2.1
SFDS Composite Beam Cap Fabricator

<table>
<thead>
<tr>
<th>Milestones</th>
<th>1978</th>
<th>1979</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-MSFC Reviews</td>
<td>SEP</td>
<td>OCT</td>
</tr>
<tr>
<td>ATP</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>Orientation Meeting</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>MID TERM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRELIMINARY PROCESS SELECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINAL PROCESS SELECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA-MSFC Reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONTHLY</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>10/30 12/5</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>QUARTERLY</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>Grumman Mgt Review</td>
<td></td>
<td>△</td>
</tr>
</tbody>
</table>

CONTRACT ADMIN
- WBS 1.1.1
- MAJOR PROCUREMENT ADMINISTRATION WBS 1.1.1
- CUSTOMER CONTRACT MONITORING & REPORTS WBS 1.1.2

PROJECT MGT
- WBS 1.1.2
- CONTRACT PERFORMANCE MONITORING WBS 1.2.1
- NASA-MSFC INTERFACE MGT REVIEWS & REPORTS WBS 1.1.3

STRUCTURAL MEMBER DEVELOPMENT
- WBS 1.2.1
- BEAM CAP DESIGN DEFINITION WBS 1.2.1
- MATERIALS EVAL & SELECTION WBS 1.2.2
- PROCESS DEFINITION WBS 1.2.3
- FASTENING SYS DEFINITION WBS 1.2.4
- FASTENING PROCESS SELECTION WBS 1.2.5

FABRICATOR DESIGN
- WBS 1.2.2
- FABRICATOR REQS DEFINITION WBS 1.2.1
- FABRICATOR PRELIM. LAYOUT
- THERMOPLASTIC SYS DESIGN WBS 1.2.3
- THERMOSET SYS DESIGN WBS 1.2.4
- FASTENING DETAIL CONCEPTS WBS 1.2.5
- FASTENING SYS PRELIM. DESIGN WBS 1.2.6

DETAIL PARTS
- WBS 1.3.1
- THERMOPLASTIC DIE DETAILS WBS 1.3.1
- THERMOPLASTIC DIE SETUP WBS 1.3.2
- THERMOSET DIE DETAILS WBS 1.3.2
- THERMOSET DIE SETUP WBS 1.3.2

ASSEMBLY
- WBS 1.3.2
- FASTENING DEVELOPMENT WBS 1.3.3
- FASTENING DEVELOPMENT SETUP WBS 1.3.4

EBUS CAP FABRICATOR DEVELOPMENT TESTS
- WBS 1.4.1
- THERMOPLASTIC FORMING WBS 1.4.1.1
- THERMOSET FORMING WBS 1.4.1.2
- FINAL PROCESS FORMING WBS 1.4.1.3
- FASTENING WBS 1.4.1.4

STRUCTURAL ELEMENT MATERIALS TESTS
- WBS 1.4.2
- THERMOPLASTIC WBS 1.4.2.1
- THERMOSET WBS 1.4.2.2
- FINAL PROCESS WBS 1.4.2.3
- FASTENING WBS 1.4.2.4

FIGURE 2 - Status of 12/15/73
ENCLOSURE (1)

SFDS ENGINEERING SUPPORT

AT

NASA-MSC
A competitive award to develop a composite beam cap fabricator was given to Goldsworthy Engineering Incorporated. A program orientation meeting was held at Goldsworthy and the following progress was reported. Suppliers of both thermoset and thermoplastic candidate laminates with graphite reinforcement have been surveyed and final material selections are in progress. The final laminate layup is anticipated to be a 0°, $\pm 45^\circ$, 0° orientation. The tool designs for fabricating both open and closed sections (as shown in Figure 1) have been completed and fabrication is underway.

Disassembly and shipment of the aluminum beam builder less the lower right rolling mill was accomplished. The machine was delivered to NASA MSFC and reassembled by MSFC personnel under the direction of a team of two Grumman engineers. All installed subsystems were functionally checked out and found to be operating satisfactorily.

The lower right aluminum beam cap forming mill removed from the beam builder was shipped to the Yoder Company for modification and/or adjustment to eliminate flange rippling. At the completion of work at Yoder, the mill was sent to MSFC and installed in the beam builder. Retesting of this mill in the beam builder showed flange ripples still apparent. Interchanging the tooling of the last three stations of this mill with a non-affected mill showed the problem to follow the tooling. Returning the tooling to their original positions it was found that cap sections of minimal flange waviness could be produced from the left mill through increasing part deformation through pass number one, and using oversize width material (6.375-inch in lieu of 6.360). A final determination on the apparent tooling discrepancy will be undertaken.

