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THERMAL MICROWAVE EMISSION FROM VEGETATED FIELDS:
A COMPARISON BETWEEN THEORY :_ND EXPERIMENT

J. R. Wang. J. C. Shiue, S. L. Chuang,
and M. Dombrowski

ABSTRACT

The radiometric measurements over bare field and fields covered with grass. soybean. corn. and

alfalfa were made with 1.4 GHz and 5 GHz microwave radiometers during August-October 1978.

The measured results are compared with radiative transfer theory treating the vegetated fields as a

two—layer random medium. It is found that the presence of a vegetation cover generally gives a

higher brightness temperature T B than that expected from a bare soil. Th: amount of this TB

excess increases with increase in the vegetation biomass and in the frequency of the observed

radiation. The results of radiative transfer calculations generally match well with the experimental

data. However, a detailed analysis also strongly suggests the need of incorporating the soil surface

roughness effect into the radiative transfer theory in order to better interpret the experimental

data.
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THERMAL MICROWAVE EMISSION FROM VEGETATED FIELDS:
A COMPARISON BETWEEN THEORY AND EXPERIMENT

1. INTRODUCTION

A considerable effort has been devoted to the remote measurements of soil moisture content

by passive microwave sensors in recent years. Ground measurements by truck-mounted microwave

radiometers were conducted by Newton (1), Njoku and Kong (_), and Wang et. al. (3). Schnlugge

(4) and Sc111nugge et. al. (5,b) reported result 	 i a series of measurements by airborne multi-

frequency microwave radiometers, At satellite altitudes, correlation studies between the brightness

temperatures as measured by radiometers aboard Nimbus ? and Sk%lab and surface soil moisture

contents have been made by Eagletnan and Lin (%), MacFarland (S), Schmugge et. a1. ( Q ), and

MacFarland and Blanchard (10). Results from these measurements and studies strongly suggest the

potential of using microwave radiometers for remote soil moisture estimation. However, t11e major

emphasis from these reports was on bare soil measurements. Tile effect of vegetation cover had

been explored only rarely. For example, Newton ( 1) had briefly discussed the effect of vegetation

cover oil 	 brightness tenip-rature based on the simple model calculation of Sibley I I 1 ).

In this paper, the radiometric measurements over bare fields as well as fields covered with

corn, soybean, alfalfa, and grass are reported. The measurements were made with radiometers at

1.4 GHz and 5 GHz frequen. ies during August-October of 1978. The data obtained showed

a definite effect of vegetation cover on the measured brightness temperature when the water content

of the vegetation canopy was 	 0.1 ,,n1,cm-. For a given soil moisture content 	 10', by dry weight.

the presence of the vegetaion was to increase the brightness temperature of the scene. the amount

of this increase in the brightness temperature was larger for higher vegetation water content. In ad 11

tion, the 5 Gliz results werL generall y observed to show a larger ettect du; to ve getation than the

;.	 1



1.4GHz results. A radiative transfer iheury (12, 13, 14) is applied to the soil-vegetation system

in which the vegetation layer is modelled by a dielectric whose permittivity consists of a mean

and a randomly fluctuating component. The randomly fluctuating component is chat icterized

by correlation functions which are Gaussian horizontally and exponential vertically. , t is found

that tht theoretical model can account for most of the observed effects due to vegetation cover.

2. THEORETICAL BACKGROUND

The theoretical model used for comparison with the experimental results in the following

sections is extracted from a series of theoretical works previously developed by Tsang and Kong (12.

13, 14). Therefore, only a brief description of the formulation will be given here. Basically, a ground

surface covered with a layer of vegetation is treated as a two-layer random medium shown in Figure 1.

The soil is located at z < -d and is characterized by soil temperature T, and complex dielectric

pennittivity E,. The vegetation layer has a height of d, temperature of T l , and a medium

permittivity function E l (i'), T being the position vector. e  (r) can be written as ( 1 2)

el(r)=Elm +Elf(!)

E l m = Elm +ifIm.Eim»E i m
	 (1)

E i m ( ) is the mean of e l (T); el m (T) and E i m (T) are its real and imaginary parts, respectively. E i f 

is the fluctuating part of E l (T) and is described by the correlation function

\	 Ixl -x_)` +(yl -y_1= 	Iz l -z,l

^elf(rl ) Elf(r,	
I

I = dEimexp	 -	 (2)
QZ

The variance of the fluctuation S, the horizontal correlation length Q^ • and the vertical correlation

length QZ characterize the randomness of the vegetation medium.

