NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
Progress Report

ANALYSIS OF SCANNER DATA FOR CROP INVENTORIES

Program Manager

Robert Horvath

Program Area Managers

Richard C. Cicone
Richard J. Kauth
William A. Malila

NASA Contract NAS9-15476

16 May 1980 - 15 August 1980

Environmental Research Institute of Michigan
Box 8618 • Ann Arbor • Michigan 48107
NOTICES

**Sponsorship.** The work reported herein was conducted by the Environmental Research Institute of Michigan under Contract NAS9-15476 for the National Aeronautics & Space Administration, Johnson Space Center, Houston, Texas 77058. T. Dale Brown was Technical Monitor for NASA. Contracts and grants to the Institute for the support of sponsored research are administered through the Office of Contracts Administration.

**Disclaimers.** This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics & Space Administration (NASA), nor any person acting on behalf of NASA:

(A) Makes any warranty expressed or implied, with respect to the accuracy, completeness, or usefulness of the information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA or employee of such contractor prepares, disseminates, or provides access to any information pursuant to his employment or contract with NASA, or his employment with such contractor.

**Availability Notice.** Request for copies of this report should be referred to:

National Aeronautics & Space Administration
Scientific & Technical Information Facility
P.O. Box 33
College Park, Maryland 20740

**Final Disposition.** After this document has served its purpose, it may be destroyed. Please do not return it to the Environmental Research Institute of Michigan.
This report summarizes the progress on subject contract during the third quarter of the 1980 contract year. It is comprised of the presentations supporting quarterly project management reviews and a quarterly technical interchange meeting.
The following report serves as the Quarterly Report for Contract NAS9-15476 which is entitled "Analysis of Scanner Data for Crop Inventories". This report describes the work carried out under that contract for the period 16 May 1980 through 15 August 1980.

Work on this contract is performed in the Infrared and Optics Division directed by Mr. Richard R. Legault. Mr. Robert Horvath is the Program Manager for this contract.

This contract, performed by the Environmental Research Institute of Michigan (ERIM) for the Earth Observations Division of the NASA/Johnson Space Center, is part of the multi-agency AgRISTARS Program and supports both the Supporting Research (SR) and Foreign Commodity Production Forecasting (FCPF) Projects within AgRISTARS. The overall goal of AgRISTARS is to determine the usefulness, cost and extent to which aerospace remote sensing data can be integrated into existing or future U.S. Department of Agriculture (USDA) systems to improve the objectivity, reliability, timeliness and adequacy of information required to carry out USDA missions.
## TABLE OF CONTENTS

### QUARTERLY TECHNICAL INTERCHANGE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn and Soybean Classification Technology Development for Area Estimation</td>
<td>1</td>
</tr>
<tr>
<td>Corn/Soybean Procedure Implementation for FY81 U.S. C/S Pilot Experiment</td>
<td>11</td>
</tr>
<tr>
<td>Progress on Machine-Oriented Labeling Procedure for Wheat</td>
<td>35</td>
</tr>
<tr>
<td>Evaluation of Multiyear Sampling Estimation and Change</td>
<td>65</td>
</tr>
</tbody>
</table>

### FCPF SEMI-ANNUAL PROJECT REVIEW

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn and Soybean Classification Technology Development for Area Estimation</td>
<td>75</td>
</tr>
</tbody>
</table>

### SR SEMI-ANNUAL PROJECT REVIEW

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities and Accomplishments in Support of Supporting Research Project</td>
<td>101</td>
</tr>
</tbody>
</table>
CORN AND SOYBEAN CLASSIFICATION TECHNOLOGY DEVELOPMENT
FOR AREA ESTIMATION

Objectives

- Conduct End-to-End Exploratory Experiments in Classification Technology for Corn and Soybeans in Supports of Pilot Experiments
- Deliver Pilot-Compatible C/S Area Estimation Procedures
- Support Pilot Experiment
PROCEDURE M EVALUATION

17 TY 1973 SMALL GRAINS SEGMENTS

Procedure 1

Procedure 11

0.1

0.0

ERROR

0.0

0.1

-0.1

-0.2

0.0
0.2
0.4
0.6

TRUE PROPORTION

0.0

0.1

-0.1

-0.2

0.0

0.1

-0.1

-0.2

0.0
0.2
0.4
0.6

TRUE PROPORTION

0.072 Bias

0.045 Bias
ANALYST LABELING WITH DFS

(11 BLIND SITES)

- Delta Function Stratification R-value .713 (.296 to .963)

- Analyst Labeling Accuracy (209 dots)

<table>
<thead>
<tr>
<th>Category</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Crop</td>
<td>95.95%</td>
</tr>
<tr>
<td>Corn</td>
<td>90.64%</td>
</tr>
<tr>
<td>Soybeans</td>
<td>85.68%</td>
</tr>
<tr>
<td>Other</td>
<td>96.31%</td>
</tr>
<tr>
<td>Small Grains</td>
<td>80.22%</td>
</tr>
</tbody>
</table>
BASELINE CORN/SOYBEAN
PROCEDURE FLOW
SALIENT CHARACTERISTICS OF BASELINE

- Stratified Area Estimates are produced by directing the sample to clusters that are formed in an unsupervised manner.

- Labeling decisions flow from the general to the specific, e.g., summer crops are identified using temporal information before soybeans are identified using spectral information.

- Labeling is conducted only to the level warranted by the acquisition history of the segment.
BASELINE CORN/SOYBEAN
SEGMENT ANALYSIS PROCEDURE

NORMALIZATION → SPECTRAL TEMPORAL FEATURES → SPATIAL SPECTRAL TEMPORAL CLUSTERING (FIELD FINDING) → MIDZUNO ALLOCATION OF FIELDS FOR LABELING

SEGMENT LEVEL AID → ANALYST CROP GROUP SIGNATURE DEFINITION

ANALYST FIELD LABELING (JSC/UCB) → FIELD LABELS

AGRO-MET CROP CALENDAR

STRATIFIED AREAL ESTIMATION

SEGMENT PROPORTION ESTIMATE
0 SUMMER CROP
0 CORN/SOYBEAN

Strata Maps
- Non-veg
- Summer Crop
- Spring Crop
- Pasture/Grass
MAJOR TASKS

SUPPORTING RESEARCH

Current Classification for Area Estimation Technology Development
Advanced (P2) Classification for Area Estimation Technology Development
Classification for Area Estimation Technology Development
with Thematic Mapper

FOREIGN COMMODITY PRODUCTION FORECASTING

Classification Procedure Design
Labeling Logic and Analyst Procedures Development
Procedure Implementation
Exploratory Test and Evaluation
Classification in Support of Pilot Experiment
CORN/SOYBEAN PROCEDURE IMPLEMENTATION
FOR FY81 U.S. C/S PILOT EXPERIMENT

