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1. TECHNICAL OBJECTIVES

1. Optimal Utilization of Laser and VLBI Observations for Reference

Frames for Geodynamics ( Grant NSG 5265)

2. Optimal Utilization of Satellite -Borne Laser Ranging System ( Grant NSG 5265)

3. Geodetic Utilization of NAVSTAR Geodetic Positioning System ( Grant NSG 5265)

4. Utilization of Range Difference Observations in Geedynamics (Contract

NAS 5-25888)

2. ACTIVITIES

2.1 Comparison of Data from Project MERIT Short Campaign

2.11 Prediction of Polar Motion

Based on the analysis of polar motion behavior, we found the pos-

sibility of predicting polar motion for a long time interval ( I-2 years in

advance) with sufficient accuracy. We take the best estimated Chandler

period as constant, use six years of data to estimate the amplitudes,

phases and ellipticity ( only for annual) of Chandler and annual motion.

These estimated parameters are then used to predict the next year's (or

next two years') polar motion. In making the prediction, we also take the

linear trend into consideration.

The data used for prediction are BIH, IPMS, and DMA, with the time

interval from 1968 to 1980 (DMA data from 1972 to 19$0}. We predicted

polar motion one yar in advance, compare the predicted polar coordinates

with the real observed ones (smoothed); the mean rms of the differences

(predicted minus observed) is about 0:'02. The differences of the relative

polar motion are much smaller. For a time interval of 20 -30 days, the rms

of relative polar motion differences is about 0'.'01 {30 cm) through the whole

year. Compared with tt^e best available VLBI results ( from 1977 to 1980), the

rms of predicted - observed is 0:'013; and the relative rms (with time inter-

val less than or equal to two months) is 0':008; here the VLBI observed data

is unsmoothed.



The predicted polar motion can be used for geodetic purposes. It

also seems that the accuracy of polar motion prediction is high enough for

any purposes that require the real time polar motion value, including the

control of spaceships.

Theoretically, we can say that about 90 percent of polar motion is

composed of the stable, predictable Chandler and annual terms.

We also analyzed the error sources in polar motion prediction. In

doing so, we found that in DMA data there are systematic differences

among the polar coordinates determined by different satellites. Details

may be found in "Prediction of Polar Motion" by Y.S. Zhu, Dept. of Geodetic

Science, 1981, in pr^_•^

2.12 MERIT Short Campaign Oata Analysis

The BIH has already analysed the MERIT data using BIH Circular D as

a common reference. Since new techniques are expected to obtain better

accuracy than now achieved by the BIH, we think that a mutual comparison

method may be more rational than using BIH Circular D as a common reference.

In analyzing, we use both raw data and smoothed data.

2.121 Using Raw Data

Direct comparison. We compute the standard deviation of the polar

coordinate differences of each two Analyzing Centers. The results are as

follows:
aoX any mean

DMA - MEDOC 0°040 0:044 0".042

CNS (39)	 - CNS (10) 0.031 0.053 0.042

SAO - CNS (10) 0.040 0.036 0.038

CLA(Opt.) - SAO 0.022 0.025 0.024

ClA(Opt.) - DMA 0.022 0.025 0.023

CLA(Opt.) - UTX 0.019 0.026 0.023

DMA - SAO 0.010 0.011 0.011

UTX - SAO 0.014 0.012 0.013

UTX - DMA 0.014 0.010 0.012

SAO - CNS (39) 0.009 0.014 0.012

UTX - CNS (39) 0.010 0.011 0.014

2
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From the above values we suggest that the standard errors of each

Analyzing Center are approximately: 0:'01 for MEDOC and for CNS ( 1 0), 0:'02

for classical (optical), 0'.008 - 0'.01 for SAO, DMA, UTX and CNS(39).

Relative polar motion comparison. Relative polar motion comparison

is used to detect the possible systematic error (other than constant system-

atic error--the difference of origin). Systematic error will be mostly

reduced in relative polar motion, while it remains in direct comparison.

The standard error of relative polar motion along with the standard

error obtained in direct comparison are given below.

Relative Direct

a^
any amean

a^
aqy mean

DMA - MEDOC 0:'039 0'.039 0:'039 0:'040 0:'044 0°042

SAO - UTX 0.010 0.0:0 0.010 0.014 0.012 0.013

DMA - UTX 0.014 0.008 0.011 0.014 O.OIO 0.012

DMA - SAO 0.010 0.009 0.010 0.010 0.011 0.011

Opt. - SAO 0.017 0.022 0.020 0.022 0.025 0.024

Opt. - DMA 0.024 0.022 0.023 0.022 0.025 0.023

Opt. - UTX 0.017 0.024 0.021 0.019 0.026 0.024

SAO - Circular D 0.005 0.004 0.005 0.009 0.009 0.009

UTX - Circular D 0.011 0.010 0.010 0.011 0.013 0.012

Since every 
odirect 

is more or less larger than arelative' it means that

there are systematic errors among the Analyzing Centers. The detailed

properties of the systematic errors (say, the period, amplitude, etc.)

could not be obtained because of the short time span of data available.

2.122 Intercomparison After Smoothing

In the initial stage direct comparison gave reasonably good evidence

that systematic differences exist between the results of the earth rotation

parameters obtained from different Lechniques. later a smoothing process

(by adjustment) was used by adopting a suitable mathematical model for inter-

comparison of pole positions obtained from different methods during the

MERIT Short Campaign. The mathematical model used is given below.

3
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x=k 1 +k Z COSA+ka sinA+k4cosc+ks sinc

y = k 6 - k 2 sin A + k 3 cos A - K 4 sin c + k 5 cos c

where A = ZPI (MJD - 42413)/365

c = 2PI (MJD - 42413/435

k l to k b are coefficients in seconds of arc

The smoothed x, y coordinates of the pole were plotted in each case, and it

was seen that curves depicting the motions were of different shapes and were

at different locations with respect to the origin (CIO). These plots are

Figs 1 to 7.

As a consequence of the smoothing process, the values of coefficients

k l and k6 obtained were plotted on a graph with their standa^ •d deviations

(Fig. 8). k l and k 6 correspond to x and y coordinates of the origin of the

curve, depicting the pole movements with respect to tie CIO. This figure

shows that systematic differences exist in the pole origin recovered as a

result of these different *,^chniques, which may be due to differences in

mathematical models for computations and locations of observing stations, etc.

Figs. 1 to 7 also give preliminary evidence that there is a systematic differ-

ence existing in the values of annual and Chandler period amplitudes recovered

by different techniques.

The data available for the MERIT Short Campaign was not really sufficient

to enable us to arrive at any conclusive evidence regarding the systematic

differences and their estimation; and the noise level was also quite high.

Therefore, we should wait for the intercomparison of data to be made avail-

able through the MERIT Main Campaign.

^,^^
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2.2 VLBI Investigations - On the Time Delay Weight Matrix

in VLBI Geoc:e:ic Parameter Estimation

2.21 Introduction

A VLSI baseline consists of two antennas simultaneously obsErving the

random signals emitted from an extragalactic radio source. The reception

of the signal at one antenna is delayed in time from its reception at the

other antenna due to the difference in path length that the signal must

travel, Denoting the time delay by T ij we have

T
ij 

= tj - ti

where t i (tj ) is the time of arrival at station i (j). For a set of time

delay observations about a triangle of stations we have T1^, T 13 and T23•

Assuming that we rere able to directly measure the times of arrival of the

signal at each antenna (with equal precision) then it can easily be shown

[Bock, 1980] that the unsealed variance-covariance matrix for that set of

time delays is given by

1 } -#

^ 1 }T..
1J

-^ } 1

Since the determinant of this matrix is zero, the three time delays in this

ideal case are seen to be linearly dependent being related by

T 12 + T ^3	 T13

Therefore, for each set of observations from a triangle of stations, one

time delay would be redundant, and, furthermore, any two time delays would

be correlated by a factor of }. However, in reality, the time delays are

not estimated in this manner but are the result of a complex estimation

procedure [Whitney, 1974; Whitney et al., 1976] whose first step is the

cross-correlation of the signals recorded on magnetic tape. In order to

estimate, for instance, the pair T 12 and T 13i the signals from station 1

are correlated with both the signals from station 2 and the signals from

station 3; the station 1 signals, therefore, are involved in both cross-

13



correlations. The focus of this investigation is to assess the magnitude

of the correlation between the cross-correlations on two baselines with a

common station when all observations are performed simultaneously. If

there is an indication of significant correlation (obviously the correlation

will lie between 0 and }), the weight matrix for time delays used in the

least squares estimation of geodetic parameters must be modified accordingly

(in VLSI work today the weight matrix is assumed to be diagonal). See

[Bock, 1980] for simulations on the effect of correlations on parameter

precision estimates. The goal of centimeter accuracy in baseline determination

for the detection of, for example, plate tectonic motion is the rationale

behind this study, i.e., all possible modeling errors need to be investigated.

