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EXECUTIVE SUMMARY

Technology development continued for materials, cell
components, and short and long stacks. Significant progress

made during tt:s quarter is summarized below.

Component Development

• The use of 1000 grit silicon carbide as-received,
without cleaning, results in a more porous matrix.
This more advantageous matrix can therefore be
prepared in less time.

• A 25 ^2 cell test using the uncleared SiC matrix
operated at 200 mA/cm 2 and 650 mV.

• A computer program has been developed for predicting
the start-up and operating conditions which mini-
mizes the change in acid volume. It can also deter-
mine the volume changes which occur when the operating
conditions are changed.

• Several 25 cm 2 test cell plates have been carbonized
at approximately 900°C. Test cells built with these
plates have been operating during the quarter with
excellent performance.

• A retort for heat treating 1200 cm 2 test cell
plates has been built.

Material Evaluation

• The corrosion rates of graphite/resin composites
here easily distinguishable only after 500 hours
of immersion in hot phosphoric acid. Corrosion is
very rapid at 0.9V, 190°C in 100$ H3POa and probably
occurs by a different mechanism than at 0.6 to 0.8V.

• There is a significant decrease in the corrosion
rate within the first 124 hours at 0.9V in 182°C,
100$ H3POa.

• Carbonization at 900°C lowers the corrosion rate
b}^ as much as a factor of 10.

• A graphic method has been successfully applied
to the determination of contact resistivities of
bipolar plate materials and electrode backing
papers .

• Estimates of stack resistance from material
resistivity measurements can account for the major

--. ^ contributors. Contact resistance between the backing
paper and the bipolar plate is about 1/3 of the
estimated resistance.

Page No. i
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• An empirical correlation between applied stack
compression and contact resistivity (p C ^ + C2)

	was obtained.	 p

Endurance Testing

• Although Kynol matrix stacks have shown stable
operation for over 7,000 hours they appear to be
less reliable than SiC and Mat-1 matrices.

• SiC and Mat-1 matrix stacks have operated for 4,000
hours with very little change in the average cell
voltage. Small changes are occuring in the end
cells of the three cell stacks. This may be due
to temperature gradients in these end cells.

Short Stack Testing

• Two 1200 cm 2 cell stacks containing 5 cells!
stack have run for over 1,000 continuous hours.
These stacks were built with new 1200 cm 2 cell
bipolar plates containing g cvickinr, channel and
components prefilled with acid.

Long Stack Testing

• The second 23 cell stack was operated for 40 hours
net running time with daily on/off cycling. A
crossleak developed after the 7th cycle. The
next 23 cell stack will incorporate bipolar plates
with wicking channels and the Mat-1 matrix.

• The electrically heated reformer has demonstrated
the capability to reform methans at a space velocity
of 1200 hr-1 and provide sufficient hydrogen to
test a 23 cell stack.

Page No. i i



^.
^^
^^
^^

t
^s^ov ausEaacN conoo^ts^

3/80 DENS-67

TABLE OF CONTENTS

Section

	

	
Page No.

EXECUTIVE SUMMARY

^`	 TASK I COMPONENT DEVELOPMENT

1.1 MATRIX DEVELOPMENT
	

1

r
1.2 COMPONENT SCALE-UP
	

4

1.3 DEFINITION AND CONT'::. 't OF ELECTROLYTE
VOLUME CHANGES
	

4

1.3.1 Acid inventory Control Members
	

4

1.3.2 Procedures for Wicking and Starting
the Stack
	

7

1.4 BACKING PAPER TECHNOLOGY
	

20

1.5 BIPOLAR PLATE TECHNOLOGY
	

20

1.5.1 Molding
	

20

1.5.2 Carbonization
	

21

TASK II MATERIAL EVALUATION

2.1 COMPONENT CORROSION RESISTANCE
	

22

2.1.1 Chemical Corrosion Measurements
	

22

2.1.2 Electrochemical Corrosion Measurements
	

23

2.2 PHYSICAL PROPERTY MEASUREMENTS
	

35

2.2.1 Electrical Contact Resistivity
	

35

2.2.2 Stack Resistance
	

44

TASK III ENDURANCE TESTING

3.1 EFFECT OF OPERATING VARIABLES ON CELL PER-
FORMANCE AND COMPONENT DEVELOPMENT
	

48

3.2 LONG-TERM COMPONENT EVALUATION
	

48

TASK IV SIiORT STACK TESTING

4.1 CURRENT COLLECTING POSITION IN THE STACK
	

52

Page No. i i i



DEN3-673/80

EIIIEAOtl IK^EAIlCN t^1100RAT10N

TABLE OF CONTENTS (cont. }

Section

TASK IV (coat.}

4.2 COMPONENT AND DESIGN DEVELOPMENT

TASK V LONG STACK TESTING

Page No.

52

5.1 2 kW STACK TESTING
	

56

5.2 2 kW STACK TEST STAND IMPROVEMENTS
	

58

5.3 REFORMER TESTING
	

S$

Page No, iv



3180	 DEN3-67

ENERGV RIEfEAgCM CONPOAAT1^11

LIST OF FIGURES

Section	 Page No..^__.-

TASR I COMPONENT DEVELOPMENT

I.1	 Flow Chart for Calculating Stack Wicking
and Starting Conditions	 8

I.2	 Acid Volume Behavior During Heating at
Two Different Humidities 	 10

I.3	 Path to be Followed from Wicking t^ Operating
Condition	 12

I.4	 Steps to be Followed on PH O - Temperature
Plane	 2	 13

I.5	 Comparison of Paths on a Volume - Temp.
Plane for Two Different Dry Room Humidities
for Air Stoich 2.0	 14

I.6	 Comparison of Paths cn Volume-Temperature
Plane for Two Diffc^^ent Dry Room Humidities
for Air Stoich 3.0	 15

I.7	 Comparison of Path Deviation When Room Humidity
is Increased from 12 to 16 mmHg 	 16

I.8	 Comparison of Path Deviation When Air Flow
is Increased from 2 to 4 Stoich	 17

TASK II MATERIAL EVALUATION

II.1	 True Corrosion CHaracteristics of 228 Resin/
788 A-94 Graphite Composites 	 22

II.2	 Acid Absorption in 2000 hours and the True
Rate of Weight Change of Several Composites 24

II.3	 Corrosion Current of Composites at 0.9 Volts 26

II.4	 Comparison of Etched Surfaces of Electro-
chemically Corroded and Acid Immersed Samples 28

II.S	 Effect of Corrosion on the Polarization Plot of
a 328 Varcum 29-703 Composite	 32

II.6	 Energy of Activation	 33

II.7	 Effect of Temperature on the Changeover
Potential of 328 Varcum 29-703	 36

Page No. v

,^ .^^ .^. _ .	 f



3180
	

DEN3-67

Eseaar nES^cN caMOa^ ►^

LIST OF FIGURES

(Concluded

Section Page No.

TASK II (cont.)

II.8 Measurement of Contact Losses 38

II.9 Contact Resistance Obeys Ohm's Law 42

II.10 Electrical Contact Resistivity with Stack-
pole Hacking Inserts 43

TASK III ENDURANCE TESTING

III.1 Lifegraph of Stack 379 49

III.2 Endurance of PAFC Stacks with Different
Matrices 50

TASK IV SHORT STACK TESTING

IV.1 Lifegraphs of Stacks 415 and 416 54

TASK V LONG STACK TESTING

V.1 Schematic Diagram of Safety Features for
2kW Test Stand 59

V.2 Temperature Profiles in the Reformers 60

Page No. vi
^:

,^.



LIST OF TABLES

DENS-67

Section Page No.