Once the final Yoder mill was installed, all subsystems were operationally checked out through the fabrication of several one-bay beams and one, six-bay beam.
Figure 1. Composite Cap Configurations

CLOSED CAP SECTION

OPEN CAP SECTION

Dimensions:
- 55.14 mm
- 50.11 mm
- 18.44 mm
- 9.5 mm
- 9.5 mm

Angles:
- 60°
ENCLOSURE (2)

GOLDSWORTHY ENGINEERING INCORPORATED

MONTHLY PROGRESS LETTER NO. 2
DESIGNERS AND MANUFACTURERS OF ADVANCED PRODUCTION SYSTEMS FOR COMPOSITES

DEVELOPMENT OF A COMPOSITE CAP FORMING MACHINE FOR SPACE CONSTRUCTION

Monthly Progress Letter
No. 2
W. E. HAYNES

Development of a Composite Cap
Forming Machine for
Space Construction

Monthly Progress Letter No. 2
Grumman Purchase Order No.
14-14284
December 20, 1978

Grumman Aerospace Corp.
Mail Stop A 09-25
Bethpage, N. Y. 11714

Attention: Mr. Walter K. Muench, Program Mgr.

Subject: Composite Cap Forming Machine - Monthly Progress Letter No. 2
Reporting period 20 November thru 20 December 1978.

Enclosures: I Master Schedule Status
II Materials Status
III Program Review Agenda and Attendees

Summary:
Activities during the current reporting period centered around the selection and ordering of materials (ref. Enclosure II) and the first joint NASA/GAC review at GEI, which occurred on 7 December, 1978. (ref. Enclosure III).

Results of the NASA/GAC review were favorable and all participants expressed satisfaction with the start-up efforts and program objectives.

Mr. Muench indicated that current planning is for the next review to occur at GEI during the 4th week of February, 1979.

Discussion:
All activities were completed on or ahead of schedule during the reporting period (ref. Enclosure I).

WBS 1.1.1.1.0, 1.1.1.2.0 - Completed
WBS 1.1.1.3.0 Select and order Materials

Selection process continuing; ordering begun (ref. Enclosure II)
This activity will continue until satisfactory quantities of all selected candidate materials are on hand.

GAC provided GEI with background information on a list of materials in response to GEI request.
WBS 1.1.2.1.1. Set up Tooling
Wood mandrel parts (pre-preg lay-up tooling) have been received. Metal tension members, heating elements and thermocouples delivery awaited shortly. Dies still expected end of January 1979.

WBS 1.1.3.0.1 Design Review
Accomplished on 7 December 1978 (ref. Enclosure III)
Next review expected in February, 1979.

Conclusions:
The Composite Cap Development Program progressed satisfactorily during the reporting period.

Recommendations:
As recommended by Mr. Muench, GEI will coordinate the next review with on-going fabrication activities to provide NASA and GAC the opportunity to see the process in action.

I will take this opportunity to wish all of you a very merry holiday season.

Respectfully,

William E. Haynes
Goldswothy Engineering, Inc.
Program Manager
DISTRIBUTION:

GAC
Mr. Walter Muench - Original plus 1 copy
Mr. Robert Panza - 1 copy

GEI
W. Brandt Goldsworthy - 1 copy
G.W. Ewald - 1 copy
R. Sjostedt - 1 copy
W. Haynes - 1 copy
File - 1 copy
Enclosure I

Composite Cap Development Program

Master Schedule Status a/o 20 Dec. 78

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>OCT.</th>
<th>NOV.</th>
<th>DEC.</th>
<th>JAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress Report</td>
<td></td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>Design Dies (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Dies</td>
<td></td>
<td>▼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receive Dies</td>
<td></td>
<td></td>
<td>▼ ▼</td>
<td></td>
</tr>
<tr>
<td>Design Fittings & Prep. Guidance Tooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select & Order Materials</td>
<td></td>
<td></td>
<td></td>
<td>▼ ▼</td>
</tr>
<tr>
<td>Fab. Prep. Tooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WBS 1.1.1.3.0 Select & Order Materials

The following describes activities to the date of this report.

A. Materials ordered for January '79 delivery:
 1) Two vinyl ester resin pre-preg tapes - 10 lbs. total
 2) One high temperature polyester - 5 lbs. total
 3) All above purchased from Celanese Research Lab. Summit, N.J. Total Cost: $500.

B. Materials ordered for late January delivery:
 1) 15# polyimide pre-preg from Hexcell Corp. Dublin, Ca. Total cost: $1470.
First NASA/GAC Program Review of the Composite Beam Cap Project at GEI.

09:30 Convene
Opening Statement - Introductions Johnson/Haynes

09:40 Status Review:
DiesHaynes
MaterialsSjostedt
Fabrication of CapsSjostedt
Scheduled vs ActualHaynes
SummaryHaynes

10:40 Technical DiscussionAll
Background information on pultrusion
(Film)
Application to composite beam cap

11:40 Tour of GEI facilitiesAll
COMPOSITE BEAM CAP PROJECT

PARTICIPANTS

NASA Marshall Space Flight Center
Mr. Clyde Nevins
Mr. Hugh Dudley

GRUMMAN Aerospace Corporation
Dr. Roger Johnson
Mr. Walter K. Muench
Mr. P. Layton
Mr. L. Poveromo
Mr. R. Panza
Mr. Warren Marx

GOLDSWORTHY Engineering Inc.
Mr. W. Brandt Goldsworthy
Mr. W. E. Haynes
Mr. Rob Sjostedt
Mr. David Beck