NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
Effect of Surface Roughness on Hydrodynamic Bearings

Bankim C. Majumdar and Bernard J. Hamrock
Lewis Research Center
Cleveland, Ohio

Prepared for the
Joint Lubrication Conference
cosponsored by the American Society of Mechanical Engineers
and the American Society of Lubrication Engineers
New Orleans, Louisiana, October 5-7, 1981
EFFECT OF SURFACE ROUGHNESS ON HYDRODYNAMIC BEARINGS

Bankim C. Majumdar and Bernard J. Hamrock
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. Assuming the surface height distribution as Gaussian the contact pressure is calculated. The average Reynolds equation of partially lubricated surface is used to calculate hydrodynamic load. An analytical expression for average gap is found and is introduced to modify the average Reynolds equation. The resulting boundary value problem is then solved numerically by finite difference methods using the method of successive over-relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings are calculated for various design data. The effects of attitude and roughness of surface on the bearing performance are shown. The results are compared with similar available solution of rough surface bearings. It is shown that (1) the contribution of contact load is not significant and (2) the hydrodynamic and contact load increase with surface roughness.

INTRODUCTION

The classical theory of hydrodynamic lubrication given by Reynolds does not consider the surface roughness of the elements having relative motion. This theory is applicable when the bearing surfaces are completely separated by a thick lubricant film. It is known that the bearing load supporting ability increases with decrease in the lubricant film. When the load is very high and the film thickness is small there is a possibility of asperity contact. The method of computation of surface contact load is extremely complex. A few theories concerning the contact of nominally flat surfaces are available [1-4]. In addition to this contact load, the lubricant film between two surfaces having relative motion will also carry a load. This load can be called the hydrodynamic load of a rough surface bearing. There exists two main approaches [5-7] for computation of the hydrodynamic load. Patir and Cheng [5,6] used the flow simulation method of a randomly generated rough surface with known statistical properties over the bearing area. Tønder [7] studied the lubrication of a rough surface by a Monte Carlo method.

The present study uses a flow model similar to Patir and Cheng [5]. This study differs from [6] so far as calculation of average gap \(h \) is concerned. This gap height is obtained analytically in terms of nominal film thickness, \(h \). It is then introduced in the basic equation to modify average Reynolds equation. Moreover, the computation of contact load in addition to hydrodynamic load is included. The partial differential equation is solved numerically by finite difference methods satisfying the appropriate bearing boundary conditions. The effect of roughness parameter, attitude, and ratio of correlation length of asperity on the hydrodynamic load capacity is shown.
NOTATIONS

\(A_p \) apparent area of contact \([\text{m}^2]\)

\(B \) width of plane slider [m]

\(C \) nominal clearance in journal bearing [m]

\(E_a, E_b \) modulus of elasticity of material of surfaces \(a \) and \(b \) [N/m²]

\[
\frac{1}{E_{11}} = \frac{1}{2} \left[\frac{1 - v_a^2}{E_a} + \frac{1 - v_b^2}{E_b} \right]
\]

\(e \) eccentricity [m]

\(h, H \) nominal film thickness [m], \(H = h/h_2 \) for slider bearing, \(H = h/C \) for journal bearing

\(h_1, h_2 \) nominal maximum and minimum film thicknesses of slider bearing [m]

\(h_l \) local film thickness [m]

\(\bar{h}_l \) average film thickness [m]

\(K \) a constant

\(L \) length of bearing [m]

\(N \) number of asperities per unit area

\(n \) attitude, \(n = h_1/h_2 \)

\(p, P \) mean hydrodynamic pressure [N/m²], \(P = (ph_2^2)/(6nuB) \) for slider bearing, \(P = (PC^2)/(6nuk) \) for journal bearing

\(P_c \) contact pressure [N/m²]

\(R \) journal radius [m]

\(t \) time [s]

\(u_a, u_b, u \) velocity of surfaces [m/s], \(u_a = u \), \(u_b = 0 \)