TASK I. COMPONENT DEVELOPMENT

I.1 ^ell Testing Summary 2

I.2 Testing Summary Of AICM Cells 3

I.3 Testing Summary of 25 cm 2 AICM Cells 6

I.4 Comparison	 of Stack Conditions from Wicking
to Starting 19

I.5 Recommended Set of Parameters 18

TASK II MATERIAL EVALUATION

II.1 Kinetic Parameters of the Glassy Carbon
Corrosion Reaction 30

II.2 Change of Reaction Parameters with Corrosion 34

II.3 Contact Resistivity for 33wt$ Colloid 8440/
57wt$ A-99 + 850 Graphite Conductors 39

II.4 Electrical Resistance of 12 in. x 17 in.
Size Fuel Cell Stacks 45

TASK IV SHORT STACK TESTING

IV.1	 Summary of 1200 cm 2 , 5-cell Stack Testing	 53

TASK V LONG STACK TESTING

V.1	 Summary of 2kW Stack (No. 410)	 57

V.2	 Comparison of Experimental and Theoretical
Methane Reforming Product Compositions 	 61

Page No. vii

._^_a_.,^_^ _	 ^-- -



-_. 4 m_ _. r_ _

3/80	 DEI13-67

t^wraor Atssa^sn CosroaA^

TASK I. COMPONENT DEVELOPMENT

1.1 MATRIX DEVELOPMENT

Prior to being used in a matrix, all SiC was routinely

"cleaned". This cleaning consisted of vigorously mixing

{in a ball mill or ultrasonically) the SiC in deionized water

and allowing it to settle. A small fraction of the material

floats to the surface as a black sheen and is skimmed off.

An additional small fraction of the material is brown and

remains suspended in the water. This material :s poured off

with the water and the rest of the SiC is dried and used for

matrices. It has long been suspected that this brown and

black material is simply impure SiC (i.e., an excess of

unreacted carbon could cause the •black color, etc.) as

opposed to the "pure" green SiC desired because of its greater

resistance to phosphoric acid. Recent chemical analyses

performed for ERC have shown no detectable difference between

cleaned and uncleaned SiC. If the difference in chemical con-

tent is, in fact, insig:^ificant, then the time consuming

cleaning step could be eliminated from the matrix production

process.

A 25 cm 2 test cell was made with a matrix containing

uncleaned SiC. Cell 104 (Table I.1) started up well and is

producing 650 mV at 200 mA/cm 2 on an IR corrected basis. The

Oz gains are small and there is as yet no sign of cell poisoning

due to the leaching of contaminants from the matrix. Cells

105 and 106 (Table I.2) which contain selectively wet-

proofed anode backings, were also built with the same cathode

and matrix as Cell 104 and are performing at acceptable

levels. They will be discussed further in Section 1.3.1.

It should be noted, however, that three matrices cast with

uncleaned SiC have all been 50$ thicker than matrices cast

with clean SiC (0.023 vs 0.015 cm) and have ranged from

59 to 63$ in porosity, which.. is approximately 20$ more porous

=

	

	 than the average matrix (51^ porous) made with clean SiC. All

other casting parameters have remained constant. The inereasp

Page No. 1
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CELL TESTIN<t SUMMARY 
--------~--------------_r--------------,_---------------. 

CEI,:' NO. -- 1409 

Ball Milled 
SiC Matrix 

1426 104 

Uncleaned 
SiC Matrix 

------ ------------~--.------------~----.-----------r_--------------~ 
CE: _ CHAkACTERI~~JCS 

A NOD"; 

'i~PC 

"'t ' l:: , , 

Load i ng, mq {'ti l m' 

'. p c 

','FE, ~ .. 

l'oro,; ity , 

'I " l c.:km sn , em 

AN . E BACKIN . \ FEP 

CA'('IIUDE BACKl h .. : ':' rt::P 

Rolled 

40 

0.49 

Polled 

40 

0.53 

SiC 

4 

--
0.013 

15 min @ 330·C 

38 

Sh .. t Mold Sh .. t Mold 

40 40 

0.29 0.32 

Sheet Mold Rolled 

40 40 

0.70 0.62 

Kynol SiC 

-- 4 

-- 62 

0.04(, 0.02 3 

-- 15 min • 330.lC 

33 34 

39 
---- --- -------------4----------------~-------------1----'------------+ 

38 31 

P E" " l~E I{FOHMANCE , mV 

I I- Pr e . 

All< - 100 mA/I;m' 

200 mA/ -m ~ 

l UI) ml\l,.:m' 

UO /.V\ / .:m' 

0 , . _, eN _ 100 mA",;," ? 

. uO mAl ( -t •• 7 

710 

660 

780 

730 

70 

70 

666 

613 

726 

690 

60 

77 

700 

650 

770 

720 

70 

70 i -- .. ____ -+ _________ , ________ ~--~------------r--------------.--

P I : J'~ J-:N 'l' I'ERFORt-\ANC' E 

fil l - :l (J In" / r 'm' . * 650 I 
l~· __ L I~, .~-- _ J..

1j _ ._ 2_4_2_4 _ _ _ __ .....-._ 2_1_9_2 _ _ ___ ...... _ _ _ 2_16 ____ J 
• 'I , , t TI.' rm i nil t,~ J 
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in porosity of uncleared SiC ie an unexpected dividend.

Since the particles removed in cleaning are finer than thr^

ones that remain, it might have been expected that they

would fill the s;acea between the larger particles creating

a less porous matrix = but apparently they create a more

structured, less densely packed matrix. This work will be

continued and cells containing uncleared SiC matrices will be

closely monitored.

The evaluation of ball milled SiC slurries begun during

the last quarter was continued his quarter and has been suc-

cessfully concluded. The method produces uniform slurries

without excessive degradation of the shear sensitive inking

vehicle and has been used to produce numerous, goad quality

1200 cm 2 and smaller matrices. Cell 1409 (Table I.1)

which was designed specifically to test the matrix was

still at peak performance when terminated after more tt;an

2400 hours.

1.2 COMPONENT SCALE-UF

The scale-up of 1200 cm' sheet mold and rolled elec-

trodes and SiC matrices is essentially complete.. There are

no major difficulties in the processes themselves, although

improvements affecting the rate of production and the per-

formance of the co^-^oonents will, of course, continue.

Stack 415, containing sheet mold electrodes, was started

up during this quarter. It reached a peak terminal performance

of 0.59V/cell and is presently averaging 0.57V/cell after

alr:9ust 1100 hours .

1.3 DEFINITION A2dD CONTROL OF ELECTROLYTE VOLUME CHANGES

1.3.1 Acid Inventory Control Members

A number of new cells with selectively wetproofed anode

backings as AICMa (Cells 100,101, 102, 103, 105 aril 106) were

tested Burins this quarter (Table I.2). The electrodes

in Cells 140, 102 and 105 were wet with acid during asseinnbly,

while the anodes in Cells 1C'_, 103 and 106 were partially

Pale No. 4
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float filled prior to assembly. Since the AICMs are expected

to absorb changes in acid volume, the prefilling of anodes in

some of the cells may be considered an attempt to accelerate

what will happen eventually in the other cells. The extent

to which filling the backings with acid interferes with the

flow of hydrogen to the anodes has a great deal to do with

cell performance. The average peak performance of the pre-

filled cells is only 610 mV, while the average of cells not

prefilled is 630 mV, all at 200 mA/cm 2 , IR corrected. Analysis

of cell ^larization curves indicates that, to a large extent,

cell performance is indicative of backing flooding rather than

catalyst flooding. The oxygen gains remain fairly low, while

the drop in performance is steep as the load increases. This

is the kind of performance that occurs when part of ttie cata-

lyst area is effectively lost to use, rather than the kind of

diffusion polarization that occurs when the catalyst is flooded.

Table I.3 relates cell performance to the cross-sectional

area of the anode backing wetproofed and to the amount of

acid picked up during prefilling. The percent of FEP in the

backings is higher than might be expected because the FEP

used for selective wetproofing was of a much higher concentra-

tion than is commonly used in the standard wetproofing operation.

This was necessary due to the greater tendency of dilute FEP

emulsions to spread out. The approximate percent of area

covered by the FEP (listed in the next column) indicates

that in these wetproofed areas, there is a much greater con-

centration of FEP than normal. The effect of this on the uni-

formity of current flow through the backings has not yet

been determined. The next column lists the amount of acid

that was picked up by the anode during prefill. All of the

anode loadings were approximately 0.3 mg Pt/cm 2 . By way

of comparison, a typical electrode of that loading would pick

up 0.11 cc of acid, presumably all in the catalyst layer. The

next column shows the amount of acid that would be stored

in an equivalent anode scaled to 1200 cm 2 size. Efforts

^	 will continue to define the amount of acid storage needed

Page No. 5
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and to optimize the degzee and pattern of wetproofinq.