PROJECT: FOREIGN COMMODITY PRODUCTION FORECASTING

PROJECT ELEMENT: CLASSIFICATION

TASK: U.S. CORN/SOYBEAN PROCEDURE IMPLEMENTATION

PERFORMING ORGANIZATION: ERIM/UCB

PRESENTORS: M. METZLER
O. MYKOLENKO

AUGUST 20, 1980
OBJECTIVE

IMPLEMENT THE C/S SEGMENT AREA ESTIMATION PROCEDURE

FOR THE FY81 U.S. PILOT EXPERIMENT
KEY ISSUE ADDRESSED

There does not currently exist an implemented capability for performing segment proportion estimation for the FY81 U.S. C/S Pilot.
PURPOSE OF PRESENTATION

This presentation is an overview of software design concepts
utilized in the implementation of the baseline C/S area
estimation procedure.
KEY DESIGN ELEMENTS

- SIMPLE HIGH LEVEL USER INTERFACE
- STATUS AND TRACKING
- EFFICIENT SINGLE FUNCTION APPLICATION MODULES
- DATA MANAGEMENT SERVICES
- OPERATING SYSTEM INDEPENDENCE
PILOT USER

- Is Not Required to be Computer Sophisticated
- Uses a Simple Command Language
- Is Guided Through the Procedure by the Software
- Can Operate in Batch or Interactive Mode
- Is Isolated from Data Management
**Crop Group Stratification**

**Field & Cluster "BLOB" Definition**

**Cluster Labeling**

**DFS**

**BLOB**
- **STRIP**
- **COMPRS**
- **BCLUSTER**

**Blob Seg1863**

**Enter Number of Acquisitions and Dates**

4, 210, 235, 245, 261

**End of Blob Scenario**
STATUS AND TRACKING

- Provides Status Report to Pilot Manager
- Error Logging
- Procedure Flow Verification
- Provides a Backup Capability
********** Audit Trail for Segment 1864 **********

<table>
<thead>
<tr>
<th>Name of caller</th>
<th>Type of call</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELD_CLUSTER_DEFINITION</td>
<td>Scenario</td>
<td>08/20/80</td>
<td>08:55:00</td>
</tr>
<tr>
<td>[. . .] CREATE( Blob image )</td>
<td>Charlie</td>
<td>08/20/80</td>
<td>08:55:30</td>
</tr>
<tr>
<td>[. . .] IMAGE( reading Tascap)</td>
<td>Data service</td>
<td>08/20/80</td>
<td>08:57:04</td>
</tr>
<tr>
<td>[. . .] IMAGE( image Screen)</td>
<td>Data service</td>
<td>08/20/80</td>
<td>08:59:46</td>
</tr>
<tr>
<td>[. . .] BLOB (entered)</td>
<td>Application</td>
<td>08/20/80</td>
<td>09:20:47</td>
</tr>
</tbody>
</table>

####### ERROR ENCOUNTERED IN ROUTINE BLOB ####### 08/20/80 09:25:31 #######

Spatial threshold parameter = 0,
illegal parameter setting, Severity Level 16

************ Error Summary ************

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Number of Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>
SCENARIO

- Is written in PEFOR (FORTRAN)
- Provides an environment for the application modules
- Supplies application modules with data
- Calls status and tracking routines
APPLICATION MODULE

- Has Only One Function
- Written in PREFOR (FORTRAN)
- May Not Perform Any I/O
- Receives/Transmits all Data Via the Parameter List
- Calls Status and Tracking Routines
- Processes Data Scan Line by Scan Line or in Multiple Line Regions
- May Process Multiple Images Concurrently
- Performs Extensive Error Checking
DATA/DATA SERVICES

IMAGES

- Exist in Internal and External Formats
- May be of Arbitrary Size
- Data are Never Added to an Image, But Become a New Image

IMAGE FORMAT ROUTINE

- Reads/Writes an Image One Scan Line at a Time
- Converts Between Internal and External Image Formats
- Follows Other Application Module Rules
INTERNAL IMAGE FORMAT

- **Number of Pixels** - NPIX
- **Number of Channels** - NCHAN
- **Data Array for One Scan Line** (Dimension NCHAN*NPIX)
- **Mask for One Scan Line** (Dimension NPIX)
- **Line Number of Current Scan Line**
- **Data Array Mode** (Real vs Integer) Vector (Dimension NCHAN)
- **Channel Label Vector** (16 characters per channel)
- **Acquisition Date Vector** (Dimension NCHAN)
- **Window** (First/Last Scan Line/Pixel, Scan Line/Pixel Skip Factor)
- **Image Key** (Unique 48 character image identifier)
DATA/DATA SERVICES

CHARLIE PROVIDES DBMS FUNCTIONS NEEDED BY THE PILOT SOFTWARE

- Stash for intermediate results
- Separate CHARLIE for each segment processed
- Scenarios may manipulate entities in CHARLIE with operators:
  CREATE
  SET
  PUT
  GET
  DESTROY

- Application modules see CHARLIE entities as FORTRAN-declarable items which may be RESHAPEd to desired size
SYSTEM INTERFACE ROUTINES

PROVIDE ACCESS TO OPERATING SYSTEM SERVICES

- **All Input/Output**
- **Virtual Memory Allocation/Deallocation**
- **Current Time and Date**
- **File Management**

ISOLATE SYSTEM DEPENDENT SERVICES

MINIMIZE EFFORT NEEDED TO TRANSPORT PROCEDURE
SYSTEM INTERFACE ROUTINES

FEATURES OF I/O PORTION OF SYSTEM INTERFACE ROUTINES

- Devices and Files referenced by 48 Character Key
- Calling Module need not know data source/destination
- Catalog of all disk and tape files is monitored
- Limited protection of files is provided
- Movement between disk and tape is simple
- Tape and disk resources are efficiently managed
MILESTONES

- Delivery to Existing CMS Facility (LARS)
- Initial User Documentation Begins
- JSC Shakedown Begins
- Arrival of ERSYS Computer
- Re-delivery onto ERSYS Computer
- C/S Pilot Begins

1 Oct 80
1 Oct 80
1 Oct 80
1 Dec 80
6 Dec - 15 Jan 81
15 Jan 81
SUMMARY

- User is isolated from the detailed workings of the software
- Application modules isolated from the operating system and data services
- Only the system interface routines are dependent on the operating system
- Application modules process arbitrary size images in efficient assembly line fashion
PROGRESS ON MACHINE-ORIENTED LABELING
PROCEDURE FOR WHEAT

Project: Supporting Research
Project Element: Area Estimation Design
Task: Labeling Procedures Development
Performing Organization: ERIM
Presentors: W. Malila and E. Crist

August 20, 1980
OUTLINE

- Overview
- Technical Discussion
- Plans
KEY ISSUE ADDRESSED

The Label Assignment Step Has Been the Greatest Source of Error in Proportion Estimation Procedures. There is a Need for More Accurate and Consistent Labeling to Support Area Estimation.
OBJECTIVES

- OVERALL: To develop a series of candidate labeling procedures for test and evaluation in exploratory and pilot experiments within SR and FCPF. These procedures should be:
  - objective
  - accurate
  - adaptable

- SPECIFIC: To develop an end-of-season labeling procedure for spring wheat which is machine-oriented and utilizes temporal-spectral profile analysis technology.