\(v, V \) squeeze velocity, \(v = \left[-(ah)/(at)\right] \) [m/s], \(V = (Bv)/(h_2u) \) for slider bearing, \(V = (Rv)/(Cu) \) for journal bearing

\(W_c, W_c \) asperity contact load [N], \(W_c = W_c/LBE' \) for slider bearing, \(W_c = W_c/2LRE' \) for journal bearing
The average Reynolds equation for partial hydrodynamic lubrication is given by Patir and Cheng [5] and it can be written for the surfaces shown in figure 1 as

$$\frac{\partial}{\partial x}\left(h^3 \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial y}\left(h^3 \frac{\partial p}{\partial y} \right) = \frac{u_a + u_b}{2} \frac{\partial \bar{H}}{\partial x} + \frac{u_a - u_b}{2} \frac{\partial \phi_s}{\partial x} + \frac{\partial \bar{H}}{\partial t}$$

(1)

where
\(\sigma \) is the standard deviation

\(\phi_x \) and \(\phi_y \) are pressure flow factors

\(\phi_s \) is shear flow factor

The average gap is calculated from

\[
\bar{h}_T = \int_{-h}^{\infty} (h + \delta)f(\delta)d\delta
\]

(2)

where \(f(\delta) \) is probability density function of combined roughness, \(\delta \). The flow factors \(\phi_x, \phi_y \) will approach 1 as \(h/\sigma \) approaches \(\infty \), whereas \(\phi_s \) will be equal to zero for a large value of \(h/\sigma \). The average gap \(\bar{h}_T \) is seen to be functions of combined roughness and the probability density function of \(\delta \). The study to follow will deal with when both surfaces have the same roughness structure and same rms roughness.

To obtain a solution of equation (1) for a particular bearing configuration one has to find \(\phi_x, \phi_y, \phi_s \), and \(\bar{h}_T \) beforehand. The \(\phi_x, \phi_y, \) and \(\phi_s \) are dependent on the roughness geometry of the bearing surface. The flow factors not only depend on \(h/\sigma \) as mentioned above, they are functions of the statistical properties, such as the frequency density of roughness heights and the directional properties of the asperities. The height distribution is assumed to be Gaussian. The flow factors \(\phi_x \) and \(\phi_y \) are obtained by Patir and Cheng [5] through flow simulation of a rough surface having Gaussian distribution of surface height. These are used in the present case. However, the average gap \(\bar{h}_T \) is calculated in the following way:

For a Gaussian distribution the normal probability density function of \(\delta \) is

\[
f(\delta) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{\delta^2}{2\sigma^2}}
\]

(3)

where \(\sigma \) is the standard deviation.

Substituting equation (3) into equation (2),

\[
\bar{h}_T = \frac{1}{\sigma \sqrt{2\pi}} \int_{-h}^{\infty} (h + \delta)e^{-\frac{\delta^2}{2\sigma^2}} d\delta
\]

After performing the above integration, we get \(\bar{h}_T \) as

\[
\bar{h}_T = \frac{h}{2} \left[1 + \text{erf} \left(\frac{h}{\sqrt{2\sigma}} \right) \right] + \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{h^2}{2\sigma^2}}
\]

(4)
since
\[\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-r^2} \, dr = \frac{1}{2} [1 - \text{erf}(h)] \]

Differentiating \(\bar{h}_T \) with respect to \(x \), one obtains
\[\frac{\partial \bar{h}_T}{\partial x} = \frac{1}{2} \left[1 + \text{erf} \left(\frac{h}{\sqrt{2\sigma}} \right) \right] \frac{ah}{\partial x} \tag{5} \]

Similarly
\[\frac{\partial \bar{h}_T}{\partial t} = \frac{1}{2} \left[1 + \text{erf} \left(\frac{h}{\sqrt{2\sigma}} \right) \right] \frac{ah}{\partial t} \tag{6} \]