As stated previously*, Cell 1345 (Table i.2) was used

as a control in an experiment designed to determine the effect
of acid deprivation on cells with AICMs. It has since been

used to study the ability of a cell to recover from extended

electrolyte starvation. The cell was deprived of acid for a

period of six weeks, during which time its terminal OCV and

performance at load dropped while its internal resistance (IR)

increased. The decrease in performance was almost entirely

due to the increased IR. When acid was added, the IR-free

performance shortly before and after acid addition was

identical: 615 mV at 200 mA/cm 2 . The decrease in IR-free

performance caused by six weeks without acid addition was

approximately 25 mV. In the seven weeks since regular acid

addition was resumed, cell terminal voltage has remained

relatively stable while IR has increased again to the point

where, after almost 6500 hours, Cell 1345 has reached a new

IR-free peak of 685 mV at 200 mA/cm2.

Cell 1378 (Table I.2) was a very successful 25 cm2

AICM test cell, as previously reported. It was terminated

after more than 3700 hours due to an increasingly severe short.

Stack 417, a 1200 cm 2 stack containing anode backings

with only 20$ FEP, was started up during this quarter and

peaked at an average of 560 mV/cell at 100 mA/cm 2 . However

after 800 hours, stack performance has dropped to an average

of 500 mV/cell, apparently due to flooding. Stack 417 is re-

ported in greater detail in Task IV.

1.3.2 Procedures for Wicking and Starting tre Stack

Optimal paths were prepared for stack wicking and starting

to prevent acid drippage and weeping from the cells. Fiqurz

I.1 shows the steps for computing optimal cell conditions

from wicK^ing to final operation. In the calculations, final

stack operating conditions were assumed to be 175°C and 100

* ERC Technical Progress Report DEN3-67, No. 5, Oct - Dec. 1979
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INPUT fIWIL OPER7ITIHG COi^DZTIONS:

input air recycle, a^ 
h^ficelli 

dry room humidity,

Calculate PH2p popar Wolter	 V = Vs

^^	 Calculatt T	 , p	 , M	 Satisfyingl	 reiek vdck ^dck,E	
V = Pydck • Wafck = 1.0

°'	 vs	 popsy. WopeT

Calculatt Preheating Tip. (T h) in Dry Room Giving

1	 vt + vc 0	 .

Calculate (T^y ^ ppCy ^ Wes) Satisfying

V	 Pwiek• We{r][_ = 1,0
Vs='ts^t.^

Calculate Ph 
0 

P(1) at current load	 I(1)
2

Calculate Preheating Temp at Which I(1) is loaded, satisfyin
Ve +Vc =0

Calculate Temp	 T(1), p	 p(1), W =	 1

Satisfying V/Vs = 1.0 at I = I(1)

	I(2)	 I(I) + AI

Calculate Ph2p = P(2) at current load 	 I(2)

Calculate Preheatin Temp. at rfi ich I(2) is loaded,
Satisfying	 V^I + v^ I = 0

Calculate Temp = T(2), p ^ p ( 2), W = w(2	 Satisfying

	

VJvs = 1.0 at I	 I(2)

	

Itl) ^ Zt2)	 Q. F1oW race
^	 T• Temperature

	

IS I(2) = I^r7	 I= Current
P= Vapor pressure
V= Volume

	

yES	 W= Concentration
gpyp	 p= Density	 D1083

FIGURE I.1

t	 FLOW CHRRT FOR CALCULATING STACK WICKING ArID STARTING CONDITIONS
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mA/cm2 . From the information of flow rates, humidities of

air and fuel, and current load, the partial water vapor

pressures on the cathode and anode are estimated from overall

mass balance equations. Acid density anc^ concentration are

then calculated from the correlated equations, using the

estimated water vapor pressure on the cell. Based on the

saturated cell condition at final stack operating conditions,

an .optimal wicking condition can be determined from the

following equation:

Vol. of acid in cell at wicking
	

pwick•Wwick = 1.0

Vol. of acid in cell during operation poper•Woper

Where,

pwick and poper = densities

at wicking and operating

Wwick and Woper 
= concentrations stages, respectively.

Using this equation, a wicking temperature can be calculated

by an iterative method (See also appendix A and B).

After wicking, the stack is preheated in the dry room

prior to OCV testing under higher humidity conditions.

Figure I.2 illustrates the point (Th) to which the stack should

be preheated in the dry room. As shown, the volume of acid

in the cell will expand when the stack is placed under higher

humidity, and gradually shrink as the stack is heated. The

behavior of volume change with temperature will depend on the

rate of moisture absorption, i.e., curve r l represents the

case of an infinitely fast absorption rate. When the rate is

very slow, the volume expansion curve will become almost flat

to approach the T-axis. The preheating temperature is deter-

mined, based on the extreme condition of the moisture absorp-

tion rate, to insure safety when the stack is starding for a

prolonged period outside the dry room. At point Th , volume

contraction and expansion become identical inside and outside

Page No. 9
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the dry room, respectively. The stack is thon moved out of

the dry room to a test stand to continue heating until the

acid volume returns to the saturation point, before OCV testing.

The temperature for OCV measurement is similarly determined,

as described above for wicking temperature determination.

Then the stack is again preheated to reduce ;• •the acid volume

in the cell before loading current on the stack. Figures

I.3 through I.8 illustrate calculated paths to be followed

from wicking to a final operating condition.

In Figure I.3 a three dimensional path was drawn for an

air stock* of 3.0, dry room humidity of 2.5 mm Hg, and a testing

lab humidity of 12 mm Hg. Under the given conditions, the

optimal wicking temperature becomes 75°C and the acid concen-

tration is 97.6$ After wicking, the stack is preheated to

99.5°C (path a-b), before taking it out of the dry room to

the 12 mm Hg humidity condition and heating it to 120°C

(path b-c) before OCV testing. After OCV measurements, the

stack is kept at 123°C (path c-d) before the 20 mA/cm 2 current

loading. After the stack is put on load, the temperature

is raised to 126°C (path d-e). When the starting current Loads

are 40, 60, 80 and 100 mA/cm 2 , the preheating temperatures

become 130, 142, 152 and 162°C, as shown in the figure.

The steps can be described more clearly by redrawing

the path on a P H o-temperature plane (Figure I.4). In Figures

I.5 and I.6, two 2different paths for dry room humidities of

1.5 and 2.5 mm Hgt are being compared on a volume - temperature

plane for air stoichs of 2 and 3. As shown, the dry room

humidity changes the wicking and preheating temperatures,

keeping the rest of the steps unchanged. For an air stoich

of 2, humidities of 1.5 and 2.5 mm Hg give wicking temperatures

of 59 and 71°C, respectively. Figure I.7 shows the path devia-

tion when the testing lab humidity increases from 12 to 16 mm Hg.

• Through the cathode channels.

^ Equivalent to 6 and lOt relative humidity at 25°C.

Page No. 11
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in this situation, the t^aratura for OCV testing changes

from 129 to 128°C. Figure i.8 compares two different paths

for two different air flow stoiehs of 2 and 4, The higher flow

rats gives a higher wicking temperature since higher flow

increases the acid concentration in the cell.

Table I.4 summarizes a comparison of stack conditions

from wicking to starting for 2 and 4 air stoichs, and for zero

and 40 # recycling of air. According to ttie table, wicking

temperature varies from 59 to 77°C, preheating temperature

in the dry room varies from 91 to 108 °C, and temperature for

OCV tasting varies from 114 to 130°C. Rased on this informa-

tion given in the table, a set of stack parameters was chosen

to allow tolerance of the varying environment within reasonably

small volume changes. Table I.5 shows the recom^:nded para-

meters to be applied from stack wicking to starting. Maximum

volume expansion enco*entered for the given sat of parameters

was estimated to be 2.5^.

In the next quarter, optimal flow and temperature conditions

will be determined to keep the acid volume unchanged in the

cell throughout the starting period,

T.1BLE I . 5 RECOMMENDED SET OF PARAi4ETERS

WICKING PREHEATING IN OCV TESTING STARTING
DRY ROOM

T = 70 T	 120 T	 15tJ
T = !10

W=97 W=99 I=b0

Units: T (°C}: W t^): I (mA/cm=)
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1.4 BACKING PAPER TECHNOLOGY

The previously reported variabliity of wetproofing in 1200

cm 2 backings is the result of a technique which involves dipping

the backings in a dilute FEP suspension and then draining off

the surplus liquid. During draining the backings are held by

one end or corner and the FEP flows out of the top and concen-

trates at the bottom. Alternate draining techniques are being

tried including rotating the backings during draining and

lifting them out of the FEP on a screen. However the fragility

of the backings and the awkwardness of handling them presents

many difficulties. Attempts to solve these problems,

possibly by other methods of FEP application, ^i.11 continue.