This is a shortened and modified version of the final report to be

presented at a later time.

2.22 Group Delay Estimation and Statistics

This very brief review of the measurement process is given through to

the estimation of group delay (which is the estimate of the time delay so-

called due to the fact that its estimation involves observations over a

band of frequencies). The signal is collected at each antenna (as a voltage

--see the discussion below on the statistical model), passed through the

receiver chain where it is corrupted by noise. The receiver chain includes a

radio frequency amplifier which increases the power of the signal, followed

by mixng the signal with a strong local oscillator signal, generated by

a hydrogen maser, to convert the signal to an intermediate frequency. The

resulting signal is again amplified and distributed at 28 narrow bands of

2 mHz width [Rogers, 1979]. At this point the new video frequency signals

in each channel are in analog form. The signals are clipped, sampled at

the Nyquist rate, formatted and recorded on magnetic tape along with

accurate timing codes. 	 The clipping can be represented as a function

which normalizes the amplitude of the signal voltage, X(t) such that

[Thomas, 1976]

F(X(t)) _ = 1 if iX(T)j > 0

F(X(t)) _ -1 if jX(T)^ < 0

The recorded signals are thus recorded in digital form.

14



The signal x 2 {t) received at the second station is equivalent to

the signal x 2 (t) received at the first station but delayed in time by T12

such that

X 2 (t) = X1 (t - T12)

The Fourier transform of x 2 (t) yields in the frequency domain

r^	 1x2(w) = J x2(t) a-iwt dt = xl(w) a-iwT y
_m

where w is the radio frequency.

It has been demonstrated by [Rogers, 1970] and [Whitney, 1974] th?^

the maximum likelihood estimate of (group) delay and delay rate (the time

derivative of delay) can be obtained by maximizing the counter-rotated

cross-spectrum (as defined in [Whitney, 1974]) summed over BT components

where 6 is the channel bandwidth and T the total integration time, as

max over	 ^ 
X 1( w ) XZ(w) e

-i [w ( T l2 + T l2 t ) + ^12]
Y	

w^12eT12:^12

where T 12s T 12, ^12 are trial delay, delay rate and fringe phase based on the

best a priori information available, and w is now the video frequency. The

maximization above is equivalent to the cross-correlation of the signals re-

corded at both stations with fringe rotation, that is, shifting one-bit stream,

on the basis of a priori information, in order to align the two-bit streams to

a point of near-maximum correlation, followed by multiplication of the signals.

That the above expression represents a cross-correlation follows from the c^nvo-

lution theorem ^^f Fourier analysis (see, for example, Bath, 1974]) which states

that if

f l (t) ^--► F 1 (w) and F z ( t ) ^—> F2(w)

then

f l (t) Q f 2 (t) +--► f l( w ) f2(w)

That is, convolution (symbolized by ®) in the time domain is equivalent to

multiplication in the frequency domain. Convolution is defined by

f li t ) 0 f2(t) = i W f l( T ) f2l t-t ) dT = I f l (t-T) f2(T)dT

—m	 —m

15
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whereas cross-correlation is defined as

^^

Rf1f2 (t) _ ^ f i(t) f z(t+T ) dt = ^ fi(t-T}f2(t)dt

_^	 _m

Thus convolution is the same as cross-correlation except that one of the

time series should be taken in reverse order, i.e.,

Rfif2 (z) = f l (- r) Q fz(T)

where T in the above equations refers to the familiar time lag between two

time series. Algorithms designed to approximate the cross-correlation, in

practice, are gi^ien in [Whitney, 1974].

An expression for the normalized analog cross-correlation function

assuming that both stations possess a square bandpass filter of width W is

given in [Thomas, 1972a,b and 1973] as

R1` T	 _ E^ X^( t ) X 2 (t+T (= 
Yiz 

TA 1 TA2	 WD

( m) - E^ Xi (t)^ E{Xz(t)^	 (TA1+ TR1 >(TAZ + TRZ ) W

sin^nWD 9x12]

•	 cos^fl`
-cWD 9t 12

where tm is the model delay by which the signals are shifted in order to

bring the data streams at both stations in close alignment. The expres-

sion in brackets is the amplitude of the cross-correlation function for an

extended source (a source that subtends a finite solid angle as opposed to

a point source). The fringe visibility y accounts for the power lost due

to self-interference of the extended source (Y = 1 for a point source);

WD/W accounts for power lost due to imperfect bandpass alignment; the ratio

of antenna temperatures TA1 and TA2and receiver temperatures TR1'TR2

descri5ed in the next section account for signal-to-noise properties. The
sin x 

function indicates the accuracy with which the two signal streams have
x

been aligned and peaks for az = z-i m = 0, T being the true time delay (includ-

ing atmospheric and instrumental delays as well as the purely geometric

delay). The so-called fast fringes cos^f expresses the overall phase

behavior of the cross-correlated signals. For digital signals, in the case

when the correlation amplitude is small (ti 0.001 - 0.1) as is the case in

16



VLSI work today, the digital cross-correlation function has a further

loss of 2/n in correlation amplitude (see [Thomas, 1972b] also for the

strong signal case).

Once optimal values for delay and delay rate have been determined

(for each frequency channel), the fringe phase (the phase difference) for

the same frequency channel at stations 1 and 2 can be estimated by

[Whitney, 1974]

Im 
l^ S12(^)j

tan fix =
Re ^ w S^z (^) j

where S 12 (w) is the counter-rotated cross-sprectrum above using the optimal

values of delay and delay rate for one channel. (Im is the imaginary part,

Re the real part of the summations which are complex quantities.)

In the bandwidth synthesis technique [Rogers, 1970, Whitney et al., 1976],

the fringe phase is determined over several frequency channels (spanning a total

bandwidth of up to 400 mHz in the Mark III system) in order to improve the

accuracy off' group delay (and delay rate) estimation, and to resolve 2^

ambiguities in the fringe phase. The final estimate of group delay is the

slope of a line passed in the least squares sense through the estimated

phases of several frequency channels [Whitney, 1974]. The frequency channels

are not generally uniformly spaced across the total bandwidth. Suppose we

have observed a radio source from three stations, and that fringe phases

have been estimated over n channels identical on each of the three baselines.

Further suppose that the full variance-covariance matrix for the estimated

phases over all channels is available. We shall assume that it takes on the

following block-diagonal form

^^i

^^z
r	 =_^

0

0

E
^ n 3n x 3n

where

ea
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z

	

J ^iz	 °^iz^^i3	 ^^i2+^z3

_	 z
^^l	 J^13	 a^13r^23

	

sym	
^^z 3

Let us represent

Pii	 Piz	 Pia

1 -	 pzz	 Pz3	 (P = ^ 1 , also block diagonal)P i
 = t`^i	

^

sym
P33 i

We have assumed that all fringe phases for one baseline (ij) have equal

variances and are uncorrelated, though for each channel (observed simul-

taneously by all three stations) the fringe phases are correlated. The

group delays as mentioned above are estimated as the slope of phase versus

frequency. We shall assume that the spacing of the frequency channels is

large compared t^ the bandwidth of a single channel so that only the spacings

between the frequency channels need to be considered [Whitney, 1974]. In

order to determine the correlations between sets of time delays from three

baselines we use the (linear) mathematical model of a line passed through

the points 
( ^'k' ^ijk)' ^

k refers to the video frequency of the k th channel,

mijk the fringe phase on baseline ij, channel k. We form three sets of

observation equations, one for each baseline

miz k + v i2k = T1zwk + biz

Si3 k + ^13 k = i13w k + b 13

^23k + V z3 k = T23^k + bz 3

The parameters include Tiz+ T 13+ ; z3, the group delays to be estimated over

all frequency channels and the b ij , the line intercepts which for this dis-

cussion can be regarded as nuisance parameters. The v ijk are observation

residuals. We can write the above equations in matrix form as [Uotila, 1961]

V	 A X - L

where

18



A l A2 0 0 0 0

A=	 0 0 A l A 2 0 0
0 0 0 0 A l A2

3n x 6

wl

w2
Al	 = ;

Wk n x i

X12
1

^i2n

X131
L =	 .