The radiative transfer equation in medium 1, for 0 < B < n, is

('
cosh	 z Ta (B•z) = K a T I -K Z IB)T^IB.z)+^ J	 dB'sinB'P , ,IEJ,B' ► TQ ,(8',z)	 (3)

a 0



where Ka = 2 lm (k t ). Im (k t ) being the imaging ac (- cf the propagation constant k t in

medium 1. Q = V or H stands for either verti: .t; or itc rizontal polarization. The summation

a' is over both polarizations. The scatterin3 plws,! (v .c.iZn P, u .(8.8) and the extinction co-

efficients k e ^(6') for given S, Q^ and Q Z can be touted it? i ;ant; and Kong (13).

The boundary conditions are, for 0 < 0 < r,;'",

1)atz=0:
-r,(rr-8,z=i1)= t0l, (d)TSky ^Aao)+ rojjt	 (0. z = 0)	 (4)

where Tay a (8 0 ) is the sky brightness temperature with polarization i at the observation angle 00

in the air re gion. 8 and 8	 ,,elated by Snell's law.

2) at z = -d:

	

TJO.z=-d)= r t . a (8)Ta (tr-8.z = -d)+t t : a (B)T,	 t5)

In Eqs. (4) and (5) the transmissivities are denoted by tot , and t t : a and the reflectivities by rota

and rt_,.

The radiative transfer equation (3) subject to the boundary conditions (4) and ( 5) can be solved

by usin g Gaussian quadrature method (1 .1•). The brightness temperature T B ^(0 0 ) as observed by a

radiometer over a vegetated tield is then given by

T BO (8o) = to  I (an)T O ( 0 0 . z = 0) + rotj(d0)Tsy X10 0 )	 Ib)	 ,

3. THE EXPERIMENT

The measurement program was carried out at the Agricultural Research Center test site in Belts-

ville, tied. during Au g.-Oct. 19 - H. The crops grown at the test site during the times of the measure-

ments utCluded corn, so y bean and alfalfa. These crops were grown separatel, in small plots sur-

rounded by dense grassland. The size of the plots, the hei ghts, wet and do biontasses, row separa-

tions, temperatures and the conditions of the crops during the measurement periods -.ver. summarized

in Table 1. The dam on the bare field and the surrrnindin, grassland over which the radiometric meas-

urements were made were also included in the table. The size of the bare and the alfalfa fields was

	

smal; and the radiometric measurements µere limited to an incident angle of 	 1 5 °. After the corn

	

was cut and removed on October 3 1. residual dn , corn stalks of height up to	 10 cm and some small
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pieces of dry leaves remained on the field. Other than this, the cut-corn field was in every respect

similar to a bare soil field. The soil surfaces of all the plots were smooth and the soil types were

a mixture of Elkton silty loam and Elinsboro sandy loam.

The microwave sensors used in the measurements were two Dicke radiometers at the frequencies

of 1.42 GHz and 5 GHz. The 1.4 GHz radiometer had a phased array antenna with a 3 db beamwidth

of 15° and was used in either horizontal or vertical polarization. The 5 GHz radiometer had two

corrugated—horn antennas each with a 3db beam width of ^-17° and could make measurements with

both polarizations simultaneously. Both radiometers were mounted on a platform at the tip of a

cherry-picker boom which could scan from nadir to zenith. The sensor control panel and the data

collection system were housed inside a nearby van. The calibrations of the radiometers were made

by measuring the responses to sky radiation and to a 23 cm thick Ecosorb slab at ambient temperature.

Soil temperature and moisture data at depths of 0-1 cm, 1-3 cm, 3-6 cm, and 6-9 em were collected

concurrently with the radiometric measurements. The biomass samples of the vegetation were also

acquired close to the time of the radiometric measurements. Generally, the fields with vegetation

cover had relatively uniform temperature and moisture profiles.

4. THE EXPERIMENTAL RESULTS

a. The 1.4 GHz results. The measured brightness temperature at incident angle 8 0 of 150 is

shown in Figure 2 as a function of soil moisture content in the top 0-3 cm layer. The brightness

temperature is normalized to the soil temperature in the top 0-3 cm layer to reduce the scatter

caused by soil temperature variation from one measurement to another. To extend the bare soil

data over a wider moisture range. the bare field data obtained during the 1979 e.cperiment at

the same test site are also include) in the tgure. The data points from the 1979 measure-

ments are the averages of the vertically polarized values at H„ = 10' and 8 0 = 200 , which

shou:d give a good estimate of the 6rithtness temperature at 8 0 = 1 50 , It is clear from the figure that

the normalized brightness temperature T ti for bare fields measured in 1978 are shghtlN higher than

those measured in 19'9. This is parts% • due to the uncertaintc in the %stein calibrations and partl%