- To develop tools for continued research and development of labeling procedures.
GENERAL APPROACH FOR MACHINE-ORIENTED LABELING
PROCEDURE FOR SPRING WHEAT

- Examined existing technology and information
  - Labeling and classification procedures and results
  - Landsat data and agronomic information

- Formulated preliminary design
  - Reported last quarter
  - Emphasizes temporal-spectral profile technology

- Conduct research and development of procedural elements using:
  - Agronomic information
  - Landsat data sets for a variety of sites and conditions
GENERAL APPROACH (cont.)

- Define a Labeling Procedure for Feasibility Testing
  - Include a limited number of alternative components
  - Code on ERIM computational facility

- Conduct an Exploratory Experiment
  - Use independent multiyear Landsat data
  - Evaluate parameters and alternatives

- Finalize Procedure, Implement, and Deliver to SF3
  - Details of delivery TBD
    (Delivery to LARS computer assumed)
SCHEDULE FOR
MACHINE-ORIENTED LABELING PROCEDURE
FOR SPRING WHEAT

<table>
<thead>
<tr>
<th>1980</th>
<th>1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>A</td>
</tr>
</tbody>
</table>

- R & D
- Expl.
- Expt.
- Implement & Deliver
BLOCK DIAGRAM
MACHINE-ORIENTED LABELING PROCEDURE FOR SPRING WHEAT

Analyst Functions

Acquisition Selection and Adjustment of Crop Calendar to Local Conditions

Machine Functions

Preprocessing and Feature Extraction

Assignment of Grain/Non-Grain Labels

Assignment of Spring Wheat/Other Grains Labels
MAJOR FEATURES

- Analyst Functions Do Not Include Label Decisions
- Preprocessing Used to Normalize Data
  (Satellite calibration, sun angle, haze correction)
- Tasseled-Cap Transformation Applied
- Quasi-Fields (e.g., blobs) are Recommended Labeling Targets
- Grain/Non-Grain Decisions are Based on Temporal-Spectral Profile Features and Comparisons
- Existing ERIM Labeling Technique Used to Partition Spring Small Grains into Wheat/Non-Wheat
SUMMARY OF STATUS

- Research and Development Nearly Complete
  - Crop temporal-spectral profile characterization
  - Features and goodness-of-fit criteria
  - Analyst functions to be adapted from ERIM/UCB corn/soybeans baseline procedure

- Preparations for Exploratory Experiment Underway
  - Major factors for testing identified
  - Data set preparation in progress, but not all desired data have been received
ANALYST FUNCTIONS

- ACQUISITION SELECTION
  - Consider Clouds/Haze, Consecutive Days, etc.
  - Where System Limitations Restrict Total Number of Acquisitions Allowable, Also Consider Time of Season, Relative Spacing

- CROP CALENDAR ADJUSTMENT
  - Employ UCB Method, as Contained in DFS Procedure, to Adjust Spring and Summer Crop Groups
  - Adjust Crop Types Within Groups Using Historical Relationships
DERIVATION OF PROFILES - METHOD EMPLOYED

- Estimate Profile Shapes for Each Crop or Crop Group by Analysis of Multi-Temporal Clusters, Agronomic Information
- Shift All Data for Given Crop to its Greenness Profile
- Compute Mean Values, Polynomial Fits to Means of Shifted Data (Greenness and Brightness) or Fit Model Form to Greenness
- Adjust Profiles Based on New Fits
- Recompute Shifts
- Iterate if Necessary
- Compute Variances About Profile Using Shifted and Scaled Data
PROFILE FEATURES (Cont'd)

SPRING SMALL GRAINS

![Graphs showing greenness and brightness over days since detectable emergence.](image)
PROFILE FEATURES (Cont’d)

SUNFLOWERS

GREENNESS

BRIGHTNESS

80

20

150

0

180

0

50

GREENNESS

BRIGHTNESS

DAYS SINCE DETECTABLE EMERGENCE
GRAIN/NON-GRAIN LABELING TECHNIQUE

APPROACH

- **Determine Temporal Adjustment and Scaling Required to Maximize Fit of Data to a Series of Greenness Profiles**

- **Compute a Measure of Goodness-of-Fit of Shifted and Scaled Data to Each Greenness Profile and Its Accompanying Brightness Profile, and a Probability Related to the Temporal Shift Required**

- **Identify the M Profile Sets Which Pass a Combined Probability Test Using All Three Factors**

- **Label the Data Point as Follows**
  - \( M = 0 \) **unlabelable**
  - \( M = 1 \) **assign data to the associated class**
  - \( M > 1 \) **select the label from among the M classes, using another measure of closeness**
DECISION LOGIC

SELECTION OF CANDIDATE PROFILES

- Three Tests of Hypotheses Related to
  - Goodness-of-fit to Greenness Profile
  - Goodness-of-fit to Brightness Profile
  - Temporal shift required to maximize Greenness fit

- Utilize weights to reflect relative importance/sensitivity of the three tests

- Choose those profiles which cannot be rejected at a
  1-α level of significance, using a combined test statistic
DECISION LOGIC (Cont'd)

POSSIBLE METHOD FOR CANDIDATE SELECTION [FISHER'S OMNIBUS PROCEDURE] *

- For each of S tests, generate test statistics $t_1, \ldots, t_S$ with probabilities $p_1, \ldots, p_S$ where $p_i = P[R(T_i \geq t_i)]$, based on

  $H_0$: sample $x(t)$ is an element class $i$

  with assumed independence of the test statistics

- Assign positive weights $\delta_1, \ldots, \delta_S$ to the tests, and compute an overall statistic $T$ where

  $$T = -2 \sum_{i=1}^{S} \delta_i \ln p_i$$

*Suggested by Dr. Jack Tubbs, University of Arkansas
DECISION LOGIC (Cont'd)

- \( H_0 \) is rejected when \( \hat{\alpha} < \alpha \), where

\[
\hat{\alpha} = P_R \left[ X^2(v) \geq T \right]
\]

\( X^2(v) \) denotes a chi-square variable with \( v = 2 \sum_{i=1}^{S} \delta_i \) degrees of freedom

- Significance of the result of the combined test is the same as that of the individual tests
DECISION LOGIC (Cont'd)