^^ 3n

^23
1

^2 3n 3n x 1

1

A2	 =

1 n x 1

T12

b12

X -	 T13

b13

T23

b ^ 3 6 x 1

The least squares solution vector for the estimated parameters is given by

X	 (ATPA)^ 1 ATPL

In this discussion we are only interested in the variance-covariance matrix
of the parameters (assume unscaled)

EX	 (ATPA)-1

where the weight matrix P has been defined above. Performing the matrix

multiplication we arrive at

19



^w Plz	 E^Zp13	 Ew P13 -1EwkPll	 L^+kPll	 ^^kP12	 k	 k	 k

^P11	 ^wkpi2	 ^ P12	 EWkPl3	 E P13

	

iwkp22	 ^wkp 2z	 ^WkPz3	 EwkPz3

^X	
Ep2z	 EWkPz3	 ^Pz3

^wkPi3	 EwkP33

sym	
Ep33

The E^ portion can be picked out after inversion including the time delay

correlations.

In the case of only two frequency channels w1,^^2 (say, for example,

the two outermost channels (see discussion in [Thomas, 1913]), the group

delay portion of the above E„ matrix reduces to

2	 X 2	 22

^
a^12	 k=1 a

^12k,^13k	 kal J^12k,^z3k
k-1	 k

E_ =	 1
T	 ^2 wl

2	 Z
2

k=1 
a^13k	 ^	 k=1 a^13k,^23k

r2
S ym	 L.^ 2k=1 am23k

In the cases where the fringe phases from channel i for all three baselines

are uncorrelated, i.e.,

p ll - o^	
p22	

Q'i3 
t	 P33 = oT 

^	 P ik = 0 (i # J)

the group delays are obviously also uncorrelated. In this case the variance of

Q2 ,for example, can be determined from the first block of the now block

t12
diagonal E ^ matrix as

X
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-1
Lwk	 Ewk

_ ^

Eli	 aPis	
Eck 	n

which reduces for the time delay T 12 n

o s	 ^ ^''kQ s 	 =	 Pis	 ;	 ^, = i=1
Tis

E(wi—w)s	 n

in agreement with [Whitney, 1974] and [Thomas, 1916]. An expression for

a^	 is derived in [Whitney, 1974] (for TA«TR)

^^

TRt TAB + TAi T
R, + 

TR t TRH	
1

o s	 —
P ij	 TA TA	 2BT

i	 ^

where the notation has been explained previously. Furthermore, he defines

the signal-to-noise ratio as

SNR
ij
 = p o 3^fi

where ^o is the amplitude of the cross-correlation function described

earlier {here given for an analog signal and a point source) and thus

a2	 1
Pij	

SNRij
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2.23 The Nature of Signal and Noise in VLSI Observations

As in all statistical detection problems, we are interested in the

reception of a signal which Dears information of value and noise which

opposes ^^^r efforts to extract it. (This paragraph will draw from

[Steinberg, 1963; and Kraus, 1966]). In radio astronomy both the signal

and noise are of an equivalent statistical nature. Consider a resistance

of R ohms at a temperature T (°K). The thermal agitation of the electrons

in the resistor produces a voltage n e (t) at the terminals with zero mean.

Ejne (t)^	 0 and a flat spectrum Sn e (w)	 2kTR (k is Boltzman's constant).

This so-called thermal or background noise can be shown experimentally to

be a normal process. A resistance R is therefore equivalent to a source

of voltage with zero mean and power, 2kTR in series with a noiseless

resistor R. If such a -oltage source is connected to an external load

resistance R^, it will Deliver a certain power to it which will be maximum

if the load resistence is equal to that of the source. The power delivered

will be equal to kT. The voltages involved in VLSI antennas are of the

same statistical nature as background noise. The same noise power is a^^ail-

able at the terminals of an antenna (kT). The antenna has a radiation

resistance R and is exposed to a sky temperature, T. Therefore, we see that

observations in radio astronomy consist of the measurement of an ante^.na

temperature and the conversion of that Temperature to a measure of power

received from the source. the signals are corrupted by noise as they pass

through the receiver components primarily at the first stage of amplifica-

tion [Thomas, 1976]. This noise is basically background noise as described

above. Thus, signal and Heise in VLSI observations have similar statistical

properties, being modeled by the thermal noise of a resistance raised to a

certain temperature. The receiver noise is expressed in terms of the

radiation resistance of the antenna. It is the temperature to which the

radiation resistance of the antenna would have to be raised in order to

produce the same noise power as the complete receiver. The sum of antenna

temperature. TA , and the receiver temperature, T R , is called the system

temperature. Thus, the overall noise power is given by k(T A+TR ). In order

to appreciate she tertmeratures involved, for the Mark III wideband receiver

and a 1^ Jansky source (1 Jansky	 10 `' 6 watts/m Hz) for the Westford 18 m
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antenna, TA	0:45 K and for the 4 m portable antenna, TA	O:C3 K. The

system temperature, on the other hand, is about 160° K [Rogers. 1979]. Even

fen large antennas observing strong extragalactic sources, the temperature

will not usually exceed 1° K. Thus, antenna temperature is about two orders

of magnitude smaller than receiver temperature. The signal is thus propor-

tional to antenna temperature and the noise to receiver temperature. In

order for the signal to be detected, measurements must be integrated over

several minutes of time and the spanned bandwidth increased (up to 400 mHz

with the Mark III receiver).

Considering the statistical nature of signal and naise in VLBI obser

vations, it is reasonable to assign the following statistical model fir :F-

output voltage of the receiver as [Rogers. 1970]

X(t) _ (TA ) } s(t) + (T R ) i n(t)

where s(t) is the noise signal collected by the antenna from the radio

source emission and n(t) is the receiver noise. The temperature: TA and 1R,

therefore, serve as weighting factors.

The signal and noise are complex quantities whose real and imaginary

parts are assumed to be normally distributed (N (O,i)),for a particular t,

and independent [Whitney, 1974]. Therefore (and similarly for n(t))

E{s(t)}	 E{s r (t) + i s i (t)}	 E{s r (t)} + i{s i (t)} = 0

var[s(t)] ' E{s(t) 2 }	 E{sr(t) + s^(t)}	 E{sr(t)} + E{s^(t)}= }+}=1

cov[s(t),n(t)]= E{s(t) n*(t)} - E{s(t)} E{n*(t)}	 E{s(t) n*(t)}

= E{s r (t) n r (t)} + E{s i (t) n i (t)} + i[E{s i (t) nr(t)}

and the signal and nc^a; are seen to be independent standard normal, N(0,1)

random variables for ''^^ed t. Both s(t) and n(t) are assumed to be station-

ary random processes (see [Swanson and Mathur, 1968]) so that their respec-

tive autocorrelations are a function of time difference and independent of

time origin.

Since an observation is integrated over a certain Lime interval T

and a spanned bandwidth 8, s(t) and n(t) can be represented over T by
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a Fourier series expansion with BT independent components. furthermore,

since the signal X(t) is generally received from an extended source, we

can assume that only the correlated part of the signal :.ontribut^s to

the antenna temperature and the remainder contributes to the receiver

temperature [Rogers, 1970].

The statistical model can just as well be written in the frequency

domain as [Whitney, 1914]

Both signal and noise are bandli^^^ited which means that their spectra equal

zero outside certain regions of the frequency ^ [Papoulis, 1965]. The con-

sequence of the above assumptions is ghat the output voltage of the

receiver X(t) at each station is itself a stationary, normal (with zero

mean), bandlimited stochastic process.