Cell 1426 (Table I.1), which contains prewashed backings,

was reported previously. Its performance was somewhat low,

but very stable and it was terminated after almost 2200 hours.

Analysis of the cell data does not indicate that the backing

was responsible for the low performance.

1.5 BIPOLAR PLATE TECHNOLOGY

1.5.1 Moldi_q

Molding trials with Varcum 24-655 resin from Reichhold

Chemicals, Inc. were completed and molding trials with Varcum

29-703 resin were initiated. Production rates with the Varcum

24-655 resin were a pmparable to those of the current bipolar

plates with Colloid 8440 resin from Colloid Chemical, Inc. The

Varcum 24-655 resin is a one-stage phenolic resin and has a

shelf life of 60 days at 16°C, while Varcum 29-703 and Colloid

8440 are two-stage resins. "Compounds formulated with two-stage

resins have a greater molding latitude, better dimensional stabi-

lity, and better long-term storage capabilities than with single-

stage resins"*. Varcum 24-655 resin compounds were superior

to Colloid 8440 resin compounds in co.-^rosion resistance. The
corrosion studies with H 3PO4 showed Varcum 29-703 having com-

parable if not better corrosion resistance than Varcum 24-655.

* "Phenolic", Modern Plastics Enc^clo^ia, 1978-1979, 34.
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Initial molding trials with Varcum 29-703 resin compounds indi-

cated no potential problems in fabricating bipolar plates. The

current resin prices for less than a truckload are:

Varcum 24 -655:	 $1.50/kg

Varcum 29-703:	 $1.52/kg

Colloid 8440:	 $1.74/kq

The standard bipolar plates in current use are 33 wt8

Colloid 8440/67 wt8 graphite. The graphite is composed of

27 wt$ 850 and 73 wt$ A-99 from Asbury Graphite Mills, Inc.

As previously reported, the molding trials and physical property

measurements showed no advantage in the usage of 850 graphite;

therefore 850 graphite shall not be used in the fabrication of

plates with Varcum 29-703 resin. The current graphite prices are:

Asbury Micro 850:	 $4.85/kg

Asbury A-99	 $ .86/kg

Current plans call for building 350 cm 2 and 1200 cm2

stacks with bipolar plates of 32 wt $ Varcum 29-703/ 68 wt$
A-99, 25 wt$ Varcum 29-703/ 75 wt-'. A-99, and carbonized 32 wt8

Varcum 29-703/ 68 wt$ A -99.

1.5.2 Carbonization

Carbonization runs 10 and 11 successfully carbonized

subscale plates of 25 wt$ Varcum 24-655/ 75 wt$ A-99 by heating

to a maximum temperature of 900°C in a nitrogen atmosphere. The

plates were partially ribbed on one surface, flat on the other

surface, and were 0.50 to 0.65 cm thick. The thickness of the

plates required a 15 day heating cycle to avoid defects from

outgassing. The cycle developed for standard bipolar plates

(bath sides ribbed and 40 to 46 cm thick) was five days.

The retort for carbonizing standard 1200 and 350 cm2

bipolar plates is being fabricated and full scale plates will

be carbonized during the next quarter.
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TASK II MATERIAL EVALUATION

2.1 COMPONENT CORR03ION RESISTANCE

2.1.1 Chemical Corrosion Measurements

A. Corrosion Characteristics of Resin-Graphite Composites:

Only the apparent corrosion rates (weight loss rate prior

to correcting for acid absorption) of several composites were

reported previously *. The true corrosion characteristics of some

of these composites (evaluated from the initial 2000 hour corro-

sion measurement d^^ta of the controlled experiments) are discussed

here.

Weight loss measurements of each sample type ( in the time

interval of 150 to 2000 hours) were observed to be linear with

the time of acid immersion (Figure II.1). Contrary to expecta-

- 2 0 O	 Pitnco 402
Colloid 8440

^	 Durti

Q	 Voreum 24 -65

Immertea in 100-102% H,PO^	 Ot 183•C
E

w, =	 initi0l weight Of tomplt
- w^ = tinol wfiQhf 0} toTPl•	 mQ/Cnt^
s ^^=	 final weight otter Sorhlel

' eatroction

.	 ^	 -I,0
WV. Q
Y
d
Sy
f—
o O

3 ^

n

0 .0
1000

AC10 IMMERSION TIME, hours

D1200
FIGURE II. i TRUE CORROSION CHARACTERISTICS OF 22'/ ° RESIN/	 _	 _^

78 •/. A-88 GRAPHITE COMPOSITES

* ERC Technical Progress Report DE^a Eye,_ No .. 2^, July-Sept. 1979.
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tions, these straight lines did not pass through the origin,

raising the possibility that a higher rate of weight loss may be

present during the early hours of acid immersion (<150 hours).

Because of scatter in the acid absorption data, no attempt was

made to define the acid absorption rate at this stage. The

rate of weight lass for each of the composites, reported in

Figure II.2, was calculated from the slope of the (Wfs-Wo) vs

time plot. The Wfs denotes the weight ^f the sample in g/cm2

after aging in acid, extraction of acid with water and drying.

Wo is the initial weight in g/cm 2 and t is the aging time in

hours. Acid absorption of these samples at 2000 hours of aging,

calculated from (Wf-Wfs), is also reported in Figure II.2. Wf

is the weight of the aged sample after water washing and drying.

The following observations can be made:

• Of the four samples compared, the Varcum 24-655 based
composite has the lowest corrosion rate ( -0.1?5 ug/hr-cm2).

• Raising the resin content in the range or 22 to 32$
seems to improve the corrosion rates of only those
samples with high corrosion rates.

• In general,^samples with higher acid absorption tend
to have higher true corrosion rates.

• The acid absorption of each sample increases as the
resin content decreases.

These findings are in accord with the SEM photographs

of the corroded samples and also with our current notion of

the corrosion mechanism, i.e., that corrosion mostly advances

via crack propagation and that acid absorption takes place

along these cracks.

In the future, corrosion measurement data up to 5000 hours

will be used to update the true corrosion rates and to define

the acid absorption characteristics for each of these composites.

Experiments are also under way to investigate the passibility

of the presence of a higher rate of weight loss during the

initial hours (<150 hours) of acid immersion.

2.1.2 Electrochemical Corrosion Measurements

A. Potentiostatic Corrosion at 0.9V (RHE)

Several composite samples were studied under accelerated

Page No. 2 3
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potentiostatic corrosion conditions to evaluate the long-term

relative corrosion characteristics.

Relative corrosion rates and the effects of resin content

on corrosion rate and structural integrity of the sample were

also studied. These samples were potentiostated at 0.9V (RHE)

in 100 to 102 $ H3PO4 at 190 . 5°C (+0.5°C) in electrochemical

polarization cells. The observed corrosion rates are plotted

in Figure II.3 against time for four different samples:

three contain 22$ resin/78^ A-99 graphite, and one sample con-

tains 32$ Varcum 24-655.

The current density is significantly hi5h for all three

bipolar 22$ resin content composite plates. Probably the elec-

trochemically active corrosion area is much larger than the exposed

geometric area because the composite samples absorb acid.

Furthermore, thin films of resin covering the carbon particles

may also be polarized and reacted electrochemically in the

process.

The corrosion rate decreased sharply for all 22$ resin

content samples after 140 to 200 hours of potentiostatic corrosion,

depending on the sample type. It is speculated that beyond the

point where the rate starts falling sharply, the structural integri-

ty of the sample deteriorates rapidly.

Th` effect of resin content on the corrosion current 13

also reported in Figure II.3. The sample containing 32^ resin

has a lower corrosion rate. The corrosion current of the 22$

Varcum sample is observed to be about 1.5 times higher than the

32$ Varcum sample.

All the samples were post-tested; thi r.,onsisted of visually

checking for physical strength and other. properties, and observing

the samples under an ordinary microscope and a scanning electron

microscope tSEM) for cracks, loss of surface i.^at:^^^3rity, 'blisters

and etching pattern.

After termination of the experiment, the 22$ Colloid arir3

-^	 Plenco samples were found to be com^;letely disintegrated. The

F	 22$ Varcum sample was just ho^agnegNQOg25her but the mechanical
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properties seemed to have deteriorated greatly and tiny blisters

(probably caused by electrochemical gas generation beneath the

resin ' skin') were also observed on the surface of the sample.