The flow simulation factors \(\phi_x, \phi_y, \) and \(\phi_S \) are given by \([5,6] \),
\[\phi_x = 1 - C_1 e^{-\left(\frac{h}{\sigma} \right)^r} \quad \text{for } \gamma \leq 1 \]
\[\phi_x = 1 + C_1 \left(\frac{h}{\sigma} \right)^{-r} \quad \text{for } \gamma > 1 \]
\[\phi_S = A_1 \left(\frac{h}{\sigma} \right)^{a_1} e^{-a_2 \left(\frac{h}{\sigma} \right) + a_3 \left(\frac{h}{\sigma} \right)^2} \quad \text{for } \frac{h}{\sigma} \leq 5 \tag{7} \]
\[\phi_S = A_2 e^{-a_4 \left(\frac{h}{\sigma} \right)} \quad \text{for } \frac{h}{\sigma} > 5 \]

and
\[\phi_y\left(\frac{h}{\sigma}, \gamma \right) = \phi_x\left(\frac{h}{\sigma}, \frac{1}{\gamma} \right) \]

where \(C_1, r, A_1, A_2, a_1, a_2, a_3, \) and \(a_4 \) are constants and tabulated in \([6] \), and \(\gamma \) is defined as ratio of lengths at which the auto-correlation function of the \(x \) and \(y \) profiles reduce to 50 percent of the initial value. This \(\gamma \) can be thought of as the length-to-width ratio of a representative asperity. For isotropic roughness \(\gamma = 1 \).

Having known the flow factors and \(\bar{h}_T \); and assuming \(u_b = 0 \) and \(u_a = u \) equation (1) for constant \(n \) and when both surfaces have same roughness structure can be written as
\[
\frac{a}{ax}(\phi x^3 \frac{ap}{ax}) + \frac{a}{ax}(\phi y^3 \frac{ap}{ay}) = 6n \left\{ \frac{1}{2} \left[1 + \text{erf} \left(\frac{h}{\sqrt{2a}} \right) \right] \left(u \frac{\partial h}{\partial x} + \frac{\partial h}{\partial t} \right) \right\} \tag{8}
\]

It has been found in [6] that for the type of model as mentioned earlier (i.e., when both surfaces have the same roughness structure) there is no \(\phi_S \) effect.

Let us now attempt to find the solution of equation (8) for the infinitely long plane slider, finite plane slider, and infinitely long journal bearing.

Infinitely Long Plane Slider Bearing

Figure 2 shows a slider bearing. If length of the slider is very long compared to \(B, \frac{\partial \sigma}{\partial y} = 0 \). Hence equation (8) can be written as

\[
\frac{a}{ax}(\phi x^3 \frac{ap}{ax}) = 6n \left\{ \frac{1}{2} \left[1 + \text{erf} \left(\frac{h}{\sqrt{2a}} \right) \right] \left(u \frac{\partial h}{\partial x} + \frac{\partial h}{\partial t} \right) \right\} \tag{9}
\]

Using the following substitutions:

\[
X = \frac{x}{B}, \Lambda = \frac{h_2}{\sigma}, H = \frac{h}{h_2}, \text{ and } P = \frac{p h_2^2}{6n \nu \beta}
\]

equation (9) becomes

\[
\frac{a}{ax}(\phi x^3 \frac{ap}{ax}) = 6n \left\{ \frac{1}{2} \left[1 + \text{erf} \left(\frac{\Lambda H}{\sqrt{2}} \right) \right] \left(\frac{\partial H}{\partial x} - \frac{Bv}{h_2 u} \right) \right\} \tag{10}
\]

since \(v = -(\partial h/\partial t) \).