SELECTION OF LABEL

Options:

- Choose Class with the Largest $\hat{\alpha}$ in the Candidate Test
- Choose Class with Maximum Likelihood
- Assign Probability Labels (Future)
SPRING WHEAT LABELING TECHNIQUE

REVIEW

- Operates on samples labeled 'grain' by previous step
- Adjusts for field-to-field differences in stage of development
- Adjusts for segment-level conditions
  - Moisture status
  - Soil brightness
- Utilizes spectral differences between wheat and barley at the time of turning (soft dough stage)
EXPLORATORY EXPERIMENT

- Data Set Consists of ≤35 Segments from 3 Years, 4 States

  3 from 1976  
  10 from 1977  
  ≤22 from 1978 (depending on availability)
EXPLORATORY EXPERIMENT (Cont'd)

EVALUATIONS TO BE MADE

- **Labeling Accuracy, Variability**
  - Overall
  - By crop
  - By year
  - By APU

- **Comparison of Machine Results to Phase 3 A1 Dot Labels**

- **Interactions of Labeling Accuracy With**
  - Crop calendar adjustment
  - Blob purity
  - Acquisition selection
EXPLORATORY EXPERIMENT (Cont'd)

CONFIGURATION

- Simulate Analyst Crop Calendar Adjustment
  - Use actual start dates, based on ground truth and computed shifts
  - Introduce errors for evaluation purposes

- Operate on Supervised Blobs (Ground Truth Used as Control)
  - Also use unsupervised blobs in a subset of data for purity evaluation

- Potential for using several different threshold values, parameter settings
PLANS FOR NEXT QUARTER

• Complete Design Analysis
  - Final definition of profiles
  - Determination of goodness-of-fit measures, attainable significance, etc.
  - Evaluation of procedure on training data

• Conduct Exploratory Experiment
  - Independent data set

• Begin Implementation for Delivery
EVALUATION OF MULTIYEAR SAMPLING
ESTIMATION AND CHANGE

Project: FCPF
Project Element: Sampling & Aggregation
Task: Multiyear Evaluation & Change Analysis
Performing Organization: ERIM
Presentors: W. F. Pont and R. Kauth

August 20, 1980
MULTIYEAR SAMPLING/ESTIMATION

- OBJECTIVES
  - Transfer TAMU's Multiyear Sampling/Estimation Technology to JSC Via LARS
  - Evaluation of TAMU's Multiyear Sampling/Estimation Procedures

- APPROACH
  - Research and Development of Multiyear Sampling/Estimation Procedures (TAMU)
  - Implement Procedures on LARS Computer (ERIM)
  - Develop Experiment Design (ERIM, JSC, TAMU)
  - Evaluation of Procedures (ERIM)
EVALUATION OF MULTIYEAR SAMPLING/ESTIMATION
CURRENT PROGRESS

- IMPLEMENTED MAY 1980 VERSION OF STAGE I OF TAMU'S MULTIYEAR PROCEDURE (ITERATIVE WEIGHTED LEAST SQUARES ANALYSIS OF WORKING LOGIT)
  - Implemented on MTS
  - FORTRAN IV
  - IMSL Subroutine AGLMOD (General Linear Model Analysis)

- STUDIED IMPLEMENTATION OF STAGE II (WEIGHTED VARIANCE COMPONENT ESTIMATION)
  - The Fitting of Constants Methods (Henderson's Method 3)
  - Iterative Maximum Likelihood Method
    - Requires initial estimates
    - Uses IMSL subroutine ZXMIN (minimum of a function of N variables using a quasi-newton method)

- STUDIED THE IMPACTS OF THE LIMITED DATA SET ON POSSIBLE EXPERIMENT DESIGNS
EVALUATION OF MULTIYEAR SAMPLING/ESTIMATION
IMPLEMENTATION LIMITATIONS

- NEED DEFINITIONS OF "EARLY", "MID", AND "AT HARVEST" FOR SEASON TERM IN MODEL
- NEED STOPPING RULE FOR ITERATIONS IN STAGE I
- NEED TO STUDY TAMU'S METHOD OF ESTIMATION OF VARIANCE COMPONENTS IN STAGE II
- NEED TO OBTAIN APU GROUND TRUTH FOR APU'S IN STUDY
MULTIYEAR SAMPLING/ESTIMATION

(constraints on design of the evaluation)

- MODEL
\[ Y_{tsl} = \alpha_t + b_s + \delta_l + \epsilon_{tsl} \]

- DATA
  - LACIE Segment Gruin Segments
    • 1976, 1977, 1978
    • seasonal estimates made at various dates
    • ground truth
    • different procedures from year to year
  - USDA CRD and APU Unions of Counties
    • 1972 to 1976
    • 9 states in Northern and Southern Great Plains

- PROCEDURE yields estimates of \( \alpha_t \) for each stratum
MULTIYEAR SAMPLING/ESTIMATION
EVALUATION DESIGN

- EXPERIMENTAL UNITS ARE MULTIYEAR LACIE SEGMENTS

- TREATMENTS
  - One Year (1976) Grain Estimates

- ASSOCIATION BETWEEN EXPERIMENTAL UNITS AND TREATMENTS
  - Multiyear Estimates have Rotation Design Constraints
  - One Year Estimates Should have as Many 1976 Estimates as Possible

- MEASUREMENTS
  - Some Method of Deciding Which Method was Best for Each APU

- SIGN TEST
EVALUATION OF MULTIYEAR SAMPLING/ESTIMATION

PLANS

- Obtain test case to verify stage I programs
- Implement final version of TAMU's stage I multiyear procedure
- Finalize experiment design
- Conduct test and evaluation
CHANGE ANALYSIS

- OBJECTIVES
  - Obtain increased precision by taking advantage of correlation between yearly segment proportion estimates
  - Estimate change crop proportion in order to study the effect of some factor
    - Moisture stress
    - Economic conditions
    - Agronomic practices

- APPROACH
  - Estimate \( R = \frac{P_{t_2}}{P_{t_1}} \) with \( \hat{R} \)
  - Estimate \( P_{t_2} \) with \( \hat{R}P_{t_1} \)
CHANGE ANALYSIS

\[ \hat{R} = \exp(\bar{Y}_{t_2} - \bar{Y}_{t_1}) \]

- \( Y_{ts} = \log(\hat{p}_{ts}) \) \( \hat{p}_{ts} \) estimate for year \( t \) segment \( s \)
- Motivation \( \exp(\log(\hat{p}_{t_2}) - \log(\hat{p}_{t_1})) = \exp(\log(\frac{p_{t_2}}{p_{t_1}})) = \frac{p_{t_2}}{p_{t_1}} \)

- \( \hat{R} = \frac{\hat{p}_{t_2}}{\hat{p}_{t_1}} \)