However there was no observable loss of physical strength in

the cases of 328 Varcum 24-655 and 328 Varcum 29-703. Although

SEM photographs did not reveal any sign of deterioration in

structural integrity, tiny blisters were visible on the surface.

Photomicrographs of the electrochemically corroded and

acid immersed samples are compared in Figure II.4. As the rate

measurements revealed earlier (Figures II.2 and Figure II.3),

surface photomicrographs also show that the electrochemical

corrosion is much more severe. The absence of cracks on the

surface of the electrochemically corroded sample indicates that

the corrosion mechanisms may also be different. SEM photographs

of the edges illustrate that in both the immersed and the corroded

samples of 328 Varcum 24-655, corrosion is predominantly localized

on the surface area.

The high rate of corrosion under electrochemical polari-

zation conditions is probably related to: enhanced corrosion

of carbon atoms at the binding sites; electrochemical oxidation

of the resin present at the bond sites; and/or attack on the

binding resin by the peroxide radical which is one of the

plausible intermediates in the reaction pathway of graphite

to CO2.

Attempts are presently under way to compare the potentio-

static bipolar plate corrosion rates with pure A-99 graphite and

glassy carbon corrosion rates and also to determine whether

resins are oxidized during polarization. All long-term potentio-

static experiments to date have been performed at 0.9V but, in

practice, the fuel cell operates in the potential range where

the mechanism of corrosion is different. Therefore in a future

experiment, long-term corrosion of a 228 Varcum 24-655 sample

will be studied at 0.75V, where the corrosion mechanism differs

from that which exists at 0.9V. In this way, it will be possible

to determine whether the loss of sample structural integrity is
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potential dependent.

S. Polarization Study of Glassy Carbon

The kinetic parameters of the electrochemical corrosion

reactions of bipolar plate materials were reported previously*.

These results suggested high electrochemical corrosion currants

for resin/graphite composite samples at fuel cell operating

conditions. Attempts are under way to identify factors which

contribute to the observed high current densities, aril to deter-

mine the proper corrosion preventive measures. Thus a com-

posite of cellulose and phenolic resin and a 100$ Colloid

8440 sample were carbonized at about 900°C and subsequently

studied in corrosion polarization experiments, as reported

earlier for composite material*. Two different Tafel slopes,

representative of two different reaction mechanisms, were also

observed for this glassy carbon material in the potential range

of 0.55 to 1 . OV (RHE) .

The corrosion currents for the carbonized composites were

observed to be about an order of magnitude less than the non-

carboni.zed ones. The kinetic parameters of the carbonized

samples, summarized in Table II.1, were found to differ from

the composite materials. Activation energies are much higher,

hence the rate constant8 of glassy carbon electrochemical cor-

rosion reactions would be significantly lower; this partly ex-

plains the low current densities observed. The true acid

exposed areas of the carbonized and the graphite-resin composite

samples, having the same geometric area, are probably different.

Therefore in future experiments, the effect of this factor on

the observed relative corrosion rates of these samples will

be studied.

C. Corrosion Characteristics of Composites as the Reaction
Proceeds

Using only the corrosion data of 'fresh' samplest, the

• DEN3-67, No. 5, Oct.-Dec. 1979

After corroding at 0.9v (RtiE) for 5 to 10 hogs.

Wage No. 2 9
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electrochemical corrosion reaction kinetics of several resin-

graphite composites were studied*. Zb investigate the pos-

sibility that the reaction pathway may shift as the reaction

advances, polarisation studies were performed on 321 Varcum

29-703 composite at three different stages of the corrosion

reaction. Corresponding corrosion currents observed at different

polarization potentials at 182 •C are reported in Fiqura II.S.

Tafel slopes observed after b4 and 128 hours of corrosion are

the same and aignifieantly different from the slopes observed

attar 8 hours of corrosion. Transfer coefficients, a, and

activation energies calculated from exchange current density vs

Tplot (a typical plot is shown in Figure II.6) are reported

in Table II.2 for each of the thre± different cases. Activation

energies are similar for the samples corroded for 64 hours and

128 hours but significantly higher than the sample corroded

for 8 hours. These kinetic parameters suggest the presence of

a taster reaction during the initial period and are possibly

related to the sample 'skin' corrosion. In future studies, the

time dependent corrosion kinetics of other types of composites

will be studied in order to understand the pronounced chanc3e in

reaction kinetics noticed after the initial period and also to

comprehend the corrosion reaction of bipolar plates as a whole.

D. Corrosion Rate Controllin g N'.echanism

All electrochemical results reported thus far in this report

and in a previous report• showed that transfer coefficients and

exchange current densities were distinct in two different

potential ranges which, in fact, represent two dissimilar re-

action mechanisms in the potential range of 0.5 to 1.OV (RHE).

The observed current density, i, at any potential, V, is

represented as the sum of currents, i t and i 2 , contributed by

the individual reactions:

• DEN3-67, No. 5, Oct. - Dec. 1979
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MATERIAL : 32 y. VARCUM 29-703 8 68°/. A-99 GRAPHITE

E s 49 K coi /moi
(BETWEEN 0.626 and 0.825 V )

N 10
E
v
a
E
Q
0..{

H
2
W
O

z
W
D:

u
W '6

z 10

vx
W

QE= 13 Kcol / moi . --^
(BETWEEN 0.625 and 0.825 V )

POIARIZATiON EXPERIMENT WAS PERFORMED
AFTER CORRODING THE SAMPLE AT 0.9V tRHE) FOR
p 8 HOURS t 18 C /cm2 PASSED)
Q64 HOURS t115C/cm2PASSEO^

O

0

•C SCALE

2.1	 2.2

LJ 3 /T (I/K)
p1136

FIGURE II.6 ENERGY OF ACTIVATION
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ORROSION AT .625 to 0 . 825V ( RHE) 0.825 to 1.OV (RHE)
0.9V(RHE) PRIOR

POLARIZATION verage Activation Average Activation
STUDY ransfer Coeff. Ener y Transfer Hnergy	 ^

t kcal mole Coeff. kcal*/mole
a 1 '-

a2

8 hours
X18 C/cm2 passed )* 0.20 13 0.35 12

64 hours
(115 C/cm2 passed) 0.16 49 0.45 44

128 hours
(230 C/cm2 passed) ^.17 41 0.47 39

* C = coulombs

Page No. 34
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1 = 11 ♦ 12

4- 
^o Ie V-E1 n1F

RT

(^-)

+ io ^ 2e V-E2
 a2F

RT

Where,

io= exchange current density

E theoretical open circuit potential

a = transfer coefficient of the anodic reaction.

The predominance of one reaction over the other depends

on the electrode potential, exchange current densities,

transfer coefficients and the operating temperature. Depending

on the resin type, pretreatments and temperatures, the 'changeover'

potential (at which the predominance of one mechanism over the

other occurs) varied between 0.775 and 0.95V (RHE).

This changeover potential, evaluated from the point of

intersection of two straight lines on the polarization plot for

32$ Varcum 29-703 (Figure II.S), is plotted against operating

temperatures for three different pretreatments (Figure II.7).

The changeover potential is observed to decrease as the tempera-

ture increases because the Tafel doge of the second reaction is

smaller than that of the first reaction.

Corrosion current, i 2 , contributed by the second reaction

increases much faster with the increase of potential (because

the Tafel slope is smaller). Therefore in fuel cells, the

operating potential must be mai;^tained below the changeover

potential 'n order to achieve longer life for cathode plates.

2.2 PHYSICAL PROPERTY MEASU'_2F^! ►4ENTS

2.2.1 Electrical Contact Resistivity

A method was developed to determine the contact resistivity

between two or more contacting surfaces. The effects of area,

pressure, and current on electrical contact loQ.=-_s were formulated

in an equation. An estimation of the electrical contact losses

^^ ^	 Page No. 35
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between phenolic/graphite composites and wetproofed backings

was calculated for fuel ce12 stacks.

The initial experiments were conducted for two types of

phenolic resin/graphite composites: 33 wt8 Colloid 8440/ 67 wt$

A•-99 and 850 graphite; and 32 wt$ Varcum 24-655/ 68 wt$ A-99

graphite. For each phenolic resin/graphite material, two 5.7

cm diameter, 1.9 cm thick disks were compression molded and

machined round. The disks shall be referred to as "conductors"

and the material placed between the disks as "inserts",

e.g., wetproofed backi.iig paper was a type of insert (Figure II.8).