Expanding equation (10),

\[
\phi x^3 \frac{a^2 p}{a x^2} + 3\phi x^2 \frac{a p}{a x} \frac{\partial h}{\partial x} + H^3 \frac{a p}{a x} \frac{\partial h}{\partial x} = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\Lambda H}{\sqrt{2}} \right) \right] \left(\frac{\partial H}{\partial x} - V \right) \tag{11}
\]

where

\[
V = \frac{Bv}{h_2 u}
\]

The dimensionless parameter \(V \) can be visualized as squeeze effect and it comes from the flow continuity.

For a slider bearing, the dimensionless film thickness, \(H \) is given by

\[
H = n - (n - 1)X \tag{12}
\]

where \(n = h_1/h_2 \).

The bearing boundary conditions are
P = 0 at X = 0 \quad (13)

and

P = 0 at X = 1

Finite Slider Bearing

The dimensionless differential equation in this case will be

\[\phi_x H^3 \frac{a^2 P}{a x^2} + 3 \phi_x H^2 \frac{a P a H}{a x a x} + H^3 \frac{a P}{a x} \frac{a \delta x}{a x} + \left(\frac{B}{L} \right)^2 \phi_y H^3 \frac{a^2 P}{a y^2} \]

\[= \frac{1}{2} \left[1 + \text{erf} \left(\frac{\Lambda H}{\sqrt{2}} \right) \right] \left(\frac{a H}{a x} - V \right) \quad (14) \]

where \(Y = y/L \).

The film thickness \(H \), and the bearing boundary conditions are still given by equations (12) and (13) with additional boundary conditions at the sides.

Infinitely Long Journal Bearing

A journal bearing as shown in figure 3 when rotating with velocity \(u \) carries a load \(w \). If the length of the bearing is large compared to other dimensions, then there will be no side leakage. Thus when \(L/R \) is large, \(a p/a y = 0 \). Therefore the basic equation will be equation (9). This can be nondimensionalized with the following substitutions:

\[\theta = \frac{x}{R}, H = \frac{h}{C}, \Lambda = \frac{C}{a}, \text{and} \quad P = \frac{p C^2}{6 n u R} \]

The dimensionless equation is

\[\phi_x H^3 \frac{a^2 p}{a \theta^2} + 3 \phi_x H^2 \frac{a P a H}{a \theta a \theta} + H^3 \frac{a P}{a \theta} \frac{a \delta x}{a \theta} = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\Lambda H}{\sqrt{2}} \right) \right] \left(\frac{a H}{a \theta} - V \right) \quad (15) \]

where

\[H = 1 + \epsilon \cos \theta, \quad \epsilon = \frac{e}{C}, \quad V = \frac{R v}{C u} \quad (16) \]

The boundary conditions are:

\[P = 0 \quad \text{at} \quad \theta = 0 \]

\[P = \frac{a P}{a \theta} = 0 \quad \text{at} \quad \theta = \theta_2 \quad (17) \]
where ϕ_2 is the angular coordinate at which the film breaks. This boundary condition is known as Reynolds condition. Using the expression of H, equation (15) can be reduced to

$$\phi(x) \left(1 + \varepsilon \cos \theta \right)^3 \frac{\partial^2 p}{\partial \theta^2} - 3 \phi_x \left(1 + \varepsilon \cos \theta \right)^2 \sin \theta \frac{\partial p}{\partial \theta} + \left(1 + \varepsilon \cos \theta \right)^3 \frac{\partial p}{\partial \theta} \frac{\partial \phi_x}{\partial \theta}$$

$$= \frac{1}{\varepsilon} \left[1 + \text{erf} \left(\frac{\Delta H}{\sqrt{2}} \right) \left(-\varepsilon \sin \theta - V \right) \right]$$

Equations (11), (14), and (18) are solved numerically by finite difference methods with successive over-relaxation factor satisfying the appropriate boundary conditions for infinitely long plane slider, finite plane slider, and infinitely long journal bearing, respectively.