- Best Linear Unbiased Estimate if
  - \( P_{t_2} = BP_{t_1} + \epsilon \)
  - Variance of \( P_{t_2} \) is proportional to \( P_{t_1} \)
- Generally Biased Estimate
CHANGE ANALYSIS
PLANS

- CONSTRUCT SIMULATED DATA SETS FOR EACH APU
  - Proportion grain from DATA
  - Proportion nonresponse from DATA

- ESTIMATE BIAS OF TWO ESTIMATES BY USING SIMULATED DATA

- INVESTIGATE THE USE OF COVARIATES AS MEASURES OF CHANGE
  - Weather data
  - Peak green of pixels labeled "pasture"
  - Machine grain labelers
  - Etc.
CORN AND SOYBEAN
CLASSIFICATION TECHNOLOGY DEVELOPMENT
FOR AREA ESTIMATION
FOR
FOREIGN COMMODITY PRODUCTION FORECASTING

ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN
UNIVERSITY OF CALIFORNIA AT BERKELEY
NASA, JOHNSON SPACE CENTER, SF4

FCPF SEMIANNUAL PROJECT REVIEW
24 SEPTEMBER 1980
FCPF C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT FOR AREA ESTIMATION

OBJECTIVES

- Conduct Foreign Exploratory Experiments in Area Estimation Technology for Corn and Soybeans in Support of Pilot Experiments
- Deliver Pilot-Compatible C/S Area Estimation Procedures
- Support Pilot
SCOPE OF FCPF RELATED PROGRAM

- Identify Component Technologies for Corn and Soybean Area Estimation
- Adapt Technology to Foreign Application
- Develop End-to-End Procedures for Exploratory Experiment Testing
- Implement Pilot-Compatible Procedures for Test and Evaluation
- Comparatively Test and Evaluate Technologies
- Support Subsequent Modification and Pilot Testing
CORN AND SOYBEAN TECHNOLOGY PHASES

|------|------|------|------|------|------|------|------|

- 2,3 → P → U.S. C/S EXPERIMENT
- 1,2 → 3 → P → LSAT → ARGENTINA C/S EXPERIMENT
- 1 → 2 → 3 → P → LSAT → BRAZIL C/S EXPERIMENT
- 1 → 1,2 → P → 4 → U.S. C/S P2 EXPERIMENT

KEY:
P2 Full Frame Technology
TM Thematic Mapper
1 Research, Data Requirements
2 Procedures Development
3 Procedures Evaluation, Modification
P Pilot Experiment (JSC)
LSAT Large Scale Application Test (USDA)

1 → 2 → 3 → P → U.S. C/S TM EXPERIMENT
1 → 2 → 3 → BRAZIL/ARGENTINA TM + P2 EXPERIMENT
MULTIPURPOSE AGRICULTURE INVENTORY


2,3 -> P
U.S. C/S EXPERIMENT

1,2 -> 3 -> P
ARGENTINA C/S EXPERIMENT

1 -> 2 -> 3 -> P
BRAZIL C/S EXPERIMENT

1 -> 1,2 -> 3 -> P
U.S. C/S P2 EXPERIMENT

1 -> 2 -> 3 -> P
U.S. C/S TM EXPERIMENT

1 -> 2 -> 3
BRAZIL/ARGENTINA TM + P2 EXPERIMENT

through-the-season estimation
early season prediction
change detection
condition indicators
self assessment
FOREIGN UNDERSTANDING


corn belt baseline

U.S. C/S EXPERIMENT

Argentina C/S EXPERIMENT

BRAZIL C/S EXPERIMENT

U.S. C/S P2 EXPERIMENT

U.S. C/S TM EXPERIMENT

BRAZIL/ARGENTINA TM + P2 EXPERIMENT

condition indicators (e.g., weather)
THROUGH-THE-SEASON ESTIMATION


at harvest

2,3 P
U.S. C/S EXPERIMENT

emergence midseason

planting to harvest

1,2 3 P
ARGENTINA C/S EXPERIMENT

1 2 3 P
BRAZIL C/S EXPERIMENT

1 1,2 3 P
U.S. C/S P2 EXPERIMENT

95% confidence point

1 2 3 P
U.S. C/S TM EXPERIMENT

BRAZIL/ARGENTINA TM + P2 EXPERIMENT

highest confidence 'midseason' estimable attributes
50% confidence 'at harvest' estimable attributes
TECHNOLOGY PHASE I

U.S. C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT

TECHNICAL OBJECTIVE

- Develop and Implement Baseline Segment Classification Procedure for At-Harvest Estimates Suitable for Application in the U.S. Corn Belt
FY81 U.S. C/S PILOT IMPLEMENTATION APPROACH

- Overall Implementation Managed by ERIM
- Analyst Functions Integrated by UCB
- Software Development on LARS Computer Pending Availability of ERSYS at JSC
- Existing Technology Modified and Implemented
  - Procedure M tuned for Corn/Soybeans
  - JSC Labeling Procedure adapted to field-like targets rather than dots
  - Crop Group Stratification Integrating
    - Analyst
    - Crop Calendars
    - Machine
FCPF C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT FOR AREA ESTIMATION

PROJECT ELEMENT TASKS

<table>
<thead>
<tr>
<th>TASK</th>
<th>FISCAL YEAR</th>
<th>PERFORMING INSTITUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. US C/S AREA ESTIMATION PROCEDURE DESIGN</td>
<td>80</td>
<td>ERIM/UCB</td>
</tr>
<tr>
<td>2. US C/S LABELING LOGIC DEVELOPMENT</td>
<td>80</td>
<td>UCB</td>
</tr>
<tr>
<td>3. US C/S PROCEDURES IMPLEMENTATION</td>
<td>80/81</td>
<td>ERIM/UCB</td>
</tr>
<tr>
<td>4. US C/S EXPLORATORY TEST AND EVALUATION</td>
<td>80</td>
<td>JSC/SF4</td>
</tr>
<tr>
<td>5. US C/S CLASSIFICATION IN SUPPORT OF PILOT EXPERIMENT</td>
<td>81</td>
<td>JSC/SF4</td>
</tr>
<tr>
<td>6. BRAZIL C/S AREA ESTIMATION PROCEDURE DESIGN</td>
<td>81</td>
<td>ERIM/UCB</td>
</tr>
<tr>
<td>7. BRAZIL C/S LABELING LOGIC DEVELOPMENT</td>
<td>81</td>
<td>UCB</td>
</tr>
<tr>
<td>8. BRAZIL C/S PROCEDURES IMPLEMENTATION</td>
<td>81</td>
<td>ERIM/UCB</td>
</tr>
<tr>
<td>9. BRAZIL EXPLORATORY TEST AND EVALUATION</td>
<td>81</td>
<td>ERIM</td>
</tr>
<tr>
<td>10. BRAZIL C/S CLASSIFICATION IN SUPPORT OF PILOT EXPERIMENT</td>
<td>82</td>
<td>JSC</td>
</tr>
<tr>
<td>11. ARGENTINA C/S AREA ESTIMATION PROCEDURE DESIGN</td>
<td>81/82</td>
<td>ERIM/UCB</td>
</tr>
<tr>
<td>12. ARGENTINA C/S LABELING LOGIC DEVELOPMENT</td>
<td>82</td>
<td>UCB/ERIM</td>
</tr>
<tr>
<td>13. ARGENTINA C/S PROCEDURES IMPLEMENTATION</td>
<td>82</td>
<td>ERIM</td>
</tr>
<tr>
<td>14. ARGENTINA C/S EXPLORATORY TEST AND EVALUATION</td>
<td>82</td>
<td>ERIM</td>
</tr>
<tr>
<td>15. ARGENTINA C/S CLASSIFICATION IN SUPPORT OF PILOT EXPERIMENT</td>
<td>82</td>
<td>JSC</td>
</tr>
</tbody>
</table>