2.24 Correlation Analysis

We are now in a position to assess the degree of correlation between

the cross-correlation of signals on any two baselines when the signals from

one station are common to bc'_h processes. We shall investigate a triangle

of stations observing a radio source simultaneously (since this is the basic

unit for such an analysis) whose signals are represented statistically

in the frequency domain as

X,(^,) _ (TAB ) ; s3(-) + (TRj ) } nary)

where

s.^(y) = sl (^) 
e - i[y( - 1 ^+ ; li t) + m:z)]

Ttie notation is the same as in the previous section. In addition., we assume

that the noise introduced at each receiver is uncorrel^tcj with that of

another receiver, i.e.,

E ;n i n j }	 0 (and E s i n j } = 0)	 (ii«j)
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F
We shall determine the degree of correlation between the cross-correlation

on baseline 1-2 and 1-3. The rotated video cross-spectru
m for baseline

1-2 and baseline 1-3 can be written as

S12(^) ° X 1('y ) XZ( w ) a 
1^+( ?lz + T12t)

S13( W ) = X 1 (W) )(3(W) e
-ltil(T13 + T13t)

which can be written in terms of signal and noise as

S 12( W )	 A'^ 1'AZ 5 1 ("x) SlIW) e^^lz ^ nl(W) sl(w) e^Qlz ++ ^R-1 A—z

+ rl	 i	 sl(w) ni * (W)	 + T R3 1 TR2 nl(w) n^*(W)
A l R3

i^13+ YI	 ^	 nl(^a1) S1(W) e1^13 ^,
S13(w) =	 A'i 1'A3 sl(W ) sl\"^) a	 R1 A3

	+ ^ s l ( LL ) n3*(w)	 + r R'T 1TR3 n l (w) n 3 (w)
A l R3

where

	

	 )

n2 * (^:) = nz (w) 
e im(t l z + Tlzt

n3* (til) = ng(;:;) e
ll.;(T13 + t' 3t)

We shall assume as in [Whitney, 1974] that n2(w) has the same statistics as

nz(w) and likewise for n3 (w) and n3(w)•

The above Slz( W ) and S 13 (w) are evaluated as the sum over a large

number of independent short time intervals spanning an observation and

refer to one component in the observed frequency spectrum. The maximiza-

tion, as mentioned before, is p
erformed by summation over BT independent

points in the frequency
 spectrum. We can represent this summation as in

[Whitney, 1974] by

^12 = i.Xi(w) X2( ^) 
e-lw(T12 + T12t)

_ 
^ ei^ lz Esl(^) 

s*(W) .^ 
R,f^ a e^^l z ^ nl (^,) s*(W)

A l Az

+ 3T ^ ^s(a^l nZ* (w)	 + ^ En l (w) n2 (Wl

Al Rz	
R1 Rz

and

^S

,,,.	 ..	
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a

^§

*/	 ( 1	 •13
±	 ^13 = r X l( w ) X3(W) 

e - 1W T 3+ T t

'.	 _ 3 Â TA 
e^^13 ^s(W ) s* (W ) + R̂—^ e^^13 ^nl( ^, ) 5*(^;)

1

where we have dropped the subscript from the signal terms. We are only

concerned with the observations that are common to all three stations. It

can be shown easily that all the terms in the expressions S 12 and S 13 are

independent of each other and the real and imaginary parts of each term

are independent [Whitney, 19743. Thus, ^12 and X13 are vectors in the

complex plane, and are the sums of independent random variables.

The correlation between these two cross-correlation processes given

by X12 and X13 can be defined as

-► 	 cov[^12i ^13]
a =

{var[^1z] var[^l3 ]}^

which is also a vector in the complex plane since in general ttie covariance

between two complex random variables (in our case, the same of uncorrelated

random variables) is complex but the variance is real [Jenkins and Watts, 1968].

For the covariance between X12 and ^13i by definition [Papoulis, 1565],

COV [^12^ R13] = E{ [^12 - E { n 12 } ][^13 - E{^13}]}

= E{^12 ^13} - E{K12} E{tt*3}

_ ( ) (T	 ) ^- e i (Q12- ^13)	BT 	
Al + T

R1 ^ A
2 A3

where the derivation is given in the final report. To derive an expression

for the variances we can use the property that the four terms of both ^lz

and X13 are independent and therefore the variances of each term can be

summed. By definition [Papoulis, 1965]

J Z	 = E{^^12 - E{^12}I^}

^l z
_ (BT)( TA1 + TR1 )(TAZ + TRZ)

and

^13
_ (BT)(TA1 + TR1 )(TA3 + TR3)
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where the derivations are given in the final report. Then, for the correlation

vector

p	 = TA2 A 3	 ei( ^lz- ^13)

^iz^^13	 (TAz+ TRz)(TA3+ TR3)

The magnitude of p^ ^ ,
12^ 13

TAz A3
^ a^iz^^13 I 	=

(TAz + TRz )(TA3 + TR3)

is a measure of the degree of correlation between the two cross-correlation

processes, represented by X 12 and X13 . (The same result has been derived

independently by Herring [private communication].) The argument of p^ ^
12s 13

_	 Im p
arg p̂  , ^	 = tan 1	 ^ _ ^zz - ^13

^`' 1S	 Re ^

expresses the effective phase difference between the two processes--

^lz - X13 is the angle between X 12 and ^13 in the complex plane. The

magnitude of the correlation vector is defined in general by [Jenkins and

Watts, 1968] as the coherence between two complex random variables, X 1 and

Xz, by

cov [X 1 , Xz]^

k lz =
{var [ X 1 ] var [Xz]}^

The correlation vector is also referred to in the literature as the complex

correlation factor used, for example, in optics for the study of light from

an extended, incoherent quasi-monochromatic source [Born and Wolf, 1964].

Extending the above results, the following Hermitian matrix (similar

to the coherency matrix in optics) for the cross-correlation of signals in

a VLSI triangle can be defined as

var [^.z]	 cov [Rlz,^13]	 cov [^lz.^z3]

J =	 cov [^13, K 12]	 var [^13]	 cov C^i9,^z3]	 _

cov [^23,^i2)	 cov [^z3,^13 J 	 var [^z3]
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T 	 ^. ^	 ...

TS1TS2

'^^— e - i (^12-^13)=	 TSlr A
Z A3

SZ Al A3

T ^^T e^ (^12-`^13)
S 1 A2 A3

TS1TS3

(-f- a-^(^1z-413)TS3r' A
l AZ

T 3T ^— e^(^12-^ia)
Sz A l A3

T 3T^ e^(^13-^23)
S 3 Al AZ

TSZTS3

where TS = TA + TR ,the system temperature for station j.

J	 J	 J

The corresponding coherency (correlation) coefficient matrix is

given by

TATA	 TTA
1 ^

TA
3

1	 ^p^12 ►^13^	 ^p^12,^231	 1	 SI	 I S	 SI	 IS

TA TA

C =	 1	 Ip^13,^z3I 
=	 1	

TS^1

1	 1

where we can pick out the coherence between any two cross-correlations

from the off-diagonal elements.

It is interesting to note that the coherence between the cross-

correlations for any two baselines (with a common station) is just the

amplitude (denoted here by ^p^ 	 ) of the normalized cross-correlation
k

function defined earlier (or as J is defined in Whitney, 1974], the true

correlation coefficient of the third baseline),i.e.,

pl ^ij'^ik	 Ipl^jk

for the case of observations to a point source with the signals recorded in

analog form.

In order to assess the magnitude of the off-diagonal elements of

matrix C, i.e., the degree of coherence (correlation) between cross-

correlations on two baselines with a common station, we recall from the

earlier discussion that in VLSI work today TA«TR . This indicates that

the C matrix is very nearly the identity matrix, i.e., the cross-correlation

pairs are virtually uncorrelated (^p^ti 0.001 for the example of the previous

28

,..



^,,

r

section). It follows that the fringe phases are uncorrelated and consequently

the group delays (as well as the delay rates). In fact, the correlations can

be expected to be even smaller considering that we are observing extended

sources so that the correlation would have to be multiplied by a fringe

visibility factor (remember 0<Y<1). In addition, we know that digitizing

of the signals reduces the amplitude of the cross correlation function by

a factor of 2 /a and (in the case of weak signals) can be expected to affect

the corr^:lations. Finally, the theoretical cross-correlation procedure

as described earlier is only approximated in practice, which will also tend

to reduce the degree of correlation (see [Rogers et al., 1979]).