Calculation of Hydrodynamic Load

With the known hydrodynamic pressure distribution the hydrodynamic load can be calculated from:

For infinitely long plane slider -

$$W_h = L \int_0^B p \, dx$$

$$= \frac{bnLB^2u}{h_2^2} \int_0^1 p \, dx$$

or

$$W_h = \int_0^1 p \, dx \quad (19)$$

where

$$W_h = \frac{Wh_n^2}{bnLB^2u}$$

For finite plane slider -

$$W_h = \int_0^1 \int_0^1 p \, dx \, dy \quad (20)$$

where W_h is defined the same as for the infinite slider.

For infinitely long journal bearing the two components of loads are -
These can be written in dimensionless form as

\[w_{hr} = -LR \int_{0}^{\theta_2} p \cos \theta \, d\theta \]

and

\[w_{he} = LR \int_{0}^{\theta_2} p \sin \theta \, d\theta \]

The total hydrodynamic load is

\[w_h = \sqrt{w_{hr}^2 + w_{he}^2} \] \hspace{1cm} (22)

where

\[w_h = \frac{w_{he}C^2}{6nLR^2u} \]

The attitude angle

\[\psi = \tan^{-1}\left(\frac{w_{he}}{w_{hr}}\right) \] \hspace{1cm} (23)

The integrations of equations (19), (20), and (21) are performed numerically by Simpson's rule.

Calculation of Asperity Contact Load

Using a Gaussian distribution of asperity height, the contact load can be evaluated from the nominal contact pressure. When both surfaces are rough, the nominal pressure can be obtained from Greenwood and Tripp [4]. This is written as

\[p_c = KE_0F_{5/2}(\Lambda) \] \hspace{1cm} (24)

where
\[\frac{8 \sqrt{2}}{15} \pi (N \delta)^2 \sqrt{\frac{\delta}{\beta}} \]

\(N \) number of asperities per unit area

\(\beta \) mean radius of curvature of asperities

\(E' \) composite modulus of elasticity

and

\[F_{5/2} = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} (s - \Lambda)^{5/2} e^{-(\Lambda^{2}/2)} d\Lambda \]

The value of \(K \) varies from 0.003 to 0.0003 for the range of \(\alpha/\beta \) between 0.01 and 0.001. The function \(F_{5/2} \) has been calculated in [4] and is reproduced below for various \(\Lambda \).

<table>
<thead>
<tr>
<th>(\Lambda)</th>
<th>(F_{5/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.61664</td>
</tr>
<tr>
<td>0.5</td>
<td>0.4040</td>
</tr>
<tr>
<td>1.0</td>
<td>0.08056</td>
</tr>
<tr>
<td>1.5</td>
<td>0.02286</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00642</td>
</tr>
<tr>
<td>2.5</td>
<td>0.00106</td>
</tr>
<tr>
<td>3.0</td>
<td>0.00017</td>
</tr>
<tr>
<td>3.5</td>
<td>0.00002</td>
</tr>
<tr>
<td>4.0</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

The contact load is

\[w_c = A_p p_c \] (25)

where \(A_p \) is the apparent area of contact.

Therefore for plane slider bearing

\[w_c = L B p_c \] (26)

or

\[w_c = K F_{5/2} \]

where

\[w_c = \frac{w_c}{L B E' r} \]
Similarly for journal bearing W_C is given by

$$W_C = \frac{W_C}{2LpC}$$

where $W_C = 2LpC$.

The above two dimensionless loads W_h and W_C are defined with different physical parameters. Therefore these cannot be simply added in this form. In the following section an example is taken to show the effect of W_C and W_h. The discussion to follow is concerning W_h.

RESULTS AND DISCUSSION

The hydrodynamic load has been calculated using the foregoing method for infinitely long plane slider, finite slider, and infinitely long journal bearings. The example given later shows that the asperity contact load is much smaller than the hydrodynamic load. Therefore the results are given with respect to W_h only.

Figures 4 to 10 show the results of plane slider bearings and the results for the journal bearing are given in table I and figure 11. It may be noted the results corresponding to $\Lambda = 6$ approach the smooth bearing solutions.