*Management Responsibility at ERIM
ACTIVITIES AND ACCOMPLISHMENTS
(14 Feb '80 - 24 Sep '80)

GENERAL

- INITIATED AND SUPPORTED PCR TO SWITCH ORDER FOR BRAZIL AND ARGENTINA FOREIGN APPLICATIONS

- SUPPORTED DEVELOPMENT OF DRAFT PLAN FOR COOPERATIVE RESEARCH PROGRAM WITH BRAZIL

- SUPPORTED REPLANNING BY FCPF IN ANTICIPATION OF
  - TWO YEAR DELAY IN TM DATA
  - ONE YEAR GAP IN MSS DATA (P2 EXP. DELAY)
ACTIVITIES AND ACCOMPLISHMENTS (CONTINUED)

(14 Feb '80 - 24 Sep '80)

Task 1: U.S. C/S Area Estimation Procedure Design

- Finalized C/S Baseline Procedure Design and Component Selection
- Finalized Component Parameter Specification
- Identified Needs for Developmental Data Products from Accuracy Assessment of U.S. Pilot
- Specified Computer Requirements for Implementation
BASELINE CORN/SOYBEAN
SEGMENT ANALYSIS PROCEDURE

NORMALIZATION

SPECTRAL TEMPORAL FEATURES

SPATIAL SPECTRAL TEMPORAL CLUSTERING (FIELD FINDING)

MIDZUNO ALLOCATION OF FIELDS FOR LABELING

STRATA MAPS
- NON-VEG
- SUMMER CROP
- SPRING CROP
- PASTURE/GRASS

STRATIFIED AREAL ESTIMATION
- SUMMER CROP
- CORN/SOYBEAN

SEGMENT PROPORTION ESTIMATE

ANALYST FIELD LABELING (JSC/UCB)

FIELD LEVEL AIDS

ANALYST CROP GROUP SIGNATURE DEFINITION

SEGMENT LEVEL AIDS

AGRO-MET CROP CALENDAR

IMAGERY

CCT

ADJUSTED

LABELS
ACTIVITIES AND ACCOMPLISHMENTS (CONTINUED)

(14 Feb '80 - 24 Sep '80)

Task 2: U.S. C/S Labeling Logic Development

- Defined Contents/Format for AI Packet
- Defined Requirements for Crop Calendar/Weather Interpretation
- Defined Requirements for Machine-Generated AI Aids
- Defined Component Procedures
  - Acquisition selection
  - Crop Group Stratification (DFS)
  - Labeling logic
- Defined Overall Manual Procedure
ACTIVITIES AND ACCOMPLISHMENTS (CONTINUED)

(14 Feb '80 - 24 Sep '80)

Task 3: U.S. C/S Procedures Implementation

- Implemented an ERSYS-Independent Implementation Approach
- Completed Coding and Validation of System Services
- Completed Coding and Validation of Scenarios and Application Modules (Except AI Aids)
- Initiated Development of AI Training Methodology
ACTIVITIES AND ACCOMPLISHMENTS (CONTINUED)
(14 Feb '80 - 24 Sep '80)

Task 4: U.S. C/S Exploratory Test and Evaluation

- Conducted Familiarization Training of JSC Analysts in U.S. C/S Pilot Analyst Procedures

- Supported Procedures Shakedown Test and Evaluation
ACTIVITIES AND ACCOMPLISHMENTS (CONTINUED)
(14 Feb '80 - 24 Sep '80)

Task 5: U.S. C/S Classification in Support of Pilot Experiment

- Identified Candidate Pilot Evaluation Factors to Experiment Design
- Identified Candidate Pilot Products to Accuracy Assessment
- Identified Nature of Segment Estimates to Sampling and Aggregation
- Provided General Support to Above Project Elements
<table>
<thead>
<tr>
<th>REPORTING ORG./ACTIVITY:</th>
<th>G/C CLASSIFICATION TECHNOLOGY FOR AREA ESTIMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. TECHNOLOGY PHASE 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>FY 1980</th>
<th>FY 1981</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JAN</td>
<td>FEB</td>
</tr>
<tr>
<td></td>
<td>MAR</td>
<td>APR</td>
</tr>
<tr>
<td></td>
<td>MAY</td>
<td>JUN</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>AUG</td>
</tr>
<tr>
<td></td>
<td>SEP</td>
<td>OCT</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>DEC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFERENCE MILESTONES</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US G/C AREA ESTIMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESIGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- OVERALL PROCEDURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- MODIFICATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- EXTERNAL PROCEDURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- MODIFICATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASELINE PROCEDURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELIVERY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SOFTWARE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- DOCUMENTATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- TRAINING TO JSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABORATORY TEST &amp; EVALUATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPONENTS (ERHM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- FAMILIARIZATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(JSC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPORT PILOT EXPERIMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAREDOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCESSING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT PRODUCT MILESTONES</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION APPROACH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNICAL DESIGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PILOT PROCEDURE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: 09/22/80
PAGE: OF
NEAR TERM PLANS
(24 Sep '80 - 15 Dec '80)

GENERAL

• Develop Detailed Implementation Plan for FY81 - FY82

• Support U.S. Pilot Experiment
  - Support critical design review of baseline procedure
  - Complete implementation and documentation
  - Provide training and support shakedown
  - Modify documentation and procedures where necessary

• Initiate Corn and Soybean Technology Phase 2
TECHNOLOGY PHASE II

ARGENTINA C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT

- Develop, implement and evaluate segment classification procedures for through-the-season estimates (emergence to harvest) suitable for application in Argentina
FCPF C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT

ISSUES

MSS DATA PROVISIONING

DOES NOT APPEAR TO SUPPORT CURRENT FY81 SCHEDULES
ACTIVITIES AND ACCOMPLISHMENTS

In Support Of

SUPPORTING RESEARCH PROJECT

Environmental Research Institute of Michigan
University of California at Berkeley

SR Semiannual Project Review
7 October 1980
PRESENTATION OUTLINE

- Objective Labelling Technology Development (ERIM)
- Corn and Soybeans Classification Technology
- Development for Area Estimation (ERIM/UCB)
OBJECTIVE LABELING TECHNOLOGY DEVELOPMENT

OBJECTIVES

• OVERALL: • To Develop a Series of Candidate Labeling Procedures for Test and Evaluation in Exploratory and Pilot Experiments Within SR and FCPF. These procedures should be:
  - Objective
  - Accurate
  - Adaptable

• SPECIFIC: • To Develop an End-of-Season Labeling Procedure for Spring Wheat which is Machine-Oriented and Utilizes Temporal-Spectral Profile Analysis Technology.