On the other extreme, in the limiting case where T A = TR

1	 }	 }

C =	 1	 }

sym	 1

as could be envisioned for satellite interferometry where a radio antenna

(e.g., SERIES) would observe an artificial satellite transr^itting a much

stronger signal than extragalactic radio signals. Furthermore, the satellite

could be considered a point source and digitization would not be expected to

decrease the cross-correlation function amplitude {see [Thomas, 1972b]). It

then could be inferred (this will be shown in the final report) that the

fringe phases are correlated in the same manner. Since the C matrix in

this case is singular, this implies that only two cross-correlations in a

triangle are independent and likewise for the fringe phase. The co^^ariances

of the E^ matrices defined earlier could then be formed by
i

J ^ij^4jk - p ^ij^ 4jka^ij a^jk

where a, the correlation between fringe phases will approach }. It is easy

to see (at least in the two-channel case) that the correlations between

group delays would approach that of the hypothetical situation described

in the introduction and could be computed in general by the E 4 portion of

the EX matrix developed in Section 2.2.2.
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2.3 Utilization of Range Difference Observations in Geodynamics

2.31 Utilization of Lageos Laser Range Differences

Introduction

The objectives of this project as originally stated in the proposal

are the development and implementation of the technique of range differencing

with Lageos in order to obtain more accurate estimates of baseline lengths

and polar motion variations. It is expected, and the simulations done to date

confirm this, that by means of differencing quasi-simultaneous range observa-

tions a great deal of orbital biases can be eliminated resulting in an esti-

mate which i, virtually bias free. In the past few months attempts were

made to use real data in order to assert the conclusions made on the basis

of the simulations. Partly due to the oversimplified models used in our

software (GEOSPP80) ar^^l partly due to the very poor geometry and distribution

of the data, these attempts fell short of providing any conclusive results.

It was realized, however, that even with the best possible geometry and dis-

tribution of the observations, certain physical phenomena would have to be

included in the model. This being the case, a complete revision of our

software was undertaken, which resulted in a new version (GEOSPP81) cur-

rently undergoing tests. Given in the following is a brief summary of the

various models implemented in the new version.

2.311 Data Preprocessing

Rs mentioned in previous reports, it is quite improbable, if not

impossible, to obtain exactly simultaneous laser observations from two

ground stations to a satellite. Modern lasers, however, have high repeti-

tion rates and given fair weather conditions and accurate predictions, a

sequence of ranges at a rate of about 1 pps can be easily achieved. Since

an average Lageos pass lasts about half an hour, this implies a large amount

of data. The high altitude of the target makes it possible to observe it

from several stations simultaneously, even if the stations' separation is

of continental extent. The current procedure to obtain the quasi-simultaneous

ranges from data sets such as described above is to determine the "overlap"

ok^^servations for the station pairs involved, isolate these observations and
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determine which of the two stations in each pair has a denser data distribu-

tion. Once this is determined, the data of the station with the most obser-

vations are fed into a cubic-spline interpolator and ranges are obtained for

each of the data points in the alternate station's record. These ranges

then are differenced to produce the range-difference data for GEOSPP81. The

data used in this procedure have already been corrected for systematic errors

(Tape-90 data in GEODYN terminology). Figs. 9 and 10 depict the data record

for two passes of Lageos. The bars indicate the epochs when the actual ob-

servation occurred and the curve which joins their centers is the spline fit

to these data. The stations marked with (*) are the ones for which we used

the original observations in the formation of the range differences.

2.312 Reference Frames

A number of reference frames are involved depending on the phenomena

being treated in the program. The integration of the orbit is performed in

an "inertial" frame defined by the mean equator and equinox at some specified

date (reference epoch) and the atomic time scale (TAI). Perturbations are

computed in "convenience" frames, which will be explained later, and then

rotated into this frame in order to evaluate the equations of motion and

the variational equations of state.

The position of the observing stations is defined in a geocentric

earth-fixed system which is materialized by a mean pole (e.g., CIO) and a

mean Greenwich meridian (e.g., BIH). The observations are tagged with UTC

epochs. The link between this system and the inertial system is provided

by the Greenwich hour angle of the true vernal equinox and the coordinates

of the true celestial pole with respect to the mean pole used. The link

between the inertial frame for the integration of the orbit and the true

of date frame at the observational epochs is provided by the precession

and nutation theories of Newcomb [ESAENA, 1974] and Wahr X1979] respectively.

The time scales involved, UT1 and UTC are related to each other using the

difference o(UT1 - UTC) as obtained from JPL [Fliegel, 1981].

2.313 Gravitational Perturbations

The perturbations due to the Earth's gravitational field were discussed

in the previous report. Although that presentation is basically valid,
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th:re is a subtle point in the coordinate system transformations involved

which deserves further explanation, especially fn view of the existing con-

fusion in the geodetic community. This will be dealt with in the next

section. The new version of the program includes point mass accelerations

due to the attraction of the moon, the sun, and the planets Venus, Mars,

Jupiter and Saturn specified at option by the user. The planetary ephem-

eris, as well as the lunar and solar position vectors, are obtained by

interpolation from the JPL tape containing the DE96 Solar, Lunar and Plane-

tary Ephemeris.

2.314 Computation of the Non-Spherical Effects from the Terrestrial

Gravitation

The gravitational potential is usually expressed as a series expansion

in spherical harmonics. With the C' `h-order term (point mass effect) removed,

we can write the non-spherical part of it as:

e^	 n	 `n

V(r,^,a) = rM ^	 aei [
^nm s

in ma + Cnmcos ma] Pnm (sin^)	 {1}

	

n =2 m=	
r I

where r,p,:^ are the spherical coordinates of the point of evaluation. From

the purely mathematical point of view the choice or definition of the (r,Q,a)

system is irrelevant. The function V, the potential, which is approximated

by the series is invariant with respect to any similarity transformation of

the underlying coordinate system; the value of V at P(r,^,a.), V P will be the

same whether P is defined in the (r,^,a) system or, say. the (r',y',^.')

system. The series, however, in (r',^',.^') will have different constants,

harmonics, in this case. It is thus obvious that the similarity transforma-

tion between (r,^,:,) and (r',a",a'} propagates as •> similarity transformation

between (Cnm' Snm) and (Cnm' Snm)'
So far, the above is just a restatement of already known facts. For

instance, Kleusberg [1980] has developed the (rather cumbersome) formulae

to obtain the primed harmonics from the original, given the transformation

parameters. It is the last sta*_ement in the previous paragraph that causes

±he problems: The fact that a change in the coefficients cannot be attributed

to an actual change of the coefficient or a coordinate system cnange, unless
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it is known a priori which of the two happened. In a sense this is similar

to "the principle of equivalence" in general relativity, whereby gravitational

and inertial forces are inseparable. Considering now that in a dynamical

solution the coordinate system definition is provided by the satellite

dyna+tics (short of a longitude definition), one realizes how important it

is t^^ clearly define a priori the system in which the harmonics of the

series in (1) are referenced. From the geodetic point of view the determina-

tion cf these harmonics, which is accompanied by a determination of station

positi ^^; fora large number of globally distributed stations, provides by

itself	 def^r.ition of the underlying coordinate system via the coordinates

or"these s^ations. When using such a set of harmonics in a different problem,

(e.g., in a partial solution for new station locations), we have two options

as to maintaining the internal consistency of the solution: (a) either

include observations from the fundamental stations which are constrained to

the original positions (very impractical if not impossible), or (b) know

a priori the relation of the reference frame for the geopotential to any

other frame involved in the solution. The second option, which is practically

the only one available to us, will be examined in the following, in connection

with the evaluation of the equations of motion and the variational equations

of state.