Plane Slider Bearing

The effect of various parameters, namely, n, V, L/B, Λ and γ on W_h is discussed in the following paragraphs.

(1) Effect of roughness parameter Λ: Each of the figures shows that the hydrodynamic load is increased with decrease in the Λ. This increase is due to pressure flow effect (ϕ_x and ϕ_y) and the extra term in the average gap R_f. The hydrodynamic load also increases very sharply at small Λ.

(2) Effect of attitude n: When local squeeze term V is neglected, the load capacity is maximum at $n = 2$ for most values of Λ. The variation of load with n for a particular Λ is more or less similar to that of a smooth bearing. It may be mentioned that an infinitely long plane slider having smooth surfaces carries a maximum load when $n = 2.2$. In the present case the load reaches a maximum value when n varies between 2.0 and 2.5.

(3) Effect of local squeeze velocity V: The effect of squeeze velocity is always to enhance the load. In rough surface bearings (figs. 4 and 5) the similar effect is also seen. From figure 5 it may be noticed that a bearing operating on small attitude gives high load. This indicates that for a bearing having nearly parallel film, the squeeze velocity plays a significant role so far as load capacity is concerned.

(4) Effect of length to width ratio L/B: The hydrodynamic load increases with the L/B ratio (fig. 9). This is expected from the physical point of view. However, load does not consistently change with the change of L/B ratio.

(5) Effect of surface pattern parameter γ: The γ parameter represents the directional properties of surfaces. As γ is the ratio of length-to-width of an asperity and as the orientation of asperity disturbs the flow, its effect on the load is seen to predominant (fig. 10). As per definition purely transverse, isotropic and longitudinal roughness patterns
correspond to $\gamma = 0$, 1 and ∞, respectively. As the values of pressure flow factor θ_x are known from $1/6$ to 6, these are used here. These two values adequately represent transverse and longitudinal patterns. For a square bearing the maximum and minimum load are obtained with isotropic and longitudinal surface roughness, respectively. Whereas the surfaces with transverse pattern give intermediate values.

Approximate Equation

From a near optimum slider ($n = 2$) it has been found that the load capacity of isotropic rough and smooth surfaces can be closely approximated by the following simple relationship:

\[W_{h(\text{rough})} = \frac{W_{h(\text{smooth})}}{1 - 0.77 e^{-0.76\lambda}} \]

The maximum error introduced by this approximation is about 5 percent.

Journal Bearing

The hydrodynamic load, attitude angle, and the location of lubricating film breakdown for an infinitely long journal bearing using Reynolds boundary conditions are given in table I and figure 11. The load capacity increases with decrease in the C/A (or A) ratio, but the extents of lubricating film in most cases do not change. The attitude angle drops very slowly with increase in the roughness. Due to this reason the variation of ϕ and θ_2 is given in table I. The variation of load, attitude angle, and the extent of film with eccentricity ratio is very much similar to that of a smooth bearing.

Calculation of Total Load ($W_h + W_c$)

The dimensionless hydrodynamic and contact loads are defined in such a way one cannot add them directly. The relative load sharing ability is shown with an illustrative example.

Example:

A plane slider bearing made of steel is operating under the following conditions:
- Length of bearing $L = 50$ mm
- Width of bearing $B = 50$ mm
- Minimum film thickness $h_2 = 5\times10^{-6}$ m
- Attitude $n = 2.0$
- Sliding speed $u = 5$ m/s
- Absolute viscosity of oil $\eta = 0.20$ Ns/m²

The hydrodynamic and contact load for the above bearings are calculated. Assume $E' = 2.7\times10^{11}$ N/m².