The initial measurements conducted on the two 33 wt$ Colloid

8440 disks were designed to determine khe significance of pressure

and current, and to refine the technique (Table II.3).

Figure II.8 explains the principle used to measure the

voltage drop, E 4 , across the contacts, using the voltage drop

measurements across probes ae. E4 is defined as:

E4 = Y4 - Y 3	 i2)

Where,

Y4 = m2X 2 + b 2	(3)

Y 3 = m1X1 + bl	(4)

For conductors of the ssme comp^^sition,

_	 ^Y	 I	 (5)
ml ^' m 2	 aX	 P 1 A

Where,

I = current,

A = Area ( Cross-sectional),

^ lx VA =resistivity of the conductors and

iQ

^. = path length

Substituting Equations 3, 4 and 5 into Equation 2,

F^age No. 37
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E4 = plI ( X2 - Xl ) + b2 - bl
A

From Figure II.8

bl=0

(6)

(7)

b2	 Y2 - m1X3	 (8)

(Y2 and X3 are experimental values).

Therefore,

E4	 p ! l I (:C2 - X^ - X 3 ) + Y2
	

(9)

A

The apparent contact resistivity, 	 p2 , may be defined as:

pit= E4 p' = p 1(X2 - Xl - X3) + I Y2
	

{1^)

I	 '

For experiments with an insert between the conductors, p^

is for two contacts and the insert. The separation of backing

paper resistance from electrical contact resistance requires

further work. Based on the symmetry of Equation 10, the resis-

tivity of a single contact including half •tine resistance of an

insert, p c , equals

_ p _ E A

	

pc —^--? ^ ^	 (11)

Therefore in scaling to one cell, the resistance of one

backing was not taken int^^ account ar, for a 23 cell st2.ck, for

example, the contact resistance calculation wou:d, include only

23 backings instead of the actual 46 backings in the stack.

conductor resistivity, pl, used for calculating p 2 was

evaluated from a series of initial voltage drop measurements

across the conductor. Least square estimates of slopes ml

and m2 were converted to resistivity and averaged. Using

Page No. 4 0
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these algorithms, a computer program was developed for data

processing and calculating the contact resistances from the

experimental results. Contact resistances of 32 wt$ Varcum

24-655/ 68 wt$ A-99 graphite disks with: no insert, backing

paper insert, wetproofed backing paper insert and gold plated

copper foil insert were thus measured at different applied

pressures. In each experiment, Ohm's Law, V IR, was obeyed.

A typical V vs I plot when no insert was used is shown in

Figure II.9. Effect of applied pressure on the contact resis-

tance was similar for different inserts and a typical P 2 vs

Pplot is shown in Figure II.10. The experimental results

always agreed with the following simple relationship:

P 
,2	

C1 + C 2	 (12)

P

Where, Cl and C 2 are least square estimates of parameters.

In a fuel cell stack, pressure is applied on flat (nOn-ribbed)

end plates and the stack pressure reported on the basis of the

surface area of an end plate. The pressure between the ribbed

bipolar plate and backing paper depends on their contacting

area, Al and applied force, Fl.

P = F	 (13)
Al

Az ► equation tc compute the contact resistance, RC , in a

cell between the bipolar plate and backing, and the resistance

of half a backing paper can be developed by combining Equations

11, 12 and 13.

p	 C A	 1	 t14)
Rc = ^Ac = 1F 1 + C 2 2A

The following conclusions were made concerning electrical

contact resistivity measurements:

1. Electrical contact resistance of. graphite n ►aterials
in fuel cell stacks obeys Ohm's Law, V = IR

Page No, 41
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2. The accuracy of the measurements was sufficient to
discern differences between the various type• of
contacts that occur in fuel cell stacks.

3. The electrical contact resistance for current bipolar
plate materials is slightly lower between plate - backing
paper - plate, than between just two plates. This
agrees with in-house measurement on 1200 cm^ DIGAS
coolers. The compressibility of the backing paper
and irregular surface of the plates probably account
for this fact.

4. The scaling of contact resistance from subscale elec-
trical contact resistivity measurements appears feasible.

plates, a reduction
will not affect
significantly as
ncreaaed pressure at
reduces the contact

5. With constant pressure on the end
of contacting ribbed surface area
the overall contact resistance as
previously thought, because the i;
the rib - backing paper interface
resistivity.

Pertinent information on contact resistivity requiring

further investigation includes:

• The accuracy and reproducibility of the measurements
requires further experimentation.

• The effects of changes in area on the contact resis-
tivity measurements needs further evaluation. Equation
5'. assumes that the contact resistivity is independent
of area but, as shown in Figure II.10, consistent
variations were observed in contact resistivity values
for the different areas. Factors which may account
for these variations include: errors in length and
area measurements, variability of the electrical
resistivity of the conductors, and improper alignment
of the conductors and insert.

• The effects of the surface condition of the conductors,
changes in resin content of the conductors, and tempera-
ture on contact resistivity requires investigation.

• As previously noted, the resistance of the backing
paper was not separated from contact resistivity.
Measurements of backing paper resistivity will solve
this problem.

In conclusion, the method for measuring contact resis-

{	 tivity will improve with use and will supply valuable informa-

tion for fuel cells.

^	 2.2.2 Stack Resistance

Table II.4 shows the calculated values for stack resistance.

These values are present estimates and their accuracy will improve

Page No. 44
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TABLE II.4

ELECTRICAL RESISTANCE OF 12 in. x 17 in. SIZE FUEL CELL STACKS

CATION IN STACK RESISTAN E	 mil COMMENTSor 5-cell stack for 23-cell stack

late resistance 0.57 2 . 69 vaiues based ^n d,l,m-
ensions of C2C2 bipolar
plates, molded DIGAS
coolers, and an elec-
trical resistivity of

150 mfg-cm.

ontact resistance j	 0.47	 I 2.54 Values based on 37.4
late-backing inter- I FEP in backing paper,
aCe ^ 414 kPat60 psis) on erd

plates, and molded DIGAS

0.08 9.35

coolers	 (see^Figure II.10).

vaiues based on 37 .4♦ FEPn-plane backing
aper resistance backing paper N10,006.

` In-house resistivity

^

1

measurement was 19 mil-cm.

atrix resistance 0.22 1.02 Parameter included:
0.015 cm thick matrix
with 50♦ porosityt 180°C
H PO4 ; and acid resistivity
o^ 1.7 f2-cm" .

otal: 1.34 ^	 6.60

ctual measure-
ent on stacks,
ncluding current
ollectors 4.0 12.5

tack resistance
ccounted for: 34t ^	 53$

° Electrical resistivity value was extrapolated from data in MacDonald, D. and
Boyack, J., "Density, Electrical Conductivity and Vapor Pressure of Concen-
trated Phosphoric Acid," Journ. of Chem. and Eng. Data, 1.4, No. 3, July 19b9.
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as techniques are perfected. Factors accounting for the differ-

ence between the total of the calculated values and stack

measurement• include: the current roliectars in the stack,

the pressure distribution, the percent porAaity of the matrix,

the acid distribution, the actual electrical conductivity of

the acid, and errors in physical dimension measurements for

samples used i1^ resistivity measurements.

The values in Table II.4 were determined b1 the following:

1. Resistance of bipolar and DIGAS plates':

2. Contact resistance of plate - backing paper interface:
See preceding Section II.:.1.

3. The in-plane resistance of backing flaper was determined
fr^^m in-house electrical resistivity measurements on a
backing paper ( # 10,006, 37 . 4$ FEP) anti from physical
dimensions. The in-plane resistance of a backing,

^ = 2 '' 3^3	 (15)
N 1 tl X

Where,

^ 3	the in-plane resistivity of the backing paper,

^ 3 the mean path length,

t l 	the backing paper thickness,

x = the unit length of the anode, cathode, or DIGAS rib of
a plate, and

Nl 	the number of unit areas

4. The resistance of the matrix,

Rm = t 3 0 4	 (lf )

EA

Where,

t 3	the matrix thickne ;s,

' D^N3-67, f^. 3, Apr. - June 1979, pp 61-62.
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p 4= the electrical resistivity of the electrolyte,

El = the percent porosity of the matrix, and

A = the conducting or active area of the cells.