Since the geopotential is given in an earth-fixed system (r,^,a)b, it

is simpler to compute the required derivatives in that system and rotate

the results into the inertial frame of integration:

RNS = (SNP) T M Vb = CPT NT ST M] vb	(2)

.I
where^RNS inertial acceleration due to non-spherical effects

Vb	= ;^V(r,^,^), body-fixed gradient of the potential in (r,^,a)b

M	 the Jacobian which rotates f ram (r,^,^) to the (x,y,z} system

S	 earth orientation rotation for CAST, xp,yp

N	 nutation matrix for the celestial pole

P	 precession matrix for the celestial pole

The N and P rotations are straightforward and need not concern us anymore.
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The matrix S rotates the true of date system into the mean earth-fixed

system (x,y,z) b in which x p and yp denote the polar coordinates of the

former. The transpose simply reverses the sense of the transformation.

This then implies that the vector M Wb is in the mean earth-fixed system

(x,y,z) b , which in turn implies that the matrix M rotates into (x,y,z)b,

a vector defined in the (r,^,a)b system, consistent with the expansion of

V in (1). If this system happens to be the mean earth-fixed system, then

M takes the usual form:

-xz ^r _	 x

r z^^	 X2+yz	 r

M	 - -yz	 x	 Y

rz ^+y^	 xz +yZ	 r

vX V	 O	 2

rz	
r

where (x,y,z) are the mean earth-fixed coordinates of the evaluation point.

If on the other hand the spherical harmonic expansion in (I) is defined in

a system (r',^',a'), then

Vb - M'!I J
	

(4)

which implies the following:

(a) The potential gradient Vb (r',^',a') will have to be evaluated using

the satellite spherical coordinates in (r',^',a')b rather than (r,¢,^)e

(b) In order to use (2), Vb will have to be rotated as in (4), to become

consistent with the rest of the rotations.

(3)

In the general case, therefore, where one accepts that the geopotential

refers to a system (r',^',a'), other than the one implied by the elements of

the S matrix, equation (2! must be re^lritten as follows:

DNS	
[PT (YT ST M M'1 Vb
	

(5)

where M' is the Jacobian between (r,^,a) and (r',^',n')

Vb is the gradient of V in (r',®',^,')

and the other matrices are as in (2}

This problem of inconsistency becomes particularly important in the

case when one estimates polar motion and ear*.h rotation and then compares
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these results to those obtained by other agencies. Even if the same

data were used for all solutions, the use of different geopotentials

without use of equation (5) will result in systematic differences in the

results.
The above comments apply in the same way in the computation of the

non-spherical effects contributions in the variational equations:

'"I
aR	

= (SNP) T ^	 ^	 (6)

aR NS	 arb 
NS 

aR

Since

rb = (SNP) R ^ r^l = (SNP)	 (7)

L aR Jr
In the computation of ^	 the follo^ring terms will have to be

Larb NS

computed:

r ar	 ^ a^ 7	 as

	

^ ar ] ^ ^ ar j	 and ^ ar ^	 (8)
b	 b	 b

where r,^,a are the coordinates' arguments of the geopotential V. If these

are not consistent with the (x,y,z) system in which r b is referenced, but

rather with (x',y;z') such that

then the terms in (8) must be replaced by

ar	 ^ ar	 arbi	 ^ it
_ 

1II 
_ - [—I	 I _^ I L

r J	 1I 3r'^	 ar 1	 L ar J^a	 Lb	 b	 b	 b
and similarly	 (10)

am	 = * ^	 L ^	 r a^	 = f as 1 L

ar	 ar' l	 L ar ,	 ^ ar' 1JC b	 L	 b	 b	 b

In a more compact form, since

r _	
a( .m.a)arb	= a r	 a	 T a 2 V	 r	 (11)

arb 
NS	 a rb	

La(r,^,a)Z	 arb

a
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using (9} and (ln}, we can write {lI) in the most general form as

^- ^ ^	 ^
a--_̂^	 = L^3r	 ^ T ^a^V	 ^	 ar	 ^ ^L	 (12)

^ °rb^:NS	
3rb	 ^ 3(r,9,a} Z ' t ^^^

and denoting by

	

^ _ ^a r	 ^)

^

_^

	

,3rb 	 .^

equation (6) becomes in the general Case

'lI^R ^
	 _ (SNP) T L T QT ^ 3'V	

'? Q L (SNP}	 (13,1

or

	

^^i	 -^
'p	 = ^Q L S N P] T ^ ^ yV	 1!Q L S N P]	 (14 )

	

Laid .i NS	 ^^,{r,^D,^)^

This discussion would hardly be complete if one did not identify where

the real problem lies: Why geopotentiai models obtainea from similar types

and amounts of da±a differ in the coordinate system defini,.ion. The aLvious

reason would be that the stations which participate in the observations and

define (with their estimated coordinates) the reference frame in each ;,asp

are different. ?his is true, but in practice it is a large number of

globally distriicut.ed stations which participate in such campaigns and one

would think that on the average the geometry would have little effect,

certain?+ not introducing biases with respect to certain regional sub-

networks. The problem seems to lie in the neglect of certain physical phe-

nomena, affecting the harmonics themselves, in the process of their estimation.

It is a wel? known fact ^^ieisxanen and h4aritz, 1961; Nagel, 1916] that for

tie low-ae^ ree harmonics (up to n =2) we can easily associate with them

certain proaerties of the estimated model. The pair (^ `1 , S21 } is of

parti,ular interest to us since their values are directly proportional to

the alian^nent of the reference system with the p r incipal axis of maximum

moment of inertia. Lambed; r""first called attentian to the implications of

this otherwise innocent '=oolong property, in [Lambeck, 1911], where he

stated that
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u* _ Czo
	

and	 v* - ^	 (15)

u* and v* being the ce^rdinates of the axis of figure with respect to the

third axis of the reference coordinate system (the axes u*,v* are defined

in the sa^^e sense as the x p ,x p far the pole). A proof for (15) can be

found in [Nagel, 1976]. "his interesting property becomes a real problem

in practice, due to the fact that the axis of figure is time variant. In

[McClure, 1973; Nagel, 1976; Leick, 1978; and Moritz, 1979], one will find

detailed descriptions of the motions of this axis. It suffices here to

mention that there is a free ;notion with an amplitude of 2m and a period

equal to that of the Chandlerian wobale (ti 430 days) and a forced diurnal

motion with .n amplitude equal to 60 m' The elastic-earth-model motions

for the various axes involved are depicted in Fig. 11, taken from [Nagel,

1976]. Figs. 12 and 13 [Nagel, 19'6] show the diurnal variation of Czi and

S 21 due to the diurnal motion of the axis of figure. Ir Fig. 14 [ibid.],

the diurnal variations have been filtered out and the effec-ts of the free

motion on C^ 1 and S^ 1 are shown, based on the BIH polar matior over 1968.0

- 1973.0 period (from which the motion of the axis of fitiure has been deduced).

It is obvious from these graphs that if one is trying to dearly defin the

coordinate system to which the estimated harmonics refer, one Cannot afford

to neglect such effects. Since the observations used in such major solutions

span quite a long period of time (over five years in most cases), it is

quite impassible to keep the coordinate system definil:ion intact while at

the same time solving only for average values of C^ 1 and S 21 . As it was

shown in this discussion, an improper coordinate system transformation in

a later solution gill introd^^ce biases in the orbit and in the estimated

parameters based on that orbit (e.g., polar motion). Based on the above, it

seems that the only procedure wh^^h will produce confusion-free res^:lis is

the one in which the timelike variations of Czi and S 21 have been considered

in the determination of the geopotential harmonics and the solution is

performed for a prespecified epoch. In this sense, the orientation of the

coordinate system in which the geopotential is referenced will be determined

by the adopted model for the axis of figure rw tion, while the geocentricity

of the system will still be maintained by the suppression of the first-

degree harmonics. The motions of the axis of figure do not affect oni_y
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C^ 1 and S CI , but the effects on the rest of the harmonics are well below

the order of 10 1`', and for the time being they can be safely neglected.