The hydrodynamic load is given by the expression:
Substituting the above data in this expression

\[w_h = \frac{6nL^2 u}{h_c^2} w_h[N] \]

The contact load can be written as

\[w_c = LBKE'F_{5/2}[N] \]

Although \(F_{5/2} \) will be slightly different from \(h_2 \) to \(h_1 \), \(F_{5/2} \) at \(h_2 \) is used here. Taking \(K = 0.003 \), assuming isotropic surface roughness and using the above data

\[w_c = 165 \times 10^4 F_{5/2}[N] \]

For various roughness parameters the hydrodynamic and contact load are calculated for isotropic surface roughness and are shown below:

<table>
<thead>
<tr>
<th>(\Lambda (=h_2/\sigma))</th>
<th>(w_h[kN])</th>
<th>(w_c[kN])</th>
<th>(w_c/w_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>453</td>
<td>133</td>
<td>0.294</td>
</tr>
<tr>
<td>2</td>
<td>360</td>
<td>8.94</td>
<td>0.0248</td>
</tr>
<tr>
<td>3</td>
<td>321</td>
<td>0.28</td>
<td>0.0008b</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Comparison of Results

The hydrodynamic load capacity for the square plane slider with \(n = 2 \) and \(\gamma = 1 \) is compared with that of Patir and Cheng [6] result. These are shown in table II. The Patir and Cheng results are slightly higher than those obtained from the present method of solution. All the data in table II are in agreement within 20 percent. The load capacity corresponding to other values of \(\Lambda \) are consistently higher. This may be due to assumption of polynomial density function for the Gaussian function in the calculation of \(\overline{h_T} \) in [6]. The present calculations are, however, made from the exact expression of \(\overline{h_T} \) (eq. (4)). Again the numerical calculation are done with an accuracy of 0.01 percent of the difference of integrated pressures of two successive iterations. Therefore, it is believed that the present data give good accuracy.

CONCLUSIONS

Loads due to asperity contact as well as hydrodynamic pressure were considered in studying the effect of surface roughness on hydrodynamic bearings. The height distribution was assumed to be Gaussian and the contact pressure was calculated. The average Reynolds equation with flow simulation
of a randomly generated rough surface was used to calculate the hydrodynamic
load. An analytical expression for the average gap was found and was intro-
duced in the modified average Reynolds equation. The pressure distribution
and hydrodynamic load capacity of plane slider and journal bearings are es-
estimated for various design data. The effect of attitude and ratio of film
thickness to standard deviation of a surface was shown. The following con-
clusions are drawn from the above analysis.
1. Both the hydrodynamic and contact load increase with increase in the
surface roughness.
2. For a square plane slider maximum hydrodynamic load is observed with
isotropic surface roughness.
3. The hydrodynamic load approaches to a smooth bearing solution
when \(\Lambda = 6 \) and the contact load approaches zero when \(\Lambda = 4 \).
4. Although the hydrodynamic load of journal bearing varies with sur-
face roughness, there is little variation of attitude angle and the location
of the point of film breakdown.
5. The approximate equation proposed for plane slider bearing having
\(n = 2 \) may be used for design calculations.

ACKNOWLEDGEMENT

During the period when the work described in this paper was carried
out, one of the authors (B. C. Majumdar) was in receipt of a National Re-
search Council Senior Research Associateship and located in the Mechanical
Technologies Branch of NASA Lewis Research Center in Cleveland, Ohio.

REFERENCES

1. Greenwood, J. A. and Williamson, J. B. P., "Contact of Nominally Flat
2. Whitehouse, D. J. and Archard, J. F., "The Properties of Random Surfaces
of Significance in Their Contact," Proceedings of the Royal Society,
3. Nayak, P. R., "Random Process Model of Rough Surfaces," Journal of Lubri-
4. Greenwood, J. A. and Tripp, J. H., "The Contact of Two Nominally Flat
Rough Surfaces, Proceedings of the Institution of Mechanical Engineers,
of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication,",
6. Patir, N. and Cheng, H. S., "Application of Average Flow Model to Lubrica-
tion Between Rough Sliding Surfaces," Journal of Lubrication
7. Tønder, K., "Simulation of the Lubrication of Isotropically Rough Sur-
faces," American Society for Lubrication Engineers, Trans., Vol. 23,
TABLE I. - PERFORMANCE CHARACTERISTICS OF INFINITELY LONG JOURNAL BEARING (V = 0)