• To Develop Tools for Continued Research and Development of Labeling Procedures.
### Objective Labeling Technology Development

#### Planned Products

<table>
<thead>
<tr>
<th>Year</th>
<th>Product Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY80</td>
<td>Machine</td>
</tr>
<tr>
<td>FY81</td>
<td>Integrated</td>
</tr>
<tr>
<td>FY82</td>
<td>Integrated</td>
</tr>
<tr>
<td>FY83</td>
<td>Integrated TM</td>
</tr>
<tr>
<td>FY84</td>
<td>Multicrop</td>
</tr>
<tr>
<td>FY85</td>
<td>Preliminary</td>
</tr>
<tr>
<td>FY86</td>
<td>Updated</td>
</tr>
<tr>
<td>FY87</td>
<td></td>
</tr>
</tbody>
</table>

#### Preprocessing Procedures

- MSS Data Normalization
- TM Spectral Structure
- TM Data Normalization

#### Labeling Procedures

- Wheat
- Barley
- Corn
- Soybeans
- Cotton
- Sorghum
- Sunflowers

---

(Objective labeling technology development plan with specific products and procedures outlined for different years.)
## Objective Tabulation

<table>
<thead>
<tr>
<th>Concept</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Plant Growth" /></td>
<td><strong>Technology Development Requires More Than Landsat Observations</strong></td>
</tr>
<tr>
<td><img src="image" alt="Greenness and Time" /></td>
<td><strong>Independently Understand Agrophysics and Landsat</strong></td>
</tr>
<tr>
<td><img src="image" alt="Haziness and Crop" /></td>
<td><strong>Landsat Provides More Information Than We Want</strong></td>
</tr>
<tr>
<td><img src="image" alt="Crop Observation" /></td>
<td><strong>Uninteresting Physical Phenomena Must Be Understood</strong></td>
</tr>
<tr>
<td><img src="image" alt="Crop Observation" /></td>
<td><strong>Unlikely That Desired Information Observable</strong></td>
</tr>
<tr>
<td><img src="image" alt="Crop Observation" /></td>
<td><strong>Anticipate Lower Level Features Observable</strong></td>
</tr>
</tbody>
</table>

**ΣERIM**
BLOCK DIAGRAM
MACHINE-ORIENTED LABELING PROCEDURE FOR SPRING WHEAT

**Analyst Functions**
- Acquisition Selection
- and Adjustment of Crop Calendar to Local Conditions

**Machine Functions**
- Preprocessing and Feature Extraction
- Assignment of Grain/Non-Grain Labels
- Assignment of Spring Wheat/Other Grains Labels
Blob Mean Vector

Compared to Profiles for Each Crop

Combined Probability Computed

Crop Calendar Shift

Greenness Fit

Greenness

P_s

P_g

P_l = F(P_s, P_g, P_b)

Brightness Correlation

Brightness

P_b
PRELIMINARY TEST OF MODIFIED, 2-CLASS VERSION OF PROCEDURE

DATA: 26 SEGMENTS, 3 YEARS (SAME DATA USED FOR DEVELOPMENT)

FEATURE: TEST STATISTIC CONSISTING OF WEIGHTED SUM OF PROBABILITIES
- Fit to Grain GREENNESS Profile
- Cross-Correlation with Grain BRIGHTNESS Profile
- Deviation from Mean Shift of Grain Blobs to Grain Profile

DECISION MECHANISM: OPTIMUM LINEAR DISCRIMINANT

RESULT: 78% OF GRAIN BLOBS CORRECTLY CLASSIFIED

81% OF NON-GRAIN BLOBS CORRECTLY CLASSIFIED

FLAX FELL 50% IN EACH CLASS

PRELIMINARY FEATURE WEIGHTS
- 3 for Crop Calendar Shift
- 2 for Brightness Fit
- 1 for Greenness Fit
MACHINE-ORIENTED SPRING WHEAT LABELLER

CHARACTERISTICS OF LABELS

- End of Season

- Spring Small Grains vs Other
  - Absolute probability/confidence that it is a crop
  - Relative probability that it is each of seven crops (SSG, Flax, Sunflowers, Grass/Hay/Pasture, Corn, Soybeans, Dry Beans)

- Spring Wheat/Barley
  - Binary decision (per pixel) among SSG labels
MACHINE-ORIENTED LABELING PROCEDURE FOR SPRING WHEAT

AP/RS Signature Studies

Subcomponent Research, Development and Selection

Procedure Design and Engineering

Exploratory Exp

Implementation

Data Requirements

Crop Calendar/Met. Data

FY80

ONDJFMAMJJASOND

FINAL

Prelim

Data Defined

Design

ReqsMTS

Strategy

CODE

VALIDATE

 DOCUMENT

FY81

ONDJFMAMJJASOND

COMPLETE

REPORT

TRAINING

TEST

ΣERIM
OBJECTIVE LABELING TECHNOLOGY DEVELOPMENT

ACCOMPLISHMENTS

(15 Feb 80 - 7 Oct 80)

- MACHINE-ORIENTED SPRING WHEAT LABELER
  - Design Completed
  - Preliminary Parameters Defined
  - Experiment Designed for Final Parameter Selection

- GENERIC LABELING TECHNOLOGY
  - Spectral/Temporal Characterization of Seven Crops
    (SSG Labeling Context)
  - Implemented 1980 Ritchie Wheat Growth Model
  - Initiated Characterization of Generic Decision Processes
  - Established Labeling Data Base
    (> 11,000 GT Pure Pixel Fields/3 years/7 crops)
  - Delivered Crop Calendar Shift Algorithms (SSG)
ACCOMPLISHMENTS (Continued)

(15 Feb 80 - 7 Oct 80)