5



due to the different plots used in the two years of measurements. The soil type in the plots used for

the 1979 experiment is Elinsboro sandy loam which is lighter compared to the mixture of Elkton silty

loam and Elinsboro sandy loam for the plots used in the 1978 experiment. Neglecting such a small

difference in the two years of measurements. a linear regression analysis on the combined data set

gives a correlation coefficient of —0.87 between TN and the soil moisture content W of the top 0-3

cm layer. For a given W. TN's of the vegetated fields are higher than those of the bar, soil.

Figure 3 shows the dependence of (vertically polarized) T N of 8 0 for bare soil (with up to

-r 10 cm of corn stalks remained), corn, and soybean. Notice that the soil moisture contents are dif-

ferent from one field to another. Hence, it is difficult to assess quantitatively the effect due to vegeta-

tion cover alone on the 8 0 dependence of TN . Qualitatively, however, the presence of the biomass

tends to flatten the otherwise steep increase of T N with 80 . This flattening of TN dependence on 80

is enhanced with the increase in biomass.

b. The 5 GHz results. The field measurements of the brightness temperature as a function of

soil moisture content at — 5 GHz frequency have not been reported in the literature. The measure-

ments carried out in 1978 were limited to a small moisture range and the results were shown in Figure

4. The 5 GHz measurements carried out in 1979 appears to have a bias of ^-8°K (3) and therefore arc

not included in the figure for comparison. Judging from the available measurements (1. 3. 5) and

theoretical calculations (2), however. the radiometric response at 5 GHz for dry bare soil is not ex-

pected to be very different from that at 1.4 GHz and 10.7 GHz. Therefore, assuming that T N at W =

41 is — 0.90 ( Figure 2). a straight line is drawn through this point and the bare field data points to

approximately represent the functional dependence of TN on W in the top 0-3 cm layer. Clearly, the

measured TN's from the grassland and the fields with alfalfa and dry corn are all higher than that ex-

pected from a bare soil field.

The 8 0 dependence of TN for bare soil (cut corn field) and dry corn is shown in Figure 5. Note

that the soil temperatures for both bare and dry corn fields are the same but the soil moisture contents

are different; the bare field is — 141'c and the dry corn field is — l8 c. The T N 's for the dry corn field

are generally higher than those of the bare field.

C.	 The effect of vegetation cover implied by the combined 5 GHz and 1.4 GHz results. Figure b

shows the variations of the observed normalized brightness tempera' lirc difference AT N at 0 0 = 1

with the water content WV of the vegetation per unit area. The IT C 's were obtained from Figures

h



2 and 4 at the given values of soil moisture content of the vegetated fields. W V in gm/cm 2 was simply

the difference between the wet and dry biomasses listed in Table 1. Two features are observed from

this figure. First, ATN 's at both 1.4 GHz and 5 GHz increase with WV. Secoadly, fora given WV.

ATN 's at 5 GHz are higher than those at 1.4 GHz. For the case of alfalfa (low WV ) ATN 's at 5 GHz is

about equal to ATN at 1.4 GKz within the error of the measurements. These observed features are

consistent with the measurements results of Kirdiashev et, al. (15) and Wang et. al. (3). The depen-

dence of ATN on WV as shown in the figure, however, is not unique. It also depends on the value of

the underlying soil moisture content.

S. A COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS

The radiative transfer theory summarized in Section 2 is applied in the following to match the

experimental data obtained over the vegetated fields. In situ measured ground truth data of soil

moisture content W, soil temperature T,, vegetation height d and vegetation temperature T i are used

in the theoretical calculations. The relative dielectric permittivity e 2 of soil with a given W is deter-

mined by the empirical model of Wang and Schmugge (16), based on the soil type and the measured

soil density of — 1.5 g/cm 3 . The total biomass and water content of the vegetations were measured.

The permittivity e l of the vegetation layer, the variance 6, and the correlation lengths 4. : . 4t

are entered in the calculations as free parameters to best match the theoretical results with the experi-

mental data. The values of all these parameters are included in Filpires 7, 8, and 9 where theoretical

curves are compared with the experimental data.