<table>
<thead>
<tr>
<th>ϵ</th>
<th>Λ</th>
<th>W₀₂</th>
<th>φ₀²</th>
<th>ψ₀²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>0.361</td>
<td>247</td>
<td>71.770</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.259</td>
<td>247</td>
<td>71.800</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.252</td>
<td>247</td>
<td>71.861</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.233</td>
<td>247</td>
<td>71.934</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.218</td>
<td>247</td>
<td>72.030</td>
</tr>
<tr>
<td>0.2</td>
<td>1</td>
<td>0.699</td>
<td>237</td>
<td>68.999</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.564</td>
<td>237</td>
<td>69.070</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.494</td>
<td>237</td>
<td>69.206</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.457</td>
<td>240</td>
<td>69.370</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.427</td>
<td>240</td>
<td>69.580</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>1.346</td>
<td>220</td>
<td>62.323</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.104</td>
<td>222</td>
<td>62.526</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.981</td>
<td>222</td>
<td>62.817</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.913</td>
<td>225</td>
<td>63.185</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.855</td>
<td>225</td>
<td>63.700</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>2.184</td>
<td>210</td>
<td>53.089</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.803</td>
<td>210</td>
<td>53.562</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.632</td>
<td>210</td>
<td>54.018</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.530</td>
<td>210</td>
<td>54.542</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.423</td>
<td>210</td>
<td>55.379</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>4.538</td>
<td>197</td>
<td>38.676</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.656</td>
<td>197</td>
<td>39.481</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.301</td>
<td>197</td>
<td>40.145</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.099</td>
<td>197</td>
<td>40.671</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.863</td>
<td>197</td>
<td>41.482</td>
</tr>
</tbody>
</table>
TABLE II. - COMPARISON OF HYDRODYNAMIC LOAD CAPACITY OF FINITE SLIDER BEARING (L/B = 1, n = 2, γ = 1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0192</td>
<td>0.0151</td>
</tr>
<tr>
<td>2</td>
<td>0.0146</td>
<td>0.0120</td>
</tr>
<tr>
<td>3</td>
<td>0.0130</td>
<td>0.0107</td>
</tr>
<tr>
<td>6</td>
<td>0.0115</td>
<td>0.010</td>
</tr>
</tbody>
</table>
Figure 1. Film geometry.

Figure 2. - A plane slider bearing.
Figure 3. - A journal bearing.

Figure 4. - Variation of hydrodynamic load with surface roughness parameter for various attitudes.
Figure 5. - Variation of hydrodynamic load with surface roughness parameter for various attitudes.

Figure 6. - Variation of hydrodynamic load with surface roughness parameter for various attitudes.
Figure 7. - Variation of hydrodynamic load with surface roughness parameter for various attitudes.

Figure 8. - Variation of hydrodynamic load with surface roughness parameter for various attitudes.
Figure 9. - Variation of hydrodynamic load with surface roughness parameter for various L/B ratios.
Figure 10. - Variation of hydrodynamic load with roughness parameter for various surface patterns.

Figure 11. - Variation of load of an infinitely long journal bearing with roughness parameter for various eccentricity ratios (V = 0).
A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. Assuming the surface height distribution as Gaussian the contact pressure is calculated. The average Reynolds equation of partially lubricated surface is used to calculate hydrodynamic load. An analytical expression for average gap is found and is introduced to modify the average Reynolds equation. The resulting boundary value problem is then solved numerically by finite difference methods using the method of successive over-relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings are calculated for various design data. The effects of attitude and roughness of surface on the bearing performance are shown. The results are compared with similar available solution of rough surface bearings. It is shown that (1) the contribution of contact load is not significant and (2) the hydrodynamic and contact load increase with surface roughness.