2.315 Perturbations from the Solid Earth Tides

The model for the tidal potential is a rather simplified one account-

ing for effects to degree n=2 only:

^b

	

UTZ 
= Rb	

Re Pz(cos4)
	

(16)

Assuming that for an elastic earth k 2 = 0.29, the disturbing potential due

to a body b at a satellite position r will be:

UO(r) _	
Rib	 a [3(^b• ur)Z 

_ 1]

	

k2 GM	 RS

	

b	 r

	 (17)

where ub and u r denote unit vectors in the directions of the disturbing body

and the satellite respectively. The acceleration sensed by the satellite

is RT = v UD (r), or ,from (.7):

GM (^ M	 R` 3 R 4_

RT	 2 k2 R Ze \Mb Re ^ re	 \[1 - 5(ub• urla] ur 
+ 2(ub• u r ) u b	 (18)

e	 b

The contribution in the variational equations is the following:

GM M	 R 3 R s
Let: C = - 2 k2 

R3 e Mb Re ^e

e	 e b

then:

r _^
3 RT i =
	

_	 _	 _ _ ,^
_	 C ^[3(ub• u r )`	 5] u r ur + 2u b ub + [1	 5(ub• u r ) 2 ] I

`1r

10(ub• u r )^r ub + ub ur]^	 (19)

and

arT = [^ 3 ^
ar

The above formulae must be summed over the bodies contributing in the

tides. In GEOSPP81, the lunar and solar effects are the only ones considered.
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2.316 Solar Radiation Pressure Perturbations

The model implemented in the program is a rather simple one, consider-

ing only mean solar flux effects. The acceleration is given as

	

C A ^	 _

RSR v c RSUN m 
fps 

f3	 Rvs	
r - R s	(20)

vs

where

v	 = shadow factor	 1- sunlight, or 0- shadow

S	 = mean solar flux at 1 AU

c	 = speed of light in vacuum

CR	= radiation reflectivity coefficient for the satellite

A	 = cross-sectional area perpendicular to direction of incidence

m	 = satellite mass

R
SUN = mean distance of earth-sun centers of mass (= 1 AU)

r	 = satellite position vector

^s	 = sun's position vector

From simple geometric considerations

(r•R )
v = 1 ifr•R >O,orifr •^ <Obut r-	 s	 R >R

s	 s	
^r^^Rs^	

s	 e

From (20) the contribution to the variational equations is obtained as

	

^oR ^	 C	 R	 RT
	SR	 = v S 

R2	
R	 A	

I- 3 vs vs
	

(21)

	

`3r J	
c SUN IR

vs^ 3 m	 ^Rvs^z

and

aRSR = ^^3]

ar

Sections 5 and E are explained in detail in [Cappeliari et al., 1976].
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2.32 Doppler Experiments

Introduction

The idea of using ranges derived through simultaneous Doppler obser-

vations for a geometric solution has been fully explained in the previous

semiannual report. It should be useful though to note that the data used

for this experiment is the EDOC-2 campaign data set. There has been some

progress in a small experiment involving observations from six stations

which is the minimum for a geometric solution. However, an effort has

just begun t^ perform the same solution with more stations involved and

many more common observations included. Progress and problems arising

during this effort will be included in this report.

Additionally, there has been another Doppler experiment which started

a few months ago. This is also a geometric range solution, this time using

a different set of simultaneously obtained Doppler data. This data set is

the Victoriaville data sent to us from the Ministere de 1'Energie et des

Resources of Canada. At the end of this chapter, p rogress on this effort

will be reported.

2.321 Geometric Solution Using Ranges Derived Through Simultaneous Doppler
Observations

The Ranges

The Doppler derived ranges have been evaluated according to the theory

described in the previous semiannual report. These ranges which are the

observations in our adjustment should be very close to the corresponding

geometrically derived ranges. The geometrically derived ranges are those

evaluated through the formula

r = ((XG - XS ) 2 + (Y G - Y S ) 2 + (ZG - ZS)2)}

where X G ,Y G ,ZG are the earth-fixed Cartesian coordinates referring to the

ground stations. XS ,Y S ,Z S are the satellite's earth-fixed Cartesian coordi-

nates derived through the broadcast ephemeris.

Indeed, the Doppler derived and the geometrically derived ranges have

been compared through graphs and their differences were not really significant

especially in that part of the pass where the range decreases (the elevation
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angle increases). AFter the satellite reaches the highest elevation angle,

the aforementioned difference becomes larger (sometimes 5 km) but still with

such differences the geometrically derived ranges can be used as approximate

ranges in the adjustment.

The Geometric Range Adjustment

The mathematical model used for the geometric range adjustment is the

following:

r	 [(XS - XG ) 2 + (YS - YG ) 2 + (ts - ZG ) z ]^ + ao + f (P)	 (I)

where ao is a constant bias including the error to the initial range plus

the error due to clock offset among the stations; f(p) is a function of any

kind of parameters affecting the observations (Doppler ranges). We will

call the ao + f(p) part of the mathematical model the residual model. We

will call preliminary adjustment the part of the adjustment where we keep

the station coordinates fixed and we solve for Lhe satellite coordinates and

the coefficients of the residual model.

The next step was to come up with a residual model which yields conver-

gence and the smallest after-adjustment residuals possible. The method used

was the following: First we performed a preliminary adjustment without using

any kind of residual model. Our mathematical model was

r	 [(XS - XG ) z + (YS - YG ) 2 + (ZS - ZG ) 2 ] }	(2)

Then we tried to study the behavior of the residuals from this adjust-

ment. These residuals have been plotted and the plots have been compared

to each other for all the stations and the passes.

The fact is that the part of the passes used for the adjustment is

really small (about IO minutes) to give a good estimation of the behavior

of the residuals, buL in all the cases we dea1L with they had more or less

the following pattern: Relatively small in the beginning, increasing posi-

tively or negatively with time, showing a second degree or sometimes a

third-degree polynomial behavior. The uncertainty in choosing one residual

model led us to try using different models and study the rapidity of conver-

gence and the magnitude as well as the behavior of the new residuals. The

residual models tested were the following:
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^	 ,.r °.

(a) v = ao + bo t	 (d) v = ao + bo t + cor

(b) v	 ao + bot + co t2	(e) v	 ao + Dot + co t2 + dor

(c) v	 a o + bot + c o cosec e

where v are the range residuals derived using the mathematical model described

in eq. (2), t is the time of the particular observation, a is the corresponding

elevation angle, and r is the range itself corresponding to the particular

observation.

From all these models, (b) has been proven to yeitd the smallest post-

preliminary adjustment residuals as well as to be the fastest converging model.

The linear model (a) yields post-preliminary adjustment residuals fairly large

(to the order of 100 m) and having sinusoidal behavior. The residual model (c)

yields an oscillating solution in terms of determining the position of the satel-

lite as well as in determininn a o , bo , and c o residual model coefficients.

Finally, using models (d) and (e) we did not have convergence in cur

preliminary adjustment. Therefore, the mathematical model we decided to

adopt is the following:

r = [(XS	XG ) 2 + (YS - YG ) 2 + (Z S - ZG ) 2 ] } + a o + bo t + cot2

The post-preliminary adjustment residuals we get using this model are of the

order of 0.5 - 1 m during the biggest part of the pass, but they systematically

become large (about 10 m) towards the end of the pass. Presently we are trying

to explain somehow the systematic behavior which has not been eliminated

using all the previously mentioned residual models.

It has been mentioned in the previous semiannual report that 19 passes

have been selected to be included in the final adjustment. Fig. 15 shows

how the projections of these common passes are located with respect to six

observing stations. Some of the passes are not close to thr•c,^serving stations.

Their elevation angles are small and in the preliminary adjustment they con-

verge very slowly in terms of satellite coordinates yielding very large resid-

uals. There is one pass for which the common part starts right above station

LGA in Spain. For this pass due to loss of information we have no conver-

gence in the preliminary adjustment.

After all these investigations we came up with nine good passes con-

sisting of 5694 common observations totally. This is probably not a good

number for a strong geometric solution, but the experiment will be performed

with those few observations and depending on the results we get we will add

more passes in the future.
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2.322 The Extended Geometric Range Adjustment

A new attempt began a few months ago in the Department of Geodetic

Science to perform a geometric range adjustment covering a large area in

Europe. The data set used for this purpose is also the EDOC-2 campaign

data set. Performing such a large geometric range adjustment we will be

able to compare the results derived from various dynamic solutions performed

by several European agencies. For this purpose all the stations equipped with

JMR and CMA receivers from which data is available, 23 stations totally, have

been selected initially to participate in this experiment.