Figure 7, (a) and (b), show the calculated and the measured results of T B at 1.4 GHz as a function

of 8 0 for the fully grown corn and soybean. W and Tz for both fields were comparable, but the

radiometric responses of the two fields measured on the same day are quite difterent. This differ-

ence in radiometric response is mainly due to a different vegetation coverage. The corn field,

with a larger biomass per unit area, shows a greater shielding effect than the soybean fields. Both

fields give a higher T B than that expected from a bare field at the same W. lnfemng from the

straight line of Figure'_, a bare field at W = 24'' would have a T B = 190°K at 0,1 = 15*.

Figure 8, (a) and (b), shows a comparison of the measured and the calculated T B 's at 1.4 GHz vs.

80 for the dry corn and the bare fields. The bare tield is the same corn plot except the dry corn plants

have jus ► been cut and removed, leaving — 10 cm tall corn stalks ( near roots) behind. Note that T_'s

7



for the two fields at the times of radiometric measurements are the same, but W for the dry

corn field is ^-18% as compared to -14% for the cut-corn field. The T B 's of the dry corn field

are geneinlly higher than those of the cut-corn field showing the effect of the vegetation cover, even

though the corn plants are fairly dry. The parameters S, R. and R Z for both dry corn and bare iiekis

remain the same as those for the fully grown corn field in the calculations of TB 's. The height of the

vegetation for the cut-corn field is assumed to be 10 cm because of the residual corn stalks. A com-

parison of the a i s in the figure reveals that an unusually large imaginary part of e t is required to

match the calculated TB's with the measured ones for the bare field. This implies that surface rough-

ness effect may be a more dominant factor affecting the microwave emission from soil than the

residual corn stalks. It has been shown by Choudhury et. al. (17) that the presence of surface rough-

ness tends to increase the brightness temperature of soil, similar to the effect of the vegetation cover

discussed in this paper.

A comparison of the measured and calculated T B 's as a function of 80 at 5 GHz frequency is

given in Figttre 9, (a) and (b), for the dry corn and bare fields respectively. The values of the

parameters T t , T,, e ` , d, e . 4 = , and J entered in the calculations of T B 's for both fields are the

same as those used in Figure 8 for the 1.4 GHz case. It is clear that the matching of the theoretical

results to the experimental data at 5 GHz is not as good as those shown in figures 7 and 8 for 1.4 GHz

cases. Furthermore, the imaginary part of e t , e",, for dry corn required to tit the measured data is

considerably small at 5 GHz than at 1.4 GHz. There are two possible reasons for the higher eft at

1.4 GHz than at 5 GHz required in the theoretical calculations. First, many substances at small W

are observed tc, have dielectric relaxation in the microwave region shifted toward low frequencies

< : Gliz (18, 19). As a result. it is possible to have e i (1.4 GHz) > e! ( 5 GHz) for the dry corn. in

contrast to the fresh bulk water where the dielectric relaxation is ^ :5 GHz and e" Atef	 GI-1z) <

e 0	(5 GHz) always. However, to fit the radiative - ester theory with the observed results
Watef

requires e" (1.4 GHz) a 4e" (5 GHz) for the dry corn layer. It is not clear that the low frequency

dielectric relaxation at small W alone is responsible for it. A direct laboratory measuremen t of e" at

1.4 GHz and 5 GHz of the dry corn would throw more light on the matter. Secondly, as noted in

8



Table 1, the corn was planted in rows about 76 em apart. In the measurements over the dry corm

field, a good portion of the bare soil was exposed directly to the radiometers. The surface roughness

effect of soil might play a more dominant role than the dry corn under the circumstance. The

importance of the surface roughness effect was implied previously in th^ comparison of theoretical

and measured results between dry corn and bare fields at 1.4 GHz (Figure 8). A similar comparison

at S GHz between the two fields in Figure 9 also gave the same implication. Since the surface

rougness effect of soil was not incorporated in the radiative transfer theory used "here, the vegeta-

tion medium alone was assumed to be responsible in the theoretical calculation to match the data.

Consequent:y, larger t 1 at lower frequence was needed because of less absorption and scattering.