The values in Table II.4 shall be updated as improvements

in measurement occur and more data is collected.
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TASK III ENDURA?r`CE TESTING

3.1 EFFECT OF OPEZt^1TING VARyABLES QiV CELL PEl^^ORMAt7C:E

AND COMPO^iEN`T DFVri^OPMENT

Performance stability testing indicates that Stacks 379

exceeded 8100 hours and Stack 380 surpassed 7"700 hours of

operating tune at the end of the quarter. Stack 379 was

assembled with sheet mold electrodes and a Kynol matrix

whereas Stack 380 was assembled with rolled.ele^^trodeG and

a SiC matrix. A discussion of Sta^;k 3?9 was presented in pre-

vious reports*. A performance up-datE for Stack 379 pr^:sented

in Figure I"LI.I, establishes the lung-term operating capability

of sheet mold electrodes. Similar. electrodes have been used
in a full scale stank {No. 41.5) which .s presented in Task IV.

Endurance of Stack 380 also establishes the long-term capabi-

lity of stacks with a SiC matrix.

3.2 I,QNs^- TERM COMi^OPiENT EVALUATION

Twelve stacks have been in operation since September 1979.

There are three groups of four stacks with different matrices

in each group (a. Kyno]., b. SiC, c. Mat-1). The evaluation

of potential difficulties for long-term operation (>10,000 hr.)

w311 be obtained from this test. Stack performance at

the end of the quarter was averaged in each group and plotted

as a function c,f operatin g time, as shown in Figure III.2.

Stacks with Kynal matrices exhibited further decreases in per-

formance, which i.s consistent with performance characteristics

for Kynol stacks as discussed in the previous reporting period.

A consistent increase in ohmic resistance of these stacks

is observed (Figure III.2) resulting in performance loss. A

total of ti 60 mV/cell loss was observed in Kynol stacks (on an

average basis of operating stacks) over 3200 hours of operation.

A major portion of the 60 mV loss {35 mV/cell ohmic loss) was

due to an increase in resistance from S.6 to 8.5 mS2/stack.

The remainder of the loss is attributed to diffusion related

* ERC Technical Progress Report DEN3-67, Nos. 3 -5, Apr.- Dec^1979.
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and other undefined losses. Analysis of polarization curves with

oxygen - hydrogen and air - hydrogen performance indicated both

high Tafel slopes (100 to 150 mV/decade) and "02 gains" (80 to

110 mV at 100 mA/em 2 ). The potential difference of cells with

02 as oxidant to that of air at 178°C is defined as "0 2 gain".

The theoretical 0 2 gain for these conditions is calculated to

be ti 65 mV at 100 mA/cm 2 . These values appeared to be lower

for the Mat-1 and SiC matrix stacks (Tafel slopes of 85 to 100

mV/decade and 02 gain of 65 to 80 mV) than for Kynol stacks.

Average ohmic resistance for these stacks is also considerably

lower than for Kynol stacks (Figure III.2). The increased

resistance in the Kynol matrix group may be due to structural

changes in the phenolic matrix as a function of time. Most

of the stacks with SiC and Mat-1 matrices appear to be stable

over 4000 hours of operation (Figure III.2).and are more stable

than the Kynol stacks.

Page No. 5 ^.
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TASK IV SHORT STACK TESTING

Several 1200 cm^ short stacks (5 cell) were assembled for

different purposes during this quarter. Two major changes in

short stack design, as initiated during the previous quarter,

are described as follows.

4.1 CURRENT COLLECTING POSITION IN THE STAG:

Experimental and theoretical approaches to current collector

positioning in a stack were presented previously*, including

the advantages of current collection through a central post.

Consequently, Stacks 412 and 413 were assembled to incorporate

a central current post brazed to the copper sheet collector.

Post-test analysis following testing indicated inadequate contact

between the sheet and the post due to the brazing. In later

stacks the design was slightly modified to ensure good contact

between the current post and the sheet collector. Stacks 414

through 417 were assembled with the improved current collector

design. A summary of stacks assembled during this quarter for

testing is presented in Table IV.1. Test results indicated

lower resistance across the terminals and gas seals after in-

corporating the improved current collector design.

4.2 COMPONENT AND DESIGN DEVELOPMENT

Considerable progress was realized in component and design

development in full scale stacks during this quarter. The

bipolar plate design was changed to incorporate a wicking channel,

as described in the previous quarter. All stacks assembled after

No. 414 are assembled with this improved design plate. Stacks

utilizing these plates have already logged over 1100 riours of

continuous operation. Lifegraphs of Stacks 415 and 416 at

100 mA/cm 2 are presented in Figure IV.1. Stack 415 was assembled

with sheet mold electrodes and Kynol matrices whereas Stack 416

was assembled ;with rolled electrodes and Kynol matrices. Both

stacks were assembled with prefilled components and began operation

after a few days. The performance of both stacks was almost

identical initially but then Stack 416 started to decrease

slightly(Figure IV.1). No major difference in oven circuit

* ERC Technical Progress Report DEN3-67, No. 5, Oct. - Dec. 1979.
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voltage and stack resistance was observed (not shown in the figure).

Analysis of polarisation data at 1000 hours of operation for

both stacks indicated higher Tafel slopes and 02 gains in the

stack with rolled electrodes (Stack 415) than for the one with

sheet mold electrodes (Stack 415). This may be the reason for

the performance variations in the stacks.

Stack 415 also demonstrated the long-term operating capa-

bility of sheet mold electrodes in full scale stacks. The per-

formance data for a medium size (350 cm 2 ) stack is presented

in Section 3.2. A combination of sheet mold electrodes and Mat-1

matrices is being assembled in a 1200 cm 2 , 5-cell stack for testing.

Stacks 418, 419, 421 and 422 were dry assembled with rolled

electrodes and Mat-1 matrices. The usual method of wicking these

stacks takes more than 4 weeks. Stacks with Kynol matrices

require only about 10 to 12 days of wicking time. In order to

evaluate the wickability of Mat-1 stacks, a 2 cell stack was dis-

assembled after 3 weeks of wicking. 6Vhen disassembled the

top partion of the cells c^as found very dry. While improvements

in the wicking zate for Mat-1 matrices continued, Stack 423

was assembled with prefilled, rolled electrodes and Mat-1

matrix. The stack started to operate on the following day, and

by the end of the quarter, it had accumulated 30 hours of contin-

uous operation wic;^ an average performance of 0.59 V/cell.

Additional stacks are planned next quarter fir testing the wet

assembled stacks with Mat-1 matrices.

':

Page No. 55



31eo	 DENS-67

ENEN011 ^1ESEAitCH CORPORATION

TASK V LONG STACK TESTING

5.1 2 kt^' STACK TESTING

The second Z kW stack, :vo, 410, which operated for 40

hours of net running time (from Run No.l through 7) showed over-

heating (ti197°C) during Run No.7 due to crossleakage in the cell.

When rewicked and tested for OCV and load performances, it

regained OCV without any crossleakage, but performance dropped

due to increased stack resistance (14 mSZ from a previous 12 mil)

and flooding. Table V.1 summarizes the results for the 3 day

on/off running condition (Runs 6, 9 and 10): approximately

500 mV at 100 mA/cm z was decayed from the previous stack run.

From a 2 mS2 increase in resistance, a 226 mV decay was expected.

However a greater decay has been encountered, probably due to

increased flooding of cell. components.

Temperature profiles were again measured during Run 8.

No significant change was observed in the temperature profile

as compared with that obtained during Run No. 5*.

For the next 2 kW stack, acid channels will be incorporated

in the bipolar plates to allow acid addition while the stack is

running. A i^mat-1 matrix will also be used to retain Wore acid in

the cell. Through the new stack acid replenishing technique,

the following will be evaluated for final long-term endurance

testing; performance characteristics for the new matrix cells;

and various physical characteristics such as acid duration,

wicking rate, stactr IR, flow and temperature distributions, and

sealing.
<<,

*EFtC Technical Progress Report D£N3-67, No. .5, Oct. - Dec. 1979.

-	 Page No. 5 6

p . ^-
^,•^
iii _ _ _ _ ,.