- PREPROCESSING IN SUPPORT OF LABELING
  - Initiated Effort To Develop/Deliver
    -- Initial scan angle normalization procedure
    -- Revised L3 + L2 calibration procedure
OBJECTIVE LABELING TECHNOLOGY DEVELOPMENT

NEAR TERM PLANS/MILESTONES

- MACHINE-ORIENTED SPRING WHEAT LABELER

  - Developmental Exploratory Experiment (1 Dec 80)
  - Technology Report (15 Jan 81)
  - Delivery onto JSC Computer (15 Feb 81)

- GENERIC LABELING TECHNOLOGY

  - Characterization of Generic Decision Processes (1 Mar 81)
  - Initial Wheat Seed-to-Satellite Model (1 May 81)
  - Preliminary Optimal Machine/Analyst Integration (1 Jun 81)
  - Continued Spectral/Temporal Crop Characterization
  - Continued Data Base Development
CORN AND SOYBEAN
CLASSIFICATION TECHNOLOGY DEVELOPMENT
FOR AREA ESTIMATION
FOR SUPPORTING RESEARCH PROJECT
ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN
UNIVERSITY OF CALIFORNIA AT BERKELEY
SR SEMIANNUAL PROJECT REVIEW
7 October 1980
SR C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT FOR AREA ESTIMATION

OBJECTIVES

- Research and Develop Generic C/S Classification Technologies Adaptable (by FCPF) to Foreign Regions
- Conduct U.S. C/S Exploratory Experiments in Advanced Classification Technology (P2,TM)
- Deliver Pilot-Compatible Advanced C/S Classification Technology to FCPF
CORN AND SOYBEAN TECHNOLOGY PHASES


2, 3 → P →

U.S. C/S EXPERIMENT

1, 2 → 3 → P → LSAT →

ARGENTINA C/S EXPERIMENT

1 → 2 → 3 → P → LSAT →

BRAZIL C/S EXPERIMENT

1 → 1, 2 → 3 → P →

U.S. C/S P2 EXPERIMENT

1 → 2 → 3 → P →

U.S. C/S TM EXPERIMENT

1 → 2 → 3 →

BRAZIL/ARGENTINA TM + P2 EXPERIMENT

KEY:
P2 Full Frame Technology
TM Thematic Mapper
1 Research, Data Requirements
2 Procedures Development
3 Procedures Evaluation, Modification
P Pilot Experiment (JSC)
LSAT Large Scale Application Test (USDA)
FOREIGN UNDERSTANDING

corn belt baseline


2, 3 → P

U.S. C/S EXPERIMENT

1, 2 → 3 → P

ARGENTINA C/S EXPERIMENT

crop mix

ag practices & land features

BRAZIL C/S EXPERIMENT

1 → 2 → 3 → P

U.S. C/S P2 EXPERIMENT

1 → 2 → 3 → P

U.S. C/S TM EXPERIMENT

BRAZIL/ARGENTINA TM + P2 EXPERIMENT

condition indicators (e.g., weather)
THROUGH-THE-SEASON ESTIMATION


U.S. C/S EXPERIMENT

1, 2 3  P

ARGENTINA C/S EXPERIMENT

1  2  3  P

BRAZIL C/S EXPERIMENT

1  1, 2  3  P

U.S. C/S P2 EXPERIMENT

1  2  3  P

U.S. C/S TM EXPERIMENT

1  2  3

BRAZIL/ARGENTINA TM + P2 EXPERIMENT

95% confidence point

100

50

confidence

Planting  emergence  maximum % cover  at harvest  post harvest

time of year

highest confidence 'midseason' estimable attributes
50% confidence 'at harvest' estimable attributes
SR C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT

ACTIVITIES AND ACCOMPLISHMENTS

(15 Feb '80 - 7 Oct '80)

GENERAL

- Supported PCR to Switch Order for Brazil and Argentina Foreign Applications

- Supported Development of Draft Plan for Cooperative Research Program with Brazil

- Supported Replanning by SR in Anticipation of
  - Two year delay in TM data
  - One year gap in MSS data (P2 Exp. Delay)
SEGMENT-BASED TECHNOLOGY

- Supported Design of FCPF Baseline Procedure for FY 81 US C/S Pilot
- Established Definitions for "Through-the-Season"
  - Predictable a priori
  - Accuracy plateaus
- Initiated Development of Labeling Guidelines
  - Emergence
  - Mid-season
- Defined and Implemented (for SR T&E) Procedure for Sampling/Estimation with Priors
ACTIVITIES AND ACCOMPLISHMENTS (CONTINUED)

(15 Feb 80 - 7 Oct 80)

FULL FRAME BASED TECHNOLOGY

- Initiated Liaison with FCPF Sampling and Aggregation
  P-2 Research Team

THEMATIC MAPPER BASED TECHNOLOGY

(Task not yet initiated)
SR C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT

NEAR TERM PLANS

GENERAL

- Develop Detailed Implementation Plan for FY81 - FY82

- Support Development of NASA/INPE (Brazil) Cooperative Agreement and similar Initiative with Argentina
NEAR TERM PLANS (CONTINUED)

SEGMENT BASED TECHNOLOGY

- Define Labeling Guidelines for Emergence and Mid Season (15 Nov 80)

- Deliver Preliminary Labeling Procedures to FCPF for Argentina Exploratory Experiment (1 May 81)

- Complete SR Evaluation of Sampling/Estimation with Priors and Deliver to FCPF for Argentina Exploratory Experiment (15 Dec 80)

*Represents 1 month slip which will not impact FCPF schedules.
NEAR TERM PLANS (CONTINUED)

FULL FRAME BASED TECHNOLOGY

- Initiate Development of P-2 Research Plan (15 Dec 80)
- Initiate Research in Dynamic Stratification (15 Feb 81)

TM BASED TECHNOLOGY

(No Activity in FY 81)
DISTRIBUTION LIST

Number Copies

NASA/Johnson Space Center
Earth Observations Division
Houston, Texas 77058

Attention: Mr. R. M. Bizzell/SF4 1
Mr. I. D. Browne/SF3 2
Mr. J. L. Dragg/SF 1
Dr. J. D. Erickson/SF3 1
Dr. F. G. Hall/SF2 1
Dr. C. R. Hallum/SF4 1
Dr. R. P. Heydorn/SF3 1
Mr. R. O. Hill/SF4 1
Mr. R. B. MacDonald/SF 1
Mr. T. Pendleton/SF3 2
Mr. M. C. Trichel/SF3 1

NASA/Johnson Space Center
Technical Library Branch
Houston, Texas 77058

Attention: Mr. M. P. McDonough/JM6 4

NASA/Johnson Space Center
Technical Support Procurement Branch
Houston, Texas 77058

Attention: Ms. E. McAnelly/BB63 1

University of California
260 Space Sciences Lab
Berkeley, California 94720

Attention: Ms. C. Hay 2