6. DISCUSSION

The experimental data and theoretical calculations discussed in the previous section-, can be

summarized in the following. First, at the soil moisture content W > 10`"x, the presence of vegetation

cover gives a higher brightness temperature T B than that expected from a bare soil. The amount of

this TB excess generally increases with the increase in vegetation biomass and the frequency of the

observed radiation. Secondly, a radiative transfer theory is used to calculate the expected T B . A

field covered with vegetation is modelled as a layer of medium with a random fluctuating dielectric_

permittivity on top of the earn characterized with a non—fluctuating dielectric permittivity. With

a fcw parameters to characterize both vegetation and bare soil, results from theoretical calculation

match quite well with the observed data. The imaginary part of the relative p: rrnittivity E i'

for the vegetation cover at 1 .4 GHz used in the theoretical calculations was found to decrease from

the fully grown corn to dry corn cast (in order to match the observation), qualitatively this is consistent

with the observed decrease in the corn biomass. A comparison of the measured and the calculated

results between soybean and fully grown corn fields also suggests a close relation between e',' and the

biomass per unit area. Thirdly, different types of vegetation cover require different sets of values for

the variance of permittivity fluctuation b and the correlation lengths Q. and Q,. More experimental

data are needed to study the variation of b, R . and Q T with the vegetation typt^,.

9



The e 1 's of the vegetation medium us^d in the theoretical calculations are not derived from the

acquired ground truth given in Table 1, because the volume ratio V's of the plants to air are not

measured. To make an estimate of e t of the fully grown corn field, the measured value of V = 0.37

for the dry corn field planted in the same way in 1979 (20) and the ground truth data in Table 1 are

entered in the formulas given by Fung and Ulaby (21). This results in an estimated e l = 1.10+i C.00724,

assuming a value of 4 for the density ratio of the water to solid material of the fully grown com. The

density ratio is not crucial in the approximate estimate of e l . For example, the density ratios of 3 and

5 give e l = 1.1 + i 0.0081 and e l = 1.09 + i 0.00650 respectively. Both of these estimates are much

smaller than the one used in the theoretical calculations of Figure 7(a). One reason for the large dif-

ference in e l could be due to the soil surface roughness effect discussed briefly in the previous section.

Since the surface roughness effect is not incorporated in the theory, it requires the use of larger e i to

match theoretical calculations with experimental results. Another reason could be due to the use of

V value measured for the dry corn. The fully grown corn has a higher water content and is likely to

have a higher V than that for the dry corn. A higher V would give a larger estimated e 1 closer to the

one given in Figure 7(a). An estimate of e t for dry corn is not made because of the possible shift of

dielectric relaxation towards low frequencies for the tightly bound water in corn. The formulas for

dielectric relaxation given by Fung and Ulaby (21) may not be valid under the circumstance.

Previous measurements over bare agricultural fields (3, 17) have strongly suggested the presence

of the surface roughness effect even though the fields may be relatively smooth. ThF comparison be-

tween theoretical calculations and the experimental results for the dry corn 	 bare fields dis-

cussed in the previous section also implied the existence of the surface roughness effect. Clearly, more

work is needed in the development of the radiative transfer theory to include the surface roughness

effect in order to interpret the measured results over the vegetated fields more adequately.
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FIGURE CAPTIONS

Figure 1.	 Geometrical configuration of the theoretical model.

Figure 2.	 The normalized brightness temperature vs. soil moisture content in the top 0-3 cm

layer. The bare soil data of 1979 are obtained from Wang et. al. (31. The re-

gression line is derived for bare fields only.

Figure 3.	 The normalized brightness temperature at 1.4 GHz vs. incident angle for various

crops.

Figure 4.	 The normalized brightness temperature vs. soil moisture content in the top 0 .3 cm

layer.

Figure 5.	 The normalized brightness temperature at 5 GHz vs. incident angle for dry corn and

cut—corn fields.

Figure 6.	 The differences in the normalized brightness temperatures between vegetated and

bare fields vs. water content of the vegetations.

Figure 7.	 A comparison of the measured and calculated brightness temperatures at 1.4GHz

as a function of incident angles: (a) fully grown corn held and (b) soybean field.

Figure 6.	 A comparison of the measured and calculated brightness temperatures at 1.4 GHz

as a function of incident angles: (a) dry corn field and (b) cut—corn field.

Figure 9.	 A comparison of the measured and calculated brightness temperatures at 5 (GHz as

a function of incident	 s: (a) dry corn field and (b) cut—corn field.


	1981012913.pdf
	0005A02.TIF
	0005A03.TIF
	0005A04.TIF
	0005A05.TIF
	0005A06.TIF
	0005A07.TIF
	0005A08.TIF
	0005A09.TIF
	0005A10.TIF
	0005A11.TIF
	0005A12.TIF
	0005A13.TIF
	0005A14.TIF
	0005B01.TIF
	0005B02.TIF
	0005B03.TIF
	0005B04.TIF
	0005B05.TIF
	0005B06.TIF
	0005B07.TIF
	0005B08.TIF
	0005B09.TIF
	0005B10.TIF
	0005B11.TIF
	0005B12.TIF
	0005B13.TIF