3/80 DEN3-67 

TABLE V.l SU~RY or 2kW STACK (No. 410) 

(Daily on/off running) 

---
OCV. volt PEJIl'OR:lANCt: 100 fAA/c.' • volt 

ClLL 
NO. Run No. 8" Run No. 9t Run No. 10 Run 110. 8 R\IIl~. 9 Run :10. 10 

1 0.94 0.86 0. 86 0.4J O.H 

2 0.91 0.87 0.85 0.53 0.54 

3 0.93 0.86 0.e2 0 .56 0.58 

4 0 . 91 0.87 0.83 0.55 5 

5 0.83 0.83 0.8l 0 . 50 0 .50 

6 0.91 0.86 0.83 0.:;6 0 .56 

7 0.91 0.85 0.82 No Tost 0 .5!> 0 .56 

8 C. 0.1;5 0.84 
at 100 0 .57 0 . 57 1 1nA/ =2 

O. 2 0.B6 0 . 83 U .5~ 0 . 54 

10 0 . 97 0.84 0.8) 0 .53 .5) 

11 O. O. 3 0.81 O. S . 55 

12 0 . S7 0 .84 0.84 0.54 0 .54 

13 O.BS 0.S3 0.72 . 53 J . 5 

14 O. ) 0.87 O. 3 0 .5 0 . 59 

15 O. 8 0.S4 O. . !i l 0 . 50 

16 O. 7 O.S 0. 80 0 .56 n .5 

17 0 .8 0.8 O. Sl 0 . 58 0 .58 

18 O.S 0.82 0.78 0.5 4 .54 

1 O.S O. 4 O.SO 3 0.51 

a 0.S7 0 .71 O. 0 .4 .47 

'2 1 0 . 7 0 .8) 0.8 0 . " 4 1.1 .50 

22 O. 8 0 . 84 O.SO 0 . 52 0 . 54 

2) O.BO O. 5 0.7 O. ) 0 .4-1 
-- .-

TOL;ll 0. 47 1 

1-- _ _ _ 
-

• 'V .It 1 ~c.·c 
locv ,I 175"\: 

9 10.7 1 • . 1 11 . 2 
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5.2 2 kW STACK TEST STAND IMPROVEMENTS

Design of additional safety features was initiated to prevent

cell damage during unattended operation. As shown in Figure V.1,

when any one of the failures (stack overheating, short-circuit,

current load and air fan failures) occurs, the stack is automati-

cally shut down by subsequent shut-off of fuel and air flows,

releasing current load, and turning off heaters. Then the stack

is kept at a lower temperature by auxiliary heaters (which prevents

moisture absorption).

5.3 REFORMER TESTING

Methane reforming at five different space velocities ranging

from 565 to 1135 hr -1 was performed and showed the feasibility

of meeting the hydrogen supply for a 2 kW fuel cell stack. At

present, a space velocity of 1200 hr^ l (required for 2 kW po^^er)

was examined to show that the reformer had sufficient heating

capacity to obtain 1003 fuel conversion. Figure V.2 shows the

temperature profiles experienced in the present reformer at a

space velocity of 1200 hr^ l . Table V.2 shows the reforming

product compositions for the experimental and theoretical calcu-

lations. Tl^e conversions of 81 vs 84$ for experiment vs theory

at a reforming temperature of 592°C, shown in the table, indicate
that the present reformer is close to equilibrium operation.

Once the reforming temperature is increased, the present reformer

seems capable of producing enough hydrogen for the 2 kW stack.
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TABLE V.2

COMPARISON OF EXPERIMENTAL AND THEORETICAL METHANE REFORMING

PRODUCT COMPOSITIONS

OMPOSITION EXPE?IMENTIiL,
^

THEORETICAL,
$

COMMENTS

CH4 2.7 2.2

(	 :; . 5

• Steam/carbon = 4.37

CO 3.6 • Hydrogen./carbon = 0.1

CO2 7.7 8.3 • Reformer Inlet Temp.

- 280°CH 2 43.5 45.0

H 2O y'...5 40.0 s Reformer Exit Temp.

= 592°C
,onversion 80.6

-.	 l
84.3
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APPENDIX el

ESTIA'SATION OF WATER VAPOR PRESSURE IN THE CELL

Overall mass balance:

Qi-Qo	 (JH O 1/2 rH 0)•A
2	 2

Q 3 -Q 4	 (rH O - JH 0 ) A
2	 2

Where JIi 
n 

is water flux from cathode to anode.
2

rH 
O 

is water generation on cathode	 = I
2	 mF

A is cell area.

Using arithmetic average,

Qa^ g = RF (Q i + Qo )/2 = RF • {2Q i -J H o	 A + 1/2 r H o A)/2
2	 2

Q a vg = (Q 3 + Q 4 )/2 = {2 • Q 3 - r H o • A + JH o A)/2
2	 2

Where RF = Fra.:tior of air flow through cathode channels

For H 2O, the total moisture flow-in will be

(QH2o) in = RL • (Q H 2 o ) out + QH2o

6ahere !2L = Fraction of air recycle

.^. (ti ti o ) in = RF• (QH o ) in2	 2

^.

Page No. A-1



3/80
DEN3-67

ENERGY RESEARCH CORPORATION

	

(QH2o)out	 (QH2o)in + (rH2 o- JH2o)A

(QH 2 o ) out ^ (QH2o ) in + ( r H2o- JH2o)A

s RL• (QH 2o ) out + (rH2o- J H2o ) A +QH2o

H 2O Out	 1-RL	
H2O	 H2O	 H2O

__	 \
.. (4 x2o) out • RFRLL 

+l rH2o + ^2oJ A + 1FRL 4H2o

	

. •. (Q Fi 2^) in	
1 FRLL	 rH2o - JH2o A + RFRL QH2o

:.Average Mole Fraction of H 2O Vapor =X H o

2

_	 C1 
^^' + 1 ) rH2o — JH2O ) 

A + ^.cL QHZO

RF.(2Q i — JH2O A + rH2O Aj21

	

lc	 /

•	 P H o - 760 XH 0.•

	

2	 2

For the anode side,, 	 ^

PHaO = 760	
2 • Q H2O + J

^ ► 2 0 • A

2	 2Q3 - rH oA + JH oA
2	 2

When the make-up air has a mole fraction of H2O (YH O)_	 2

..	 i	 o	 2

• Q H 2O = 
L

(1 -RL) Q 
i - 

RL 
r220 - 

JH2o1 J • Y H 0
••	 C	 2
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APPENDIX B

CORRELATION OF WATER VAPOR PRESSJRE AND DENSITY OF ACID

AS A FUNCTION OF T & W

(1) For water vapor pressure,

log 10 
P
x o = A + B/T	 (1)

2
where A = A(1) + A(2)x + A(3 ) x 2 + A(4)x 3 + A(5)x4

B = B(1) + B ( 2)x + B(3 ) x 2 + B(4)x 3 + B(5)x4

where	 x =	 w

5.440-0.0444• W

For 1305 T5170 °C and 80^W^101 $ (MacDonald and Boyack , p 380,

J. of Chem. Eng. Data, Vol 14, 1949),

A(1) = 1.073502 x 10

A(2) _ -7.40558 x 10-2

A(3) = 5.46493 x 10-4

A(4) = 1.03388 x 10-8

A(5) =	 0.0

B(1) =^-2.83G25	 x 103

B(2) = 1.81247 x 10

B(3) _ -1.25648x 10-1

B(4) _ -8.16949 x 10-4

B(5) = 0.0

For T< 130°C,	 W<102^,

A(1) = 10 . 6541, and the rest of the coefficients are the same.

For T>170°L,	 W>102^

A(1) = 10 . 63811, and the rest of the coefficients are the same.

For 102 ^<W x;05$,

A(1) = 2.40058 x 10 2 B(1) _ -8.49288 x 10"

A(2) _ -4.2953 B(2) = 1.52987 x 103

A(3)
_^

= 1.27542 x 10 B(3) _ -4.55644

A(4) _ 1.44261 x 10 -7 B(4) _ -5.2044 x 10	 2

A{5) _ -7.16712 x 10-7 B(5) = 2.57801 x 10	 "

For W>105$,

A(1) = 1.27857 x 10 B(1) = 1.38898 x 103

A(2) _ -3.25561 x 10
-2

B(2) _ -8.56829 x 10

A(3) = 6.16028 x 10 -5 B(3) = 4.57713 x 10-1

A(4) = 0.0 B(4) _ -8.2059 x 10-4

A(5) = 0.0 B(5) = 0.0
Page No. B- i
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(2) Fer density (MacDonald and Boyack),

Density = 0.68235 + 0.0120811•W -

-(1.2379 - 3.7938 x 10
-3
 x W)/1000
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