The Data Editing

The first st?p iii data editing was to write a program which takes as

input all the tapes as sent from Europe and perfonns the following operations:

i. Identifies the passes

2. Rejects bad observations. This has as a result the break of ;.he pass

into two or^nore parts. We characterize as bad observations:

aj those which have a recorded time interval which is not 4.6 or 4.9 s

b) every 25th observation which does not have a 4.9 s time interval

c) every 26th observation which does not start with an even 2 minute

r^sark

d) observations for which the recorded Doppler counts are not within

the possible limits

The output of this program is the information for each observation needed for

the computation of ranges. The output also includes information for each

individual pass containing the meteorological data for the tropospheric

refraction.

The next step was to find the common observations. For this purpose,

a new program has been ►^^ritten which gives the parts of the passes which

have been simultaneously observed from at least six stations. Using this

program we came up with more than 400 common passes with length varying

between 2 and 10 minutes. A11 the passes have also been plotted with

respect to time and station and from this diagram it is very easy to identify

their common parts.
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This experiment will continue in the sane pattern as the small one

including the six stations in 5pa;n, and wp hope it will gi^W a complete

image ^^f the advantages and the disadvantages of Lha new method o^'.sirrui-

taneous Doppler ranging.

2.323 The Victoriaville Data Set

The fast experiment involving a ?eorretric rangz soiutior, is one

perfarr*red with t;^e Victoriaville data set including ©opFler etiservations

from eight stations. These obsPrvatians teo^c pla.e betwer:n October 2-4,

1979. 'here data have been used by Shelt.ech, Ltd. under contract with

Quebec Lands and Forests far trre purpose of Evaluating the accuracy of

Doppler survey methods for establishing network ccr^trol. The participating

stations' locations are given i.►^ the follow;;^g table:

m a h

1	 45°45'26:'GC40 '2°15'38:'179' 218.29 m

Z	 45 37.6413 11 39.2460 172.60

3	 52 1G.2391 15 43.2894 104.02

4	 57 55.3552 02 58.1076 158.33

5	 55 34.8419 07 52.7973 112.82

6	 56 53.5J86 16 09.4327 101.60

7	 51 G1.6013 04 59.7$44 132.27

8	 49 52.5628 00 58.5315 124.22

The observed satellites were 30190, 30140, 30130, 30120 and 30200.

The Victoriaville data have been sent to us on one tape Including the

Doppler counts, timing information, broadcast ephemeris information and

signal strength information. All these data were already majority voted.

From the broadcast ephemeris information of the tape, using H. White's

program, the observed satellites' state vectors have been derived. For two

of the observed satellites, specifically 30140 and 30190, the precise ephem-

eris was available and therefore a comparison of the state vectors was possi-

ble. Tne state vectors for these two satellites were very close which fact

assured us of the efficiency of H. White ' s program. Meteorological data

for this data set has been sent separately. These meteorological data have

been recorded at tare locations of the stations every ten minutes and include

temperature, relative humidity and barometric pressure.

54

,.
z_ .^ _.._^._. a^®^ _	 _	 ,_..



The data as they have been sent to us have been used a^ input in the

program JMR DOP-A provided by NGS and have been transformed to a format

useful for further processing.

2.324 Doppler Intercomparison Experiment

Work is still continuing on the programs which will be used to reducE

the data from the OSU Doppler Intercomparison Experiment (which was described

in the Fourth Semiannual Report). Serious problems were encountered whit;^

prevented the use of the GALSAGA program for the final data reduction. There-

fore the program system GEODOP has beery obtained from the Canadian Geodetic

Survey far' this purpose. Work is underway to convert this CDC Fortran

program to IBM Fortran for use on our system and to allow input of our

ir^tercomparison data.

Problems with GALSAGA

As explained in the last semiannual report, the G'.'_SAGA nor SAGA) and

SAMVAP (Brown, 1973) programs and the preprocessing programs written here

(SUPASS and SAGSET) were to have been used t^. process the inte:•compari^^on

data. However, after- numerous test runs with some JMR-lA data, it was

apparent that the GALSAGA program would no;, converge to a reasonable solu-

tion. These test rums included the use of: a) up to 40 halanced satellite

passes, b) various program constraints; c) direct and SAMVAP created precise

ephemeris state vectors to establish the orbit, d) various weights for the

station, state vector, and program constraints.

The best solutions obtained during these tests resulted in final

station positions which were incorrect by several hundred meters, unreason-

able values for orbital and other parameters, and values for V TPV of the

adjustment which were far too high, even after up to ten iterations of tha_

solution. There seem to be two possible explanations for these po^;r solu-

tions. The first is based on the observation that GALSAu^+ was intenJesi to

be used for range observations, ever+. though it does contain input provisions

for Geoceiver data. It is slightly possible that some error had been made

in the programming here to allow it to use JMR (and other) data, aith:^ugh

this is not likely since it has been used successfully here for rnulti^-

stations solutions of JMR data [Arur, 1977, with only slight modification
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since then. The second explanation is far more likely, being that GALSAGA

will only operate well for multi-station solutions, since it is after all a

short-arc program. A single station solut^or; might not converge unless all

coordinates (station and satellite) and parart^ters are very highly constrained.

The fact that there appears 4o be no specific references to single station

GALSAGA solo±ions supports this conclusion.

However, some further use of the GALSAGA program i$ still being

considered, It is possible that another attempt at a single station

solution may be made (wit.h different data). If a single station solution

can be obtained GALSAGA solutions c: ►uld then be compared with GEODOP solu-

tion. Mare importantly, GALSAGA may be used to process multi-station sol^-

*.ions for the Columbus-Ottawa baseline for which we have data. (There

pres^nCly is no reason to suspect that the OSU version of GALSAGA will not

work with two or more station solutions.) Therefore some work is being done

to modify the SUPASS and SAGSET programs to:

a) Read majority voted data in a PREDOP compatible format, to allow solutions

with either GALSAGA or GEODOP with the carne data sets*

b) Use "30 second" Doppler counts instead of "4.6 second" counts, again to

maintain compatibility with GEODOP and to reduce the computational expense

in running GALSAGA,

c) allow SAGSET to input multi-stati^^n solraiuns to GALSAGA. It should be

noted, however, that this work will be of low priority, especially if our

GEODOP version will allow us to adequately answer the original problems (as

posed in the Fourth Semiannual Report.

GEOOOP Rr•_ogram_ Syte^!

Since solutions could not be obtained with the GALSAGA program, Mr• . ^;ar,

Kouba of the Canadian Geodetic Survey (CGS) was contacted to determine the

availability of his GEODOP program and assoicated subprograms (such as PREDOP,

PREPAR, MERGE, NWLFIT, etc.), herein called the GEODOP program system [Kouba,

1976]. Through Mr. Kouba, the CGS provided us with a tape copy of the latest

versions of the programs in CDC Fortran, along with the program manuals and

updates to them. Since it would be necessary to fully understand the

programs' operation, and to convert them to iBM Fortran, Brent Archinal of

OSU traveled to Ottawa to confer with Mr. Kouba and others about the program

system and to run some of the OSU data. These computer runs would then be
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available for comparison with runs here to check our IBM version of the

program.

The conversion to the IBM Fortran is now well underway, with the

PREDOP and GEODOP programs now in operating condition here, except for a

few problems still being workeu on. The program system presently accepts

CMA-751 majority voted data, with subroutines available (but still being

tested) to use MX-1502 raw aata, and JMR-lA majority voted data. In the

near future, we expect to: a) Finish the PREDOP and GEODOP conversion, and

testing of the input subroutines, b) test our conversions of the other

utility programs in the system (MERGE, NWLFIT, etc.), c) Design the JCl

language to operate the programs with the large amount of data (files) ^•+hich

will be used.

After these conve ys?ons are tested and complete, the Columbus and

Columbus-Ottawa Intercnmoar;son data will be processed as explained in

the Fourth SemiannualRepor*,the eventual goal being the determination of

the most accurate ins`rument type. These programs will also probably be

used tc reduce the OSl1 Institute of Polar Studies Greenland Doppler data,

and po^^sibly to prcvi:ie checks on the geometric Doppler Solutions now

being made here.
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